# mos integrated circuit $\mu$ **PD78P4908**

# **16-BIT SINGLE-CHIP MICROCONTROLLER**

#### DESCRIPTION

NEC

The  $\mu$ PD78P4908, 78K/IV series' product, is a one-time PROM version of the  $\mu$ PD784907 and  $\mu$ PD784908 with internal mask ROM.

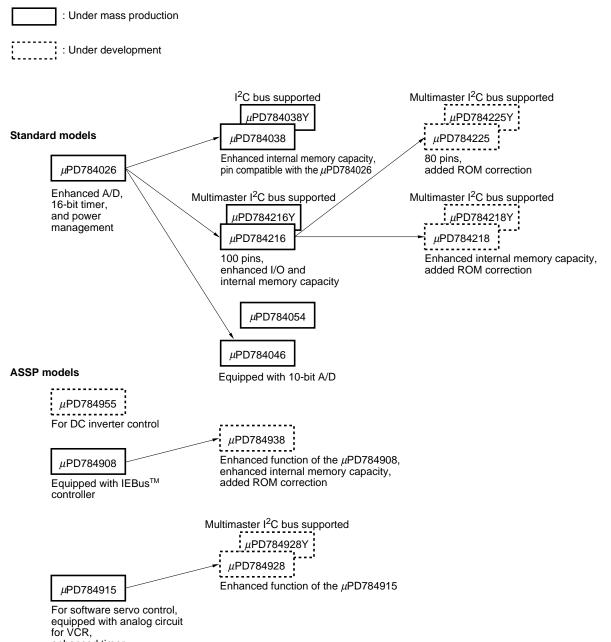
Since user programs can be written to PROM, this microcomputer is best suited for evaluation in system development, manufacture of small quantities of multiple products, and fast start-up of applications.

For specific functions and other detailed information, consult the following user's manuals. These manuals are required reading for design work.

μPD784908 Subseries User's Manual - Hardware : U11787E 78K/IV Series User's Manual - Instruction : U10905E

#### FEATURES

- 78K/IV series
- Internal PROM: 128 Kbytes
- Internal RAM: 4,352 bytes
- Supply voltage: VDD = 4.5 to 5.5 V
  - (At main clock: fxx = 12.58 MHz, internal system clock = fxx: fcyk = 79 ns) VDD = 4.0 to 5.5 V


(Other than above:  $f_{CYK} = 159 \text{ ns}$ )

#### ORDERING INFORMATION

| Part number      | Package                                | Internal ROM  |
|------------------|----------------------------------------|---------------|
| μPD78P4908GF-3BA | 100-pin plastic QFP (14 $	imes$ 20 mm) | One-time PROM |

The information in this document is subject to change without notice.

#### **\* 78K/IV SERIES PRODUCT DEVELOPMENT DIAGRAM**



enhanced timer

\*

 $\star$ 

# FUNCTIONS

(1/2)

| Item                                     |                      |                               | Function                                                                                                                       |                                                                                                                                |                                                                                           |  |
|------------------------------------------|----------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| Number of basic instructions (mnemonics) |                      | 113                           |                                                                                                                                |                                                                                                                                |                                                                                           |  |
| Ge                                       | eneral-purpos        | e register                    | 8 bits $\times$ 16 registe                                                                                                     | ers $\times$ 8 banks, or 16 bits $\times$ 8 regis                                                                              | sters × 8 banks (memory mapping)                                                          |  |
| Mii<br>tim                               |                      | ction execution               |                                                                                                                                | 1.27 μs/2.54 μs (at 6.29 MHz)<br>636 ns/1.27 μs (at 12.58 MHz)                                                                 |                                                                                           |  |
| Int                                      | ernal                | ROM                           | 128 Kbytes                                                                                                                     |                                                                                                                                |                                                                                           |  |
| memory                                   |                      | RAM                           | 4,352 bytes                                                                                                                    |                                                                                                                                |                                                                                           |  |
| Me                                       | emory space          |                               | Program and data                                                                                                               | a: 1 Mbyte                                                                                                                     |                                                                                           |  |
| I/C                                      | ) ports              | Total                         | 80                                                                                                                             |                                                                                                                                |                                                                                           |  |
|                                          |                      | Input                         | 8                                                                                                                              |                                                                                                                                |                                                                                           |  |
|                                          |                      | Input/output                  | 72                                                                                                                             |                                                                                                                                |                                                                                           |  |
|                                          | Additional function  | LED direct<br>drive outputs   | 24                                                                                                                             |                                                                                                                                |                                                                                           |  |
|                                          | pins <sup>Note</sup> | Transistor<br>direct drive    | 8                                                                                                                              |                                                                                                                                |                                                                                           |  |
|                                          |                      | N-ch open<br>drain            | 4                                                                                                                              |                                                                                                                                |                                                                                           |  |
| Re                                       | al-time outpu        | ut ports                      | 4 bits $\times$ 2, or 8 bits $\times$ 1                                                                                        |                                                                                                                                |                                                                                           |  |
| IEE                                      | Bus controlle        | r                             | Incorporated (simple version)                                                                                                  |                                                                                                                                |                                                                                           |  |
| Tir                                      | ner/counter          |                               | Timer/counter 0:<br>(16 bits)                                                                                                  | Timer register $\times$ 1<br>Capture register $\times$ 1<br>Compare register $\times$ 2                                        | Pulse output capability<br>• Toggle output<br>• PWM/PPG output<br>• One-shot pulse output |  |
|                                          |                      |                               | Timer/counter 1:<br>(16 bits)                                                                                                  | Timer register $\times$ 1<br>Capture register $\times$ 1<br>Capture/compare register $\times$ 1<br>Compare register $\times$ 1 | Real-time output port                                                                     |  |
|                                          |                      | Timer/counter 2:<br>(16 bits) | Timer register $\times$ 1<br>Capture register $\times$ 1<br>Capture/compare register $\times$ 1<br>Compare register $\times$ 1 | Pulse output capability <ul> <li>Toggle output</li> <li>PWM/PPG output</li> </ul>                                              |                                                                                           |  |
|                                          |                      | -                             | Timer 3:<br>(16 bits)                                                                                                          | Timer register $\times$ 1<br>Compare register $\times$ 1                                                                       |                                                                                           |  |
| Clock timer                              |                      | incorporated.)                | ock (6.29 MHz/12.58 MHz) or rea                                                                                                | ervals. (A clock timer oscillator is al-time clock (32.768 kHz) can be                                                         |                                                                                           |  |
| Clock output                             |                      |                               | Selected from fclk, fclk/2, fclk/4, fclk/8, or fclk/16 (can be used as a 1-bit output port)                                    |                                                                                                                                |                                                                                           |  |
| P٧                                       | VM outputs           |                               | 12-bit resolution >                                                                                                            | < 2 channels                                                                                                                   |                                                                                           |  |
| Serial interface                         |                      |                               | UART/IOE (3-wire<br>CSI (3-wire serial                                                                                         | serial I/O) : 2 channels (incorpo<br>I/O) : 2 channels                                                                         | prating baud rate generator)                                                              |  |

Note Additional function pins are included in the I/O pins.

(2/2)

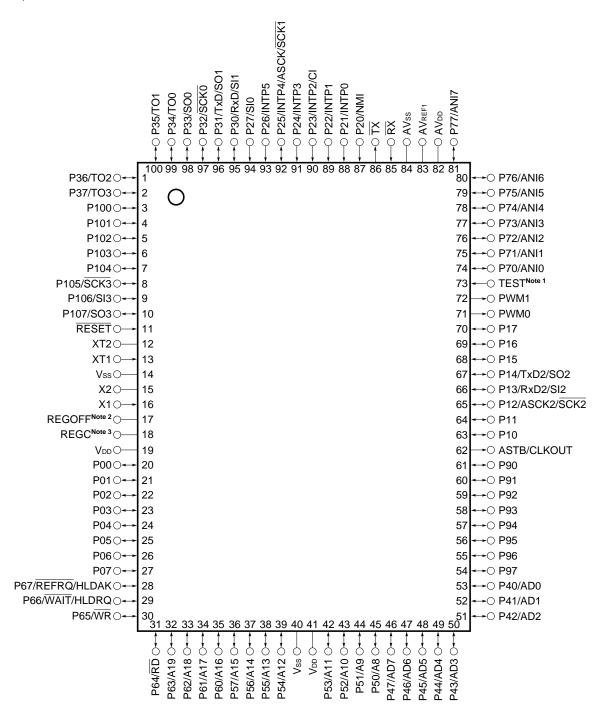
| ltem                                       |                 | Function                                                                                                                                                                                               |
|--------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A/D converte                               | er              | 8-bit resolution × 8 channels                                                                                                                                                                          |
| Watchdog ti                                | mer             | 1 channel                                                                                                                                                                                              |
| Standby                                    |                 | HALT/STOP/IDLE mode                                                                                                                                                                                    |
| Interrupt                                  | Hardware source | 27 (20 internal, 7 external (sampling clock variable input: 1))                                                                                                                                        |
| Software source<br>Nonmaskable<br>Maskable |                 | BRK or BRKCS instruction, operand error                                                                                                                                                                |
|                                            |                 | 1 internal, 1 external                                                                                                                                                                                 |
|                                            |                 | 19 internal, 6 external                                                                                                                                                                                |
|                                            |                 | <ul> <li>4-level programmable priority</li> <li>3 operation statuses: vectored interrupt, macro service, context switching</li> </ul>                                                                  |
| Power supply voltage                       |                 | <ul> <li>V<sub>DD</sub> = 4.5 to 5.5 V (At main clock: fxx = 12.58 MHz, internal system clock = fxx: fcrк = 79 ns)</li> <li>V<sub>DD</sub> = 4.0 to 5.5 V (Other than above: fcrк = 159 ns)</li> </ul> |
| Package                                    |                 | 100-pin plastic QFP (14 $	imes$ 20 mm)                                                                                                                                                                 |

## CONTENTS

| 1.  | . DIFFERENCES BETWEEN $\mu$ PD78P4908 AND MASK ROM PRODUCTS                                                       |    |  |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| 2.  | . PIN CONFIGURATION (TOP VIEW)                                                                                    |    |  |  |  |  |  |  |
| 3.  | BLOCK DIAGRAM                                                                                                     | 10 |  |  |  |  |  |  |
| 4.  | PIN FUNCTIONS                                                                                                     | 11 |  |  |  |  |  |  |
|     | 4.1 PINS FOR NORMAL OPERATING MODE                                                                                | 11 |  |  |  |  |  |  |
|     | 4.2 PINS FOR PROM PROGRAMMING MODE ( $V_{PP} \ge +5 \text{ V or } +12.5 \text{ V}, \overline{\text{RESET}} = L$ ) | 14 |  |  |  |  |  |  |
|     | 4.2.1 Pin Functions                                                                                               | 14 |  |  |  |  |  |  |
|     | 4.2.2 Pin Functions                                                                                               | 15 |  |  |  |  |  |  |
|     | 4.3 I/O CIRCUITS FOR PINS AND HANDLING OF UNUSED PINS                                                             | 16 |  |  |  |  |  |  |
| 5.  | INTERNAL MEMORY SIZE SELECT REGISTER (IMS)                                                                        | 19 |  |  |  |  |  |  |
| 6.  | PROM PROGRAMMING                                                                                                  | 20 |  |  |  |  |  |  |
|     | 6.1 OPERATION MODE                                                                                                | 20 |  |  |  |  |  |  |
|     | 6.2 PROM WRITE SEQUENCE                                                                                           | 22 |  |  |  |  |  |  |
|     | 6.3 PROM READ SEQUENCE                                                                                            | 26 |  |  |  |  |  |  |
| 7.  | SCREENING ONE-TIME PROM PRODUCTS                                                                                  | 26 |  |  |  |  |  |  |
| 8.  | ELECTRICAL CHARACTERISTICS                                                                                        | 27 |  |  |  |  |  |  |
| 9.  | PACKAGE DRAWING                                                                                                   | 51 |  |  |  |  |  |  |
| 10. | RECOMMENDED SOLDERING CONDITIONS                                                                                  | 52 |  |  |  |  |  |  |
| AP  | PENDIX A DEVELOPMENT TOOLS                                                                                        | 53 |  |  |  |  |  |  |
| AP  | PENDIX B CONVERSION SOCKET (EV-9200GF-100) PACKAGE DRAWING                                                        | 56 |  |  |  |  |  |  |
| AP  | PENDIX C RELATED DOCUMENTS                                                                                        | 58 |  |  |  |  |  |  |

#### 1. DIFFERENCES BETWEEN $\mu$ PD78P4908 AND MASK ROM PRODUCTS

The  $\mu$ PD78P4908 is produced by replacing the mask ROM in the  $\mu$ PD784907 or  $\mu$ PD784908 with PROM to which data can be written. The functions of the  $\mu$ PD78P4908 are the same as those of the  $\mu$ PD784907 or  $\mu$ PD784908 except for the PROM specification such as writing and verification, except that the PROM size can be changed to 96 or 128 Kbytes, and except that the internal RAM size can be changed to 3,584 or 4,352 bytes.


Table 1-1 shows the differences between these products.

|   | Product name<br>Item                                                                                                                                                | μPD78P4908                                                                                    | μPD784907                                                                                                                                                 | μPD784908                  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|   | Internal program<br>memory                                                                                                                                          | <ul> <li>128-Kbyte PROM</li> <li>Can be changed to 96<br/>Kbytes by IMS</li> </ul>            | <ul> <li>96-Kbyte mask ROM</li> </ul>                                                                                                                     | • 128-Kbyte mask ROM       |
|   | Internal RAM                                                                                                                                                        | <ul> <li>4,352-byte internal RAM</li> <li>Can be changed to 3,584<br/>bytes by IMS</li> </ul> | • 3,584-byte internal RAM                                                                                                                                 | • 4,352-byte internal RAM  |
|   | Pin connection                                                                                                                                                      | Pin functions related to writing or                                                           | reading of PROM have been adde                                                                                                                            | ed to the $\mu$ PD78P4908. |
| * | (At main clock: $fxx = 12.58$<br>MHz, internal system clock =<br>$fxx$ : $fcy\kappa = 79$ ns(At main clock: $fx$<br>$fcy\kappa = 79$ ns)• $V_{DD} = 3.5$ to $5.5$ V |                                                                                               | <ul> <li>VDD = 4.0 to 5.5 V<br/>(At main clock: fxx = 12.58 MH<br/>fcYк = 79 ns)</li> <li>VDD = 3.5 to 5.5 V<br/>(Other than above: fcYк = 159</li> </ul> |                            |
|   | Electrical characteristics                                                                                                                                          | Partially differs between these products.                                                     |                                                                                                                                                           |                            |

#### 2. PIN CONFIGURATION (TOP VIEW)

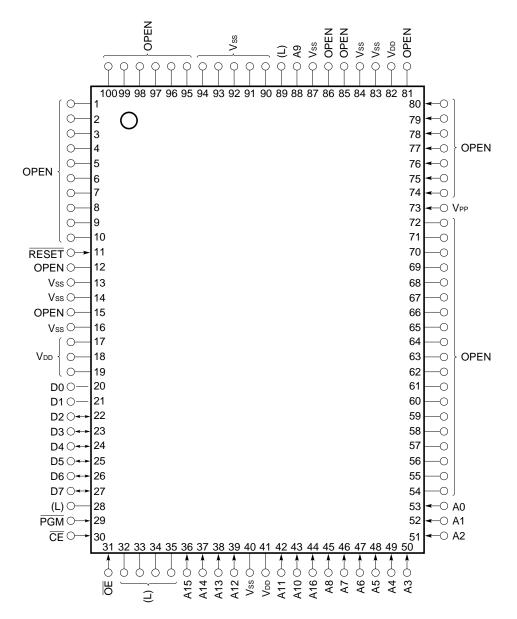
#### (1) Normal operation mode

 100-pin plastic QFP (14 × 20 mm) μPD78P4908GF-3BA



Notes 1. Connect the TEST pin to Vss directly.

- 2. Connect the REGOFF pin to Vss directly (select regulator operation)
- **3.** Connect the REGC pin to Vss through a  $1-\mu$ F capacitor.


# NEC

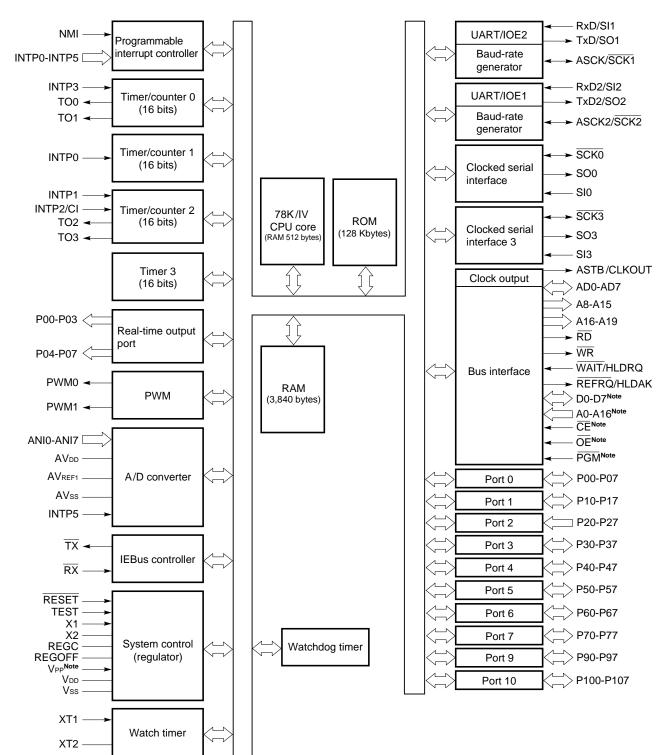
P100-P107 : Port 10

| A8-A19      | : | Address bus                | PWM0, PWM1 : | : | Pulse width modulation output |
|-------------|---|----------------------------|--------------|---|-------------------------------|
| AD0-AD7     | : | Address/data bus           | RD :         | : | Read strobe                   |
| ANI0-ANI7   | : | Analog input               | REFRQ :      | : | Refresh request               |
| ASCK, ASCK2 | : | Asynchronous serial clock  | REGC :       | : | Regulator capacitance         |
| ASTB        | : | Address strobe             | REGOFF :     | : | Regulator off                 |
| AVdd        | : | Analog power supply        | RESET :      | : | Reset                         |
| AVREF1      | : | Reference voltage          | RX :         | : | IEBus receive data            |
| AVss        | : | Analog ground              | RxD, RxD2 :  | : | Receive data                  |
| CI          | : | Clock input                | SCK0-SCK3 :  | : | Serial clock                  |
| CLKOUT      | : | Clock output               | SI0-SI3 :    | : | Serial input                  |
| HLDAK       | : | Hold acknowledge           | SO0-SO3 :    | : | Serial output                 |
| HLDRQ       | : | Hold request               | TEST :       | : | Test                          |
| INTP0-INTP5 | : | Interrupt from peripherals | тоо-тоз :    | : | Timer output                  |
| NMI         | : | Non-maskable interrupt     | TX :         | : | IEBus transmit data           |
| P00-P07     | : | Port 0                     | TxD, TxD2 :  | : | Transmit data                 |
| P10-P17     | : | Port 1                     | Vdd :        | : | Power supply                  |
| P20-P27     | : | Port 2                     | Vss :        | : | Ground                        |
| P30-P37     | : | Port 3                     | WAIT :       | : | Wait                          |
| P40-P47     | : | Port 4                     | WR :         | : | Write strobe                  |
| P50-P57     | : | Port 5                     | X1, X2 :     | : | Crystal (main system clock)   |
| P60-P67     | : | Port 6                     | XT1, XT2 :   | : | Crystal (watch)               |
| P70-P77     | : | Port 7                     |              |   |                               |
| P90-P97     | : | Port 9                     |              |   |                               |
|             |   |                            |              |   |                               |

#### (2) PROM programming mode

• 100-pin plastic QFP (14  $\times$  20 mm)  $\mu$ PD78P4908GF-3BA




Caution L : Connect these pins separately to the Vss pins through 10-k $\Omega$  pull-down resistors.

- Vss : To be connected to the ground.
- **Open** : Nothing should be connected on these pins.

**RESET**: Set a low-level input.

| A0-A16 | : Address bus   | RESET | : Reset                    |
|--------|-----------------|-------|----------------------------|
| CE     | : Chip enable   | Vdd   | : Power supply             |
| D0-D7  | : Data bus      | Vpp   | : Programming power supply |
| OE     | : Output enable | Vss   | : Ground                   |
| PGM    | : Program       |       |                            |

#### 3. BLOCK DIAGRAM



Note In the PROM programming mode.

### 4. PIN FUNCTIONS

#### 4.1 PINS FOR NORMAL OPERATING MODE

# (1) Port pins (1/2)

| Pin     | I/O   | Also used as    | Function                                                                                                                                                                                                                                                                                                                               |  |
|---------|-------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| P00-P07 | I/O   | _               | <ul> <li>Port 0 (P0):</li> <li>8-bit I/O port.</li> <li>Functions as a real-time output port (4 bits × 2).</li> <li>Inputs and outputs can be specified bit by bit.</li> <li>The use of built-in pull-up resistors can be simultaneously specified by software for all pins in input mode.</li> <li>Can drive a transistor.</li> </ul> |  |
| P10     | I/O   | _               | Port 1 (P1):                                                                                                                                                                                                                                                                                                                           |  |
| P11     |       | —               | 8-bit I/O port.     Insuite and outputs can be apposited bit by bit                                                                                                                                                                                                                                                                    |  |
| P12     |       | ASCK2/SCK2      | <ul> <li>Inputs and outputs can be specified bit by bit.</li> <li>The use of built-in pull-up resistors can be simultaneously specified by</li> </ul>                                                                                                                                                                                  |  |
| P13     |       | RxD2/SI2        | software for all pins in input mode.                                                                                                                                                                                                                                                                                                   |  |
| P14     |       | TxD2/SO2        | Can drive LED.                                                                                                                                                                                                                                                                                                                         |  |
| P15-P17 |       | —               |                                                                                                                                                                                                                                                                                                                                        |  |
| P20     | Input | NMI             | Port 2 (P2):                                                                                                                                                                                                                                                                                                                           |  |
| P21     |       | INTP0           | 8-bit input-only port.                                                                                                                                                                                                                                                                                                                 |  |
| P22     |       | INTP1           | • P20 does not function as a general-purpose port (nonmaskable interrupt). However, the input level can be checked by an interrupt                                                                                                                                                                                                     |  |
| P23     |       | INTP2/CI        | service routine.                                                                                                                                                                                                                                                                                                                       |  |
| P24     |       | INTP3           | The use of built-in pull-up resistors can be specified by software for     R22 to R27 (in units of 6 bits)                                                                                                                                                                                                                             |  |
| P25     |       | INTP4/ASCK/SCK1 | <ul> <li>P22 to P27 (in units of 6 bits).</li> <li>The P25/INTP4/ASCK/SCK1 pin functions as the SCK1 input/output pin</li> </ul>                                                                                                                                                                                                       |  |
| P26     |       | INTP5           | by CSIM1.                                                                                                                                                                                                                                                                                                                              |  |
| P27     |       | SI0             |                                                                                                                                                                                                                                                                                                                                        |  |
| P30     | I/O   | RxD/SI1         | Port 3 (P3):                                                                                                                                                                                                                                                                                                                           |  |
| P31     |       | TxD/SO1         | • 8-bit I/O port.                                                                                                                                                                                                                                                                                                                      |  |
| P32     |       | SCK0            | <ul> <li>Inputs and outputs can be specified bit by bit.</li> <li>The use of built-in pull-up resistors can be simultaneously specified by</li> </ul>                                                                                                                                                                                  |  |
| P33     |       | SO0             | software for all pins in input mode.                                                                                                                                                                                                                                                                                                   |  |
| P34-P37 |       | ТО0-ТО3         | P32 and P33 can be set as the N-ch open-drain pin.                                                                                                                                                                                                                                                                                     |  |
| P40-P47 | 1/0   | AD0-AD7         | <ul> <li>Port 4 (P4):</li> <li>8-bit I/O port.</li> <li>Inputs and outputs can be specified bit by bit.</li> <li>The use of built-in pull-up resistors can be simultaneously specified by software for all pins in input mode.</li> <li>Can drive LED.</li> </ul>                                                                      |  |

# (1) Port pins (2/2)

| Pin       | I/O | Also used as | Function                                                                                                                                                                                                                                                          |
|-----------|-----|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P50-P57   | I/O | A8-A15       | <ul> <li>Port 5 (P5):</li> <li>8-bit I/O port.</li> <li>Inputs and outputs can be specified bit by bit.</li> <li>The use of built-in pull-up resistors can be simultaneously specified by software for all pins in input mode.</li> <li>Can drive LED.</li> </ul> |
| P60-P63   | I/O | A16-A19      | Port 6 (P6):                                                                                                                                                                                                                                                      |
| P64       |     | RD           | 8-bit I/O port.                                                                                                                                                                                                                                                   |
| P65       |     | WR           | <ul> <li>Inputs and outputs can be specified bit by bit.</li> <li>The use of built-in pull-up resistors can be simultaneously specified by</li> </ul>                                                                                                             |
| P66       | _   | WAIT/HLDRQ   | software for all pins in input mode.                                                                                                                                                                                                                              |
| P67       |     | REFRQ/HLDAK  |                                                                                                                                                                                                                                                                   |
| P70-P77   | I/O | ANIO-ANI7    | Port 7 (P7):<br>• 8-bit I/O port.<br>• Inputs and outputs can be specified bit by bit.                                                                                                                                                                            |
| P90-P97   | I/O | _            | <ul> <li>Port 9 (P9):</li> <li>8-bit I/O port.</li> <li>Inputs and outputs can be specified bit by bit.</li> <li>The use of built-in pull-up resistors can be simultaneously specified by software for all pins in input mode.</li> </ul>                         |
| P100-P104 | I/O | _            | Port 10 (P10):                                                                                                                                                                                                                                                    |
| P105      |     | SCK3         | • 8-bit I/O port.                                                                                                                                                                                                                                                 |
| P106      |     | SI3          | <ul> <li>Inputs and outputs can be specified bit by bit.</li> <li>The use of built-in pull-up resistors can be simultaneously specified by</li> </ul>                                                                                                             |
| P107      |     | SO3          | <ul> <li>P105 and P107 can be set as the N-ch open-drain pin.</li> </ul>                                                                                                                                                                                          |

# (2) Non-port pins (1/2)

| Pin     | I/O    | Also used as   | Function                                              |                                                                                                                 |  |
|---------|--------|----------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| ТО0-ТОЗ | Output | P34-P37        | Timer output                                          |                                                                                                                 |  |
| CI      | Input  | P23/INTP2      | Input of a count clock for timer/counter 2            |                                                                                                                 |  |
| RxD     | Input  | P30/SI1        | Serial data input (UART0)                             |                                                                                                                 |  |
| RxD2    |        | P13/SI2        | Serial data input (UART2)                             |                                                                                                                 |  |
| TxD     | Output | P31/SO1        | Serial data output (UART0                             | ))                                                                                                              |  |
| TxD2    |        | P14/SO2        | Serial data output (UART2                             | :)                                                                                                              |  |
| ASCK    | Input  | P25/INTP4/SCK1 | Baud rate clock input (UAF                            | RT0)                                                                                                            |  |
| ASCK2   |        | P12/SCK2       | Baud rate clock input (UAF                            | RT2)                                                                                                            |  |
| SI0     | Input  | P27            | Serial data input (3-wire se                          | erial I/O 0)                                                                                                    |  |
| SI1     |        | P30/RxD        | Serial data input (3-wire se                          | erial I/O 1)                                                                                                    |  |
| SI2     |        | P13/RxD2       | Serial data input (3-wire se                          | erial I/O 2)                                                                                                    |  |
| SI3     |        | P106           | Serial data input (3-wire se                          | erial I/O 3)                                                                                                    |  |
| SO0     | Output | P33            | Serial data output (3-wire                            | serial I/O 0)                                                                                                   |  |
| SO1     |        | P31/TxD        | Serial data output (3-wire                            | serial I/O 1)                                                                                                   |  |
| SO2     |        | P14/TxD2       | Serial data output (3-wire                            | serial I/O 2)                                                                                                   |  |
| SO3     |        | P107           | Serial data output (3-wire                            | serial I/O 3)                                                                                                   |  |
| SCK0    | I/O    | P32            | Serial clock I/O (3-wire ser                          | rial I/O 0)                                                                                                     |  |
| SCK1    |        | P25/INTP4/ASCK | Serial clock I/O (3-wire serial I/O 1)                |                                                                                                                 |  |
| SCK2    |        | P12/ASCK2      | Serial clock I/O (3-wire serial I/O 2)                |                                                                                                                 |  |
| SCK3    |        | P105           | Serial clock I/O (3-wire serial I/O 3)                |                                                                                                                 |  |
| NMI     | Input  | P20            | External interrupt request                            | _                                                                                                               |  |
| INTP0   |        | P21            |                                                       | <ul> <li>Input of a count clock for timer/counter 1</li> <li>Capture/trigger signal for CR11 or CR12</li> </ul> |  |
| INTP1   |        | P22            |                                                       | <ul> <li>Input of a count clock for timer/counter 2</li> <li>Capture/trigger signal for CR22</li> </ul>         |  |
| INTP2   |        | P23/CI         | -                                                     | <ul> <li>Input of a count clock for timer/counter 2</li> <li>Capture/trigger signal for CR21</li> </ul>         |  |
| INTP3   |        | P24            | -                                                     | <ul> <li>Input of a count clock for timer/counter 0</li> <li>Capture/trigger signal for CR02</li> </ul>         |  |
| INTP4   |        | P25/ASCK/SCK1  |                                                       | _                                                                                                               |  |
| INTP5   |        | P26            |                                                       | Input of a conversion start trigger for A/D converter                                                           |  |
| AD0-AD7 | I/O    | P40-P47        | Time multiplexing address,                            | /data bus (for connecting external memory)                                                                      |  |
| A8-A15  | Output | P50-P57        | High-order address bus (fo                            | or connecting external memory)                                                                                  |  |
| A16-A19 | Output | P60-P63        | High-order address during a                           | ddress expansion (for connecting external memory)                                                               |  |
| RD      | Output | P64            | Strobe signal output for rea                          | ading the contents of external memory                                                                           |  |
| WR      | Output | P65            | Strobe signal output for wr                           | iting on external memory                                                                                        |  |
| WAIT    | Input  | P66/HLDRQ      | Wait signal insertion                                 |                                                                                                                 |  |
| REFRQ   | Output | P67/HLDAK      | Refresh pulse output to external pseudo static memory |                                                                                                                 |  |
| HLDRQ   | Input  | P66/WAIT       | Input of bus hold request                             |                                                                                                                 |  |
| HLDAK   | Output | P67/REFRQ      | Output of bus hold response                           |                                                                                                                 |  |
| ASTB    | Output | CLKOUT         | Latch timing output of time external memory)          | e multiplexing address (A0-A7) (for connecting                                                                  |  |

# (2) Non-port pins (2/2)

|     | Pin                | I/O    | Also used as | Function                                                                                                                                        |
|-----|--------------------|--------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|     | CLKOUT             | Output | ASTB         | Clock output                                                                                                                                    |
|     | PWM0               | Output | _            | PWM output 0                                                                                                                                    |
|     | PWM1               | Output | _            | PWM output 1                                                                                                                                    |
|     | RX                 | Input  | _            | Data input (IEBus)                                                                                                                              |
|     | TX                 | Output | _            | Data output (IEBus)                                                                                                                             |
| *   | REGC               | _      | _            | Capacitor connection for stabilizing the regulator output/Power supply when the regulator is stopped. Connect to Vss via a $1-\mu$ F capacitor. |
| *   | REGOFF             | _      | _            | Signal for specifying regulator operation. Directly connect to $V_{SS}$ (regulator selected).                                                   |
|     | RESET              | Input  | _            | Chip reset                                                                                                                                      |
|     | X1                 | Input  |              | Crystal input for system clock oscillation (A clock pulse can also be input                                                                     |
|     | X2                 | _      |              | to the X1 pin.)                                                                                                                                 |
| XT1 |                    | Input  | _            | Real-time clock connection                                                                                                                      |
|     | XT2                | _      | _            |                                                                                                                                                 |
|     | ANIO-ANI7          | Input  | P70-P77      | Analog voltage inputs for the A/D converter                                                                                                     |
|     | AV <sub>REF1</sub> |        | _            | Application of A/D converter reference voltage                                                                                                  |
|     | AVdd               |        |              | Positive power supply for the A/D converter                                                                                                     |
|     | AVss               |        |              | Ground for the A/D converter                                                                                                                    |
|     | Vdd                |        |              | Positive power supply                                                                                                                           |
|     | Vss                |        |              | Ground                                                                                                                                          |
|     | TEST               | Input  |              | Directly connect to Vss. (The TEST pin is for the IC test.)                                                                                     |

# 4.2 PINS FOR PROM PROGRAMMING MODE (V<sub>PP</sub> $\ge$ +5 V or +12.5 V, RESET = L)

#### 4.2.1 Pin Functions

| Pin name | I/O   | Function                                                                                   |
|----------|-------|--------------------------------------------------------------------------------------------|
| Vpp      | _     | PROM programming mode selection<br>High voltage input during program write or verification |
| RESET    | Input | PROM programming mode selection                                                            |
| A0-A16   |       | Address bus                                                                                |
| D0-D7    | I/O   | Data bus                                                                                   |
| CE       | Input | PROM enable input/program pulse input                                                      |
| ŌE       |       | Read strobe input to PROM                                                                  |
| PGM      |       | Program/program inhibit input during PROM programming mode                                 |
| Vdd      | _     | Positive power supply                                                                      |
| Vss      | _     | GND                                                                                        |

#### 4.2.2 Pin Functions

#### (1) VPP (Programming power supply): Input

Input pin for setting the  $\mu$ PD78P4908 to the PROM programming mode. When the input voltage on this pin is +6.5 V or more and when RESET input goes low, the  $\mu$ PD78P4908 enters the PROM programming mode. When  $\overline{CE}$  is made low for V<sub>PP</sub> = +12.5 V and  $\overline{OE}$  = high, program data on D0 to D7 can be written into the internal PROM cell selected by A0 to A16.

#### (2) RESET (Reset): Input

Input pin for setting the  $\mu$ PD78P4908 to the PROM programming mode. When input on this pin is low, and when the input voltage on the VPP pin goes +5 V or more, the  $\mu$ PD78P4908 enters the PROM programming mode.

#### (3) A0 to A16 (Address bus): Input

Address bus that selects an internal PROM address (0000H to 1FFFFH)

#### (4) D0 to D7 (Data bus): I/O

Data bus through which a program is written on or read from internal PROM

#### (5) CE (Chip enable): Input

This pin inputs the enable signal from internal PROM. When this signal is active, a program can be written or read.

#### (6) OE (Output enable): Input

This pin inputs the read strobe signal to internal PROM. When this signal is made active for  $\overline{CE}$  = low, a onebyte program in the internal PROM cell selected by A0 to A16 can be read onto D0 to D7.

#### (7) PGM (Program): Input

The input pin for the operation mode control signal of the internal PROM. Upon activation, writing to the internal PROM is enabled. Upon inactivation, reading from the internal PROM is enabled.

(8) VDD

Positive power supply pin

(9) Vss

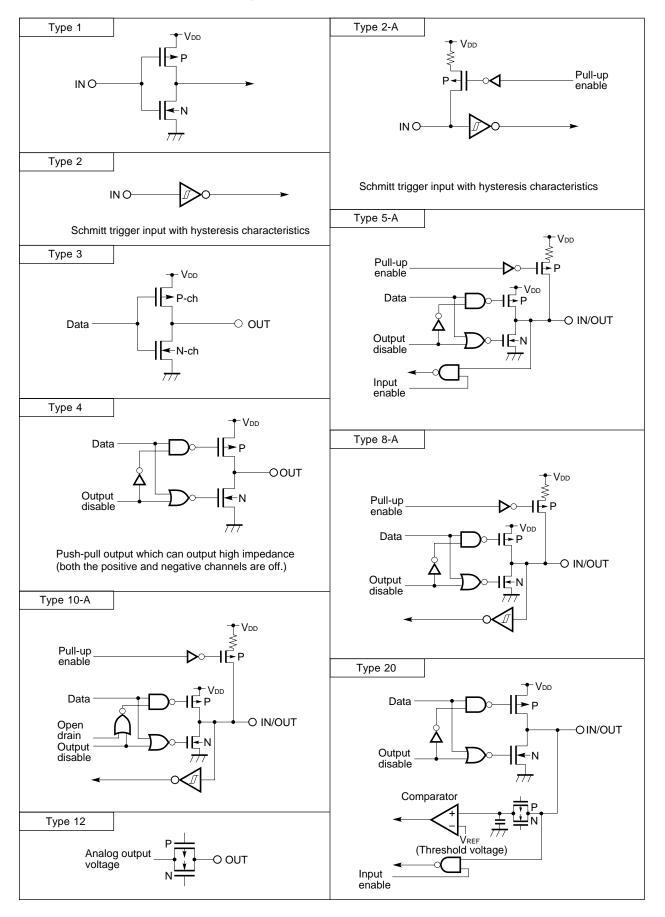
Ground potential pin

#### 4.3 I/O CIRCUITS FOR PINS AND HANDLING OF UNUSED PINS

Table 4-1 describes the types of I/O circuits for pins and the handling of unused pins. Figure 4-1 shows the configuration of these various types of I/O circuits.

| Table 4-1. | Types of I/O | <b>Circuits for Pins</b> | and Handling of | Unused Pins (1/2) |
|------------|--------------|--------------------------|-----------------|-------------------|
|------------|--------------|--------------------------|-----------------|-------------------|

| Pin                 | I/O circuit type | I/O    | Recommended connection method for unused pins                        |
|---------------------|------------------|--------|----------------------------------------------------------------------|
| P00-P07             | 5-A              | I/O    | Input state: To be connected to VDD                                  |
| P10, P11            | 1                |        | Output state: To be left open                                        |
| P12/ASCK2/SCK2      | 8-A              |        |                                                                      |
| P13/RxD2/SI2        | 5-A              | 1      |                                                                      |
| P14/TxD2/SO2        | -                |        |                                                                      |
| P15-P17             | _                |        |                                                                      |
| P20/NMI             | 2                | Input  | To be connected to VDD or VSS                                        |
| P21/INTP0           | _                |        |                                                                      |
| P22/INTP1           | 2-A              | 1      | To be connected to VDD                                               |
| P23/INTP2/CI        | -                |        |                                                                      |
| P24/INTP3           | _                |        |                                                                      |
| P25/INTP4/ASCK/SCK1 | 8-A              | I/O    | Input state: To be connected to VDD<br>Output state: To be left open |
| P26/INTP5           | 2-A              | Input  | To be connected to VDD                                               |
| P27/SI0             | _                |        |                                                                      |
| P30/RxD/SI1         | 5-A              | I/O    | Input state: To be connected to VDD                                  |
| P31/TxD/SO1         |                  |        | Output state: To be left open                                        |
| P32/SCK0            | 10-A             |        |                                                                      |
| P33/SO0             |                  |        |                                                                      |
| P34/T00-P37/T03     | 5-A              |        |                                                                      |
| P40/AD0-P47/AD7     |                  |        |                                                                      |
| P50/A8-P57/A15      |                  |        |                                                                      |
| P60/A16-P63/A19     |                  |        |                                                                      |
| P64/RD              |                  |        |                                                                      |
| P65/WR              |                  |        |                                                                      |
| P66/WAIT/HLDRQ      |                  |        |                                                                      |
| P67/REFRQ/HLDAK     |                  |        |                                                                      |
| P70/ANI0-P77/ANI7   | 20               | I/O    | Input state: To be connected to VDD or Vss                           |
| P90-P97             | 5-A              |        | Output state : To be left open                                       |
| P100-P104           |                  |        |                                                                      |
| P105/SCK3           | 10-A             |        |                                                                      |
| P106/SI3            | 8-A              |        |                                                                      |
| P107/SO3            | 10-A             | ]      |                                                                      |
| ASTB/CLKOUT         | 4                | Output | To be left open                                                      |

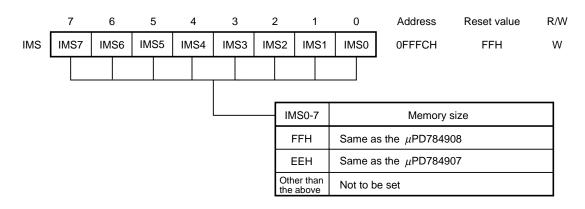

 $\star$ 

| Pin                | I/O circuit type | I/O    | Recommended connection method for unused pins |
|--------------------|------------------|--------|-----------------------------------------------|
| RESET              | 2                | Input  | _                                             |
| TEST               | 1                |        | To be connected to Vss directly               |
| XT2                | _                | —      | To be left open                               |
| XT1                |                  | Input  | To be connected to Vss                        |
| PWM0, PWM1         | 3                | Output | To be left open                               |
| RX                 | 1                | Input  | To be connected to VDD or Vss                 |
| TX                 | 3                | Output | To be left open                               |
| AV <sub>REF1</sub> | _                | —      | To be connected to Vss                        |
| AVss               |                  |        |                                               |
| AVDD               |                  |        | To be connected to VDD                        |

#### Table 4-1. Types of I/O Circuits for Pins and Handling of Unused Pins (2/2)

- Caution When the I/O mode of an I/O dual-function pin is unpredictable, connect the pin to V<sub>DD</sub> through a resistor of 10 to 100 k $\Omega$  (particularly when the voltage of the reset input pin becomes higher than that of the low level input at power-on or when I/O is switched by software).
- **Remark** Since type numbers are consistent in the 78K series, those numbers are not always serial in each product. (Some circuits are not included.)

Figure 4-1. I/O Circuits for Pins




#### 5. INTERNAL MEMORY SIZE SELECT REGISTER (IMS)

This register enables the software to avoid using part of the internal memory. The IMS can be set to establish the same memory mapping as used in mask ROM products that have different internal memory (ROM and RAM) configurations.

The IMS is set using 8-bit memory operation instructions.

A RESET input sets the IMS to FFH.





The IMS is not contained in a mask ROM product ( $\mu$ PD784907 or  $\mu$ PD784908). But the action is not affected if the write command to the IMS is executed to the mask ROM product.

#### 6. PROM PROGRAMMING

The  $\mu$ PD78P4908 has an on-chip 128-KB PROM device for use as program memory. When programming, set the VPP and RESET pins for PROM programming mode. See **2. PIN CONFIGURATION (TOP VIEW) (2) PROM programming mode** with regard to handling of other, unused pins.

#### 6.1 OPERATION MODE

PROM programming mode is selected when +6.5 V is added to the V<sub>DD</sub> pin, +12.5 V is added to the V<sub>PP</sub> pin, or low-level input is added to the  $\overline{\text{RESET}}$  pin. This mode can be set to operation mode by setting the  $\overline{\text{CE}}$  pin,  $\overline{\text{OE}}$  pin, and  $\overline{\text{PGM}}$  pin as shown in Table 6-1 below.

In addition, the PROM contents can be read by setting read mode.

| Pin             | RESET | Vpp     | Vdd    | CE | OE | PGM | D0-D7          |
|-----------------|-------|---------|--------|----|----|-----|----------------|
| Operation mode  |       |         |        |    |    |     |                |
| Page data latch | L     | +12.5 V | +6.5 V | н  | L  | н   | Data input     |
| Page write      |       |         |        | н  | н  | L   | High impedance |
| Byte write      |       |         |        | L  | н  | L   | Data input     |
| Program verify  |       |         |        | L  | L  | н   | Data output    |
| Program inhibit |       |         |        | ×  | н  | н   | High impedance |
|                 |       |         |        | ×  | L  | L   |                |
| Read            |       | +5 V    | +5 V   | L  | L  | н   | Data output    |
| Output disable  | 1     |         |        | L  | н  | ×   | High impedance |
| Standby         |       |         |        | н  | ×  | ×   | High impedance |

Table 6-1. PROM Programming Operation Mode

**Remark**  $\times = L \text{ or } H$ 

#### (1) Read mode

Set  $\overline{CE}$  to L and  $\overline{OE}$  to L to set read mode.

#### (2) Output disable mode

Set  $\overline{OE}$  to H to set high impedance for data output and output disable mode. Consequently, if several  $\mu$ PD78P4908 devices are connected to a data bus, the  $\overline{OE}$  pins can be controlled to select data output from any of the devices.

#### (3) Standby mode

Set  $\overline{CE}$  to H to set standby mode. In this mode, data output is set to high impedance regardless of the  $\overline{OE}$  setting.

#### (4) Page data latch mode

At the beginning of page write mode, set  $\overline{CE}$  to H,  $\overline{PGM}$  to H, and  $\overline{OE}$  to L to set page data latch mode. In this mode, 1 page (4 bytes) of data are latched to the internal address/data latch circuit.

#### (5) Page write mode

After latching the address and data for one page (4 bytes) using page data latch mode, adding a 0.1 ms program pulse (active, low) to the  $\overrightarrow{PGM}$  pin with both  $\overrightarrow{CE}$  and  $\overrightarrow{OE}$  set to H causes page write to be executed. Later, setting both  $\overrightarrow{CE}$  and  $\overrightarrow{OE}$  to L causes program verification to be executed.

If programming is not completed after one program pulse, the write and verify operations may be repeated X times (where  $X \le 10$ ).

#### (6) Byte write mode

Adding a 0.1 ms program pulse (active, low) to the PGM pin with setting  $\overline{CE}$  to L and  $\overline{OE}$  to H causes byte write to be executed. Later, setting  $\overline{OE}$  to L causes program verification to be executed.

If programming is not completed after one program pulse, the write and verify operations may be repeated X times (where  $X \le 10$ ).

#### (7) Program verify mode

Set  $\overline{CE}$  to L,  $\overline{PGM}$  to H, and  $\overline{OE}$  to L to set program verify mode. Use verify mode for verification following each write operation.

#### (8) Program inhibit mode

Program inhibit mode is used to write to a single device when several  $\mu$ PD78P4908 devices are connected in parallel to  $\overline{\text{OE}}$ , VPP, and D0 to D7 pins.

Use the page write mode or byte write mode described above for each write operation. Write operations cannot be done for devices in which the  $\overline{PGM}$  pin has been set to H.

#### 6.2 PROM WRITE SEQUENCE

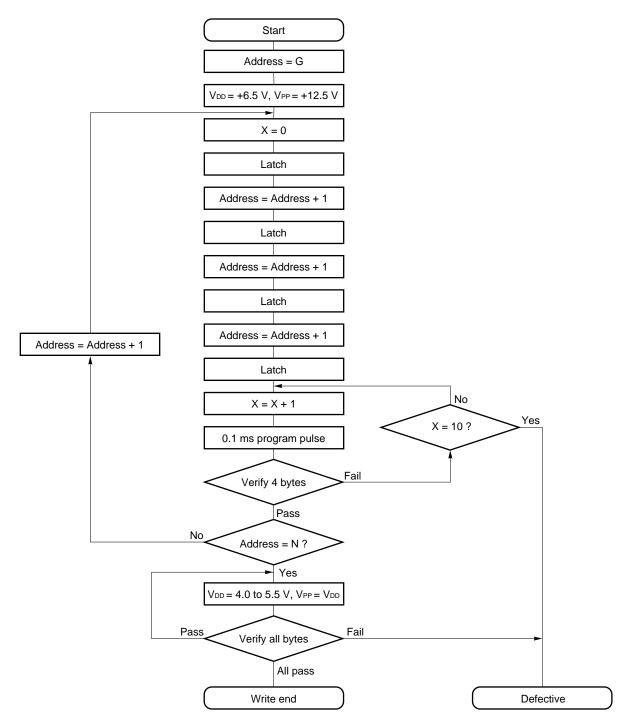



Figure 6-1. Page Program Mode Flowchart

#### Remark G = Start address

N = Program end address

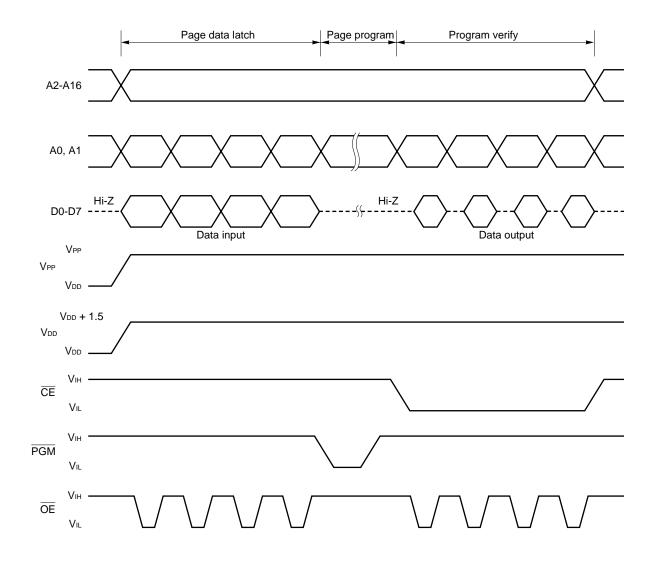
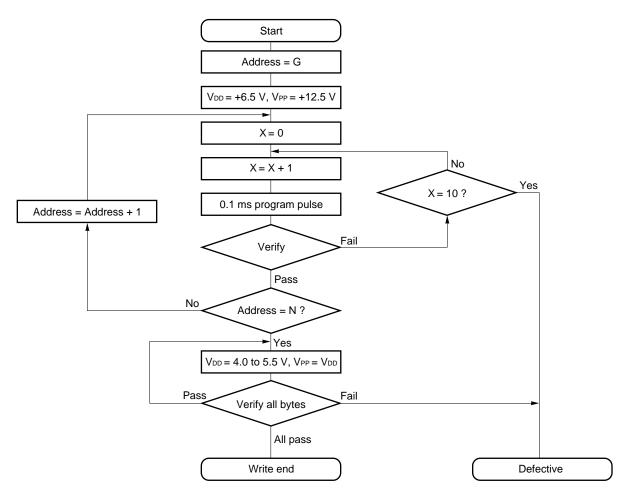




Figure 6-2. Page Program Mode Timing





**Remark** G = Start address

N = Program end address

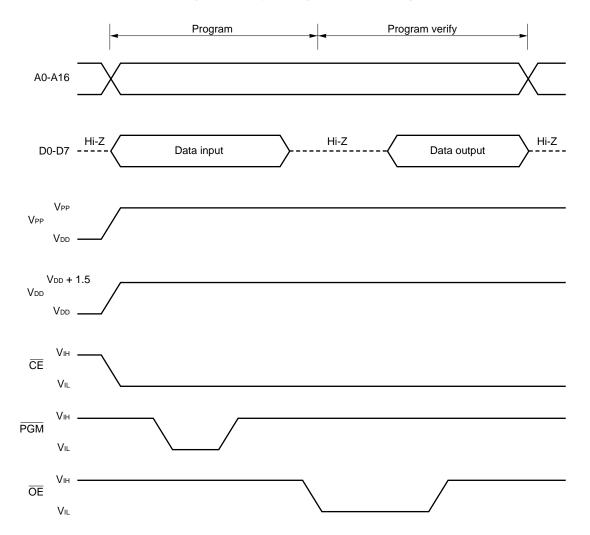
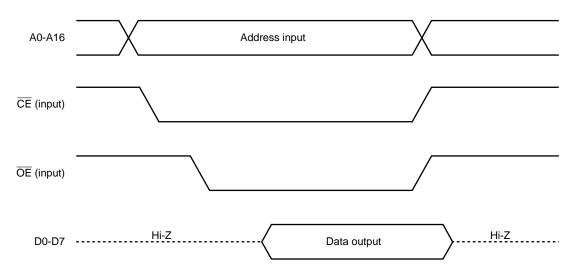



Figure 6-4. Byte Program Mode Timing

Cautions 1. Add VDD before VPP, and turn off the VDD after VPP.


- 2. Do not allow VPP to exceed 13.5 V including overshoot.
- 3. Reliability problems may result if the device is inserted or pulled out while 12.5 V is applied at VPP.

#### 6.3 PROM READ SEQUENCE

Follow this sequence to read the PROM contents to an external data bus (D0 to D7).

- (1) Set the RESET pin to low level and add 5 V to the VPP pin. See 2. PIN CONFIGURATION (TOP VIEW) (2) PROM programming mode with regard to handling of other, unused pins.
- (2) Add 5 V to the VDD and VPP pins.
- (3) Input the data address to be read to pins A0 to A16.
- (4) Set read mode.
- (5) Output the data to pins D0 to D7.

Figure 6-5 shows the timing of steps (2) to (5) above.



#### Figure 6-5. PROM Read Timing

#### 7. SCREENING ONE-TIME PROM PRODUCTS

NEC cannot execute a complete test of one-time PROM products ( $\mu$ PD78P4908GF-3BA) due to their structure before shipment. It is recommended that you screen (verify) PROM products after writing necessary data into them and storing them at 125°C for 24 hours.

#### 8. ELECTRICAL CHARACTERISTICS

#### ABSOLUTE MAXIMUM RATINGS (TA = 25 $^{\circ}$ C)

| Parameter                             | Symbol             | Conditions                                                                                   | Rating                        | Unit |
|---------------------------------------|--------------------|----------------------------------------------------------------------------------------------|-------------------------------|------|
| Supply voltage                        | Vdd                |                                                                                              | -0.3 to +7.0                  | V    |
|                                       | AVDD               |                                                                                              | -0.3 to V <sub>DD</sub> + 0.3 | V    |
|                                       | AVss               |                                                                                              | -0.3 to +0.3                  | V    |
| Input voltage                         | VI1                | For pins other than VPP, A9                                                                  | -0.3 to V <sub>DD</sub> + 0.3 | V    |
|                                       | V <sub>I2</sub>    | Vpp, A9                                                                                      | –0.3 to +13.5                 | V    |
| Analog input voltage                  | Van                |                                                                                              | AVss - 0.3 to AVREF1 + 0.3    | V    |
| Output voltage                        | Vo                 |                                                                                              | -0.3 to V <sub>DD</sub> + 0.3 | V    |
| Output low current                    | lo∟                | One pin                                                                                      | 10                            | mA   |
|                                       |                    | Total for the P00-P07, P30-<br>P37, P54-P57, P60-P67, and<br>P100-P107 pins                  | 50                            | mA   |
|                                       |                    | Total for the P10-P17, P40-<br>P47, P50-P53, P70-P77,<br>P90-P97, PWM0, PWM1,<br>and TX pins | 50                            | mA   |
| Output high current                   | Іон                | One pin                                                                                      | -6                            | mA   |
|                                       |                    | Total for the P00-P07, P30-<br>P37, P54-P57, P60-P67, and<br>P100-P107 pins                  | -30                           | mA   |
|                                       |                    | Total for the P10-P17, P40-<br>P47, P50-P53, P70-P77,<br>P90-P97, PWM0, PWM1,<br>and TX pins | -30                           | mA   |
| A/D converter reference input voltage | AV <sub>REF1</sub> |                                                                                              | -0.3 to VDD + 0.3             | V    |
| Operating ambient temperature         | TA                 |                                                                                              | -40 to +85                    | °C   |
| Storage temperature                   | Tstg               |                                                                                              | -65 to +150                   | °C   |

Caution Absolute maximum ratings are rated values beyond which physical damage will be caused to the product; if the rated value of any of the parameters in the above table is exceeded, even momentarily, the quality of the product may deteriorate. Always use the product within its rated values.

**Remark** Unless otherwise stated, the characteristics of a dual-function pin are the same as those of a port pin.

#### **OPERATING CONDITIONS**

- Operating ambient temperature (T<sub>A</sub>): -40 °C to +85 °C
- Power supply voltage and clock cycle time: See Figure 8-1.
- Internal regulator operation selected (REGOFF pin: low level)

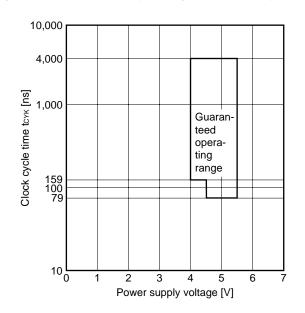



Figure 8-1. Power Supply Voltage and Clock Cycle Time

#### CAPACITANCE (TA = 25 $^{\circ}$ C, V<sub>DD</sub> = V<sub>SS</sub> = 0 V)

| Parameter          | Symbol | Conditions                           | MIN. | TYP. | MAX. | Unit |
|--------------------|--------|--------------------------------------|------|------|------|------|
| Input capacitance  | С      | f = 1 MHz                            |      |      | 15   | pF   |
| Output capacitance | Co     | 0 V on pins other than measured pins |      |      | 15   | pF   |
| I/O capacitance    | Сю     |                                      |      |      | 15   | pF   |

 $\star$ 

\*

#### MAIN OSCILLATOR CHARACTERISTICS (TA = -40 °C to +85 °C, VDD = 4.0 to 5.5 V, Vss = 0 V)

| Parameter            | Symbol | Conditions                   | MIN. | MAX.  | Unit |
|----------------------|--------|------------------------------|------|-------|------|
| Oscillator frequency | fxx    | Ceramic or crystal resonator |      | 12.58 | MHz  |

Caution When using the clock generator, run wires according to the following rules to avoid effects such as stray capacitance:

- Minimize the wiring length.
- Never cause the wires to cross other signal lines.
- Never cause the wires to run near a line carrying a large varying current.
- The grounding point of the capacitor of the oscillator circuit must always be the same potential as Vss1. Never connect the capacitor to a ground pattern carrying a large current.
- Never extract a signal from the oscillator.
- Remark Connect a 12.582912 or 6.291456 MHz oscillator to operate the internal clock timer with the main clock.

#### CLOCK OSCILLATOR CHARACTERISTICS (TA = -40 °C to +85 °C, V<sub>DD</sub> = 4.0 to 5.5 V, V<sub>SS</sub> = 0 V)

| Parameter                     | Symbol | Conditions                     | MIN. | TYP.   | MAX. | Unit |
|-------------------------------|--------|--------------------------------|------|--------|------|------|
| Oscillator frequency          | fхт    | Ceramic or crystal resonator   | 32   | 32.768 | 35   | kHz  |
| Oscillation settling time     | tsxт   | V <sub>DD</sub> = 4.5 to 5.5 V |      | 1.2    | 2    | S    |
|                               |        |                                |      |        | 10   | S    |
| Oscillation hold voltage      | Vddxt  |                                | 4.0  |        | 5.5  | V    |
| Watch timer operating voltage | Vddw   |                                | 4.0  |        | 5.5  | V    |

| Parameter               | Symbol | Conditions                                                                                                 | MIN.                  | TYP. | MAX.                  | Unit |
|-------------------------|--------|------------------------------------------------------------------------------------------------------------|-----------------------|------|-----------------------|------|
| Input low voltageNote 5 | VIL1   | For pins other than those described in <b>Notes 1 and 2</b>                                                | -0.3                  |      | 0.3 Vdd               | V    |
|                         | VIL2   | For pins described in Note 1                                                                               | -0.3                  |      | 0.2 Vdd               | V    |
|                         | VIL3   | V <sub>DD</sub> = 4.5 to 5.5 V<br>For pins described in <b>Note 2</b>                                      | -0.3                  |      | +0.8                  | V    |
| Input high voltage      | VIH1   | For pins other than those described in <b>Notes 1 and 2</b>                                                | 0.7 Vdd               |      | V <sub>DD</sub> + 0.3 | V    |
|                         | VIH2   | For pins described in Note 1                                                                               | 0.8 Vdd               |      | VDD + 0.3             | V    |
|                         | Vінз   | $V_{DD}$ = 4.5 to 5.5 V<br>For pins described in <b>Note 2</b>                                             | 2.2                   |      | V <sub>DD</sub> + 0.3 | V    |
| Output low voltage      | Vol1   | IoL = 20 μA                                                                                                |                       |      | 0.1                   | V    |
|                         |        | IoL = 100 μA                                                                                               |                       |      | 0.2                   | V    |
|                         |        | IoL = 2 mA                                                                                                 |                       |      | 0.4                   | V    |
|                         | Vol2   | $I_{OL} = 8 \text{ mA}$<br>For pins described in <b>Note 4</b><br>$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$ |                       |      | 1.0                   | V    |
| Output high voltage     | Vон1   | Іон = -20 μА                                                                                               | Vdd - 0.1             |      |                       | V    |
|                         |        | Іон = -100 μА                                                                                              | Vdd - 0.2             |      |                       | V    |
|                         |        | Iон = -2 mA                                                                                                | Vdd - 1.0             |      |                       | V    |
|                         | Vон2   | $V_{DD}$ = 4.5 to 5.5 V<br>I <sub>OH</sub> = -5 mA<br>For pins described in <b>Note 3</b>                  | V <sub>DD</sub> - 2.4 |      |                       | V    |

#### DC CHARACTERISTICS (T<sub>A</sub> = -40 °C to +85 °C, V<sub>DD</sub> = AV<sub>DD</sub> = 4.0 to 5.5 V, V<sub>SS</sub> = AV<sub>SS</sub> = 0 V) (1/2)

- Notes 1. X1, X2, RESET, P12/ASCK2/SCK2, P20/NMI, P21/INTP0, P22/INTP1, P23/INTP2/CI, P24/INTP3, P25/INTP4/ASCK/SCK1, P26/INTP5, P27/SI0, P32/SCK0, P33/SO0, P105/SCK3, P106/SI3, P107/SO3, XT1, XT2
  - 2. P40/AD0-P47/AD7, P50/A8-P57/A15, P60/A16-P67/REFRQ/HLDAK, P00-P07
  - **3.** P00-P07
  - 4. P10-P17, P40/AD0-P47/AD7, P50/A8-P57/A15
  - 5. Other than pull-up resistors

 $\star$ 

 $\star$ 

 $\star$ 

| Parameter              | Parameter Symbol Conditions |                                                                                                                                     | MIN.                                                                                                                               | TYP. | MAX. | Unit |    |
|------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------|------|------|----|
| Input leakage current  | ILI1                        | $0 V \le V_1 \le V_{DD}$                                                                                                            | For pins other than X1 and XT1                                                                                                     |      |      | ±10  | μA |
|                        | ILI2                        | -                                                                                                                                   | X1, XT1                                                                                                                            |      |      | ±20  | μΑ |
| Output leakage current | Ilo                         | $0 V \le V_0 \le V_{DD}$                                                                                                            |                                                                                                                                    |      |      | ±10  | μA |
| VDD supply currentNote | IDD1                        | Operation mode                                                                                                                      | fxx = 12.58 MHz<br>V <sub>DD</sub> = 4.5 to 5.5 V                                                                                  |      | 20   | 40   | mA |
|                        |                             |                                                                                                                                     | fxx = 6.29 MHz<br>V <sub>DD</sub> = 4.0 to 5.5 V                                                                                   |      | 10   | 20   | mA |
|                        | IDD2 HALT mode              | fxx = 12.58  MHz<br>$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$<br>$f_{CLK} = fxx/8$<br>(STBC = B1H)<br>Peripheral operation<br>stops. |                                                                                                                                    | 5.2  | 10.4 | mA   |    |
|                        |                             |                                                                                                                                     | fxx = 6.29  MHz<br>$V_{DD} = 4.0 \text{ to } 5.5 \text{ V}$<br>$f_{CLK} = fxx/8$<br>(STBC = 31H)<br>Peripheral operation<br>stops. |      | 2.6  | 5.2  | mA |
|                        | Іддз                        | IDLE mode                                                                                                                           | fxx = 12.58 MHz<br>V <sub>DD</sub> = 4.5 to 5.5 V                                                                                  |      | 2.4  | 4.8  | mA |
|                        |                             |                                                                                                                                     | fxx = 6.29 MHz<br>V <sub>DD</sub> = 4.0 to 5.5 V                                                                                   |      | 1.8  | 3.6  | mA |
| Pull-up resistor       | R∟                          | $V_{I} = 0 V$                                                                                                                       |                                                                                                                                    | 15   |      | 80   | kΩ |

| DC CHARACTERISTICS | 6 (TA = -40 °C to +85 °C, Vdd = AVdd = 4.0 to 5.5 V, Vss = AVss = 0 V) (2/2 | 2) |
|--------------------|-----------------------------------------------------------------------------|----|
|--------------------|-----------------------------------------------------------------------------|----|

**Note** These values are valid when the internal regulator is ON (REGOFF pin = low level). They do not include the AV<sub>DD</sub> and AV<sub>REF1</sub> currents.

#### AC CHARACTERISTICS (TA = $-40^{\circ}$ C to $+85^{\circ}$ C, VDD = AVDD = 4.0 to 5.5 V, AVss = Vss = 0 V)

#### (1) Read/write operation

| Parameter                                                    | Symbol         | Conditions              |                     | MIN. | MAX. | Unit |
|--------------------------------------------------------------|----------------|-------------------------|---------------------|------|------|------|
| Address setup time<br>(to ASTB↓)                             | <b>t</b> sast  | VDD = 5.0 V             | (0.5 + a)T – 11     | 29   |      | ns   |
| ASTB high-level width                                        | twsтн          | VDD = 5.0 V             | (0.5 + a)T – 17     | 23   |      | ns   |
| Address hold time (to ASTB $\downarrow$ )                    | <b>t</b> HSTLA | VDD = 5.0 V             | 0.5T – 19           | 21   |      | ns   |
| Address hold time (to RD↑)                                   | thra           | VDD = 5.0 V             | 0.5T – 14           | 26   |      | ns   |
| Delay from address to $\overline{RD} \downarrow$             | tdar           | VDD = 5.0 V             | (1 + a)T – 5        | 74   |      | ns   |
| Address float time (to $\overline{RD}\downarrow$ )           | <b>t</b> fra   |                         |                     | 0    |      | ns   |
| Delay from address to data input                             | <b>t</b> DAID  | V <sub>DD</sub> = 5.0 V | (2.5 + a + n)T – 37 |      | 400  | ns   |
| Delay from ASTB $\downarrow$ to data input                   | tostid         | VDD = 5.0 V             | (2 + n)T – 35       |      | 283  | ns   |
| Delay from $\overline{RD}\downarrow$ to data input           | tdrid          | VDD = 5.0 V             | (1.5 + n)T – 40     |      | 238  | ns   |
| Delay from ASTB $\downarrow$ to $\overline{RD}\downarrow$    | <b>t</b> dstr  | VDD = 5.0 V             | 0.5T – 9            | 31   |      | ns   |
| Data hold time (to RD↑)                                      | thrid          |                         |                     | 0    |      | ns   |
| Delay from $\overline{RD}^\uparrow$ to address active        | <b>t</b> dra   | VDD = 5.0 V             | 0.5T – 2            | 38   |      | ns   |
| Delay from RD↑ to ASTB↑                                      | <b>t</b> drst  | VDD = 5.0 V             | 0.5T – 9            | 31   |      | ns   |
| RD low-level width                                           | twrl           | VDD = 5.0 V             | (1.5 + n)T – 25     | 94   |      | ns   |
| Delay from address $\downarrow$ to $\overline{WR}\downarrow$ | tdaw           | VDD = 5.0 V             | (1 + a)T – 5        | 74   |      | ns   |
| Address hold time (to WR↑)                                   | tнwa           | VDD = 5.0 V             | 0.5T – 14           | 26   |      | ns   |
| Delay from ASTB↓ to data<br>output                           | tdstod         | VDD = 5.0 V             | 0.5T + 15           |      | 55   | ns   |
| Delay from $\overline{WR} \downarrow$ to data output         | towod          |                         |                     |      | 15   | ns   |
| Delay from ASTB $\downarrow$ to $\overline{WR}\downarrow$    | <b>t</b> DSTW  | VDD = 5.0 V             | 0.5T – 9            | 31   |      | ns   |
| Data setup time (to $\overline{WR}$ )                        | tsodwr         | VDD = 5.0 V             | (1.5 + n)T – 20     | 99   |      | ns   |
| Data hold time (to $\overline{WR}$ )                         | tнwod          | VDD = 5.0 V             | 0.5T – 14           | 26   |      | ns   |
| Delay from WR↑ to ASTB↑                                      | <b>t</b> DWST  | VDD = 5.0 V             | 0.5T – 9            | 31   |      | ns   |
| WR low-level width                                           | tww∟           | Vdd = 5.0 V             | (1.5 + n)T – 25     | 94   |      | ns   |

Remark T: tcyk (system clock cycle time) VDD = 5.0 V T = 79 ns (MIN.)

- a: 1 during address wait, otherwise, 0
- n: Number of wait states (n  $\ge$  0)

#### (2) External wait timing

| Parameter                                                                 | Symbol          |                  | Conditions      | MIN. | MAX. | Unit |
|---------------------------------------------------------------------------|-----------------|------------------|-----------------|------|------|------|
| Delay from address to $\overline{\text{WAIT}} \downarrow$ input           | <b>t</b> dawt   | $V_{DD} = 5.0 V$ | (2 + a)T – 40   |      | 198  | ns   |
| Delay from ASTB↓ to WAIT↓<br>input                                        | <b>t</b> DSTWT  | VDD = 5.0 V      | 1.5T – 40       |      | 79   | ns   |
| Hold time from ASTB $\downarrow$ to WAIT                                  | tнsтwт          | Vdd = 5.0 V      | (0.5 + n)T + 5  | 124  |      | ns   |
| Delay from ASTB↓ to WAIT↑                                                 | <b>t</b> DSTWTH | Vdd = 5.0 V      | (1.5 + n)T – 40 |      | 238  | ns   |
| Delay from $\overline{RD}\downarrow$ to $\overline{WAIT}\downarrow$ input | <b>t</b> drwtl  | $V_{DD} = 5.0 V$ | T – 40          |      | 39   | ns   |
| Hold time from $\overline{RD}\downarrow$ to $\overline{WAIT}$             | <b>t</b> HRWT   | Vdd = 5.0 V      | nT + 5          | 84   |      | ns   |
| Delay from $\overline{RD}\downarrow$ to $\overline{WAIT}\uparrow$         | <b>t</b> drwth  | VDD = 5.0 V      | (1 + n)T – 40   |      | 198  | ns   |
| Delay from WAIT↑ to data input                                            | towtid          | $V_{DD} = 5.0 V$ | 0.5T – 5        |      | 35   | ns   |
| Delay from WAIT↑ to RD↑                                                   | <b>t</b> dwtr   | Vdd = 5.0 V      | 0.5T            | 40   |      | ns   |
| Delay from WAIT↑ to WR↑                                                   | <b>t</b> DWTW   | Vdd = 5.0 V      | 0.5T            | 40   |      | ns   |
| Delay from WR↓ to WAIT↓<br>input                                          | <b>t</b> dwwtl  | VDD = 5.0 V      | T – 40          |      | 39   | ns   |
| Hold time from $\overline{WR}\downarrow$ to $\overline{WAIT}$             | tнwwт           | VDD = 5.0 V      | nT + 5          | 84   |      | ns   |
| Delay from $\overline{WR} \downarrow$ to $\overline{WAIT} \uparrow$       | towwтн          | VDD = 5.0 V      | (1 + n)T – 40   |      | 198  | ns   |

Remark T: tcyk (system clock cycle time) VDD = 5.0 V T = 79 ns (MIN.)

- a: 1 during address wait, otherwise, 0
- n: Number of wait states (n  $\ge$  0)

#### (3) Bus hold timing

| Parameter                                           | Symbol         | Conditions  |                       | MIN. | MAX. | Unit |
|-----------------------------------------------------|----------------|-------------|-----------------------|------|------|------|
| Delay from HLDRQ↑ to float                          | tғнас          | VDD = 5.0 V | (2 + 4 + a + n)T + 50 |      | 765  | ns   |
| Delay from HLDRQ↑ to HLDAK↑                         | tdhqhhah       | VDD = 5.0 V | (3 + 4 + a + n)T + 30 |      | 825  | ns   |
| Delay from float to HLDAK↑                          | <b>t</b> DCFHA | VDD = 5.0 V | T + 30                |      | 109  | ns   |
| Delay from HLDRQ $\downarrow$ to HLDAK $\downarrow$ |                | VDD = 5.0 V | 2T + 40               |      | 199  | ns   |
| Delay from HLDRQ↓ to active                         | <b>t</b> DHAC  | VDD = 5.0 V | T – 20                | 59   |      | ns   |

Remark T: tcyk (system clock cycle time) VDD = 5.0 V T = 79 ns (MIN.)

- a: 1 during address wait, otherwise, 0
- n: Number of wait states (n  $\ge$  0)

#### (4) Refresh timing

| Parameter                    | Symbol          | Conditions  |           | MIN. | MAX. | Unit |
|------------------------------|-----------------|-------------|-----------|------|------|------|
| Random read/write cycle time | trc             | VDD = 5.0 V | ЗТ        | 238  |      | ns   |
| REFRQ low-level pulse width  | <b>t</b> WRFQL  | VDD = 5.0 V | 1.5T – 25 | 94   |      | ns   |
| Delay from ASTB↓ to REFRQ    | <b>t</b> DSTRFQ | VDD = 5.0 V | 0.5T – 9  | 31   |      | ns   |
| Delay from RD↑ to REFRQ      | <b>t</b> DRRFQ  | VDD = 5.0 V | 1.5T – 9  | 110  |      | ns   |
| Delay from WR↑ to REFRQ      | <b>t</b> DWRFQ  | VDD = 5.0 V | 1.5T – 9  | 110  |      | ns   |
| Delay from REFRQ↑ to ASTB    | <b>t</b> DRFQST | VDD = 5.0 V | 0.5T – 9  | 31   |      | ns   |
| REFRQ high-level pulse width | <b>t</b> wrfqh  | VDD = 5.0 V | 1.5T – 25 | 94   |      | ns   |

Remark T: tcyk (system clock cycle time) VDD = 5.0 V T = 79 ns (MIN.)

#### SERIAL OPERATION (TA = -40 °C to +85 °C, VDD = 4.0 to 5.5 V, AVss = Vss = 0 V)

#### (1) CSI, CSI3

| Parameter                                                 | Symbol  | Conditions               |                              |                | MIN.           | MAX.         | Unit |
|-----------------------------------------------------------|---------|--------------------------|------------------------------|----------------|----------------|--------------|------|
| Serial clock cycle time<br>(SCK0, SCK3)                   | tcysko  | Input fclк = fxx         |                              |                | 8/fxx          |              | ns   |
|                                                           |         |                          | Other than fclk =            | = fxx          | 4/fclк         |              | ns   |
|                                                           |         | Output                   | Other than fclk =            | = fxx/8        | 8/fxx          |              | ns   |
|                                                           |         |                          | fclк = fxx/8                 |                | 16/fxx         |              | ns   |
| Serial clock low-level width                              | twskl0  | Input                    | fclк = fxx                   |                | 4/fxx - 40     |              | ns   |
| (SCK0, SCK3)                                              |         |                          | Other than fclk =            | = fxx          | 2/fclк – 40    |              |      |
|                                                           |         | Output                   | Other than fclk =            | = fxx/8        | 4/fxx - 40     |              | μs   |
|                                                           |         |                          | fclk = fxx/8                 |                | 8/fxx - 40     |              |      |
| Serial clock high-level width                             | twsкнo  | Input                    | fclk = fxx                   |                | 4/fxx - 40     |              | ns   |
| (SCK0, SCK3)                                              |         |                          | Other than fclk = fxx        |                | 2/fclк – 40    |              |      |
|                                                           |         | Output                   | tput Other than fclk = fxx/8 |                | 4/fxx - 40     |              | μs   |
|                                                           |         |                          | fclk = fxx/8                 |                | 8/fxx - 40     |              |      |
| Setup time for SI0, SI3<br>(to SCK0, SCK3↑)               | tsssko  |                          |                              |                | 80             |              | ns   |
| Hold time for SI0, SI3                                    | tHSSK0  | External                 | clock                        |                | 1/fськ + 80    |              | ns   |
| (to SCK0, SCK3↑)                                          |         | Internal                 | rnal clock                   |                | 80             |              |      |
| Output delay time for SO0,                                | tDSBSK1 | CMOS push-pull output    |                              | External clock | 0              | 1/fськ + 150 | ns   |
| SO3 (to $\overline{SCK0}$ , $\overline{SCK3}\downarrow$ ) |         |                          |                              | Internal clock | 0              | 150          | ns   |
|                                                           |         | Open-drain output        |                              | External clock | 0              | 1/fськ + 400 | ns   |
|                                                           |         | R∟ = 1 k                 | Ω                            | Internal clock | 0              | 400          | ns   |
| Output hold time for SO0,<br>SO3 (to SCK0, SCK3↑)         | tнsвsк  | When data is transferred |                              | 1              | 0.5tсүѕко – 40 |              | ns   |

**Remarks 1.** The values in this table are those when  $f_{XX} = 12.58$  MHz, CL is 100 pF.

- **2.** fclk: System clock frequency (selectable from fxx, fxx/2, fxx/4, and fxx/8 by the standby control register (STBC))
- 3. fxx : Oscillation frequency (fxx = 12.58 MHz or fxx = 6.29 MHz)

#### (2) IOE1, IOE2 (TA = -40 °C to +85 °C, VDD = AVDD = 4.0 to 5.5 V, AVss = Vss = 0 V)

| Parameter                                                                            | Symbol |         | Conditions                     | MIN.           | MAX. | Unit |
|--------------------------------------------------------------------------------------|--------|---------|--------------------------------|----------------|------|------|
| Serial clock cycle time                                                              | tcysk1 | Input   | V <sub>DD</sub> = 4.5 to 5.5 V | 640            |      | ns   |
| (SCK1, SCK2)                                                                         |        |         |                                | 1,280          |      | ns   |
|                                                                                      |        | Output  | Internal, divided by 8         | Т              |      | ns   |
| Serial clock low-level width                                                         | twskl1 | Input   | VDD = 4.5 to 5.5 V             | 280            |      | ns   |
| (SCK1, SCK2)                                                                         |        |         |                                | 600            |      | ns   |
|                                                                                      |        | Output  | Internal, divided by 8         | 0.5T – 40      |      | ns   |
| Serial clock high-level width<br>(SCK1, SCK2)                                        | twsкн1 | Input   | V <sub>DD</sub> = 4.5 to 5.5 V | 280            |      | ns   |
|                                                                                      |        |         |                                | 600            |      | ns   |
|                                                                                      |        | Output  | Internal, divided by 8         | 0.5T – 40      |      | ns   |
| Setup time for SI1 and SI2<br>(to SCK1, SCK2↑)                                       | tsssk1 |         |                                | 40             |      | ns   |
| Hold time for SI1 and SI2<br>(to SCK1, SCK2↑)                                        | thssk1 |         |                                | 40             |      | ns   |
| Output delay time for SO1 and SO2 (to $\overline{SCK1}, \overline{SCK2}\downarrow$ ) | tdsosk |         |                                | 0              | 50   | ns   |
| Output hold time for SO1 and SO2 (to SCK1, SCK2↑)                                    | tнsosк | When da | ata is transferred             | 0.5tсүзкı – 40 |      | ns   |

**Remarks 1.** The values in this table are those when  $C_{L}$  is 100 pF.

2. T: Serial clock cycle set by software. The minimum value is 8/fxx.

# (3) UART, UART2 (TA = -40 °C to +85 °C, VDD = AVDD = 4.0 to 5.5 V, AVss = Vss = 0 V)

| Parameter                   | Symbol         | Conditions                     | MIN. | MAX. | Unit |
|-----------------------------|----------------|--------------------------------|------|------|------|
| ASCK clock input cycle time | <b>t</b> CYASK | V <sub>DD</sub> = 4.5 to 5.5 V | 160  |      | ns   |
|                             |                |                                | 320  |      | ns   |
| ASCK clock low-level width  | tWASKL         | V <sub>DD</sub> = 4.5 to 5.5 V | 65   |      | ns   |
|                             |                |                                | 120  |      | ns   |
| ASCK clock high-level width | <b>t</b> waskh | V <sub>DD</sub> = 4.5 to 5.5 V | 65   |      | ns   |
|                             |                |                                | 120  |      | ns   |

#### CLOCK OUTPUT OPERATION (TA = $-40^{\circ}$ C to $+85^{\circ}$ C, VDD = AVDD = 4.0 to 5.5 V, AVss = Vss = 0 V)

| Parameter               | Symbol       | Conditions                                                | MIN. | MAX.   | Unit |
|-------------------------|--------------|-----------------------------------------------------------|------|--------|------|
| CLKOUT cycle time       | tcyc∟        | nT                                                        | 79   | 32,000 | ns   |
| CLKOUT low-level width  | tcll         | V <sub>DD</sub> = 4.5 to 5.5 V, 0.5T - 10                 | 30   |        | ns   |
|                         |              | 0.5T – 20                                                 | 20   |        | ns   |
| CLKOUT high-level width | tсьн         | V <sub>DD</sub> = 4.5 to 5.5 V, 0.5T - 10                 | 30   |        | ns   |
|                         |              | 0.5T – 20                                                 | 20   |        | ns   |
| CLKOUT rise time        | <b>t</b> CLR | $4.5 \text{ V} \leq \text{V}_{\text{DD}} < 5.5 \text{ V}$ |      | 10     | ns   |
|                         |              | $4.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$ |      | 20     | ns   |
| CLKOUT fall time        | tclf         | $4.5 \text{ V} \leq \text{V}_{\text{DD}} < 5.5 \text{ V}$ |      | 10     | ns   |
|                         |              | $4.0 \text{ V} \le \text{V}_{\text{DD}} < 4.5 \text{ V}$  |      | 20     | ns   |

\*

★

**Remark** n: Dividing ratio set by software in the CPU (n = 1, 2, 4, 8, and 16)

T: tcyk (system clock cycle time)

#### OTHER OPERATIONS (TA = -40 °C to +85 °C, VDD = AVDD = 4.0 to 5.5 V, AVss = Vss = 0 V)

| Parameter                                   | Symbol         | Conditions | MIN.     | MAX. | Unit |
|---------------------------------------------|----------------|------------|----------|------|------|
| NMI low-level width                         | twnil          |            | 10       |      | μs   |
| NMI high-level width                        | twniн          |            | 10       |      | μs   |
| INTP0 low-level width                       | <b>t</b> WITOL |            | 4 toysmp |      | ns   |
| INTP0 high-level width                      | twiтон         |            | 4 tcysmp |      | ns   |
| Low-level width for INTP1-<br>INTP3 and CI  | twi⊤1∟         |            | 4 tcycpu |      | ns   |
| High-level width for INTP1-<br>INTP3 and CI | twit1H         |            | 4 tcycpu |      | ns   |
| Low-level width for INTP4 and INTP5         | twit2L         |            | 10       |      | μs   |
| High-level width for INTP4 and INTP5        | twiт2н         |            | 10       |      | μs   |
| RESET low-level widthNote                   | twrsl          |            | 10       |      | μs   |
| RESET high-level width                      | twrsh          |            | 10       |      | μs   |

Note Use the RESET low-level width to ensure the lapse of the oscillation settling time when the power is applied.

**Remark** tcysmp: Sampling clock set by software

tCYCPU: CPU operation clock set by software in the CPU

| Parameter              | Symbol        |               | Conditions         | MIN. | TYP.  | MAX. | Unit |
|------------------------|---------------|---------------|--------------------|------|-------|------|------|
| Resolution             |               |               |                    | 8    |       |      | bit  |
| Total errorNote        |               | IEAD = 00H    | FR = 0             |      |       | 0.6  | %    |
|                        |               |               | FR = 1             |      |       | 1.5  | %    |
|                        |               | IEAD = 01H    | VDD = 4.5 to 5.5 V |      | 1     | 2.2  | %    |
| Quantization error     |               |               |                    |      |       | ±1/2 | LSB  |
| Conversion time        | tconv         | FR = 1 120/fc | FR = 1 120/fclk    |      |       | 480  | μs   |
|                        |               | FR = 0 240/fc | LK                 | 19.1 |       | 960  | μs   |
| Sampling time          | <b>t</b> SAMP | FR = 1 18/fcL | <                  | 1.4  |       | 72   | μs   |
|                        |               | FR = 0 36/fcL | <                  | 2.9  |       | 144  | μs   |
| Analog input impedance | Ran           |               |                    |      | 1,000 |      | MΩ   |
| AVREF1 impedance       | RREF1         |               |                    |      | 10    |      | kΩ   |
| AVDD power supply      | Aldd1         | CS = 1        | CS = 1             |      | 2.0   | 5.0  | mA   |
| voltage                | Aldd2         | CS = 0, STOP  | mode               |      | 1.0   | 20   | μA   |

#### A/D CONVERTER CHARACTERISTICS (TA = -40 °C to +85 °C, VDD = AVDD = AVREF1 = 4.0 to 5.5 V, AVss = Vss = 0 V)

Note Quantization error is not included. This parameter is indicated as the ratio to the full-scale value.

## Caution To execute the conversion by the A/D converter set port 7, multiplexed with the A/D input lines, to output mode to prevent data from being inverted.

**Remark** fcLk: System clock frequency (selectable from fxx, fxx/2, fxx/4, and fxx/8 by the standby control register (STBC))

#### IEBus CONTROLLER CHARACTERISTICS (TA = -40°C to +85°C, VDD = AVDD = AVREF1 = 4.5 to 5.5 V, AVss = Vss = 0 V)

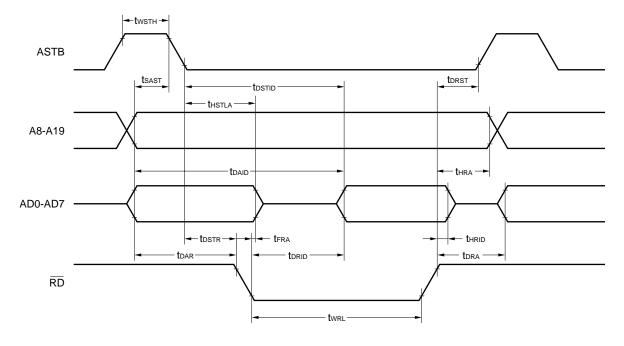
| Parameter                                                                      | Symbol        | Conditions                  | MIN. | TYP. | MAX. | Unit |
|--------------------------------------------------------------------------------|---------------|-----------------------------|------|------|------|------|
| IEBus standard<br>frequency <b>Note</b> 1                                      | fs            | Transfer speed: mode 1      | 6.20 | 6.29 | 6.39 | MHz  |
| Driver delay time (delay from $\overline{TX}$ output to bus line)Note 2        | tdtx          | $C_L = 50 \text{ pFNote 3}$ |      |      | 1.5  | μs   |
| Receiver delay time<br>(delay from bus line to<br>RX output) <sup>Note 2</sup> | <b>t</b> drx  |                             |      |      | 0.7  | μs   |
| Transmission delay on<br>bus <b>Note 2</b>                                     | <b>t</b> DBUS |                             |      |      | 0.85 | μs   |

- **Notes 1.** The value conforms to the IEBus standard. The IEBus controller is operable within the range of the oscillator frequency of oscillator characteristics.
  - **2.** The value is measured when IEBus system clock: fx = 6.29 MHz.
  - **3.** CL is the load capacitance of  $\overline{\mathsf{TX}}$  output line.

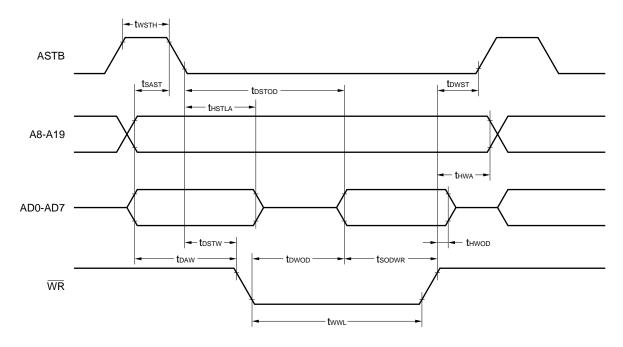
 $\star$ 

| Parameter                                           | Symbol        |                     | Conditions                                                                    | MIN.      | TYP. | MAX.      | Unit |
|-----------------------------------------------------|---------------|---------------------|-------------------------------------------------------------------------------|-----------|------|-----------|------|
| Data retention voltage                              | Vdddr         | STOP mode           |                                                                               | 2.5       |      | 5.5       | V    |
| Data retention current                              | Idddr         | STOP mode           | VDDDR = 2.5 V, AVREF = $0 \text{ VNote 1}$                                    |           | 2    | 10        | μΑ   |
|                                                     |               |                     | $V_{DDDR} = 4.0 \text{ to } 5.5 \text{ V},$<br>AV <sub>REF1</sub> = 0 VNote 1 |           | 10   | 50        | μA   |
| Vpd rise time                                       | trvd          |                     |                                                                               | 200       |      |           | μs   |
| VDD fall time                                       | <b>t</b> fvd  |                     |                                                                               | 200       |      |           | μs   |
| V <sub>DD</sub> hold time<br>(to STOP mode setting) | tнvd          |                     |                                                                               |           |      |           | ms   |
| STOP clear signal input time                        | <b>t</b> DREL |                     |                                                                               | 0         |      |           | ms   |
| Oscillation settling time                           | <b>t</b> WAIT | Crystal resor       | Crystal resonator                                                             |           |      |           | ms   |
|                                                     |               | Ceramic resonator   |                                                                               | 5         |      | 0.1 Vdddr | ms   |
| Input low voltage                                   | VIL           | Specific pinsNote 2 |                                                                               | 0         |      | Vdddr     | V    |
| Input high voltage                                  | Vih           |                     |                                                                               | 0.9 VDDDR |      |           | V    |

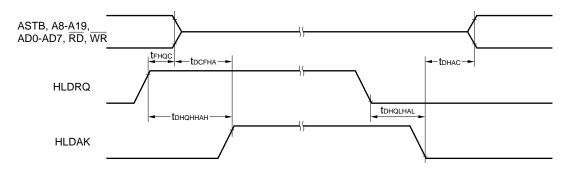
#### DATA RETENTION CHARACTERISTICS (T<sub>A</sub> = -40 °C to +85 °C)


Notes 1. Valid when input voltages to the pins described in Note 2 satisfy VIL or VIH in the above table.
2. RESET, P12/ASCK2/SCK2, P20/NMI, P21/INTP0, P22/INTP1, P23/INTP2/CI, P24/INTP3, P25/INTP4/ASCK/SCK1, P26/INTP5, P27/SI0, P32/SCK0, P33/SO0, P105/SCK3, P106/SI3, and P107/SO3 pins

#### AC TIMING TEST POINTS

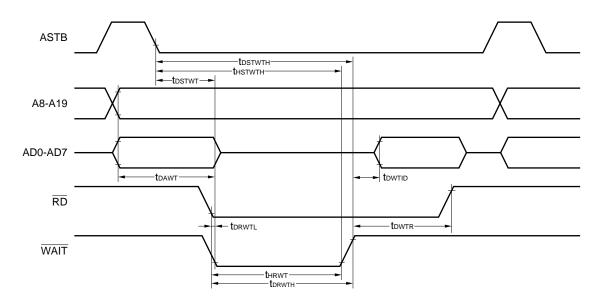



#### TIMING WAVEFORM

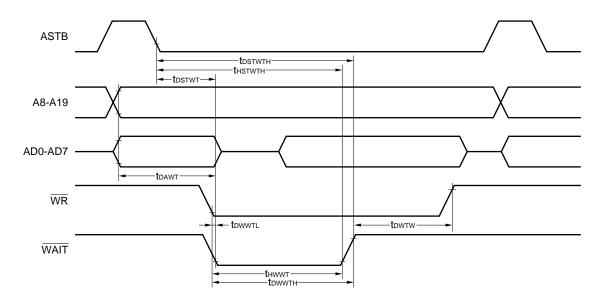

## (1) Read operation



## (2) Write operation

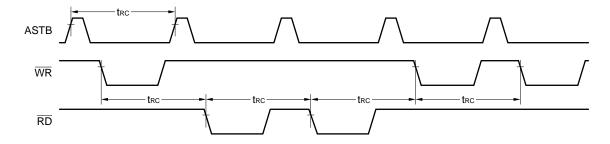



#### HOLD TIMING

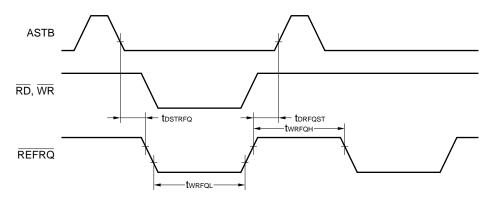



#### EXTERNAL WAIT SIGNAL INPUT TIMING

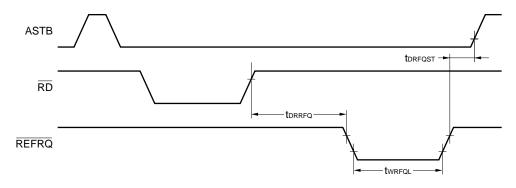
#### (1) Read operation



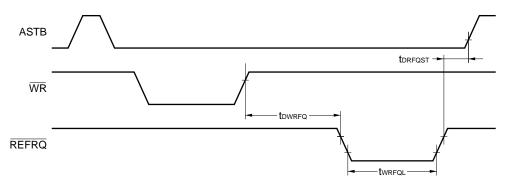

(2) Write operation



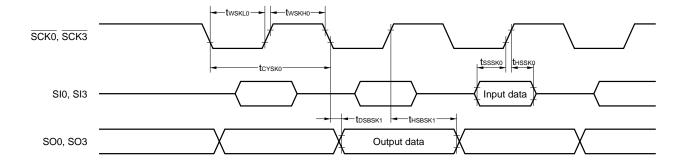

#### **REFRESH TIMING WAVEFORM**


#### (1) Random read/write cycle

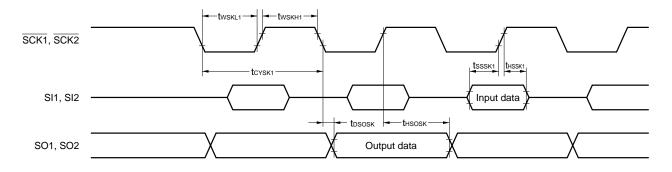



#### (2) When refresh memory is accessed for a read and write at the same time

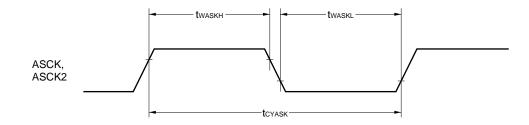



#### (3) Refresh after a read

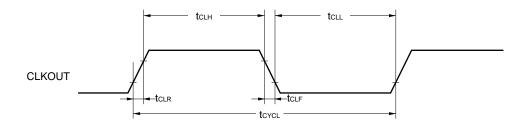



#### (4) Refresh after a write

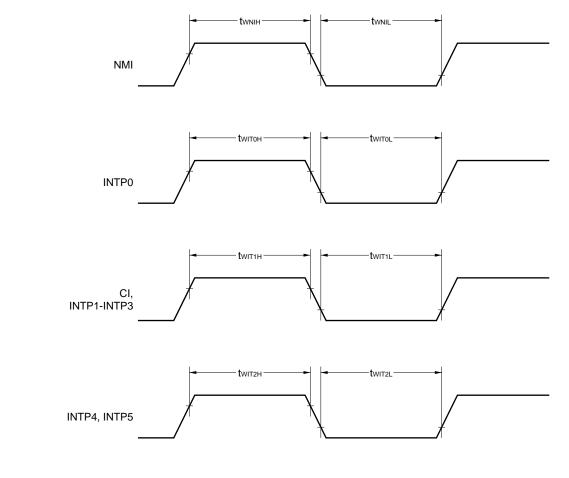



#### SERIAL OPERATION (CSI, CSI3)

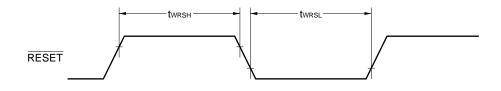



#### SERIAL OPERATION (IOE1, IOE2)

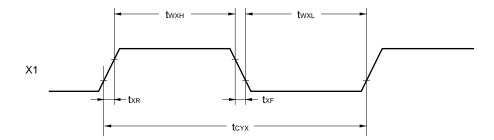


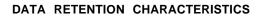

SERIAL OPERATION (UART, UART2)

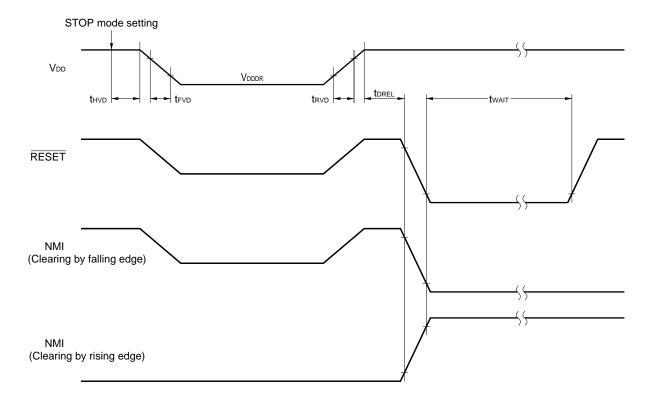



#### CLOCK OUTPUT TIMING




#### INTERRUPT REQUEST INPUT TIMING





#### **RESET INPUT TIMING**



### EXTERNAL CLOCK TIMING







## DC PROGRAMMING CHARACTERISTICS (T<sub>A</sub> = $25^{\circ}C \pm 5^{\circ}C$ , Vss = 0 V)

| Parameter                    | Symbol | SymbolNote 1 | Conditions                                        | MIN. | TYP.    | MAX.       | Unit |
|------------------------------|--------|--------------|---------------------------------------------------|------|---------|------------|------|
| High-level input<br>voltage  | Vін    | Vін          |                                                   | 2.2  |         | VDDP + 0.3 | V    |
| Low-level input voltage      | VIL    | Vil          |                                                   | -0.3 |         | +0.8       | V    |
| Input leakage current        | LIP    | lu           | $0 \le V_I \le V_{DDP}$ Note 2                    |      |         | ±10        | μA   |
| High-level output<br>voltage | Vон    | Vон          | Іон = -400 μА                                     | 2.4  |         |            | V    |
| Low-level output voltage     | Vol    | Vol          | lo <sub>L</sub> = 2.1 mA                          |      |         | 0.45       | V    |
| Output leakage current       | Ilo    | _            | $0 \le V_0 \le V_{DDP}, \ \overline{OE} = V_{IH}$ |      |         | ±10        | μA   |
| VDDP supply voltage          | Vddp   | Vcc          | Program memory write mode                         | 6.25 | 6.5     | 6.75       | V    |
|                              |        |              | Program memory read mode                          | 4.5  | 5.0     | 5.5        | V    |
| VPP supply voltage           | Vpp    | Vpp          | Program memory write mode                         | 12.2 | 12.5    | 12.8       | V    |
|                              |        |              | Program memory read mode                          |      | Vpp = V | DDP        | V    |
| VDDP supply current          | ldd    | lod          | Program memory write mode                         |      | 10      | 40         | mA   |
|                              |        |              | Program memory read mode                          |      | 10      | 40         | mA   |
| VPP supply current           | IPP    | <b>I</b> PP  | Program memory write mode                         |      | 5       | 50         | mA   |
|                              |        |              | Program memory read mode                          |      | 1.0     | 100        | μA   |

**Notes 1.** Symbols for the corresponding  $\mu$ PD27C1001A

2. The VDDP represents the VDD pin as viewed in the programming mode.

#### AC PROGRAMMING CHARACTERISTICS (TA = $25^{\circ}C \pm 5^{\circ}C$ , Vss = 0 V)

#### PROM Write Mode (Page Program Mode)

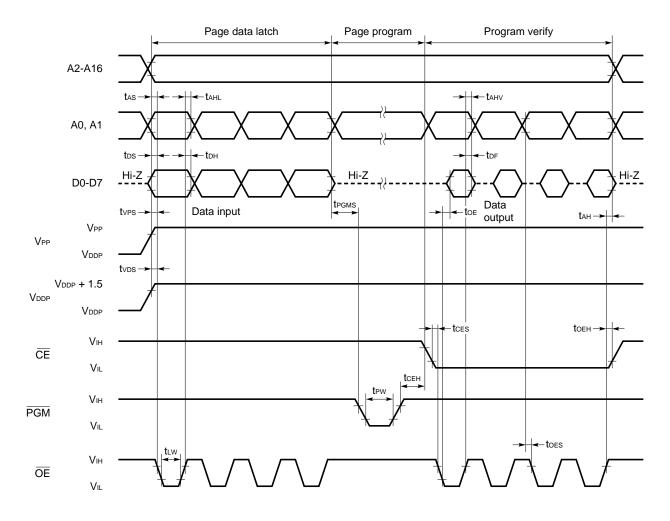
| Parameter                                  | Symbol <sup>Note 1</sup> | Conditions | MIN.  | TYP. | MAX.  | Unit |
|--------------------------------------------|--------------------------|------------|-------|------|-------|------|
| Address setup time                         | tas                      |            | 2     |      |       | μs   |
| CE set time                                | tces                     |            | 2     |      |       | μs   |
| Input data setup time                      | tos                      |            | 2     |      |       | μs   |
| Address hold time                          | tан                      |            | 2     |      |       | μs   |
|                                            | tahl                     |            | 2     |      |       | μs   |
|                                            | tанv                     |            | 0     |      |       | μs   |
| Input data hold time                       | tон                      |            | 2     |      |       | μs   |
| Output data hold time                      | tdF                      |            | 0     |      | 130   | ns   |
| VPP setup time                             | tvps                     |            | 2     |      |       | μs   |
| VDDP setup time                            | t <sub>VDS</sub> Note 2  |            | 2     |      |       | μs   |
| Initial program pulse width                | tew                      |            | 0.095 | 0.1  | 0.105 | ms   |
| OE set time                                | toes                     |            | 2     |      |       | μs   |
| Valid data delay time from $\overline{OE}$ | toe                      |            |       | 1    | 2     | ns   |
| OE pulse width in the data latch           | t∟w                      |            | 1     |      |       | μs   |
| PGM setup time                             | tрдмs                    |            | 2     |      |       | μs   |
| CE hold time                               | tсен                     |            | 2     |      |       | μs   |
| OE hold time                               | tоен                     |            | 2     |      |       | μs   |

**Notes 1.** These symbols (except tvbs) correspond to those of the corresponding  $\mu$ PD27C1001A.

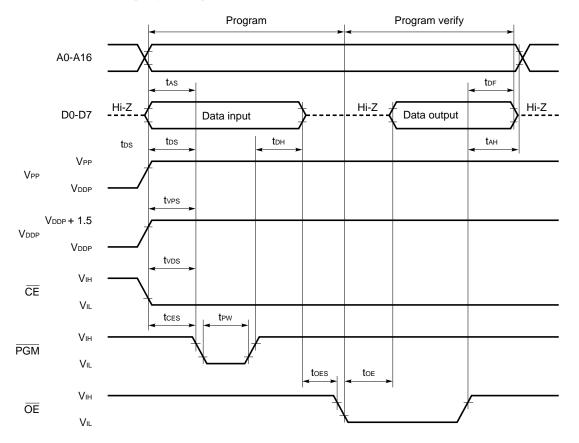
**2.** For  $\mu$ PD27C1001A, read tvbs as tvcs.

#### PROM Write Mode (Byte Program Mode)

| Parameter                                  | Symbol <sup>Note 1</sup> | Conditions | MIN.  | TYP. | MAX.  | Unit |
|--------------------------------------------|--------------------------|------------|-------|------|-------|------|
| Address setup time                         | tas                      |            | 2     |      |       | μs   |
| CE set time                                | tces                     |            | 2     |      |       | μs   |
| Input data setup time                      | tos                      |            | 2     |      |       | μs   |
| Address hold time                          | tан                      |            | 2     |      |       | μs   |
| Input data hold time                       | tон                      |            | 2     |      |       | μs   |
| Output data hold time                      | tDF                      |            | 0     |      | 130   | ns   |
| VPP setup time                             | tvps                     |            | 2     |      |       | μs   |
| VDDP setup time                            | <sub>tvDS</sub> Note 2   |            | 2     |      |       | μs   |
| Initial program pulse width                | tew                      |            | 0.095 | 0.1  | 0.105 | ms   |
| OE set time                                | toes                     |            | 2     |      |       | μs   |
| Valid data delay time from $\overline{OE}$ | toe                      |            |       | 1    | 2     | ns   |


Notes 1. These symbols (except tvDs) correspond to those of the corresponding μPD27C1001A.
2. For μPD27C1001A, read tvDs as tvCs.

#### **PROM Read Mode**

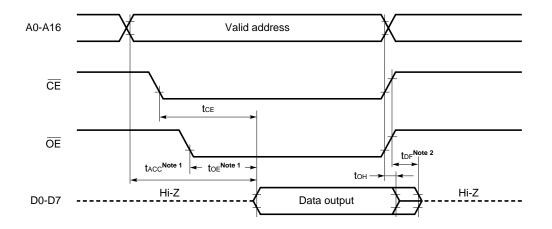

| Parameter                                                                   | SymbolNote 1 | Conditions                               | MIN. | TYP. | MAX. | Unit |
|-----------------------------------------------------------------------------|--------------|------------------------------------------|------|------|------|------|
| Data output time from address                                               | tacc         | $\overline{CE} = \overline{OE} = V_{IL}$ |      |      | 200  | ns   |
| Delay from $\overline{CE} \downarrow$ to data output                        | tce          | OE = VIL                                 |      | 1    | 2    | μs   |
| Delay from $\overline{OE} \downarrow$ to data output                        | toe          | CE = VIL                                 |      | 1    | 2    | μs   |
| Data hold time to $\overline{OE}\uparrow$ or $\overline{CE}\uparrow$ Note 2 | tdf          | CE = VIL or OE = VIL                     | 0    |      | 60   | ns   |
| Data hold time to address                                                   | tон          | $\overline{CE} = \overline{OE} = V_{IL}$ | 0    |      |      | ns   |

**Notes 1.** These symbols correspond to those of the corresponding  $\mu$ PD27C1001A.

**2.** top is the time measured from when either  $\overline{OE}$  or  $\overline{CE}$  reaches VIH, whichever is faster.



#### PROM Write Mode Timing (Page Program Mode)

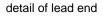


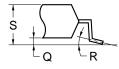

PROM Write Mode Timing (Byte Program Mode)

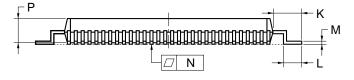
Cautions 1. VDDP must be applied before VPP, and must be cut after VPP.

- 2. VPP including overshoot must not exceed 13.5 V.
- 3. Plugging in or out the board with the VPP pin supplied with 12.5 V may adversely affect its reliability.

#### **PROM Read Mode Timing**





**Notes 1.** For reading within tacc, the delay of the  $\overline{OE}$  input from falling edge of  $\overline{CE}$  must be within tacc-toe. **2.** tor is the time measured from when either  $\overline{OE}$  or  $\overline{CE}$  reaches VIH, whichever is faster.


#### 9. PACKAGE DRAWING

## 100PIN PLASTIC QFP (14x20)











Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

**Remark** The shape and material of the ES version are the same as those of the corresponding mass-produced product.

| ITEM | MILLIMETERS            | S INCHES                  |
|------|------------------------|---------------------------|
| Α    | 23.6±0.4               | 0.929±0.016               |
| В    | 20.0±0.2               | $0.795^{+0.009}_{-0.008}$ |
| С    | 14.0±0.2               | $0.551^{+0.009}_{-0.008}$ |
| D    | 17.6±0.4               | 0.693±0.016               |
| F    | 0.8                    | 0.031                     |
| G    | 0.6                    | 0.024                     |
| н    | 0.30±0.10              | $0.012^{+0.004}_{-0.005}$ |
| I    | 0.15                   | 0.006                     |
| J    | 0.65 (T.P.)            | 0.026 (T.P.)              |
| К    | 1.8±0.2                | $0.071^{+0.008}_{-0.009}$ |
| L    | 0.8±0.2                | $0.031^{+0.009}_{-0.008}$ |
| М    | $0.15^{+0.10}_{-0.05}$ | $0.006^{+0.004}_{-0.003}$ |
| Ν    | 0.10                   | 0.004                     |
| Р    | 2.7±0.1                | $0.106^{+0.005}_{-0.004}$ |
| Q    | 0.1±0.1                | 0.004±0.004               |
| R    | 5°±5°                  | 5°±5°                     |
| S    | 3.0 MAX.               | 0.119 MAX.                |
|      |                        | P100GF-65-3BA1-3          |

#### **10. RECOMMENDED SOLDERING CONDITIONS**

The conditions listed below shall be met when soldering the  $\mu$ PD78P4908.

For details of the recommended soldering conditions, refer to our document **Semiconductor Device Mounting Technology Manual (C10535E)**.

Please consult with our sales offices in case any other soldering process is used, or in case soldering is done under different conditions.

#### Table 10-1. Soldering Conditions for Surface-Mount Devices

#### $\mu$ PD78P4908GF-3BA: 100-pin plastic QFP (14 $\times$ 20 mm)

| Soldering process      | Soldering conditions                                                                                                                                                                                                                                                              | Symbol     |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Infrared ray reflow    | Peak package's surface temperature: 235°C<br>Reflow time: 30 seconds or less (210°C or more)<br>Maximum allowable number of reflow processes: 2<br>Exposure limit: 7 days <sup>Note</sup> (20 hours of pre-baking is required at 125°C<br>afterward)                              | IR35-207-2 |
| VPS                    | Peak package's surface temperature: 215°C<br>Reflow time: 40 seconds or less (200°C or more)<br>Maximum allowable number of reflow processes: 2<br>Exposure limit: 7 days <sup>Note</sup> (20 hours of pre-baking is required at 125°C<br>afterward)                              | VP15-207-2 |
| Wave soldering         | Solder temperature: 260°C or less<br>Flow time: 10 seconds or less<br>Number of flow processes: 1<br>Preheating temperature: 120°C MAX. (measured on the package<br>surface)<br>Exposure limit: 7 days <sup>Note</sup> (20 hours of pre-baking is required at 125°C<br>afterward) | WS60-207-1 |
| Partial heating method | Terminal temperature: 300°C or less<br>Heat time: 3 seconds or less (for one side of a device)                                                                                                                                                                                    | _          |

**Note** Maximum number of days during which the product can be stored at a temperature of 25°C and a relative humidity of 65% or less after dry-pack package is opened.

Caution Do not apply two or more different soldering methods to one chip (except for partial heating method for terminal sections).

#### APPENDIX A DEVELOPMENT TOOLS

The following development tools are available for system development using the  $\mu$ PD78P4908. See also **(5) Notes on using development tools**.

#### (1) Language processing software

| RA78K4   | Assembler package for all 78K/IV series models              |
|----------|-------------------------------------------------------------|
| CC78K4   | C compiler package for all 78K/IV series models             |
| DF784908 | Device file for $\mu$ PD784908 subseries models             |
| CC78K4-L | C compiler library source file for all 78K/IV series models |

#### (2) PROM write tools

| PG-1500            | PROM programmer                         |
|--------------------|-----------------------------------------|
| PA-78P4908GF       | Programmer adapter, connects to PG-1500 |
| PG-1500 controller | Control program for PG-1500             |

#### (3) Debugging tools

#### • When using the in-circuit emulator IE-78K4-NS

| IE-78K4-NS           | In-circuit emulator for all 78K/IV series models                                                                          |
|----------------------|---------------------------------------------------------------------------------------------------------------------------|
| IE-70000-MC-PS-B     | Power supply unit for IE-78K4-NS                                                                                          |
| IE-70000-98-IF-C     | Interface adapter when the PC-9800 series computer (other than a notebook) is used as the host machine (C bus compatible) |
| IE-70000-CD-IF-A     | PC card and interface cable when a notebook is used as the host machine (PCMCIA socket compatible)                        |
| IE-70000-PC-IF-C     | Interface adapter when the IBM PC/AT <sup>TM</sup> compatible is used as the host machine (ISA compatible)                |
| IE-7000-PCI-IF       | Adapter when a computer with a PCI bus as the host machine                                                                |
| IE-784908-NS-EM1Note | Emulation board for evaluating $\mu$ PD784908 subseries models                                                            |
| NP-100GFNote         | Emulation probe for 100-pin plastic QFP (GF-3BA type)                                                                     |
| EV-9200GF-100        | Socket for mounting on target system board made for 100-pin plastic QFP (GF-3BA type). Used in LCC mode.                  |
| ID78K4-NS            | Integrated debugger for IE-78K4-NS                                                                                        |
| SM78K4               | System simulator for all 78K/IV series models                                                                             |
| DF784908             | Device file for µPD784908 subseries models                                                                                |

Note Under development

\*

\*

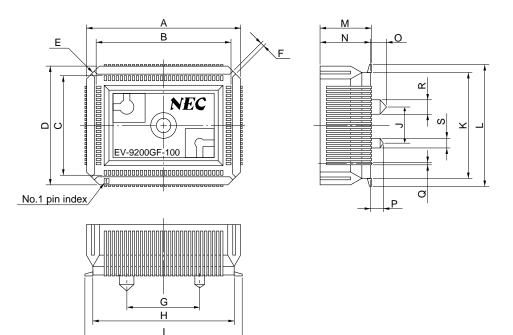
• When using the in-circuit emulator IE-784000-R

|   | IE-784000-R                         | In-circuit emulator for all 78K/IV series models                                                                                                                                     |  |  |
|---|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| * | IE-70000-98-IF-C                    | Interface adapter when the PC-9800 series computer (other than a notebook) is used as the host machine (C bus compatible)                                                            |  |  |
| * | IE-70000-PC-IF-C                    | Interface adapter when the IBM PC/AT compatible is used as the host machine (ISA bus compatible)                                                                                     |  |  |
| * | IE-7000-PCI-IF                      | Adapter when a computer with a PCI bus as the host machine                                                                                                                           |  |  |
|   | IE-78000-R-SV3                      | Interface adapter and cable when the EWS is used as the host machine                                                                                                                 |  |  |
|   | IE-784908-NS-EM1<br>IE-784908-R-EM1 | Emulation board for evaluating $\mu$ PD784908 subseries models                                                                                                                       |  |  |
|   | IE-784000-R-EM                      | Emulation board for all 78K/IV series models                                                                                                                                         |  |  |
|   | IE-78K4-R-EX2                       | Conversion board for emulation probes required to use the IE-784908-NS-<br>EM1 on the IE-784000-R. The board is not needed when the conventional<br>product IE-784908-R-EM1 is used. |  |  |
|   | EP-78064-GF-R                       | Emulation probe for 100-pin plastic QFP (GF-3BA type)                                                                                                                                |  |  |
|   | EV-9200GF-100                       | Socket for mounting on target system board made for 100-pin plastic QFP (GF-3BA type)                                                                                                |  |  |
|   | ID78K4                              | Integrated debugger for IE-784000-R                                                                                                                                                  |  |  |
|   | SM78K4                              | System simulator for all 78K/IV series models                                                                                                                                        |  |  |
|   | DF784908                            | Device file for µPD784908 subseries models                                                                                                                                           |  |  |

## (4) Real-time OS

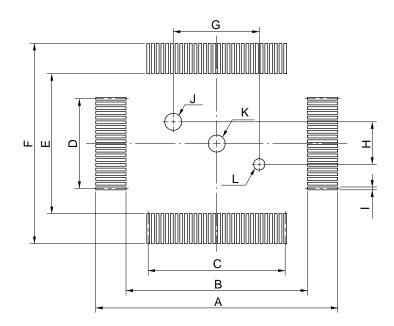
| RX78K/IV | Real-time OS for 78K/IV series models |
|----------|---------------------------------------|
| MX78K4   | OS for 78K/IV series models           |

#### (5) Notes when using development tools


- The ID78K4-NS, ID78K4, and SM78K4 can be used in combination with the DF784908.
- The CC78K4 and RX78K/IV can be used in combination with the RA78K4 and DF784908.
- The NP-100GF is a product from Naito Densei Machida Mfg. Co., Ltd. (044-822-3813). Consult the NEC sales representative for purchasing.
- The host machines and operating systems corresponding to each software are shown below.

| Host machine       | PC                                                                         | EWS                                                                                                                                                                                       |
|--------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [OS]<br>Software   | PC-9800 series [Windows <sup>TM</sup> ]<br>IBM PC/AT compatibles [Windows] | HP9000 series 700 <sup>TM</sup> [HP-UX <sup>TM</sup> ]<br>SPARCstation <sup>TM</sup> [SunOS <sup>TM</sup> , Solaris <sup>TM</sup> ]<br>NEWS <sup>TM</sup> (RISC) [NEWS-OS <sup>TM</sup> ] |
| RA78K4             | Note                                                                       | 0                                                                                                                                                                                         |
| СС78К4             | Note                                                                       | 0                                                                                                                                                                                         |
| PG-1500 controller | Note                                                                       | -                                                                                                                                                                                         |
| ID78K4-NS          | 0                                                                          | -                                                                                                                                                                                         |
| ID78K4             | 0                                                                          | 0                                                                                                                                                                                         |
| SM78K4             | 0                                                                          | -                                                                                                                                                                                         |
| RX78K/IV           | Note                                                                       | 0                                                                                                                                                                                         |
| MX78K4             | ⊖ <sup>Note</sup>                                                          | 0                                                                                                                                                                                         |

Note Software under MS-DOS


## APPENDIX B CONVERSION SOCKET (EV-9200GF-100) PACKAGE DRAWING

Connect the  $\mu$ PD78P4908GF-3BA (100-pin plastic QFP (14 × 20 mm)) to the circuit board in combination with the EV-9200GF-100.



#### Figure B-1. Package Drawings of EV-9200GF-100 (Reference)

|      |             | EV-9200GF-100-G0 |
|------|-------------|------------------|
| ITEM | MILLIMETERS | INCHES           |
| Α    | 24.6        | 0.969            |
| В    | 21          | 0.827            |
| С    | 15          | 0.591            |
| D    | 18.6        | 0.732            |
| E    | 4-C 2       | 4-C 0.079        |
| F    | 0.8         | 0.031            |
| G    | 12.0        | 0.472            |
| Н    | 22.6        | 0.89             |
| I    | 25.3        | 0.996            |
| J    | 6.0         | 0.236            |
| К    | 16.6        | 0.654            |
| L    | 19.3        | 076              |
| М    | 8.2         | 0.323            |
| N    | 8.0         | 0.315            |
| 0    | 2.5         | 0.098            |
| Р    | 2.0         | 0.079            |
| Q    | 0.35        | 0.014            |
| R    | ø2.3        | ¢0.091           |
| S    | ¢1.5        | ¢0.059           |



#### Figure B-2. Recommended Pattern to Mount EV-9200GF-100 on a Substrate (Reference)

| EV-9200GF-100-P1E |  |
|-------------------|--|
|-------------------|--|

| ITEM | MILLIMETERS                                | INCHES                                                                         |
|------|--------------------------------------------|--------------------------------------------------------------------------------|
| A    | 26.3                                       | 1.035                                                                          |
| В    | 21.6                                       | 0.85                                                                           |
| С    | $0.65 \pm 0.02 \times 29 = 18.85 \pm 0.05$ | $0.026\substack{+0.001\\-0.002}{\times}1.142{=}0.742\substack{+0.002\\-0.002}$ |
| D    | $0.65 \pm 0.02 \times 19 = 12.35 \pm 0.05$ | $0.026\substack{+0.001\\-0.002}\times0.748{=}0.486\substack{+0.003\\-0.002}$   |
| E    | 15.6                                       | 0.614                                                                          |
| F    | 20.3                                       | 0.799                                                                          |
| G    | 12±0.05                                    | $0.472^{+0.003}_{-0.002}$                                                      |
| Н    | 6±0.05                                     | $0.236^{+0.003}_{-0.002}$                                                      |
| I    | 0.35±0.02                                  | $0.014^{+0.001}_{-0.001}$                                                      |
| J    | ¢2.36±0.03                                 | Ø0.093 <sup>+0.001</sup><br>-0.002                                             |
| К    | ø2.3                                       | ø0.091                                                                         |
| L    | ¢1.57±0.03                                 | Ø0.062 <sup>+0.001</sup><br>-0.002                                             |

Caution Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).

#### APPENDIX C RELATED DOCUMENTS

#### **Documents Related to Devices**

| Document name                                  |  | Document No. |               |
|------------------------------------------------|--|--------------|---------------|
|                                                |  | Japanese     | English       |
| μPD784907, 784908 Data Sheet                   |  | U11680J      | U11680E       |
| µPD78P4908 Data Sheet                          |  | U11681J      | This document |
| µPD784908 Subseries User's Manual – Hardware   |  | U11787J      | U11787E       |
| µPD784908 Subseries Special Function Registers |  | U11589J      | _             |
| 78K/IV Series User's Manual – Instruction      |  | U10905J      | U10905E       |
| 78K/IV Series Instruction Table                |  | U10594J      | —             |
| 78K/IV Series Instruction Set                  |  | U10595J      | —             |
| 78K/IV Series Application Note Software Basic  |  | U10095J      | U10095E       |

#### Documents Related to Development Tools (User's Manual)

|   | Document name                                                  |                                                     | Document No. |                |
|---|----------------------------------------------------------------|-----------------------------------------------------|--------------|----------------|
|   |                                                                |                                                     | Japanese     | English        |
|   | RA78K4 Assembler Package Operation                             |                                                     | U11334J      | U11334E        |
|   |                                                                | Language                                            | U11162J      | U11162E        |
|   | RA78K Series Structured Assembler Preprocessor                 |                                                     | U11743J      | U11743E        |
|   | CC78K4 C Compiler                                              | Operation                                           | U11572J      | U11572E        |
|   |                                                                | Language                                            | U11571J      | U11571E        |
|   | PG-1500 PROM Programmer                                        |                                                     | U11940J      | U11940E        |
|   | PG-1500 Controller PC-9800 Series (MS-DOS <sup>TM</sup> ) Base |                                                     | EEU-704      | EEU-1291       |
|   | PG-1500 Controller IBM PC Series (PC DOS <sup>TM</sup> ) Base  |                                                     | EEU-5008     | U10540E        |
| k | IE-78K4-NS                                                     |                                                     | U13356J      | U13356E        |
|   | IE-784000-R                                                    |                                                     | U12903J      | U12903E        |
|   | IE-784908-R-EM1                                                |                                                     | U11876J      | —              |
| ł | IE-784908-NS-EM1                                               |                                                     | U13743J      | On preparation |
|   | EP-78064                                                       |                                                     | EEU-934      | EEU-1469       |
|   | SM78K4 System Simulator Windows Base                           | Reference                                           | U10093J      | U10093E        |
|   | SM78K Series System Simulator                                  | External Part User Open<br>Interface Specifications | U10092J      | U10092E        |
|   | ID78K4-NS Integrated Debugger PC Base                          | Reference                                           | U12796J      | U12796E        |
|   | ID78K4 Integrated Debugger Windows Base                        | Reference                                           | U10440J      | U10440E        |
|   | ID78K4 Integrated Debugger HP-UX, SunOS, NEWS-OS Base          | Reference                                           | U11960J      | U11960E        |

# Caution The above documents may be revised without notice. Use the latest versions when you design application systems.

 $\star$ 

#### Documents Related to Software to Be Incorporated into the Product (User's Manual)

| Document name               |              | Document No. |         |
|-----------------------------|--------------|--------------|---------|
|                             |              | Japanese     | English |
| 78K/IV Series Real-Time OS  | Fundamental  | U10603J      | U10603E |
| Installation                | Installation | U10604J      | U10604E |
|                             | Debugger     | U10364J      | —       |
| OS for 78K/IV Series MX78K4 | Fundamental  | U11779J      | —       |

#### **Other Documents**

| Document name                                                                      | Document No. |          |
|------------------------------------------------------------------------------------|--------------|----------|
|                                                                                    | Japanese     | English  |
| NEC IC Package Manual (CD-ROM)                                                     | -            | C13388E  |
| Semiconductor Device Mounting Technology Manual                                    | C10535J      | C10535E  |
| Quality Grades on NEC Semiconductor Device                                         | C11531J      | C11531E  |
| NEC Semiconductor Device Reliability/Quality Control System                        | C10983J      | C10983E  |
| Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD) | C11892J      | C11892E  |
| Guide to Quality Assurance for Semiconductor Devices                               | _            | MEI-1202 |
| Guide for Products Related to Microcomputer: Other Companies                       | U11416J      |          |

# Caution The above documents may be revised without notice. Use the latest versions when you design application systems.

## NEC

[MEMO]

## NOTES FOR CMOS DEVICES -

## **1** PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

## (2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

## **③** STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

## **Regional Information**

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

#### **NEC Electronics (Germany) GmbH**

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

**NEC Electronics (UK) Ltd.** Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

#### NEC Electronics Italiana s.r.l.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99 NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860

#### NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 65-253-8311 Fax: 65-250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

#### NEC do Brasil S.A.

Electron Devices Division Rodovia Presidente Dutra, Km 214 07210-902-Guarulhos-SP Brasil Tel: 55-11-6465-6810 Fax: 55-11-6465-6829

J99.1

IEBus is a trademark of NEC Corporation.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT and PC DOS are trademarks of IBM Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of SONY Corporation.

Some related documents may be preliminary versions. Note that, however, what documents are preliminary is not indicated in this document.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5