

MOS INTEGRATED CIRCUIT μ PD98401A

ATM SAR CHIP

DESCRIPTION

The μ PD98401A (NEASCOT-S15TM) is a high-performance SAR chip that segments and reassembles ATM cells. This chip can interface with an ATM network when it is included in a workstation, computer, front-end processor, network hub, or router. The μ PD98401A conforms to the ATM Forum Recommendation, and provides the functions of the AAL-5 SAR sublayer and ATM layer.

The μ PD98401A is compatible with its predecessor, μ PD98401, in terms of hardware and software.

Functions are explained in detail in the following User's Manual. Be sure to read this manual when designing your system.

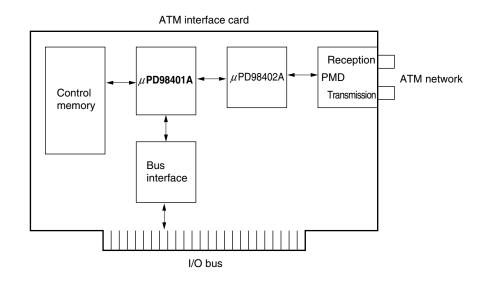
μPD98401A User's Manual: S12054E

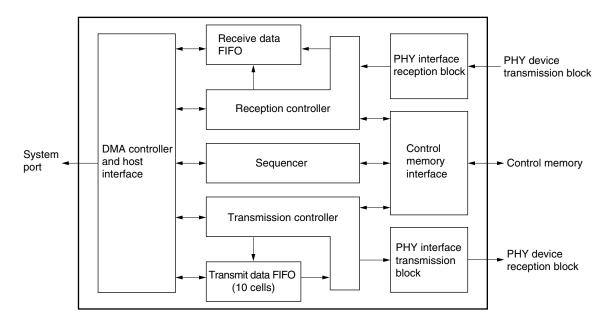
FEATURES

- · Conforms to ATM Forum
- · AAL-5 SAR sublayer and ATM layer functions
- · Hardware support of AAL-5 processing
- Processing of non-AAL-5 traffic (AAL-3/4 cell, OAM cell, RM cell) by software with raw cell processing function
- · Hardware support of comparison/generation of CRC-10 for non-AAL-5 traffic
- Supports up to 32K virtual channels (VC)
- Provided with 16 traffic shapers that carry out transmission scheduling (control of average rate/peak rate) so as to set different transmission rate for each VC
- Interface and commands for controlling PHY device
- Employs "UTOPIA interface" as cell data interface with PHY device
 - Octet-level handshake
 - Cell-level handshake
- 32-bit general-purpose bus interface
- High-speed DMAC (supports 1-, 2-, 4-, 8-, 12-, and 16-word burst)
- JTAG boundary scan test function (IEEE1149.1)
- CMOS technology
- +5 V single power source

Remark In this document, an active low pin is indicated by xxx_B (_B after a pin name).

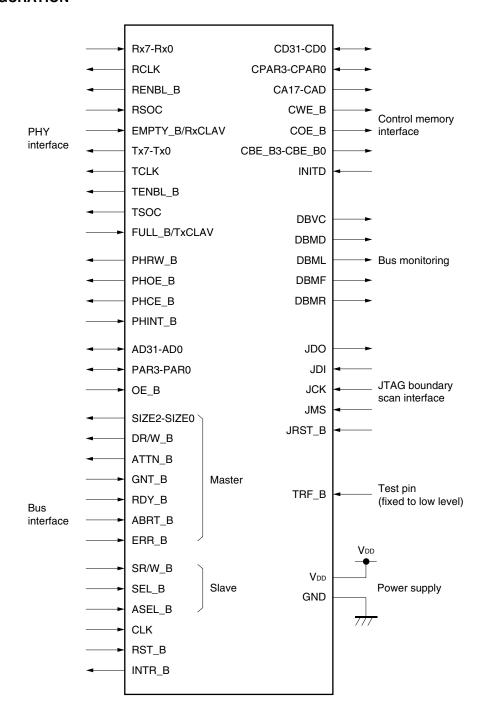
The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.


Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

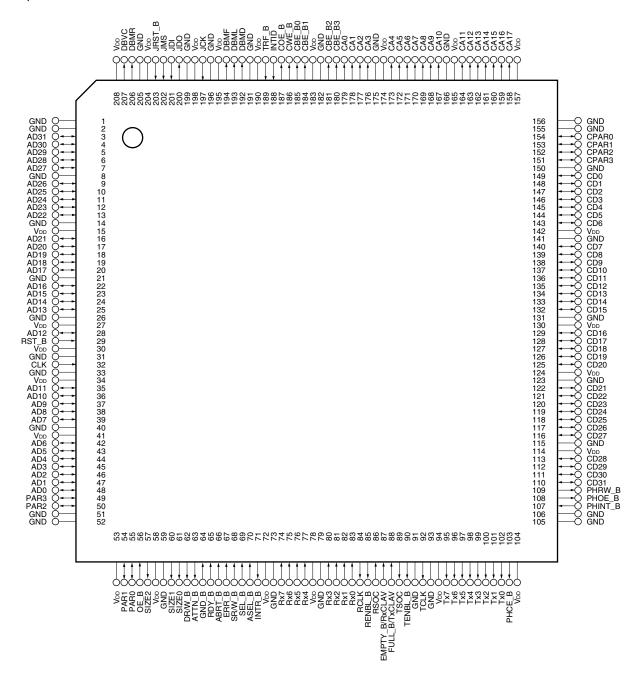

ORDERING INFORMATION

Part Number	Package
μ PD98401AGD-MML	208-pin plastic QFP (fine pitch) (28 × 28)

SYSTEM CONFIGURATION



BLOCK DIAGRAM


PIN CONFIGURATION

Data Sheet S12100EJ4V0DS

PIN CONFIGURATION (Top View)

• 208-pin plastic QFP (fine pitch) (28 \times 28) μ PD98401AGD-MML

PIN NAMES

ABRT_B : Abort PHCE_B AD31_AD0 : Address/Data PHINT_B : Slave Address Select ASEL_B PHOE_B ATTN B : Attention/Burst Frame CA17-CA0 : Control Memory Address **RCLK** CBE_B3_CBE_B0 : Local Port Byte Enable RDY_B : Control Memory Data CD31-CD0

: DMA Bus Monitor Remaining

CLK : Clock

COE_B : Control Memory Output Enable

COE_B : Control Memory Output Erlabil

CPAR3-CPAR0 : Control Memory Parity

CWE_B : Control Memory Write Enable

DBMD : DMA Bus Monitor Data

DBMF : DMA Bus Monitor First

DBML : DMA Bus Monitor Last

DBVC : DMA Bus Monitor VC

DR/W B : DMA Read/Write

EMPTY_B/RxCLAV: PHY Output Buffer Empty

ERR B : Error

DBMR

FULL_B/TxCLAV : PHY Buffer Ful

GND : Ground GNT_B : Grant

INITD : Initialization Disable

INTR_B : Interrupt JCK : JTAG Test Pin JDI : JTAG Test Pin JDO : JTAG Test Pin **JMS** : JTAG Test Pin JRST_B : JTAG Test Pin OE B : Output Enable PAR3-PAR0 : Bus Parity

PHCE_B : PHY Chip Enable
PHINT_B : PHY Interrupt
PHOE_B : PHY Output Enable
PHRW_B : PHY Read/Write
RCLK : Receive Clock
RDY_B : Target Ready
RENBL_B : Receive Enable
RSOC : Receive Start Cell

RST_B : Reset

Rx7-Rx0 : Receive Data Bus SLE_B : Slave Select SIZE2-SIZE0 : Burst Size

SR/W_B : Slave Read/Write

TCLK : Transmit Clock

TENBL_B : Transmit Enable

TSOC : Transmit Start of Cell

TRF_B : Delay Select
Tx7-Tx0 : Transmit Data Bus
VDD : Power Supply

Data Sheet S12100EJ4V0DS

CONTENTS

1.	PIN FUNCTION	7
	1.1 PHY Device Interface Pin	7
	1.2 Bus Interface Pins	
	1.3 Bus Monitor Pins	12
	1.4 Control Memory Interface Pins	13
	1.5 JTAG Boundary Scan Pins	
	1.6 Test Pin	
	1.7 Power Supply and Ground Pins	
	1.8 Pin Status During and After Reset	
2.	DIFFERENCES FROM μPD98401	17
	2.1 Additional Functions	17
	2.2 Differences from μ PD98401 (NEASCOT-S10 TM)	17
3.	ELECTRICAL SPECIFICATIONS	18
4.	PACKAGE DRAWINGS	34
5.	RECOMMENDED SOLDERING CONDITIONS	35

1. PIN FUNCTION

The μ PD98401A is housed in a package having 208 pins, of which 152 pins are function pins and 56 pins are V DD and GND pins.

1.1 PHY Device Interface Pin

PHY device interfaces include a UTOPIA interface through which the μ PD98401A transfers ATM cells with a PHY device, and a PHY control interface by which the μ PD98401A controls the PHY device.

(1) UTOPIA interface

(1/2)

Pin Name	Pin No.	I/O	I/O Level	Function
Rx7-Rx4 Rx3-Rx0	74 - 77 80 - 83	I	TTL	Receive Data Bus. Rx7 through Rx0 constitute an 8-bit input bus which inputs data received from a network in byte format from a PHY device. The μ PD98401A loads data in at the rising edge of RCLK.
RSOC	86	I	TTL	Receive Start Cell. The RSOC signal is input in synchronization with the first byte of the cell data from a PHY device. This signal remains high while the first byte of the header is input to Rx7 through Rx0.
RENBL_B	85	0	CMOS	Receive Enable. The RENBL_B signal indicates to a PHY device that the μ PD98401A is ready to receive data in the next clock cycle. This signal goes high during and after reset.
EMPTY_B/ RxCLAV	87	I	TTL	PHY Output Buffer Empty/Rx Cell Available. This signal notifies the µPD98401A that there is no cell data to be transferred in the receive FIFO and that no receive data can be supplied to the PHY device. When the UTOPIA interface is in the octet-level handshake mode, this signal serves as EMPTY_B, indicating that the data on Rx7 through Rx0 are invalid in the current clock cycle. In the cell-level handshake mode, it serves as RxCLAV, indicating that there is no cell to be supplied next after the transfer of the current cell is completed.
RCLK	84	0	CMOS	Receive Clock. This is a synchronization clock used to transfer cell data with the PHY cell device at the recieve side. The system clock input to the CLK pin is output from this pin as is, immediately after reset.
Tx7-Tx0	95 - 102	0	CMOS	Transmit Data Bus. Tx7 through Tx0 constitute an 8-bit output bus which outputs transmit data in byte format to a PHY device. The μ PD98401A outputs data at the rising edge of TCLK.
TSOC	89	0	CMOS	Transmit Start of Cell. The TSOC signal is output in synchronization with the first byte of transmit cell data.

(2/2)

Pin Name	Pin No.	I/O	I/O Level	Function
TENBL_B	90	0	CMOS	Transmit Enable. The TENBL_B signal indicates to a PHY device that data has been output to Tx7 through Tx0 in the current clock cycle. This signal remains high during reset and after reset.
FULL_B/ TxCLAV	88	l	TTL	PHY Buffer Full/Tx Cell Available. The FULL_B signal notifies the µPD98401A that the input buffer of the PHY device is full and that the device can receive no more data. When the UTOPIA interface is in the octet-level handshake mode, the PHY device inputs an inactive level to receive cell of data. In the cell-level handshake mode, this signal indicates that the PHY device can receive all the next one cell of data after the current cell has been completely transferred
TCLK	92	0	CMOS	Transmit Clock. This is a synchronization clock used to transfer cell data with the PHY device at the transmission side. The system clock input to the CLK pin is output from this pin as is.

(2) PHY device control interface

Pin Name	Pin No.	I/O	I/O Level	Function
PHRW_B	109	0	CMOS	PHY Read/Write. The µPD98401A indicates the direction in which the PHY device is controlled, by using PHRW_B. This signal goes low after reset. 1: Read 0: Write
PHOE_B	108	0	CMOS	PHY Output Enable. The μ PD98401A enables output from the PHY device by making PHOE_B low
PHCE_B	103	0	CMOS	PHY Chip Enable. The μ PD98401A makes PHCE_B low to access a PHY device. This signal goes high after reset.
PHINT_B	107	I	TTL	PHY Interrupt. This is an interrupt input signal from a PHY device. The PHY device indicates to the µPD98401A that it has an interrupt source, by inputting a low level to PHINT_B. This signal goes high after reset.

1.2 Bus Interface Pins

The bus interface is a general-purpose bus interface compatible with most generally used I/O buses (such as PCI, S bus, GIO, and AP bus).

(1/3)

				ı			(1/3)
Pin Name	Pin No.	I/O	I/O Level			F	unction
AD31-AD27 AD26-AD22 AD21-AD17 AD16-AD13 AD12 AD11-AD7 AD6-AD0	3 - 7 9 - 13 16 - 20 22 - 25 28 35 - 39 42 - 48	I/O 3-state	TTL in CMOS out	I/O pins mu input/output at the sec	gh AD0 colliplexing a property and clock	n address l ough AD0 t and onwa	2-bit address/data bus. These pins are bus and a data bus. At the first clock of ransfer an address. They transfer data rd. The AD bus goes into a high-3401A does not access the bus.
PAR3 PAR2 PAR1 PAR0	49 50 54 55	I/O 3-state	TTL in CMOS out	is set by G word or by indicates th parity of AD an input/ou output and When the p	MR. Enal e parity can be parity of through the total pin. When data of the total pin.	bling or distant be specified AD31 the AD0. If we lit serves a sis written, a A does not	D31 through AD0. A parity check mode sabling parity, odd or even parity, and ified. If byte parity is specified, PAR3 rough AD24, and PAR0 indicates the ord parity is specified, PAR3 serves as as an output pin when an address is and as an input pin when data is read. access the bus, PAR3 through PAR0 Pull up these pins when they are not
OE_B	56	ı	TTL	PAR3 throu impedance an option p	pin is low,	as 3-state a high level his pin to level set the bus	$^{0.000}$ 28401A uses AD31 through AD0 and I/O pins. These pins go into a high-rel is being input to OE_B. This pin is ow level in a system where it is not of the μ PD98401A in a high-impedance
SIZE2 SIZE1 SIZE0	57 60 61	0	CMOS		•		the size of the current DMA transfer. a bus (such as S bus) requiring clear Function 1-word transfer
				0	0	1	2-word burst
				0	1	0	4-word burst
				0	1	1	8-word burst
				1	0	0	16-word burst
				1	0	1	12-word burst
				1	1	0	Undefined
				1	1	1	Reception side byte alignment
				1			

Data Sheet S12100EJ4V0DS

(2/3)

Pin Name	Pin No.	I/O	I/O Level	Function (2/3)
DR/W_B	62	0	CMOS	DMA Read/Write. DR/W_B indicates the direction of DMA access. 1: Read access 0: Write access This pin is set to 1 after reset.
ATTN_B	63	0	CMOS	Attention/Burst Frame (DMA request). The µPD98401A makes the ATTN_B signal low when it performs a DMA operation. The ATTN_B signal becomes inactive at the rising edge of CLK when the data to be transferred by means of DMA has decreased to 1 word.
GNT_B	64	I	ΠL	Grant. The GNT_B signal inputs a low level when the bus arbiter grants the μ PD98401A use of the bus in response to a DMA request from the μ PD98401A. The μ PD98401A recognizes that it has been granted use of the bus and starts DMA operation when the GNT_B signal goes low (active). Make sure that the GNT_B signal falls at least one system clock cycle after the rising of the ATTN_B signal. The GNT_B signal must be returned to the high (inactive) level before the μ PD98401A makes the ATTN_B signal low (active) to issue the next DMA cycle request.
RDY_B	65	ı	ΠL	Target Ready. RDY_B indicates to the μ PD98401A in the DMA cycle that the target device is ready for input/output. During the DMA read operation of the μ PD98401A, the RDY_B signal is made low if valid data is on AD31 through AD0. During the DMA write operation of the μ PD98401A, the RDY_B signal is made low if the target device is ready for receiving data. The sampling timing of the RDY_B and ABRT_B signals of the μ PD98401A can be advanced by one clock (early mode) by using an internal register (GMR register).
ABRT_B	66	I	TTL	Abort. ABRT_B is used to abort the DMA transfer cycle. If this signal goes low while data is being transferred in the DMA cycle, DMA transfer is aborted in that cycle, and the ATTN_B signal is briefly deasserted inactive. After that, the μ PD98401A asserts the ATTN_B signal active again, and resumes burst transfer from the data at which the DMA transfer was aborted. While a low level is input to ABRT_B, the RDY_B signal is ignored. The user can advance the sampling timing of the RDY_B and ABRT_B signals of the μ PD98401A by one clock (early mode) by using an internal register (GMR register). Pull up this pin when it is not used.
ERR_B	67	I	TTL	Error. This pin is used by a device that manages the bus to stop the operation of the μ PD98401A when occurrence of an error is detected on the system bus. When a low level is input to this pin, the μ PD98401A stops all bus operations, sets the system bus error bit (bit 25) of the GSR register (when not masked), and generates an interrupt. Pull up this pin when it is not used.

(3/3)

Pin Name	Pin No.	I/O	I/O Level	Function (3/3)
SR/W_B	68	I	TTL	Slave Read/Write. The SR/W_B signal determines the direction in which the slave is accessed. 1: Read access 2: Write access
SEL_B	69	I	TTL	Slave Select. This signal goes low (active) when the μ PD98401A is accessed as a slave. The SEL_B signal must goes low as soon as or after the ASEL_B signal has gone low. An inactive period of at least 2 system clock cycles must be inserted between when the SEL_B signal has become inactive and when it becomes active again.
ASEL_B	70	ı	TTL	Slave Address Select. The ASEL_B signal is used to select the direct address register of the μ PD98401A. When a low level is input to ASEL_B, the μ PD98401A samples the AD bus at the first rising edge of CLK.
CLK	32	I	TTL	Clock. This pin inputs the system clock. Input a clock in a range of 8 to 33 MHz.
RST_B	29	I	TTL	Reset. The RST_B signal initializes the μ PD98401A (on starting, etc.). After reset, the μ PD98401A can start normal operation. When a low level is input to RST_B, the internal state machine and registers of the μ PD98401A are reset, and all 3-state signals go into a high-impedance state. The reset input is asynchronous. When this signal is input during operation, the operating status at that time is lost. Hold RST_B low at least for the duration of one clock. After reset, do not access the μ PD98401A for at least 20 clock cycles.
INTR_B	71	0	Nch open- drain output	Interrupt. This is an open-drain signal and must be pulled up. INTR_B informs the CPU that the interrupt bit (unmasked) of the GSR register is set.

1.3 Bus Monitor Pins

The bus monitor pins indicate the type of data under DMA transfer. These five pins are enabled when the BME bit of the GMR register is set to 1; they go into a high-impedance state when the BME bit is 0.

Pin Name	Pin No.	I/O	I/O Level	Function
DBMD	192	O 3-state	CMOS	DMA Bus Monitor Data. This pin indicates that the payload of an AAL-5 cell is under DMA transfer. This pin is enabled when the BME bit of the GMR register is set to 1, and goes into a high-impedance state when the BME bit is 0. The DBMD signal changes in synchronization with the falling of the ATTN_B signal. The high level of this signal indicates that the payload of an ALL-5 packet transmit/receive cell is under DMA transfer, and low level indicates that the other data is being transferred.
DBML	193	O 3-state	CMOS	DMA Bus Monitor Last. If one-word data currently under DMA transfer satisfies any of the following conditions, this pin goes high in synchronization with output of the data. Last 1 word of last cell of AAL-5 packet 1-word data to be written to last word of receive buffer Last 1-word data of last cell of receive packet in which MAX. NUMBER OF SEGMENTS error has occurred When this pin is low, it indicates that the data is other than above. This pin is enabled when the BME bit of the GMR register is set to 1; it goes into a high-impedance state when the bit is 0.
DBMF	194	O 3-state	CMOS	DMA Bus Monitor First. This pin indicates that the data under DMA transfer is the start cell of a receive AAL-5 packet. This pin is enabled when the BME bit of the GMR register is set to 1; it goes into a high-impedance state when the bit is 0. This pin goes high in synchronization with the last word data of the first cell of an AAL-5 packet.
DBMR	206	O 3-state	CMOS	DMA Bus Monitor Remaining. This pin indicates that the number of cells remaining in the transmit buffer is equal to, or has dropped below the value assigned to the RCS register. This pin is enabled when the BME bit of the GMR register is set to 1; it goes into a high-impedance state when the bit is 0.
DBVC	206	O 3-state	CMOS	DMA Bus Monitor VC. This pin indicates that the data currently being transferred by DMA is that of the VC for which the VCP bit in the receive VC table is set to 1. This pin is asserted active in synchronization with the falling of ATTN_B. It is enabled when the BME bit of the GMR register is set to 1, and goes into a high-impedance state when the bit is 0.

1.4 Control Memory Interface Pins

These pins constitute an interface through which the μ PD98401A accesses an external control memory and a PHY device. A 18-bit address bus and a 32-bit data bus are used. The control memory of the host is accessed only via this interface.

Pin Name	Pin No.	I/O	I/O Level	Function
CD31-CD28 CD27-CD21 CD20-CD16 CD15-CD7 CD6-CD0	110-113 116-122 125-129 132-140 143-149	I/O 3-state	TTL in, CMOS out	Control Memory Data. CD31 through CD0 are 3-state I/O pins and constitute a 32-bit data bus which is used to transfer data with the control memory or a PHY device.
CPAR3- CPAR0	151-154	I/O	TTL in, CMOS out	Control Memory Parity. CPAR3 through CPAR0 indicate the parity of CD31 through CD0 in 8-bit units. In the read cycle, the μ PD98401A checks the parity (when enabled). In the write cycle, CPAR3 through CPAR0 output the parity. Pull up these pins when they are not used.
CA17-C11 CA10-CA4 CA3-CA0	158-164 167-173 176-179	0	CMOS	Control Memory Address. CA17 through CA0 constitute an 18-bit address bus. They output an address to the control memory or a PHY device during read/write operation.
CWE_B	186	0	CMOS	Control Memory Write Enable. CWE_B signal indicates the direction in which the control memory is accessed. 1: Read access 2: Write access
COE_B	187	0	CMOS	Control Memory Output Enable COE_B enables or disables data output of the control memory.
CBE_B3 CBE_B2 CBE_B1 CBE_B0	180 181 184 185	0	CMOS	Local Port Byte Enable. CBE_B3 through CBE_B0 indicate the byte on the control port to be read or written.
INITD	188	I	TTL	Initialization Disable. The INITD signal is used to disable automatic initialization of the control memory during chip test. During normal operation other than test, directly connect INITD to GND.

1.5 JTAG Boundary Scan Pins

Pin Name	Pin No.	I/O	I/O Level	Function
JDI	201	I	TTL	JTAG Test Data Input. The JDI pin is used to input data to the JTAG boundary scan circuit register. Normally, fix this pin to high or low level.
JDO	200	O 3-state	CMOS	JTAG Test Data Output. The JDO pin is used to output data from the JTAG boundary scan circuit register. It changes output at the falling edge of the clock input to the JCK pin. Normally, leave this pin open.
JCK	197	I	TTL	JTAG Test Clock. This pin is used to supply a clock to the JTAG boundary scan circuit register. Normally, fix this pin to a high or low level.
JMS	202	I	TTL	JTAG Test Mode Select. Normally, fix this pin to a high or low level.
JRST_B	203	ı	TTL	JTAG Test Reset. This pin initializes the JTAG boundary scan circuit register. Normally, fix this pin to a low level.

Remark

Processing of JTAG boundary scan pins not used (during normal operation)

The reason that the JRST_B pin is grounded when it is not used (during normal operation) is to better prevent malfunctioning of the JTAG logic. The JTAG pin may be also processed in either of the following ways:

- Reset the JTAG logic without using the JRST_B pin
 Reset the JTAG logic by using the JMS and JCK pins and keep it in the reset status (the JRST_B pin is pulled up).
 - Fix the JMS pin to 1 (pull up) and input 5 clock cycles or more to the JCK pin.
- Reset the JTAG logic by using the JRST_B pin
 Input a low pulse of the same width as RESET_B of the μPD98401A to the JRST_B pin. If both
 the JMS and JRST_B pins are pulled up and kept high, the JTAG logic is not released from the
 reset status. Therefore, the normal operation is not affected. Fix the input level of the JDI and
 JCK pins by pulling them down or up.

1.6 Test Pin

Pin Name	Pin No.	I/O	I/O Level	Function
TRF_B	189	I	TTL	This pin is used to test the internal circuitry of the chip. 0: Normal operation 1: Test Normally, directly connect this pin to ground and fix it to a low level.

1.7 Power Supply and Ground Pins

Pin Name	Pin No.	I/O	Function
Vod	15, 27, 30, 34, 41, 53, 58, 72, 78, 94, 104, 114, 124, 130, 142, 157, 165, 174, 183, 190, 195, 198, 204, 208		Power supply (24 pins) These 24 V _{DD} pins supply a voltage of +5 V \pm 5% to the chip.
GND	1, 2, 8, 14, 21, 26, 31, 33, 40, 51, 52, 59, 73, 79, 91, 93, 105, 106, 115, 123, 131, 141, 150, 155, 156, 166, 175, 182, 191, 196, 199, 205	I	Ground (32 pins) Connect these pins to ground.

1.8 Pin Status During and After Reset

Pin	During Reset	After Reset
AD0-AD31	Hi-Z (input mode)	Hi-Z (input mode)
PAR0-PAR3	Hi-Z (input mode)	Hi-Z (input mode)
SIZE0-SIZE2	0	0
DR/W_B	1	1
ATTN_B	1	1
INTR_B	1 (however, pulled up)	1 (however, pulled up)
CA17-CA0	0	0
CD0-CD31	All 0 (output mode)	All 0 (output mode)
CWE_B	1	1
COE_B	1	1 (repetition of high/low)
CBE_B3-CBE_B0	All 1	All 1
PHRW_B	0	0
PHOE_B	1	1
PHCE_B	1	1
RCLK	CLK output	CLK output
RENBL_B	1	0
Tx0-Tx7	All 0	All 0
TCLK	CLK output	CLK output
TENBL_B	1	1
TSOC	0	0
JDO	Hi-Z (3-state)	Hi-Z (3-state)
DBMD	Hi-Z	Hi-Z
DBML	Hi-Z	Hi-Z
DBMF	Hi-Z	Hi-Z
DBMR	Hi-Z	Hi-Z
DBVC	Hi-Z	Hi-Z

2. DIFFERENCES FROM μ PD98401

2.1 Additional Functions

The μ PD98401A is compatible with the μ PD98401 in terms of hardware and software.

However, the μ PD98401A has the following additional functions as compared with the μ PD98401. All the additional functions are enabled by the setting of the GMR register.

- (1) DMA 12-word burst cycle
- (2) Byte alignment transfer function of receive data buffer
- (3) Bus monitor pin
- (4) Mode to insert idle cell for transmission rate adjustment
- (5) New scheduling function Aggregate mode
- (6) Receive packet size indication (cell units/Length mode added)
- (7) Cell-level support of UTOPIA interface
- (8) AAL-3/4 traffic assist function
- (9) JTAG boundary scan support

2.2 Differences from μ PD98401 (NEASCOT-S10TM)

(1) Increased receive FIFO size

 μ PD98401 : 10 cells μ PD98401A : 23 cells

(2) Cell processing of PTI field (1xx)

 μ PD98401 : Receives cells other than those of OAM F5 pattern (101, 100) as user data cells.

 μ PD98401A : Processes as raw cell of 1xx pattern. Stores in pool 0.

(3) Changing transmission mode of unassigned cell

The μ PD98401 starts transmitting unassigned cells immediately after power application and continues transmitting the unassigned cells while there is no active transmission VC. It also has a function to stop transmitting unassigned cells while there is not an active VC, by using the UCE bit of the GMR register.

The μ PD98401A deletes this UCE bit function, makes the TENBL_B signal inactive on power application and when there is no active VC, and does not transmit unassigned cells. The μ PD98401A transmits unassigned cells only when there is an active VC and when the unassigned cell generator function is enabled.

3. ELECTRICAL SPECIFICATIONS

An asterisk (*) mark indicates portion which have been revised from μ PD98401.

Absolute Maximum Ratings

	Parameter	Symbol	Condition	Ratings	Unit
	Supply voltage	V _{DD}		-0.5 to +6.5	٧
	Input voltage	Vı		−0.5 to V _{DD} +0.5	٧
*	Output current	O1 Note 1		24	mA
*		O2 Note 2		36	mA
*	Operating ambient temperature	Та		0 to +80	°C
	Storage temperature	T _{stg}		-65 to +150	°C

Caution If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of the product may be impaired. The absolute maximum ratings are values that may physically damage the product(s). Be sure to use the product(s) within the ratings.

*DC Characteristics (TA = 0 to +80 °C, VDD = 5 V \pm 5 %)

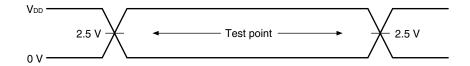
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Low level input voltage	VIL		-0.5		+0.8	٧
High level input voltage	V _{IH1}	Except pins RST_B or CLK	+2.2		V _{DD} + 0.5	٧
	V _{IH2}	Pins RST_B or CLK	+3.3		V _{DD} + 0.5	V
High level output voltage	V _{OH1} Note 1	Iон = -4.0 mA	$V_{\text{DD}}\times 0.7$			٧
	V _{OH2} Note 2	Iон = -6.0 mA	$V_{\text{DD}}\times 0.7$			٧
Low level output voltage	V _{OL1} Note 1	IoL = 8.0 mA			0.4	٧
	V _{OL2} Note 2	IoL = 12.0 mA			0.4	V
Supply current	loo	Normal operation		350	500	mA
Input leakage current	lu	VI = VDD or GND	-10		+10	μΑ
Output leakage current	loz	Vo = V _{DD} or GND	-10		+10	μΑ

Notes 1. Io1, VoH1 and VoL1 apply to the following pins:

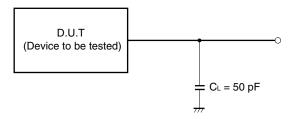
CD31 - CD0, CPAR3 - CPAR0, CA17 - CA0, CBE_B3 - CBE_B0, CWE_B, COE_B, RCLK, RENBL_B, TSOC, TENBL_B, TCLK, Tx7 - Tx0, PHCE_B, PHOE_B, PHRW_B, JDO

2. Io2, VoH2 and VoL2 apply to the following pins:

AD31 - AD0, PAR3 - PAR0, SIZE2 - SIZE0, DR/W, ATTN_B, INTR_B, DBMD, DBML, DBMF, DBMR, DBVC

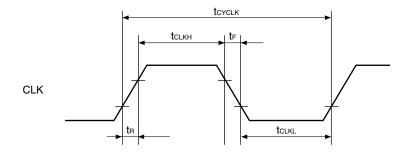


Capacitance (TA = 25 °C, VDD = 0 V, f = 1 MHz)


Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Output capacitance	Со	f = 1 MHz		7	10	pF
Input capacitance	Cı	f = 1 MHz		7	10	pF
I/O capacitance	Сю	f = 1 MHz		7	10	pF

AC Characteristics (T_A = 0 to +80 $^{\circ}$ C, V_{DD} = 5 V ±5 %)

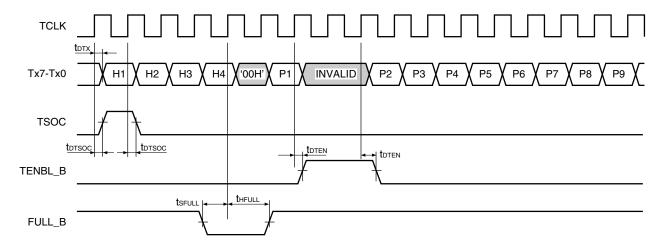
AC Test Condition



*Load Condition

CLK Input

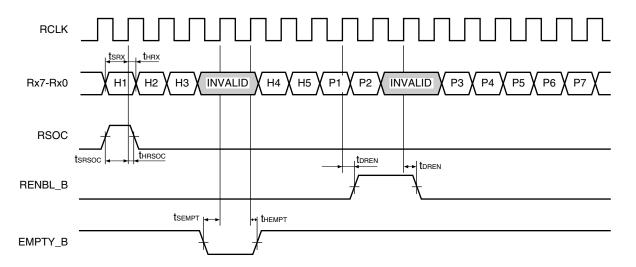
	Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
	CLK cycle time	tcyclk		30		125	ns
*	CLK high level width	t clkH		11			ns
*	CLK low level width	tclkl		11			ns
*	CLK rise time	tr				4	ns
*	CLK fall time	tғ				4	ns



PHY Interface (1/2)

(1) Transmission operation

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
TCLK↑→Tx delay time	t DTX		3		18	ns
TCLK↑→TSOC delay time	t DTSOC		3		18	ns
TCLK↑→TEMBL_B delay time	t DTEN		3		18	ns
FULL_B setup time	tsfull		8			ns
FULL_B hold time	tHFULL		1			ns


H4-H1: ATM Header P9-P1: Payload Data

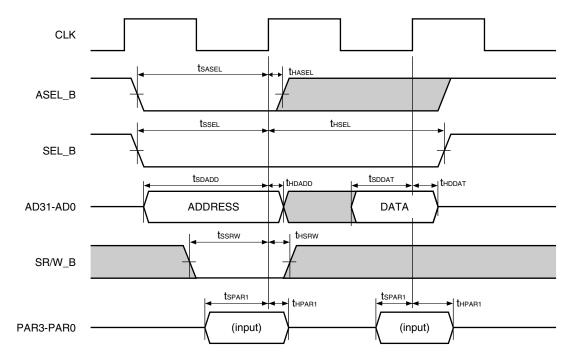
PHY Interface (2/2)

(2) Reception operation

	Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
*	Rx setup time	tsrx		8			ns
	Rx hold time	thex		1			ns
*	RSOC setup time	tsrsoc		8			ns
	RSOC hold time	thrsoc		1			ns
	$RCLK \uparrow \to RENBL_B \ delay \ time$	toren		3		18	ns
*	EMPTY_B setup time	t SEMPT		8			ns
	EMPTY_B hold time	tнемрт		1			ns

H4-H1: ATM Header P7-P1: Payload Data

Data Sheet S12100EJ4V0DS

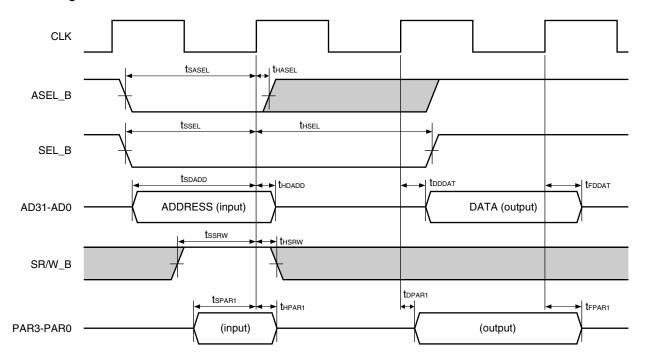


Host Slave Access (1/2)

(1) Write

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
ASEL_B setup time	t sasel		8			ns
ASEL_B hold time	t HASEL		3			ns
SEL_B setup time	tssel		8			ns
SEL_B hold time	thsel		1tсүсцк+3			ns
Address setup time	t sdadd		8			ns
Address hold time	thdadd		3			ns
Data setup time	t SDDAT		8			ns
Data hold time	t hddat		3			ns
PAR setup time	tspar1		8			ns
PAR hold time	thpar1		3			ns
SR/W_B setup time	tssrw		8			ns
SR/W_B hold time	thsrw		3			ns

Write timing



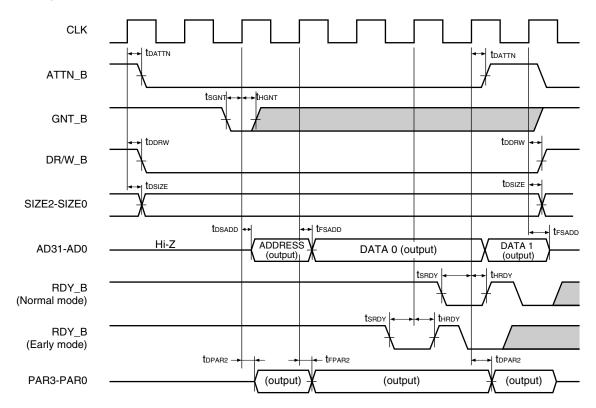
Host Slave Access (2/2)

(2) Read

	Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
	ASEL_B setup time	t sasel		8			ns
	ASEL_B hold time	t HASEL		3			ns
	SEL_B setup time	tssel		8			ns
	SEL_B hold time	thsel		11сүсцк+3			ns
	Address setup time	tsdadd		8			ns
	Address hold time	thdadd		3			ns
*	CLK↑→data delay time	t dddat				20	ns
	CLK↑→data floating time	t FDDAT		3		18	ns
	PAR setup time	t SPAR1		8			ns
	PAR hold time	thpar1		3			ns
*	CLK↑→PAR delay time	tdpar1				20	ns
	CLK↑→PAR floating time	t FPAR1		3		18	ns
	SR/W_B setup time	tssrw		8			ns
	SR/W_B hold time	thsrw		3			ns

Read timing

Data Sheet S12100EJ4V0DS

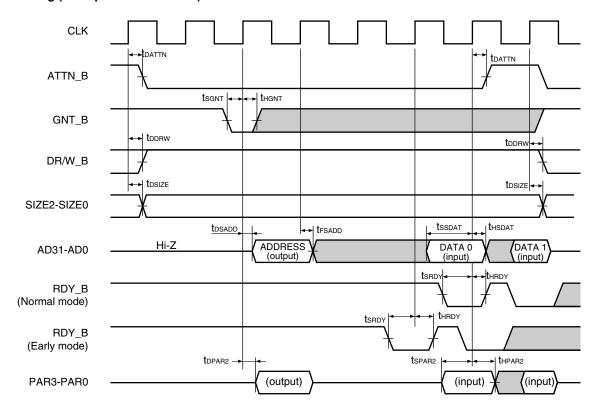


DMA Access (1/2)

(1) Write

	Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
	CLK↑→ATTN_B delay time	t dattn				18	ns
	GNT_B setup time	t sgnt		8			ns
	GNT_B hold time	t HGNT		3			ns
	CLK↑→DR/W_B delay time	todrw		3		18	ns
	CLK↑→SIZE delay time	tosize		3		18	ns
*	CLK↑→address delay time	tdsadd				20	ns
	CLK↑→address/data floating time	t FSADD		3		18	ns
*	$CLK\uparrow \rightarrow PAR$ delay time	tdpar2				20	ns
	CLK↑→PAR floating time	tpar2		3		18	ns
*	RDY_B setup time	tsrdy		8			ns
	RDY_B hold time	tHRDY		3			ns

Write timing (Example: 2 word burst)

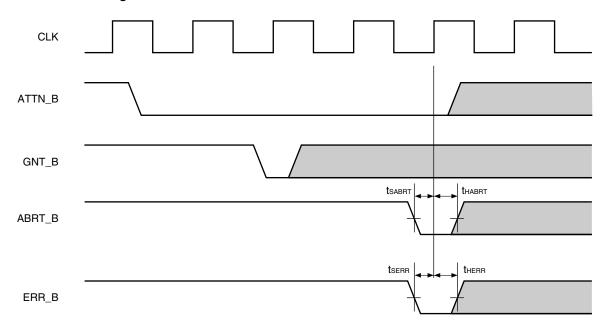


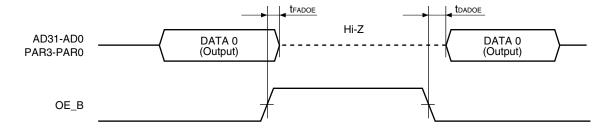
DMA Access (2/2)

(2) Read

	Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
	CLK↑→ATTN B_delay time	t dattn				18	ns
	GNT_B setup time	tsgnt		8			ns
	GNT_B hold time	t HGNT		3			ns
	CLK↑→DR/W_B delay time	todrw		3		18	ns
	CLK↑→SIZE delay time	t DSIZE		3		18	ns
*	CLK↑→address delay time	t DSADD				20	ns
	CLK↑→address/data floating time	tesadd		3		18	ns
*	$CLK\uparrow \rightarrow PAR$ delay time	tDPAR2				20	ns
*	RDY_B setup time	tsrdy		8			ns
	RDY_B hold time	thrdy		3			ns
	Data setup time	t ssdat		8			ns
	Data hold time	t HSDAT		3			ns
	PAR setup time	tspar2		8			ns
	PAR hold time	thpar2		3			ns

Read timing (Example: 2 word burst)

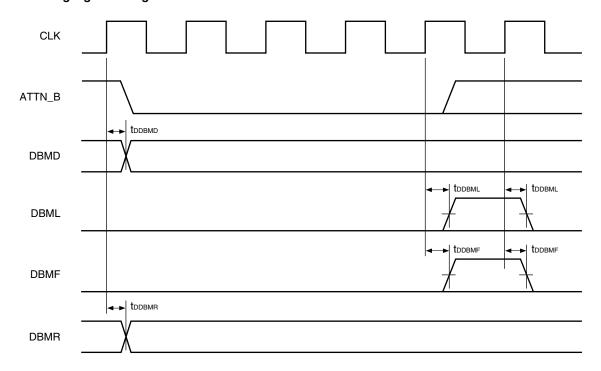



Signals ABRT B, ERR B, and OE_B

	Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
*	ABRT_B setup time	t SABRT		8			ns
	ABRT_B hold time	t habrt		3			ns
*	ERR_B setup time	tserr		8			ns
	ERR_B hold time	tHERR		3			ns
*	$OE_B \downarrow \rightarrow AD$, PAR output definition	t DADOE				18	ns
	time						
*	OE_B↑→AD, PAR Hi-Z definition	t FADOE				18	ns
	time						

DMA abort/ERR B timing

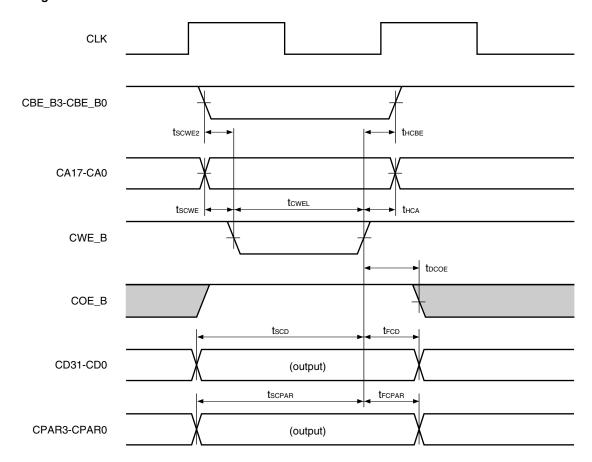
OE_B timing



Bus Monitoring Signal

	Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
*	CLK↑→DBMD delay time	t DDBMD				18	ns
*	CLK↑→DBML delay time	todbml.				19	ns
*	CLK↑→DBMF delay time	todbmf				19	ns
*	CLK↑→DBMR delay time	t DDBMR				18	ns

Bus monitoring signal timing



Control Memory Access (1/2)

(1) Write

	Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
*	CA→CWE_B↓ setup time	tscwe		0			ns
*	CBE_B→CWE_B↓ setup time	tscwe2		0			ns
*	CWE_B low level width	tcwel		1tськн-2			ns
*	CWE_B↑→CD floating time	trcd		0		1tclkL+10	ns
*	CWE_B↑→COE_B delay time	t DCOE		0			ns
*	CA hold time (vs. CWE_B↑)	t HCA		0			ns
	CBE_B hold time (vs. CWE_B↑)	tнсве		0			ns
	CD output time (vs. CWE_B↑)	tsco		8			ns
	CWE_B↑→CPAR floating time	t FCPAR		0		1tclkL+10	ns
	CPAR output time (vs. CWE_B↑)	t scpar		8			ns

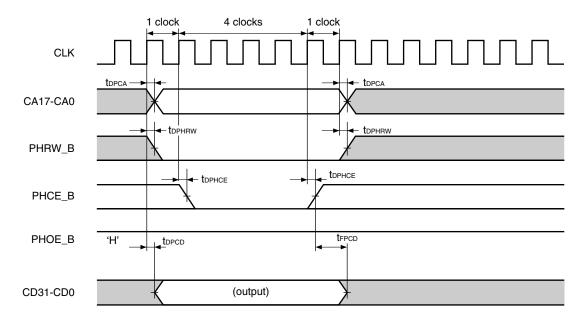
Write timing

Control Memory Access (2/2)

(2) Read

	Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
*	CD delay enable time (vs. CBE_B \downarrow)	tососв				1tcyclk-15	ns
*	CD delay enable time (vs. CA)	t DCDCA				1tcyclk-15	ns
*	CD delay enable time (vs. COE_B \downarrow)	tococo				1tcyclk-15	ns
*	CD hold time (vs. CBE_B↑)	tнсосв		0			ns
*	CD hold time (vs. CA)	t HCDCA		0			ns
*	CD hold time (vs. COE_B↑)	thcdco		0			ns
*	CPAR hold enable time (vs. CBE_B \downarrow)	tосрсв				1tcyclk-15	ns
*	CPAR hold enable time (vs. CA)	t DCPCA				1tcyclk-15	ns
*	CPAR hold enable time (vs. COE_B \downarrow)	tocpco				1tcyclk-15	ns
*	CPAR hold time (vs. CBE_B↑)	tнсрсв		0			ns
*	CPAR hold time (vs. CA)	thcpca		0			ns
*	CPAR hold time (vs. COE_B↑)	tнсрсо		0			ns

Read timing

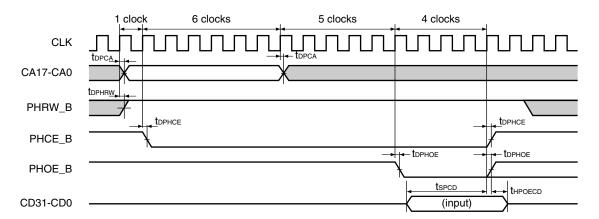


PHY Status Access (1/2)

(1) Write

	Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
	CLK↑→CA delay time	t DPCA				20	ns
*	CLK↑→PHRW_B delay time	t DPHRW				20	ns
*	CLK↑→PHCE_B delay time	t DPHCE				20	ns
	CLK↑→CD delay time	topco				20	ns
	$PHCE_B \uparrow \to CD \ floating\ time$	trpcd		1tcyclk-10		1tcyclk+10	ns

Write timing

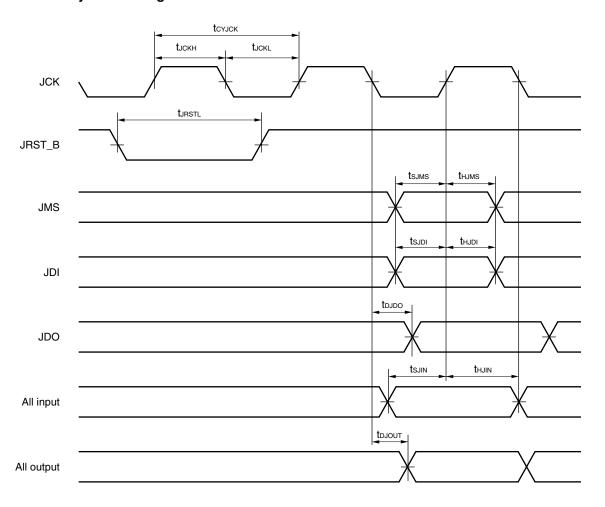


PHY Status Access (2/2)

(2) Read

	Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
	CD setup time	tspcd		0			ns
	CD hold time	thpoecd		0			ns
	CLK↑→CA delay time	t dpca				20	ns
*	CLK↑→PHRW_B delay time	t DPHRW				20	ns
*	CLK↑→PHCE_B delay time	t DPHCE				20	ns
*	CLK $\uparrow \rightarrow$ PHOE_B delay time	t DPHOE				20	ns

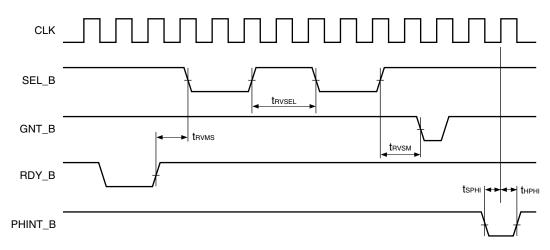
Read timing

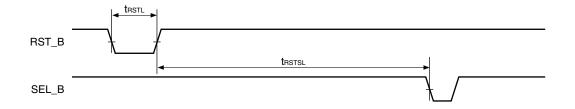

Data Sheet S12100EJ4V0DS

JTAG Boundary Scan

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
JCK cycle time	tcyjck		100			ns
JCK high-level width	tлскн		40			ns
JCK low-level width	tjckl		40			ns
JMS setup time	tsлмs		10			ns
JMS hold time	tнлмs		10			ns
JDI setup time	tsjdi		10			ns
JDI hold time	t HJDI		10			ns
Capture_DR data input setup time	tsJIN		15			ns
* Capture_DR data input hold time	thuin		15			ns
* JCK↓→Up Date_DR output delay	tруоит				25	ns
time						
JCK↓→JDO delay time	t DJDO				20	ns
JRST_B low-level width	turstl		1tсүлск			ns

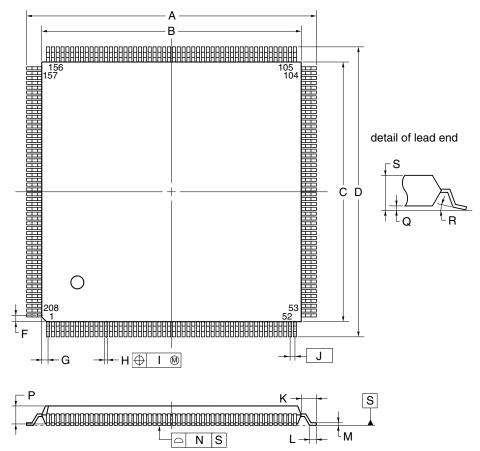
JTAG boundary scan timing





Others

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
SEL_B recovery time	trvsel		2			tcyclk
SEL_B↑→GNT_B↓ recovery time	trvsм		1			tcyclk
RDY_B↑→SEL_B↓ recovery time	t RVMS	RDY_B mode in normal operation	1			tcyclk
PHINT_B setup time	tsрні		8			ns
PHINT_B hold time	tнрні		1			ns
RST_B input pulse width	t RSTL		1			tcyclk
RST_B↑→SEL_B↓ recovery time	t RSTSL		20			tcyclk


Other timing

4. PACKAGE DRAWINGS

★ 208-PIN PLASTIC QFP (FINE PITCH) (28x28)

NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	30.6±0.2
В	28.0±0.2
С	28.0±0.2
D	30.6±0.2
F	1.25
G	1.25
Н	$0.22^{+0.05}_{-0.04}$
I	0.10
J	0.5 (T.P.)
K	1.3±0.2
L	0.5±0.2
М	$0.17^{+0.03}_{-0.07}$
N	0.10
Р	3.2±0.1
Q	0.4±0.1
R	5°±5°
S	3.8 MAX.
-50-LML	MML.SML.WML-7

P208GD-50-LML,MML,SML,WML-7

5. RECOMMENDED SOLDERING CONDITIONS

Solder the product under the following recommended conditions.

For details of the recommended soldering conditions, refer to Information Document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and soldering conditions other than those recommended, consult NEC.

Surface Mount Type

μ PD98401AGD-MML: 208-pin plastic QFP (Fine pitch) (28 x 28)

Soldering Method	Soldering Conditions	Symbol of Recommended Condition
Infrared reflow	Package peak temperature: 235 °C, Time: 30 seconds max. (210 °C min.), Number of times: 2 max., Number of days: 7 Note (Afterwards, prebaking is necessary at 125 °C for 36 hours.)	IR35-367-2
Partial heating	Pin temperature: 300 °C max., Time: 3 seconds max. (per side of device)	-

Note The number of days during which the product can be stored at 25 °C, 65 % RH max. after the dry pack has been opened.

[MEMO]

[MEMO]

[MEMO]

NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Data Sheet S12100EJ4V0DS

NEASCOT-S10 and NEASCOT-S15 are trademarks of NEC Corporation.

- The information in this document is current as of June, 2002. The information is subject to change
 without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
 books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
 and/or types are available in every country. Please check with an NEC sales representative for
 availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

- (Note)
- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4