mos integrated circuit μ PD98402A

LOCAL ATM SONET FRAMER

The μ PD98402A is one of the ATM-LAN LSIs and incorporates the TC sublayer function in the SONET/SDHbased physical layer of the ATM protocol. The main functions of the μ PD98402A include a transmit function for mapping ATM cells received from the ATM layer onto the payload block of the SONET STS-3c/SDH STM-1 frame and sending them to PMD (Physical Media Dependent) in the physical layer, and a receive function for separating the overhead block and ATM cells from the data string received from the PMD sublayer and sending the ATM cells to the ATM layer.

Futhermore, the μ PD98402A is compliant with the ATM Forum UNI Recommendations.

FEATURES

NEC

- Provision of TC sublayer function of ATM protocol physical layer
- Support of SONET STS-3c frame/SDH STM-1 frame format
- Provision of stop mode for cell scramble/descramble and frame scramble/descramble
- Disposal/transitory selection of unassigned cells is possible.
- Compliant with UTOPIA interface
- · Incorporation of internal loopback function at PMD and ATM layer turns
- Incorporation of OAM (Operation And Maintenance) function

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

• Incorporation of OAM (Operation And Maintenance) function

Transmitting side

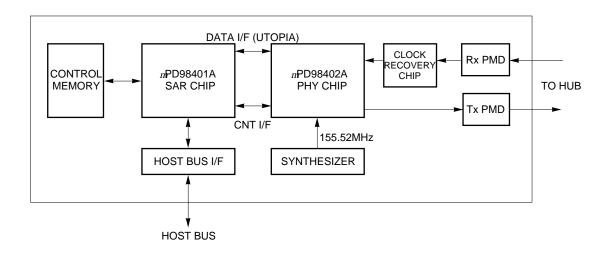
Transmission of various alarms

- Transmission by generation of sources Line RDI (FERF), Path RDI (FERF) Line FEBE, Path FEBE
- Transmission by command instruction Line AIS, Path AIS Line FEBE, Path FEBE

Receiving side

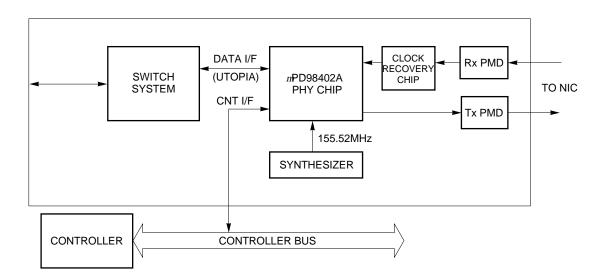
- Detection of alarms and error signals
 - LOS (Loss Of Signal)
 - OOF (Out Of Frame)
 - LOF (Loss Of Frame)
 - LOP (Loss Of Pointer)
 - LOC (Loss Of Cell delineation)

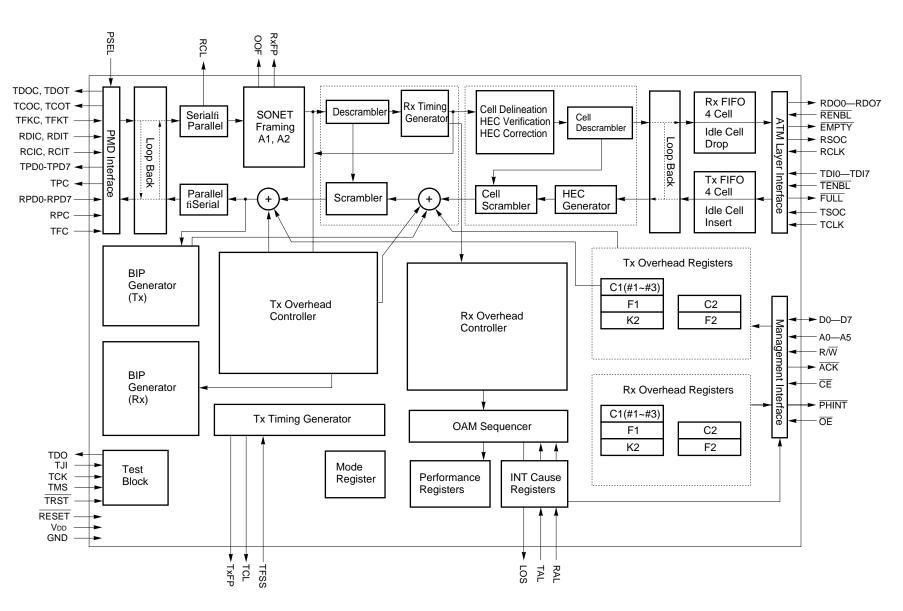
Line RDI (FERF), Path RDI (FERF) Line AIS, Path AIS

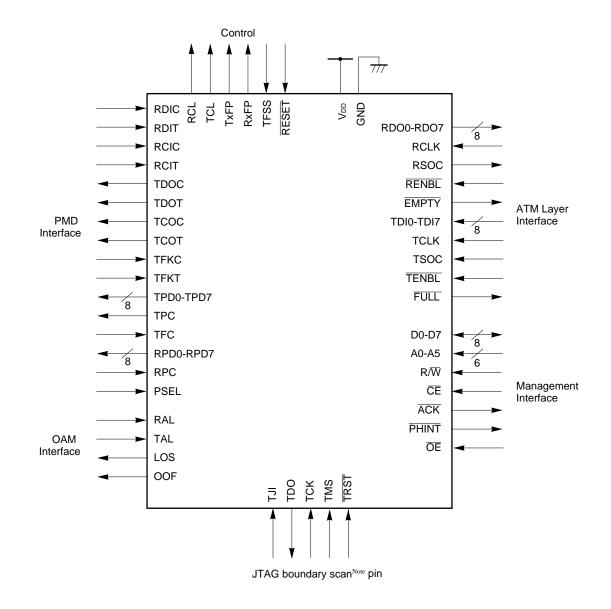

- Detection and display of quality deterioration sources B1 error, B2 error, B3 error, Line FEBE, Path FEBE
- Incorporation of counter for counting number of performance monitoring errors
 - B1 byte error counter
 - B2 byte error counter
 - B3 byte error counter
 - Line FEBE error counter
 - Path FEBE error counter

ORDERING INFORMATION

Part Number Package µPD98402AGM-KED160-pin plastic QFP (FINE PITCH) (24 × 24 mm)

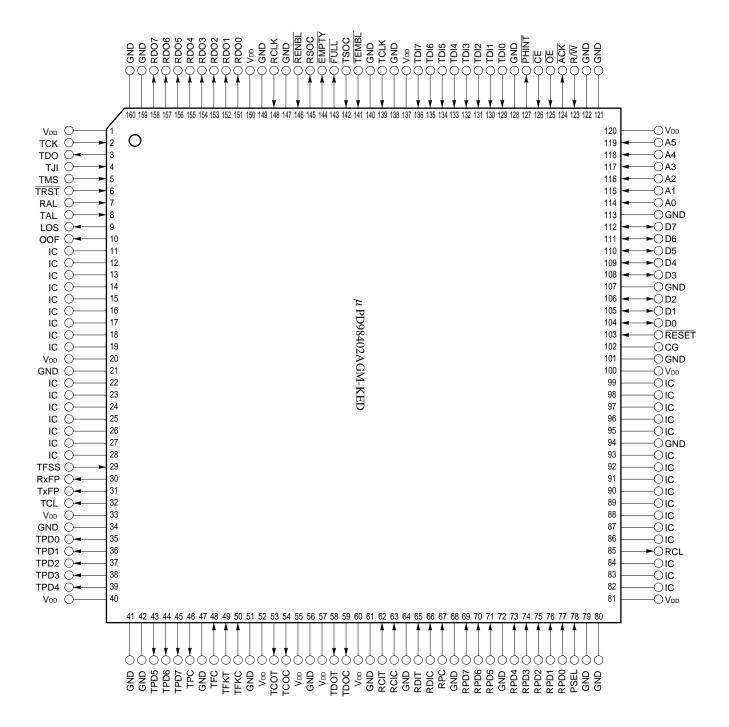

APPLICATION EXAMPLES


The followings are examples of the terminal equipment and the ATM Hub application using the μ PD98402A.



Z

n


FUNCTIONAL PIN GROUPS

Note This function can be supported at the customer's request.

PIN CONFIGURATION

160-pin plastic QFP (FINE PITCH) (24 \times 24 mm) (Top View)

Remarks 1. IC : Internally Connected. Leave open.

2. CG: Connect to GND.

A0-A5	: Address Bus
ACK	: Read/write Cycle Receive Acknowledge
	: Chip Enable
D0-D7	: Data Bus
EMPTY	: Output Buffer Empty
FULL	: Buffer Full
GND	: Ground
LOS	: Loss of Signal
	: Output Enable
OOF	: Out of Frame
PHINT	: Physical Interrupt
PSEL	: PMD I/F Select
RAL	: Receive Alarm
	: Receive Clock Input Complement
RCIT	: Receive Clock Input True
RCL	: Internal Receive System Clock
RCLK	: Receive Data Transferring Clock from the ATM Layer Device
RDIC	: Receive Data Input Complement
RDIC	: Receive Data Input Complement
	: Receive Data Input The
RENBL	: Receive Data Enable
RESET	: System Reset
RPC	: Receive Parallel Data Clock
-	: Receive Parallel Data
RSOC	: Receive Start Address of ATM Cell
R/W	: Read/write Control
RxFP	: Receive Frame Pulse
TAL	: Transmit Alarm
TCK	: Test Clock
TCL	: Internal Transmit System Clock
TCLK	: Transmit Data Transferring Clock from the ATM Layer Device
TCOC	: Transmit Clock Output Complement
тсот	: Transmit Clock Output True
TDI0-TDI7	: Transmit Data Input from the ATM Layer
TDO	: Test Data Output
TDOC	: Transmit Data Output Complement
TDOC	: Transmit Data Output Complement
TENBL	: Transmit Data Fnable
TFC	: Transmit Reference Clock
TFKC	: Transmit Reference Clock Complement
TEKT	: Transmit Reference Clock True
TFSS	: Transmit Frame Set Signal
TJI	: Test JTAG Data Input
TPC	: Transmit Parallel Data Clock
-	: Transmit Parallel Data
TMS	: Test Mode Select
TRST	: Test Reset
TSOC	: Transmit Start Address of ATM Cell
TxFP	: Transmit Frame Pulse
VDD	: Supply Voltage

1. PIN FUNCTIONS

• PMD Interface

Symbol	Pin No.	I/O	I/O Level	Function
RDIC	66	I	Pseudo ECL Complement (-)	These pins are used to input receive serial data when serial interface mode is used (PSEL pin input = low level). Ground
RDIT	65	I	Pseudo ECL True (+)	them when Parallel interface mode is used.
RCIC	63	Ι	Pseudo ECL Complement (-)	These pins are used to input the receive system clock when serial interface mode is used (PSEL pin input = low level).
RCIT	62	Ι	Pseudo ECL True (+)	Clocks are input in synchronization with receive data. Ground them when parallel interface mode is used.
TDOC	59	0	Pseudo ECL Complement (-)	These pins are used to output transmit serial data when serial interface mode is used (PSEL pin input = low level). They are
TDOT	58	0	Pseudo ECL True (+)	open-drain pins. Terminate them with V _{DD} –2 V via a 50 Ω resistor. To be undefined after reset.
тсос	54	0	Pseudo ECL Complement (-)	These pins are used to output transmit clocks when serial interface mode is used (PSEL pin input = low level). Transmit clocks to be input to the TFKC/TFKT pins are output passing
тсот	53	0	Pseudo ECL True (+)	through internal gates. They are open-drain pins. Terminate them with V_{DD} –2 via a 50 Ω resistor. To be undefined after reset.
TFKC	50	I	Pseudo ECL Complement (-)	These pins are used to input transmit system clocks when serial interface mode is used (PSEL pin input = low level). Transmit data output from the TDOC/TDOT pins is output in
TFKT	49	I	Pseudo ECL True (+)	synchronization with clocks that are input to these pins. Ground them when parallel interface mode is used.
RPD0-RPD7	77-73, 71-69	I	TTL	These pins are used to input receive parallel data when parallel interface mode is used (PSEL pin input = high level). Leave them open when serial interface mode is used.
RPC	67	I	TTL	This pin is used to input the receive system clock when parallel interface mode is used (PSEL pin input = high level). Input clocks synchronous with the receive data. Leave it open when serial interface mode is used.
TPD0-TPD7	35-39, 43-45	0	CMOS	These pins are used to output transmit parallel data when parallel interface mode is used (PSEL pin input = high level). Leave them open when serial interface mode is used.
TPC	46	0	CMOS	This pin is used to output transmit clocks when parallel interface mode is used (PSEL pin input = high level). Transmit clocks to be input to the TFC pin are output passing through internal gates. Leave it open when serial interface mode is used.
TFC	48	I	TTL	This pins is used to input transmit system clocks when parallel interface mode is used (PSEL pin input = high level). Transmit data output from pins TPD0 to TPD7 are output in synchronization with the clocks input to this pin. Leave it open when serial interface mode is used.
PSEL	78	I	CMOS	This pin is used to select the mode for PMD interface serial/ parallel interface. Low level: Serial interface mode High level: Parallel interface mode

• Power supply

Symbol	Pin No.	I/O	Function
Vdd	1, 20, 33, 40, 52, 55, 57, 60, 81, 100, 120, 137, 150	_	Supply voltage, 5 V \pm 5 %
GND	21, 34, 41, 42, 47, 51, 56, 61, 64, 68, 72, 79, 80, 94, 101, 107, 113, 121, 122, 128, 138, 140, 147, 149, 159, 160	_	Ground

• ATM Layer Interface

Symbol	Pin No.	I/O	I/O Level	Function			
RDO0-RDO7	151-158	0	CMOS	Connected to 8-bit data bus to output the receive data to the ATM Layer device. Output is synchronized with the RCLK rising up. To be undefined after reset.			
RCLK	148	I	TTL	Input pin of the receive data transferring clock from the ATM Layer device.			
RSOC	145	0	CMOS	Receive cell start address signal. To the ATM Layer device this signal indicates the start address byte of the receive A cell. To be undefined after reset.			
RENBL	146	I	TTL	Receive enable signal. Input pin of the signal indicating the the ATM layer device can receive data.			
EMPTY	144	0	CMOS	Output buffer empty signal. This signal indicates that there is no data to be transferred to the receive FIFO of the μ PD98402A. To be inactive after reset.			
TDI0-TDI7	129-136	Ι	TTL	8-bit data bus to input the transmit data from the ATM Layer device. Reading a data on the bus is synchronized with the TCLK rising-up.			
TCLK	139	Ι	TTL	Input pin of the transmit data transferring clock from the ATM layer device.			
TSOC	142	Ι	TTL	Transmit cell start address signal. Input pin of the signal indicating the start byte of the transmit ATM cell input from the ATM Layer device to the μ PD98402A.			
TENBL	141	I	TTL	Transmit enable signal. This signal indicates that the ATM Layer device is transmitting the valid data to the TDI0-TDI7.			
FULL	143	0	CMOS	Input buffer full signal. When 4 bytes remain as the acceptable bytes of transmit FIFO at last, this signal changes to active. To be inactive after reset.			

• Management Interface

Symbol	Pin No.	I/O	I/O Level	Function			
D0-D7	104-106 108-112	I/O	CMOS	8-bit data bus for data transfer between the control processor and the internal register of the μ PD98402A.			
A0-A5	114-119	I	TTL	Address bus. Used for setting the internal register address of the $\mu\text{PD98402A}.$			
R/W	123	I	TTL Read/write control signal. Low level: Write cycle High level: Read cycle				
CE	126	I	TTL	Chip enable signal. At low level, internal register access is to be enable.			
ACK	124	0	CMOS	Read/write cycle receive acknowledge or ready signal. After reset, this signal indicates inactive level.			
PHINT	127	0	CMOS	Signal which indicates the interrupt cause occurrence to the processor. After reset, this signal indicates inactive level.			
ŌĒ	125	Ι	TTL	Output enable. When this signal is set to low level, the μ PD98402A outputs data to the control bus. Even if the \overline{CE} signal is inactive, when this signal is at low level, the μ PD98402A drives the control bus.			

• OAM Interface

Symbol	Pin No.	I/O	I/O Level	Function
LOS	9	0	CMOS	Loss of signal detection. Output high level when receive serial data input is "0" for 50 μ s continuously or optical input stop signal (RAL) is input. When 2 consecutive frames of valid synchronous pattern is detected, or when input of the optical input stop signal is released, low level is output. To be inactive after reset.
OOF	10	0	CMOS	Out of frame detection. When 4 consecutive frames of wrong synchronous pattern are detected, high level is output. When 2 consecutive frames of normal synchronous pattern are detected, low level is output. To be inactive after reset.
RAL	7	I	TTL	Receive alarm. Inputs receiver-side optical input stop signal by the optical module. Low level: Normal High level: Optical input stopped.
TAL	8	I	TTL	Transmit alarm. Inputs transmit-side optical output stop signal output by the optical module. Low level: Normal High level: Optical output stopped.

Control

Symbol	Pin No.	I/O	I/O Level	Function
TFSS	29	I	TTL	This is the transmit frame setting signal input pin. It allows synchronization timing of transmit frame output to be set. The μ PD98402A samples this input signal by the internal transmit system clock (TCL). Initial output of the transmit frame is restarted 9 clocks into TCL clock cycle after a high level is latched at TCL rise.
RESET	103	I	TTL	This is the system reset signal input pin. It initializes the μ PD98402A. It is necessary to input a reset signal with a pulse width of 2 cycles or more of the clock that has the longest cycle among the following clocks input to the μ PD98402A. ATM layer : TCLK, RCLK clock cycles PMD layer : 1/8 cycle of TFKT/TFKC, RCIC/RCIT clocks, TFC, RPC clock cycles Immediately after a reset, no read/write is possible to registers during 5 clocks of the TCL clock (19.44 MHz).
TCL	32	0	CMOS	This pin is used to output an internal transmit system clock. The μ PD98402A outputs as the internal transmit system clock, the TFKT/TFKC input clock (155.52 MHz) scaled by 8 in serial interface mode, and the TFC input clock (19.44 MHz) in parallel interface mode.
RCL	85	0	CMOS	This pin is used to output an internal receive system clock. The μ PD98402A outputs as the internal receive system clock, the RCIC/RCIT input clock (155.52 MHz) scaled by 8 in serial interface mode, and the RFC input clock (19.44 MHz) in parallel interface mode.
TxFP	31	0	CMOS	This is a frame pulse signal on the transmitting side. It outputs pulses synchronous with the transmit frame start. To be inactive after reset.
RxFP	30	0	CMOS	This is a frame pulse signal on the receiving side. It outputs pulses synchronous with the receive frame start. To be inactive after reset.

• JTAG boundary scan pins (This function can be supported at the customer's request.)

Symbol	Pin No.	I/O	I/O Level	Function
TJI	4	I	TTL	This is a pin for JTAG boundary scan. Pull it up or ground it in normal operation.
TDO	3	0	CMOS	This is a pin for JTAG boundary scan. Leave it open in normal operation.
тск	2	I	TTL	This is a pin for JTAG boundary scan. Pull it up or ground it in normal operation.
TMS	5	I	TTL	This is a pin for JTAG boundary scan. Pull it up or ground it in normal operation.
TRST	6	I	TTL	This is a pin for JTAG boundary scan. Ground it in normal operation.

• Recommended Connection for Unused Pins

Pin	Recommended connection
TDOC, TDOT, TCOC, TCOT, ACK, LOS, OOF, TCL, TxFP, RxFP	leave open
RAL, TAL, TFSS	connect to GND

2. ELECTRICAL SPECIFICATION

Absolute maximum ratings

Parameters	Symbol Conditions		Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
Input/output voltage	Vı/Vo		-0.5 to VDD +0.5	V
Operating ambient temperature	TA		0 to +70	°C
Storage temperature	Tstg		-65 to +150	°C

Caution Exposure to absolute maximum ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The parameters apply independently. The device should be operated within the limits specified under DC and AC characteristics.

Capacitance

Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cı			10	20	pF
Output capacitance	Co	f = 1 MHz		10	20	pF
Input/output capacitance	Сю			10	20	pF

Recommended operating conditions

Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	Vdd		4.75		5.25	V
Operating ambient temperature	TA		0		+70	°C
Low level input voltage	VIL1	Note1	0		+0.8	
	VIL2	Note2	Vdd-2		Vdd-1.5	V
	VIL3	Note3	0		0.3 Vdd	
High level input voltage	VIH1	Note1	2.2		Vdd	
	VIH2	Note2	Vdd-1.1		Vdd	V
	Vінз	Note3	0.7 Vdd		Vdd	

Notes 1. TTL input pin

- 2. Pseudo ECL input pin
- 3. CMOS input pin

DC Characteristics (V_{DD} = 5 V \pm 0.25 V, T_A = 0 to +70 °C)

Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Off-state output current	loz	$V_I = V_{DD} \text{ or } GND^{Note1}$	_		10	μΑ
Input leak current	ILI1	$V_I = V_{DD} \text{ or } GND^{Note2}$	_		10	
	ILI2	Note 3	_		10	μΑ
	Vон1	Iон = -0.5 mA ^{Note4}	0.7 Vdd		_	
High level output voltage	Vон2	Note 5	Vdd-0.9		VDD-0.4	V
Low level output voltage	Vol1	IoL = 6.0 mA ^{Note4}	_		0.4	N
	Vol2	Note 5	Vdd-2.0		Vdd-1.7	V
Supply current	ldd	Normal operation	_		300	mA

Notes 1. 3-state data bus

- 2. TTL input pin
- 3. Pseudo ECL input pin
- 4. CMOS output pin
- 5. Pseudo ECL output pin

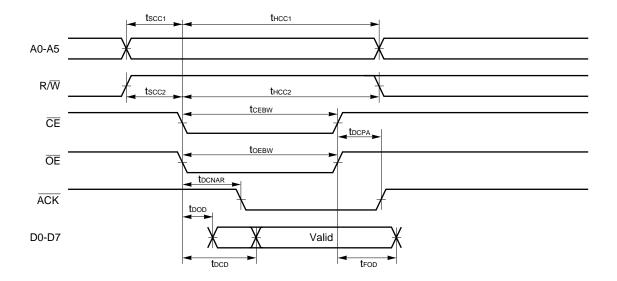
AC Characteristics

(1) Management Interface

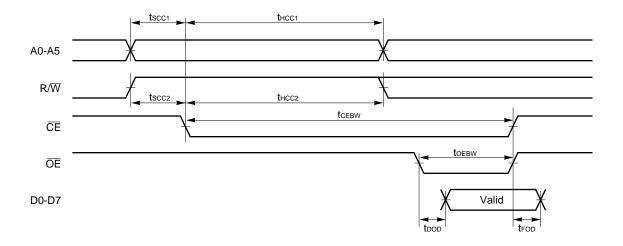
Internal Register Read/Write

Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
A0-A5 setup time (to $\overline{CE}\downarrow$)	tscc1		5			ns
R/\overline{W} setup time (to $\overline{CE}\downarrow$)	tscc2		5			115
A0-A5 hold time (to $\overline{CE}\downarrow$)	tHCC1		3			ns
R/\overline{W} hold time (to $\overline{CE}\downarrow$)	tHCC2		3			115
$\overline{CE} \downarrow \rightarrow \overline{ACK} \downarrow$ delay time (read)	t dcnar	Load capacitor 15 pF At parallel data input	3 × tcyppr		4.5 × tcyppr	20
		Load capacitor 15 pF At serial data input	$3 \times$ (tcypsr $\times 8$)		4.5 × (tcypsr × 8)	ns
$\overline{CE} \downarrow \rightarrow \overline{ACK} \downarrow$ delay time (write)	t dcnaw	Load capacitor 15 pF At parallel data input Load capacitor 15 pF At serial data input	$2 \times t_{CYPPR}$ $2 \times (t_{CYPSR} \times 8)$		$3.5 \times t_{CYPPR}$ $3.5 \times (t_{CYPSR} \times 8)$	ns
$\overline{CE}\uparrow\rightarrow\overline{ACK}\uparrow$ delay time	tdcpa	Load capacitor 15 pF At parallel data input	1 × tcyppr		2.5 × tcyppr	ns
		Load capacitor 15 pF At serial data input	$1 \times$ (tcypsr \times 8)		$2.5 \times$ (tcypsr \times 8)	
$\overline{\text{CE}} {\downarrow} {\rightarrow}$ data output delay time	toco	Load capacitor 15 pF At parallel data input	2 × tcyppr		3.5 × tcyppr	ns
		Load capacitor 15 pF At serial data input	$2 \times$ (tcypsr \times 8)		$3.5 \times$ (tcypsr \times 8)	115
$\overline{\text{OE}} {\downarrow} { ightarrow}$ data output delay time	tDOD	Load capacitor 15 pF	_		9.4	ns
$\overline{\text{OE}} \hat{\uparrow} \rightarrow$ data floating output delay time	tfod	Load capacitor 15 pF	—		10	ns
D0-D7 setup time (to $\overline{CE}\downarrow$)	tspc		5		—	ns
D0-D7 hold time (to $\overline{CE}\downarrow$)	tнср		3		—	ns
CE low-level width	tсевw	At parallel data input	3.5 × tcyppr		—	20
		At serial data input	$3.5 \times$ (tcypsr \times 8)		-	ns
OE low-level width	tоевw	At parallel data input	2.5 × tcyppr		_	ns
		At serial data input	$2.5 \times$ (tcypsr \times 8)		-	10

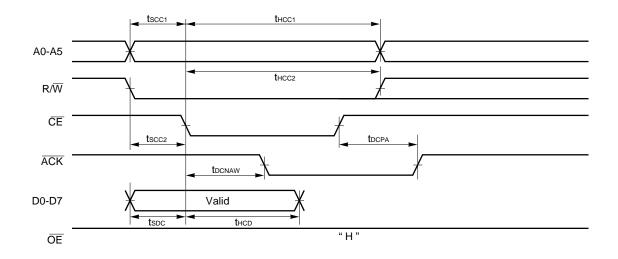
Remarks 1. For tCYPPR, refer to (6) PMD parallel interface timing.


2. For tCYPSR, refer to (7) PMD serial interface timing.

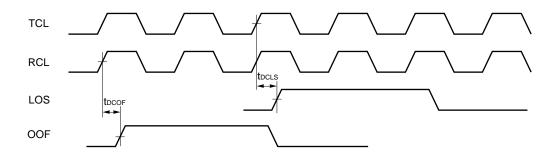
NEC


Management Interface

Internal Register Read

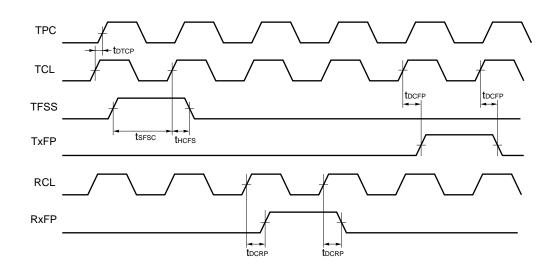

(a) Case 1 When the host uses $\overline{\text{ACK}}$ signal

(b) Case 2 When the host does not use \overline{ACK} signal


Internal Register Write

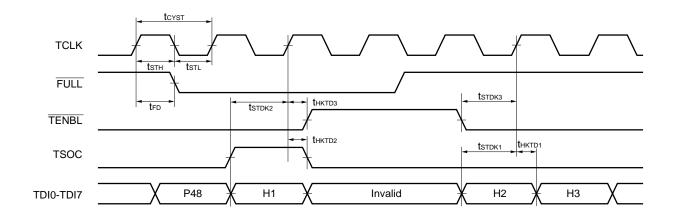
(2) OAM Interface

Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
TCL↑→LOS delay time	t DCLS	load capacitor = 15 pF	5		30	ns
RCL [↑] →OOF delay time	t DCOF	load capacitor = 15 pF	-5		+7	ns


OAM Interface

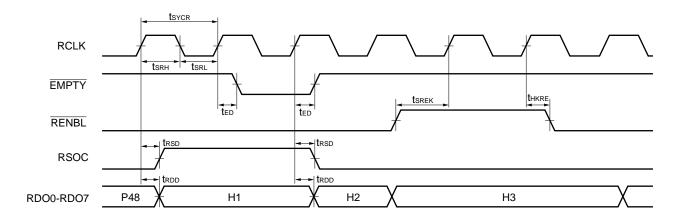
(3) Control Signal Interface

Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
TCL↑→TPC delay time	t dtcp	load capacitor = 15 pF	0		+5	ns
TFSS setup time (to TCL↑)	tsfsc		10		_	ns
TFSS hold time (to TCL [↑])	thcfs		5		_	ns
TCL↑→TxFP delay time	t DCFP	load capacitor = 15 pF	0		+20	ns
RCL [↑] →RxFP delay time	t DCRP	load capacitor = 15 pF	-5		+20	ns


Control Signal Interface

(4) SAR Interface (Transmitter Side)

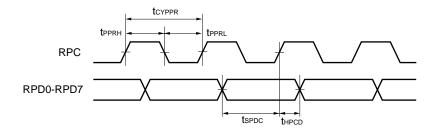
Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
TCLK cycle time	tсүзт		30		125	ns
TCLK high level width	tsтн		12		110	ns
TCLK low level width	ts⊤∟		12		110	ns
$TCLK^{\uparrow} \rightarrow \overline{FULL}^{\downarrow}$ delay time	tro	load capacitor = 15 pF	5		17	ns
TDI0-TDI7 setup time (to TCLK↑)	tstdk1		5		_	ns
TSOC setup time (to TCLK↑)	tstdk2		12		_	ns
TENBL setup time (to TCLK [↑])	tsтркз		5		_	ns
TDI0-TDI7 hold time (to TCLK [↑])	thktd1		3		_	ns
TSOC hold time (to TCLK↑)	thktd2		3		_	ns
TENBL hold time (to TCLK [↑])	thktd2		3		_	ns


SAR Interface (Transmitter Side)

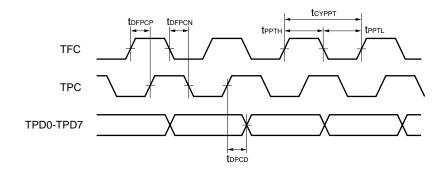
(5) SAR Interface (Receiver Side)

Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
RCLK cycle time	tsycr		30		125	ns
RCLK high level width	tsrн		12		110	ns
RCLK low level width	tsrl		12		110	ns
RCLK↑→EMPTY↑↓delay time	ted	load capacitor = 15 pF	5		17	ns
RENBL setup time (to RCLK↑)	t SREK		12		_	ns
RENBL hold time (to RCLK↑)	tнкке		3		_	ns
RCLK↑→RSOC↑↓ delay time	trsd	load capacitor = 15 pF	0		17	ns
RCLK∱→RDO0-RDO7 delay time	trdd	load capacitor = 15 pF	0		17	ns

SAR Interface (Receiver Side)



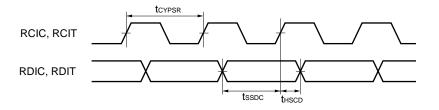
(6) PMD Parallel Interface


Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
RPC cycle time	t cyppr		50		_	ns
RPC high level width	t PPRH		20		_	ns
RPC low level width	t PPRL		20		_	ns
TFC cycle time	tсуррт		50		_	ns
TFC high level width	tрртн		20		_	ns
TFC low level width	t PPTL		20		_	ns
RPD0-RPD7 setup time (to RPC↑)	tspdc		5		_	ns
RPD0-RPD7 hold time (to RPC↑)	tнрср		3		_	ns
TFC $\uparrow \rightarrow$ TPC \uparrow delay time	t DFPCP	load capacitor = 15 pF	3		25	ns
$TFC \downarrow \rightarrow TPC \downarrow$ delay time	t dfpcn	load capacitor = 15 pF	3		25	ns
TPC $\uparrow \rightarrow$ TPD0-TPD7 delay time	tdpcd	load capacitor = 15 pF	-3.0		+1.0	ns

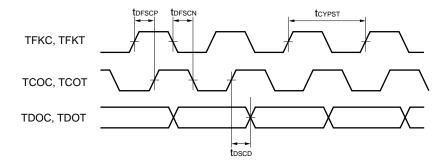
PMD Parallel Interface

Receive Side

Transmit Side

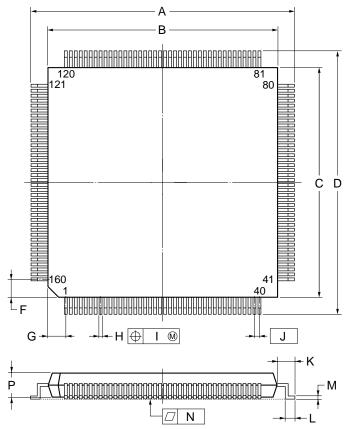


(7) PMD Serial Interface


Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
RCIT (RCIC) cycle time	tcypsr		6.4		_	ns
TFKT (TFKC) cycle time	t CYPST		6.4		_	ns
Serial data setup time	tsspc		1.0		_	ns
Serial data hold time	thscd		1.0		_	ns
Serial clock delay time (rising)	t DFSCP	Load capacitor 15 pF	_		8	ns
Serial clock delay time (falling)	t DFSCN	Load capacitor 15 pF	_		8	ns
Transmit serial data delay time	tosco	Load capacitor 15 pF	_		3	ns

PMD Serial Interface

Receive Side



Transmit Side

3. PACKAGE DRAWING

160 PIN PLASTIC QFP (FINE PITCH) (24)

റ

R

detail of lead end

NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES				
А	26.0±0.2	1.024+0.008				
В	24.0±0.2	0.945±0.008				
С	24.0±0.2	0.945±0.008				
D	26.0±0.2	1.024 ^{+0.008} -0.009				
F	2.25	0.089				
G	2.25	0.089				
н	$0.22^{+0.05}_{-0.04}$	0.009±0.002				
I	0.10	0.004				
J	0.5 (T.P.)	0.020 (T.P.)				
к	1.0±0.2	$0.039^{+0.009}_{-0.008}$				
L	0.5±0.2	$0.020^{+0.008}_{-0.009}$				
М	$0.17\substack{+0.03\\-0.07}$	$0.007^{+0.001}_{-0.003}$				
Ν	0.10	0.004				
Р	2.7	0.106				
Q	0.125±0.075	0.005±0.003				
R	5°±5°	5°±5°				
S	3.0 MAX.	0.119 MAX.				
S160GM-50-3ED, JED, KED-2						

4. RECOMMENDED SOLDERING CONDITIONS

For the μ PD98402A, soldering must be performed under the following conditions.

For details of recommended conditions for surface mounting, refer to information document "Semiconductor

Device Mounting Technology Manual" (IEI-1207).

For other soldering methods, please consult with NEC sales personnel.

• μ PD98402AGM-KED: 160-pin plastic QFP (FINE PITCH) (24 \times 24 mm)

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	 Package peak temperature: 235 °C, time: 30 sec. max. (over 210 °C), count: twice or less, restriction days: 3^{Note} (after that, 125 °C pre-baking for 20 hours is necessary) Precautions: Reflow a second time should be started when the device temperature has returned to its normal state after the first reflow. Avoid flux cleaning with water after the first reflow. 	IR35-203-2
Pin partial heating	Pin temperature: 300 °C max., time: 3 seconds max. (per side)	—

Note This means the number of days after unpacking the dry pack. Storage conditions are 25 °C and 65 % RM max.

[MEMO]

[MEMO]

The export of this product from Japan is prohibited without governmental license. To export or re-export this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is current as of December, 1995. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
 developed based on a customer-designated "quality assurance program" for a specific application. The
 recommended applications of a semiconductor product depend on its quality grade, as indicated below.
 Customers must check the quality grade of each semiconductor product before using it in a particular
 application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).