

MOS INTEGRATED CIRCUIT μ PD78P078Y

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD78P078Y is a member of the μ PD78078Y Subseries of the 78K/0 Series, in which the on-chip mask ROM of the μ PD78078Y is replaced with a one-time PROM or EPROM.

Because this device can be programmed by users, it is ideally suited for system evaluation, small-lot and multipledevice production, and early development and time-to-market.

The μ PD78P078Y can be also used for system evaluation of a μ PD78075BY Subseries device.

- Cautions 1. The specifications of the μ PD78075BY Subseries are not the same as those of the μ PD78078Y Subseries. Therefore, if a μ PD78P078Y is used to evaluate a μ PD78075BY Subseries product, refer to the μ PD78075B, 78075BY Subseries User's Manual (U12560E).
 - 2. The reliability of the μ PD78P078YKL-T is not guaranteed for use in mass-produced products. Please use only experimentally or for evaluation purposes during trial manufacture.

The details of functions are described in the user's manuals. Be sure to read the following manuals before designing.

 μ PD78078, 78078Y Subseries User's Manual : U10641E 78K/0 Series User's Manual: Instructions : U12326E

FEATURES

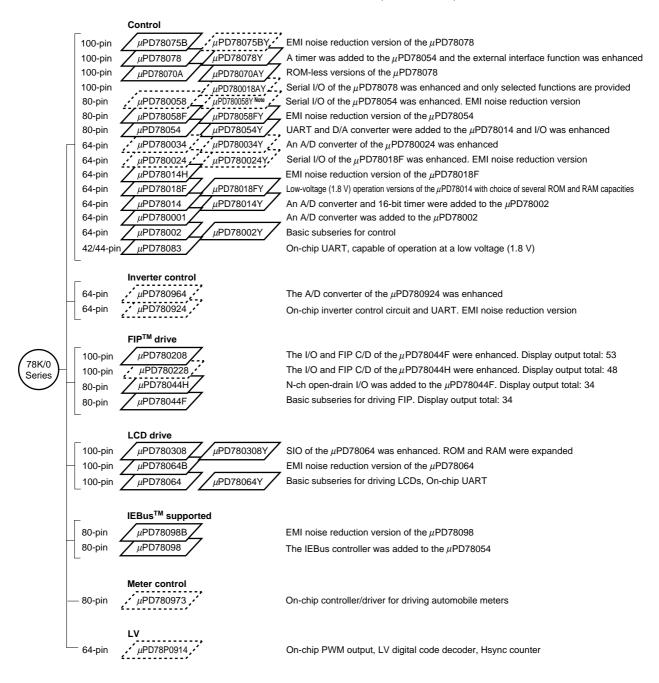
- Pin-compatible with mask ROM version (except VPP pin)
- Internal PROM: 60 KbytesNote 1
 - μPD78P078YKL-T: Reprogrammable (ideally suited for system evaluation)
 - μPD78P078YGC, μPD78P078YGF: One-time programmable (ideally suited for small-lot production)
- Internal high-speed RAM: 1024 bytes
- Internal expansion RAM: 1024 bytes^{Note 2}
- Internal buffer RAM: 32 bytes
- Operable in the same supply voltage as the mask ROM version (VDD = 1.8 to 5.5 V)
- Corresponding to QTOP™ Microcontrollers
- Notes 1. The internal PROM capacity can be changed by setting the memory size switching register (IMS).
 - 2. The internal expansion RAM capacity can be changed by the internal expansion RAM size switching register (IXS).
- Remarks 1. Refer to 1. DIFFERENCES BETWEEN THE μ PD78P078Y AND MASK ROM VERSIONS for the differences between the PROM version and the mask ROM version.
 - 2. QTOP microcontroller is a general term for microcontrollers which incorporate one-time PROM and are totally supported by NEC's programming service (from programming to marking, screening and verification).

In this document, the term PROM is used in parts common to one-time PROM versions and EPROM versions.

The information in this document is subject to change without notice.

ORDERING INFORMATION

Part Number	Package	Internal ROM	Quality Grades
μ PD78P078YGF-3BA	100-pin plastic QFP	One-Time PROM	Standard
	$(14 \times 20 \text{ mm, resin thickness: } 2.7 \text{ mm})$		
μ PD78P078YGC-8EU $^{ m Note}$	100-pin plastic LQFP (fine pitch)	One-Time PROM	Standard
	$(14 \times 14 \text{ mm, resin thickness: } 1.40 \text{ mm})$		
μ PD78P078YKL-T	100-pin ceramic WQFN	EPROM	Not applicable
	(14 × 20 mm)		


Note Under development

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document number C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

★ 78K/0 Series Development

The following shows the 78K/0 Series products development. Subseries names are shown inside frames.

Note Under planning

The following table shows the differences among subseries functions.

	Function	ROM		Tin	ner		8-bit	10-bit	8-bit	Serial Interface	I/O	VDD MIN.	External
Part Number	er	Capacity	8-bit	16-bit	Watch	WDT	A/D	A/D	D/A			Value	Expansion
Control	μPD78075B	32K to 40K	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1 ch)	88	1.8 V	Available
	μPD78078	48K to 60K											
	μPD78070A	-									61	2.7 V	
	μPD780058	24K to 60K	2 ch						2 ch	3 ch (time division UART: 1 ch)	68	1.8 V	
	μPD78058F	48K to 60K								3 ch (UART: 1 ch)	69	2.7 V	
	μPD78054	16K to 60K										2.0 V	
	μPD780034	8K to 32K					_	8 ch	_	3 ch (UART: 1 ch,	51	1.8 V	
	μPD780024						8 ch	-		time division 3-wire: 1 ch)			
	μPD78014H									2 ch	53		
	μPD78018F	8K to 60K											
	μPD78014	8K to 32K										2.7 V	
	μPD780001	8K		_						1 ch	39		_
	μPD78002	8K to 16K			1 ch		-				53		Available
	μPD78083				_		8 ch			1 ch (UART: 1 ch)	33	1.8 V	_
Inverter	μPD780964	8K to 32K	3 ch	Note	-	1 ch	-	8 ch	-	2 ch (UART: 2 ch)	47	2.7 V	Available
control	μPD780924						8 ch	-					
FIP drive	μPD780208	32K to 60K	2 ch	1 ch	1 ch	1 ch	8 ch	_	_	2 ch	74	2.7 V	_
	μPD780228	48K to 60K	3 ch	ı						1 ch	72	4.5 V	
	μPD78044H	32K to 48K	2 ch	1 ch	1 ch						68	2.7 V	
	μPD78044F	16K to 40K								2 ch			
LCD drive	μPD780308	48K to 60K	2 ch	1 ch	1 ch	1 ch	8 ch	-	_	3 ch (time division UART: 1 ch)	57	2.0 V	_
	μPD78064B	32K								2 ch (UART: 1 ch)			
	μPD78064	16K to 32K											
IEBus	μPD78098B	40K to 60K	2 ch	1 ch	1 ch	1 ch	8 ch	_	2 ch	3 ch (UART: 1 ch)	69	2.7 V	Available
supported	μPD78098	32K to 60K											
Meter control	μPD780973	24K to 32K	3 ch	1 ch	1 ch	1 ch	5 ch	_	-	2 ch (UART: 1 ch)	56	4.5 V	-
LV	μPD78P0914	32K	6 ch	_	_	1 ch	8 ch	_	_	2 ch	54	4.5 V	Available

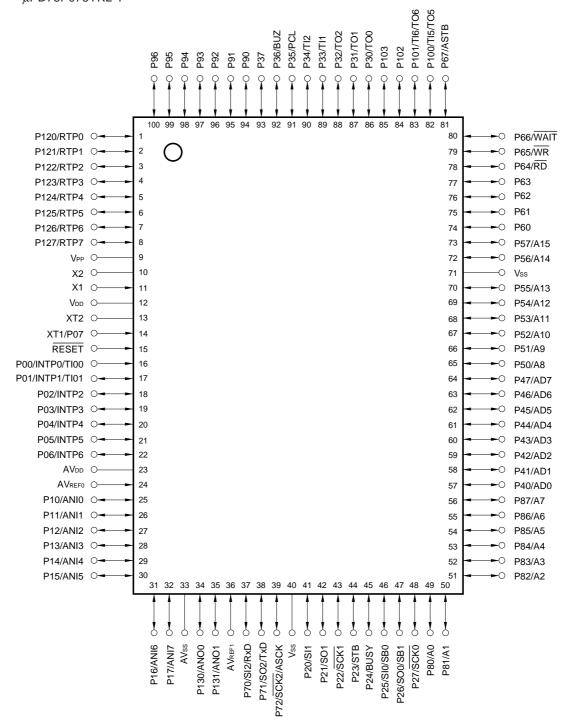
Note 10-bit timer: 1 channel

FUNCTION DESCRIPTION

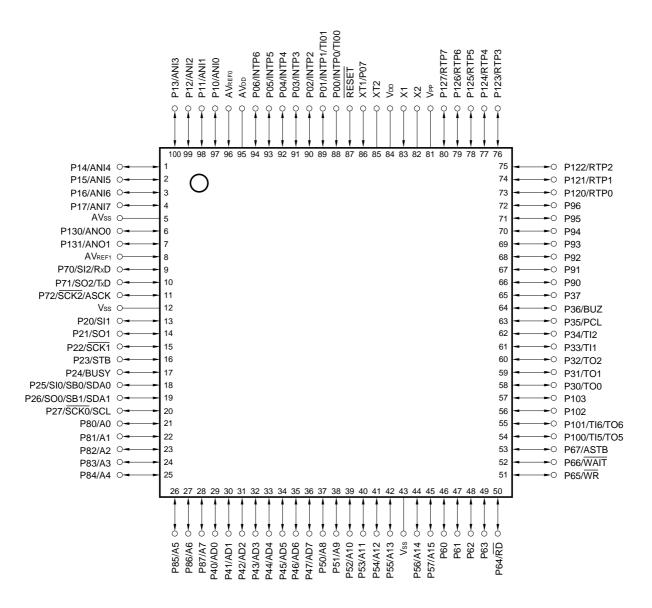
	Item	Function			
Internal memory		PROM: 60 Kbytes ^{Note 1} RAM High-speed RAM: 1024 bytes Expansion RAM: 1024 bytes Expansion RAM: 1024 bytes			
		Expansion RAM: 1024 bytes ^{Note 2} Buffer RAM: 32 bytes			
Memory space		64 Kbytes			
General register		8 bits × 32 registers (8 bits × 8 registers × 4 banks)			
	on execution time	Minimum instruction execution time variable function is integrated.			
	When main system clock is selected	0.4 μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs/12.8 μs (@ 5.0 MHz)			
	When subsystem clock is selected	122 μs (@ 32.768 kHz)			
Instruction set		16-bit operation			
		Multiply/divide (8 bits × 8 bits, 16 bits ÷ 8 bits)			
		Bit manipulation (set, reset, test, Boolean operation)			
		BCD adjust, etc.			
I/O ports					
		CMOS input : 2			
		CMOS input/output : 78			
		N-ch open-drain input/output: 8			
A/D converter		8-bit resolution × 8 channels			
D/A converter		8-bit resolution × 2 channels			
Serial interface		3-wire serial I/O/2-wire serial I/O/I ² C bus mode selectable: 1 channel			
		3-wire serial I/O mode (with max. 32-byte on-chip automatic			
		transmitting/receiving function): 1 channel			
		3-wire serial I/O/UART mode selectable: 1 channel			
Timer		16-bit timer/event counter: 1 channel			
		8-bit timer/event counter: 4 channels			
		Watch timer: 1 channel			
		Watchdog timer: 1 channel			
Timer output		5 pins (14-bit PWM output enable: 1 pin, 8-bit PWM output enable: 2 pins)			
Clock output		19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz, 2.5 MHz,			
		and 5.0 MHz (@ 5.0 MHz with main system clock)			
		32.768 kHz (@ 32.768 kHz with subsystem clock)			
Buzzer output		1.2 kHz, 2.4 kHz, 4.9 kHz and 9.8 kHz			
		(@ 5.0 MHz with main system clock)			

- **Notes** 1. The internal PROM capacity can be changed by using the memory size switching register (IMS).
 - 2. The internal expansion RAM capacity can be changed by using the internal expansion RAM size switching register (IXS).

Item		Function	
Vectored	Maskable	Internal: 15, External: 7	
interrupt sources	Non-maskable	Internal: 1	
	Software	1	
Test input		Internal: 1, External: 1	
Supply voltage		V _{DD} = 1.8 to 5.5 V	
Package		100-pin plastic QFP (14 × 20 mm, resin thickness: 2.7 mm)	
		• 100-pin plastic LQFP (fine pitch) (14 × 14 mm, resin thickness: 1.40 mm) ^{Note}	
		• 100-pin ceramic WQFN (14 × 20 mm)	


Note Under development

PIN CONFIGURATION (TOP VIEW)


(1) Normal operating mode

- 100-pin plastic QFP (14 \times 20 mm, resin thickness: 2.7 mm) μ PD78P078YGF-3BA
- 100-pin ceramic WQFN μPD78P078YKL-T

- Cautions 1. Connect VPP pin directly to Vss.
 - 2. Connect AVDD pin to VDD.
 - 3. Connect AVss pin to Vss.

• 100-pin plastic LQFP (fine pitch) (14 \times 14 mm, resin thickness: 1.40 mm) μ PD78P078YGC-8EUNote

Note Under development

Cautions 1. Connect VPP pin directly to Vss.

- 2. Connect AVDD pin to VDD.
- 3. Connect AVss pin to Vss.

A0 to A15 : Address Bus P130, P131 : Port 13

AD0 to AD7 : Address/Data Bus PCL : Programmable Clock

ANI0 to ANI7 : Analog Input RD : Read Strobe
ANO0, ANO1 : Analog Output RESET : Reset

ASCK : Asynchronous Serial Clock RTP0 to RTP7 : Real-Time Output Port

ASTB : Address Strobe RxD : Receive Data

AVDD : Analog Power Supply TxD : Transmit Data

AVREFO, AVREF1 : Analog Reference Voltage SB0, SB1 : Serial Bus

BUSY : Busy SCL : Serial Clock
BUZ : Buzzer Clock SDA0, SDA1 : Serial Data
INTP0 to INTP6 : Interrupt from Peripherals SI0 to SI2 : Serial Input

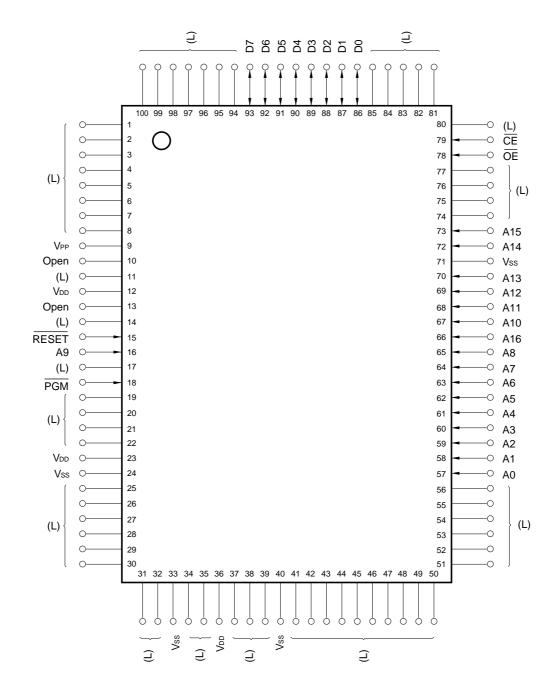
P00 to P07 : Port 0 SO0 to SO2 : Serial Output P10 to P17 : Port 1 STB : Strobe P20 to P27 : Port 2 TI00, TI01 : Timer Input P30 to P37 : Port 3 TI1, TI2, TI5, TI6 : Timer Input P40 to P47 : Port 4 TO0 to TO2, TO5, TO6 : Timer Output

P60 to P67 : Port 6 VPP : Programming Power Supply

 V_{DD}

: Power Supply

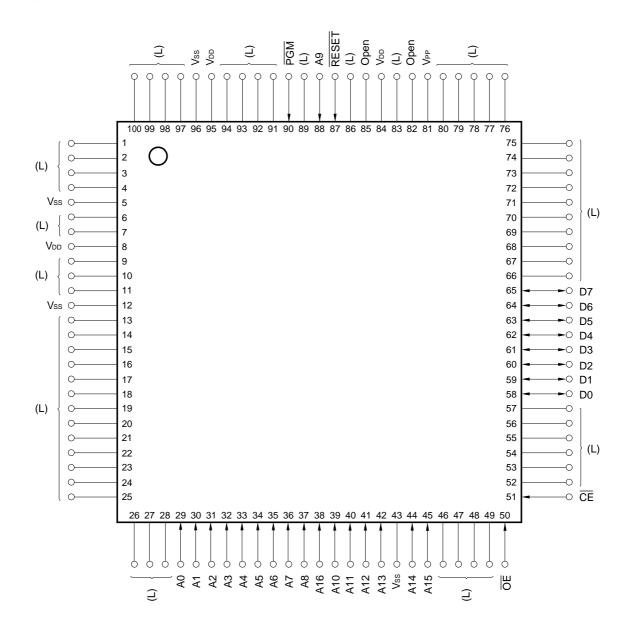
P50 to P57


: Port 5

P90 to P96 : Port 9 \overline{WR} : Write Strobe

P100 to P103 : Port 10 X1, X2 : Crystal (Main System Clock)
P120 to P127 : Port 12 XT1, XT2 : Crystal (Subsystem Clock)

(2) PROM programming mode


- 100-pin plastic QFP (14 \times 20 mm, resin thickness: 2.7 mm) μ PD78P078YGF-3BA
- 100-pin ceramic WQFN μPD78P078YKL-T

Cautions 1. (L): Individually connect to Vss via a pull-down resistor.

Vss: Connect to GND.
 RESET: Set to low level.
 Open: No connection.

• 100-pin plastic LQFP (fine pitch) (14 \times 14 mm, resin thickness: 1.40 mm) μ PD78P078YGC-8EU^{Note}

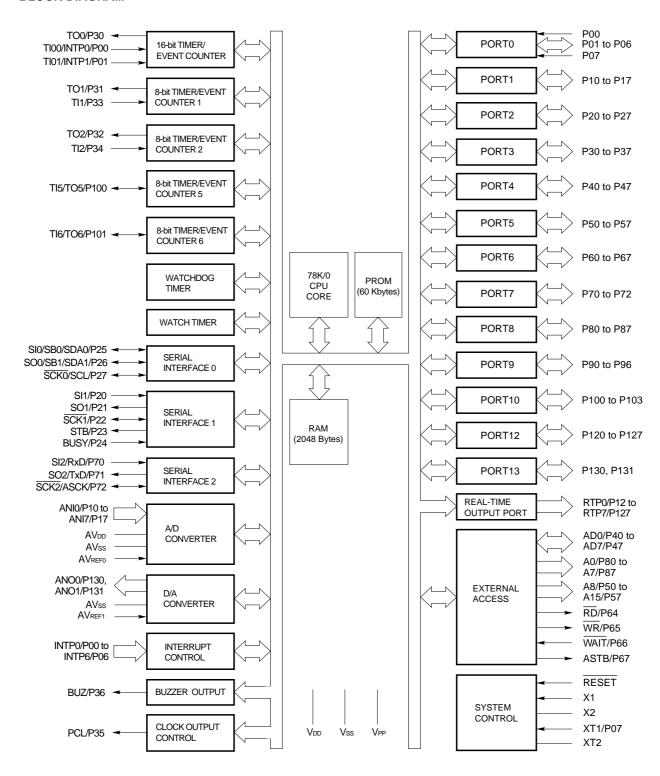
Note Under development

Cautions 1. (L): Individually connect to Vss via a pull-down resistor.

Vss: Connect to GND.
 RESET: Set to low level.
 Open: No connection.

A0 to A16 : Address Bus RESET : Reset

CE : Chip Enable VDD : Power Supply


D0 to D7 : Data Bus VPP : Programming Power Supply

OE : Output Enable Vss : Ground

PGM : Program

BLOCK DIAGRAM

CONTENTS

1.	DIFFERENCES BETWEEN THE μ PD78P078Y AND MASK ROM VERSIONS	14
2.	PIN FUNCTIONS	15
	2.1 Pins in Normal Operating Mode	15
	2.2 Pins in PROM Programming Mode	19
	2.3 Pin Input/Output Circuits and Recommended Connection of Unused Pins	20
3.	MEMORY SIZE SWITCHING REGISTER (IMS)	24
4.	INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)	25
5.	PROM PROGRAMMING	26
	5.1 Operating Modes	26
	5.2 PROM Write Procedure	
	5.3 PROM Read Procedure	32
6.	PROGRAM ERASURE (µPD78P078KL-T ONLY)	33
7.	OPAQUE FILM ON ERASURE WINDOW (μPD78P078YKL-T ONLY)	33
8.	ONE-TIME PROM VERSION SCREENING	33
9.	ELECTRICAL SPECIFICATIONS	34
10.	CHARACTERISTIC CURVES (REFERENCE VALUES)	68
11.	PACKAGE DRAWINGS	70
12.	RECOMMENDED SOLDERING CONDITIONS	73
APP	PENDIX A. DEVELOPMENT TOOLS	74
ΔΡΡ	PENDIX B RELATED DOCUMENTS	79

1. DIFFERENCES BETWEEN THE μ PD78P078Y AND MASK ROM VERSIONS

The μ PD78P078Y is a single-chip microcontroller with an on-chip one-time PROM or with an on-chip EPROM which has program write, erasure and rewrite capability.

It is possible to make all the functions, except for PROM specification and mask option of the P60 to P63 and P90 to P93 pins, the same as those of the mask ROM versions by setting the memory size switching register (IMS) and internal expanded RAM size switching register (IXS).

Differences between the PROM version (μ PD78P078Y) and mask ROM versions (μ PD78074BY, 78075BY, 78076Y, 78078Y) are shown in Table 1-1.

Table 1-1. Differences between the μ PD78P078 and Mask ROM Versions

Parameter	μPD78P078	Mask ROM Versions
Internal ROM type	One-time PROM/EPROM	Mask ROM
Internal ROM capacity	60 Kbytes	μPD78074BY : 32 Kbytes
		μPD78075BY : 40 Kbytes
		μPD78076Y : 48 Kbytes
		μPD78078Y : 60 Kbytes
Internal expanded RAM capacity	1024 bytes	μPD78074BY : none
		μ PD78075BY : none
		μPD78076Y : 1024 bytes
		μPD78078Y : 1024 bytes
Internal ROM capacity selection	Possible ^{Note 1}	Not possible
with memory size switching register (IMS)		
Internal expanded RAM capacity	Possible ^{Note 2}	Not possible
selection with internal expanded RAM		
size switching register (IXS)		
IC pin	No	Yes
V _{PP} pin	Yes	No
On-chip pull-up resistor mask option of	No	Yes
P60 to P63 and P90 to P93 pins		
Electrical specifications	Refer to the Data Sheet for each version.	

- Notes 1. The internal PROM becomes 60 Kbytes and the internal high-speed RAM becomes 1024 bytes by RESET input.
 - 2. The internal expansion RAM becomes 1024 bytes by RESET input.
- ★ Caution There are differences in noise immunity and noise radiation between the PROM and mask ROM versions. When pre-producing an application set with the PROM version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations for the set using consumer samples (not engineering samples) of the mask ROM version.

2. PIN FUNCTIONS

2.1 Pins in Normal Operating Mode

(1) Port pins (1/3)

Pin Name	Input/Output		After Reset	Alternate Function	
P00	Input	Port 0	Input only	Input	INTP0/TI00
P01	Input/output	8-bit input/output port	Input/output is specifiable	Input	INTP1/TI01
P02			bit-wise. When used as the		INTP2
P03			input port, it is possible to		INTP3
P04			connect an on-chip pull-up		INTP4
P05			resistor by software.		INTP5
P06					INTP6
P07 ^{Note 1}	Input		Input only	Input	XT1
P10 to P17	Input/output	Port 1		Input	ANI0 to ANI7
		8-bit input/output port			
		Input/output is specifiab	le bit-wise.		
		When used as the inpu	it port, it is possible to connect		
		an on-chip pull-up resis	tor by software.Note 2		
P20	Input/output	Port 2		Input	SI1
P21		8-bit input/output port			SO1
P22		Input/output is specifiab	le bit-wise.		SCK1
P23		When used as the inpu	it port, it is possible to connect		STB
P24		an on-chip pull-up resis	tor by software.		BUSY
P25					SI0/SB0
P26					SO0/SB1
P27					SCK0
P30	Input/output	Port 3		Input	TO0
P31		8-bit input/output port			TO1
P32		Input/output is specifiab	le bit-wise.		TO2
P33		When used as the inpu	it port, it is possible to connect		TI1
P34		an on-chip pull-up resis	tor by software.		TI2
P35					PCL
P36					BUZ
P37	7				_

- **Notes 1.** When the P07/XT1 pin is used as an input port, set the processor clock control register (PCC) bit 6 (FRC) to 1 (Be sure not to use the feedback resistor of the subsystem clock oscillator).
 - **2.** When the P10/ANI0 to P17/ANI7 pins are used as the analog inputs for the A/D converter, the pull-up resistor is automatically disabled.

(1) Port pins (2/3)

Pin Name	Input/Output		Function	After Reset	Alternate Function
P40 to P47	Input/output	Port 4		Input	AD0 to AD7
		8-bit input/output port			
		Input/output is specifiab	le in 8-bit units.		
		When used as the input	port, it is possible to connect		
		an on-chip pull-up resis	tor by software.		
		Set test input flag (KRIF	to 1 by falling edge detection.		
P50 to P57	Input/output	Port 5		Input	A8 to A15
		8-bit input/output port			
		It is possible to directly	drive LEDs.		
		Input/output is specifiab	le bit-wise.		
		When used as the input	port, it is possible to connect		
		an on-chip pull-up resis	tor by software.		
P60	Input/output	Port 6	N-ch open-drain input/output	Input	_
P61		8-bit input/output port	port.		
P62		Input/output is	It is possible to directly drive		
P63		specifiable bit-wise.	LEDs.		
P64			When used as the input port,	Input	RD
P65			it is possible to connect an		WR
P66			on-chip pull-up resistor by		WAIT
P67			software.		ASTB
P70	Input/output	Port 7		Input	SI2/RxD
		3-bit input/output port			000/7-5
P71		Input/output is specifiab	le bit-wise.		SO2/TxD
P72		When used as the input	port, it is possible to connect		SCK2/ASCK
· · -		an on-chip pull-up resis	tor by software.		00112/710011
P80 to P87	Input/output	Port 8		Input	A0 to A7
		8-bit input/output port			
		Input/output is specifiab	le bit-wise.		
		When used as the input	port, it is possible to connect		
		an on-chip pull-up resis	tor by software.		
P90	Input/output	Port 9	N-ch open-drain input/output	Input	_
P91		7-bit input/output port	port.		
P92		Input/output is	It is possible to directly drive		
P93		specifiable bit-wise.	LEDs.		
P94			When used as the input port,		
P95	7		it is possible to connect an		
	_		on-chip pull-up resistor by		
P96			software.		

(1) Port pins (3/3)

Pin Name	Input/Output	Function	After Reset	Alternate Function
P100	Input/output	Port 10	Input	TI5/TO5
		4-bit input/output port		
P101		Input/output is specifiable bit-wise.		TI6/TO6
		When used as the input port, it is possible to connect		
P102, P103		an on-chip pull-up resistor by software.		_
P120 to P127	Input/output	Port 12	Input	RTP0 to RTP7
		8-bit input/output port		
		Input/output is specifiable bit-wise.		
		When used as the input port, it is possible to connect		
		an on-chip pull-up resistor by software.		
P130, P131	Input/output	Port 13	Input	ANO0, ANO1
		2-bit input/output port		
		Input/output is specifiable bit-wise.		
		When used as the input port, it is possible to connect		
		an on-chip pull-up resistor by software.		

(2) Non-port pins (1/2)

Pin Name	Input/Output	Function	After Reset	Alternate Function
INTP0	Input	External interrupt request input by which the active edge	Input	P00/TI00
INTP1		(rising edge, falling edge, or both rising and falling edges)		P01/TI01
INTP2		can be specified.		P02
INTP3				P03
INTP4				P04
INTP5				P05
INTP6				P06
SI0	Input	Serial interface serial data input.	Input	P25/SB0/SDA0
SI1				P20
SI2				P70/RxD
SO0	Output	Serial interface serial data output.	Input	P26/SB1/SDA1
SO1		·		P21
SO2				P71/TxD
SB0	Input/Output	Serial interface serial data input/output.	Input	P25/SI0/SDA0
SB1				P26/SO0/SDA1
SDA0				P25/S10/SB0
SDA1				P26/SO0/SB1
SCK0	Input/Output	Serial interface serial clock input/output.	Input	P27/SCL
SCK1				P22
SCK2				P72/ASCK
SCL				P27/SCK0
STB	Output	Serial interface automatic transmit/receive strobe output.	Input	P23
BUSY	Input	Serial interface automatic transmit/receive busy input.	Input	P24
RxD	Input	Asynchronous serial interface serial data input.	Input	P70/SI2
TxD	Output	Asynchronous serial interface serial data output.	Input	P71/SO2
ASCK	Input	Asynchronous serial interface serial clock input.	Input	P72/SCK2
TI00	Input	External count clock input to 16-bit timer (TM0).	Input	P00/INTP0
TI01		Capture trigger signal input to capture register (CR00).		P01/INTP1
TI1		External count clock input to 8-bit timer (TM1).		P33
TI2		External count clock input to 8-bit timer (TM2).		P34
TI5		External count clock input to 8-bit timer (TM5).		P100/TO5
TI6		External count clock input to 8-bit timer (TM6).		P101/TO6
TO0	Output	16-bit timer (TM0) output (also used for 14-bit PWM output).	Input	P30
TO1		8-bit timer (TM1) output.		P31
TO2		8-bit timer (TM2) output.		P32
TO5		8-bit timer (TM5) output (also used for 8-bit PWM output).		P100/TI5
TO6		8-bit timer (TM6) output (also used for 8-bit PWM output).		P101/TI6
PCL	Output	Clock output (for main system clock, subsystem clock	Input	P35
		trimming).		
BUZ	Output	Buzzer output.	Input	P36
RTP0 to RTP7	Output	Real-time output port by which data is output in synchronization	Input	P120 to P127
		with a trigger.		
AD0 to AD7	Input/Output	Low-order address/data bus at external memory expansion.	Input	P40 to P47

(2) Non-port pins (2/2)

Pin Name	Input/Output	Function	After Reset	Alternate Function
A0 to A7	Output	Low-order address bus at external memory expansion.	Input	P80 to P87
A8 to A15	Output	High-order address bus at external memory expansion.	Input	P50 to P57
RD	Output	External memory read operation strobe signal output.	Input	P64
WR		External memory write operation strobe signal output.	Input	P65
WAIT	Input	Wait insertion at external memory access.	Input	P66
ASTB	Output	Strobe output which latches the address data output for	Input	P67
		ports 4, 5 and 8 to access external memory.		
ANI0 to ANI7	Input	A/D converter analog input.	Input	P10 to P17
ANO0, ANO1	Output	D/A converter analog output.	Input	P130, P131
AV _{REF0}	Input	A/D converter reference voltage input.	_	_
AV _{REF1}	Input	D/A converter reference voltage input.	_	_
AV _{DD}	_	A/D converter analog power supply. Connected to Vdd.	_	_
AVss	_	A/D and D/A converters ground potential. Connected to Vss.	_	_
RESET	Input	System reset input.	_	_
X1	Input	Main system clock oscillation crystal connection.	_	_
X2	_		_	_
XT1	Input	Subsystem clock oscillation crystal connection.	Input	P07
XT2	_		_	_
V _{DD}	_	Positive power supply.	_	_
V _{PP}	_	High-voltage applied during program write/verification.	_	_
		Connected directly to Vss in normal operating mode.		
Vss	_	Ground potential.	_	_

2.2 Pins in PROM Programming Mode

Pin Name	Input/Output	Function
RESET	Input	PROM programming mode setting
		When +5 V or +12.5 V is applied to the VPP pin and a low level signal is applied to the RESET
		pin, this chip is set in the PROM programming mode.
VPP	Input	PROM programming mode setting and high-voltage applied during program write/verification.
A0 to A16	Input	Address bus
D0 to D7	Input/output	Data bus
CE	Input	PROM enable input/program pulse input
ŌĒ	Input	Read strobe input to PROM
PGM	Input	Program/program inhibit input in PROM programming mode.
V _{DD}	_	Positive power supply
Vss	_	Ground potential

2.3 Pin Input/Output Circuits and Recommended Connection of Unused Pins

Types of input/output circuits of the pins and recommended connection of unused pins are shown in Table 2-1. For the configuration of each type of input/output circuit, see Figure 2-1.

Table 2-1. Type of Input/Output Circuit of Each Pin (1/2)

Pin Name	Input/Output Circuit Type	Input/Output	Recommended Connection for Unused Pins
P00/INTP0/TI00	2	Input	Connect to Vss.
P01/INTP1/TI01	8-A	Input/Output	Independently connect to Vss via a resistor.
P02/INTP2		' '	
P03/INTP3			
P04/INTP4			
P05/INTP5			
P06/INTP6			
P07/XT1	16	Input	Connect to V _{DD} .
P10/ANI0 to P17/ANI7	11	Input/Output	Independently connect to VDD or Vss via a
P20/SI1	8-A		resistor.
P21/SO1	5-A		
P22/SCK1	8-A	7	
P23/STB	5-A	7	
P24/BUSY	8-A	7	
P25/SI0/SB0/SDA0	10-A	7	
P26/SO0/SB1/SDA1			
P27/SCK0/SCL			
P30/TO0	5-A		
P31/TO1			
P32/TO2			
P33/TI1	8-A		
P34/TI2			
P35/PCL	5-A		
P36/BUZ			
P37			
P40/AD0 to P47/AD7	5-E	Input/Output	Independently connect to V _{DD} via a resistor.
P50/A8 to P57/A15	5-A	Input/Output	Independently connect to V _{DD} or V _{SS} via a resistor.
P60 to P63	13-D	Input/Output	Independently connect to V _{DD} via a resistor.
P64/RD	5-A	Input/Output	Independently connect to VDD or VSS via a
P65/WR			resistor.
P66/WAIT			
P67/ASTB			

Table 2-1. Type of Input/Output Circuit of Each Pin (2/2)

Pin Name	Input/Output	Input/Output	Recommended Connection for Unused Pins
	Circuit Type		
P70/SI2/RxD	8-A	Input/Output	Independently connect to VDD or Vss via a
P71/SO2/TxD	5-A		resistor.
P72/SCK2/ASCK	8-A]	
P80/A0 to P87/A7	5-A		
P90 to P93	13-D	Input/Output	Independently connect to VDD via a resistor.
P94 to P96	5-A	Input/Output	Independently connect to VDD or Vss via a
P100/TI5/TO5	8-A]	resistor.
P101/TI6/TO6			
P102, P103	5-A		
P120/RTP0 to P127/RTP7	5-A		
P130/ANO0, P131/ANO1	12-A	Input/Output	Independently connect to Vss via a resistor.
RESET	2	Input	_
XT2	16	_	Leave open.
AV _{REF0}	_]	Connect to Vss.
AV _{REF1}			Connect to VDD.
AVDD			
AVss			Connect to Vss.
VPP			Connect directly to Vss.

⊸IN/OUT

P-c<u>h</u> ///

N-ch (threshold voltage)

Type 2 Type 8-A V_{DD} ★ pullup enable IN O Vdd data -○ IN/OUT output Schmitt-triggered input with hysteresis characteristics disable Type 5-A Type 10-A pullup pullup enable enable V_{DD} data data -○ IN/OUT ⊸IN/OUT output open drain output disable N-ch ⊢N-ch disable input enable Type 5-E Type 11 pullup enable → P-ch pullup enable VDD data

output disable

input enable

Comparator

VRE

Figure 2-1. List of Pin Input/Output Circuits (1/2)

data

output

disable

P-ch

O IN/OUT

 μ PD78P078Y

Type 12-A Type 16 pullup feedback cut-off enable P-ch data--P-ch -○ IN/OUT output disable XT1 XT2 input enable Analog Output Voltage N-ch Type 13-D ⊸IN/OUT data output disable H N-ch P-ch RD Medium Voltage Input Buffer

Figure 2-1. List of Pin Input/Output Circuits (2/2)

3. MEMORY SIZE SWITCHING REGISTER (IMS)

This is a register to disable use of part of internal memories by software. By setting this memory size switching register (IMS), it is possible to get the same memory mapping as that of the mask ROM versions with a different internal memory (ROM).

IMS is set with an 8-bit memory manipulation instruction.

RESET input sets IMS to CFH.

Symbol 3 Address R/W After Reset IMS RAM2 RAM1 RAM0 0 ROM3 ROM2 ROM1 ROM0 FFF0H CFH R/W ROM3 ROM2 ROM1 ROM0 Selection of internal **ROM Capacity** 0 0 32 Kbytes 1 0 0 1 0 40 Kbytes 1 1 0 0 48 Kbytes 0 56 Kbytes^{Note} 1 1 1 1 60 Kbytes 1 Other than above Setting prohibited RAM2 RAM1 RAM0 Selection of Internal High-Speed RAM Capacity 1024 bytes

Figure 3-1. Memory Size Switching Register Format

Note When the external device expansion function is used, the internal ROM capacity should be set to 56 Kbytes or less.

Other than above

Setting prohibited

Table 3-1 shows the setting values of IMS which make the memory mapping the same as that of the mask ROM version.

Target Mask ROM Versions	IMS Setting Value
μPD78074BY	C8H
μPD78075BY	CAH
μPD78076Y	ССН
μPD78078Y	CFH

Table 3-1. Memory Size Switching Register Setting Values

4. INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)

This register is used to set the internal expansion RAM capacity by software. By setting this internal expansion RAM size switching register (IXS), it is possible to get the same memory mapping as that of the mask ROM versions with a different internal expansion RAM.

IXS is set with an 8-bit memory manipulation instruction.

RESET input sets 0AH.

Figure 4-1. Internal Expansion RAM Size Switching Register Format

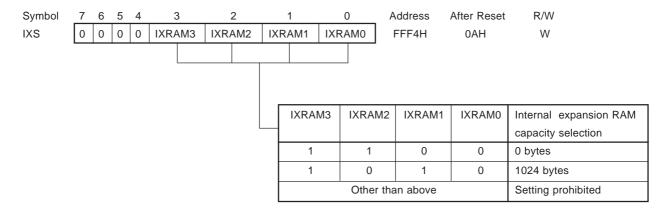


Table 4-1 shows the setting values of IXS which make the memory mapping the same as that of the mask ROM versions.

Table 4-1. Internal Expansion RAM Size Switching Register Setting Values

Target Mask ROM Versions	IXS Setting Value
μPD78074BY	0CH ^{Note}
μPD78075BY	
μPD78076Y	0AH
μPD78078Y	

Note If a program for the μ PD78P078 in which "MOV IXS,#0CH" is written is executed in the μ PD78074BY and μ PD78075BY, the operations are not affected.

5. PROM PROGRAMMING

The μ PD78P078Y has an on-chip 60-Kbyte PROM as a program memory. For programming, set the PROM programming mode with the V_{PP} and $\overline{\text{RESET}}$ pins. For the connection of unused pins, refer to "**PIN CONFIGURATIONS** (2) **PROM programming mode.**"

Caution Programs must be written in addresses 0000H to EFFFH (The last address EFFFH must be specified).

They cannot be written by a PROM programmer which cannot specify the write address.

5.1 Operating Modes

When +5 V or +12.5 V is applied to the $\overline{\text{VPP}}$ pin and a low-level signal is applied to the $\overline{\text{RESET}}$ pin, the PROM programming mode is set. This mode will become the operating mode as shown in Table 5-1 when the $\overline{\text{CE}}$, $\overline{\text{OE}}$ and $\overline{\text{PGM}}$ pins are set as shown.

Further, when the read mode is set, it is possible to read the contents of the PROM.

 $\overline{\mathsf{CE}}$ RESET V_{PP} ŌĒ PGM Pin V_{DD} D0 to D7 Operating Mode Page data latch L +12.5 V +6.5 V Н L Н Data input Page write Н Н L High-impedance Byte write L Н L Data input Program verify L L Н Data output Program inhibit Н Н High-impedance X L L X Read +5 V +5 V L L Н Data output Output disable L Н × High-impedance

Н

×

×

High-impedance

Table 5-1. Operating Modes of PROM Programming

Standby
×: L or H

(1) Read mode

Read mode is set by setting $\overline{CE} = L$, $\overline{OE} = L$.

(2) Output disable mode

Data output becomes high-impedance and is placed in the output disable mode by setting $\overline{OE} = H$.

Therefore, if multiple μ PD78P078Ys are connected to the data bus, data can be read from any device by controlling the $\overline{\text{OE}}$ pin.

(3) Standby mode

Standby mode is set by setting $\overline{CE} = H$.

In this mode, data outputs become high-impedance irrespective of the $\overline{\text{OE}}$ status.

(4) Page data latch mode

Page data latch mode is set by setting $\overline{CE} = H$, $\overline{PGM} = H$, $\overline{OE} = L$ at the beginning of page write mode. In this mode, 1 page 4-byte data is latched in an internal address/data latch circuit.

(5) Page write mode

After 1 page 4 bytes of addresses and data are latched in the page data latch mode, a page write is executed by applying a 0.1-ms program pulse (active low) to the \overline{PGM} pin with $\overline{CE} = H$, $\overline{OE} = H$. Then, program verification can be performed by setting $\overline{CE} = L$, $\overline{OE} = L$.

If programming is not performed by a one-time program pulse, X times ($X \le 10$) write and verification operations should be executed repeatedly.

(6) Byte write mode

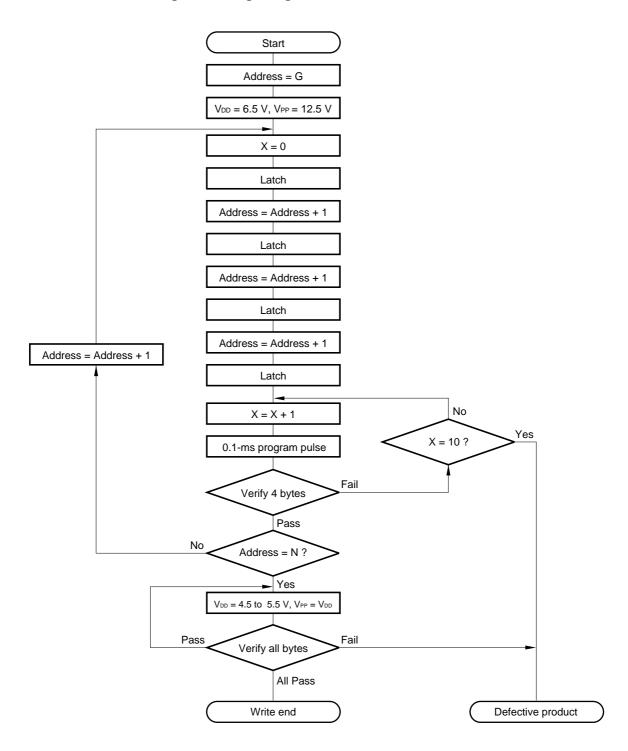
Byte write is executed when a 0.1-ms program pulse (active low) is applied to the \overline{PGM} pin with $\overline{CE} = L$, $\overline{OE} = H$. Then, program verification can be performed by setting $\overline{OE} = L$.

If programming is not performed by a one-time program pulse, X times ($X \le 10$) write and verification operations should be executed repeatedly.

(7) Program verify mode

Program verify mode is set by setting $\overline{CE} = L$, $\overline{PGM} = H$, $\overline{OE} = L$.

In this mode, check if a write operation is performed correctly after the write.

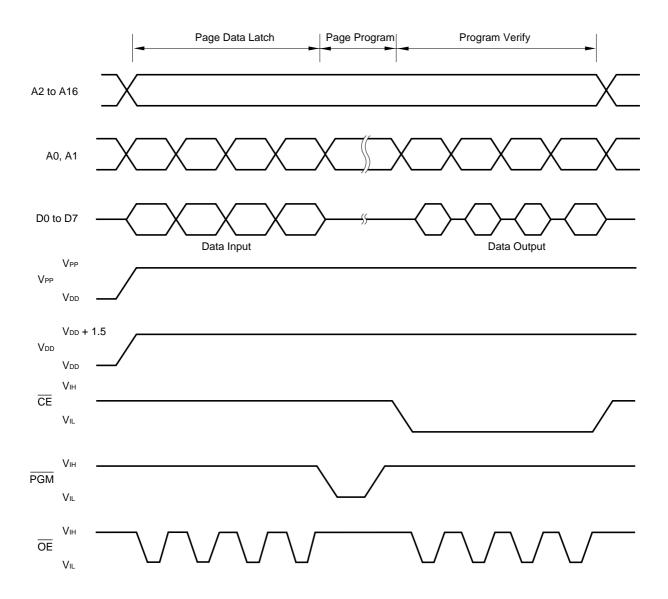

(8) Program inhibit mode

Program inhibit mode is used when the \overline{OE} pin, VPP pin and D0 to D7 pins of multiple μ PD78P078Ys are connected in parallel and a write is performed to one of those devices.

When a write operation is performed, the page write mode or byte write mode described above is used. At this time, a write is not performed to a device which has the $\overline{\text{PGM}}$ pin driven high.

5.2 PROM Write Procedure

Figure 5-1. Page Program Mode Flow Chart


G = Start address

N = Program last address

 μ PD78P078Y

Figure 5-2. Page Program Mode Timing

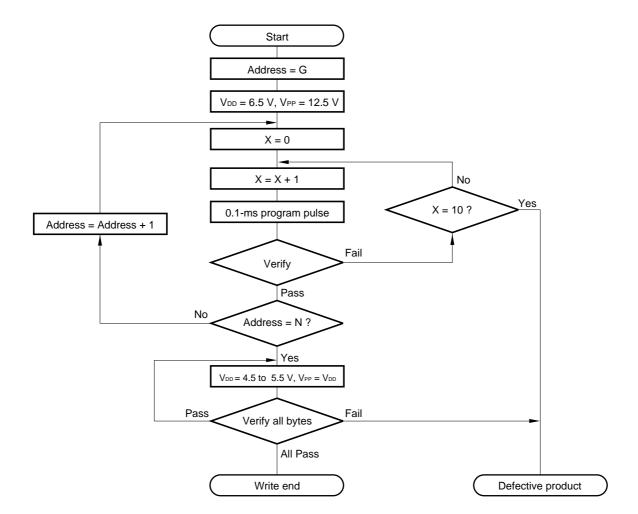


Figure 5-3. Byte Program Mode Flow Chart

G = Start address

N = Program last address

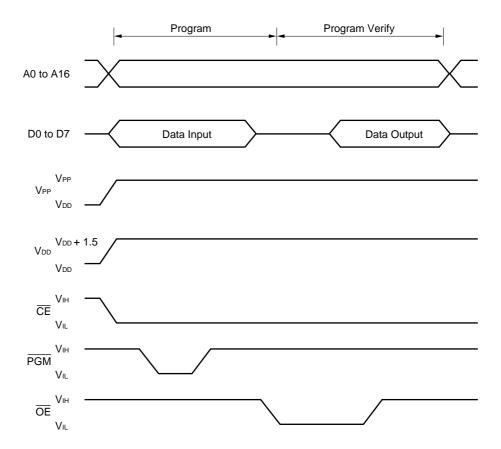
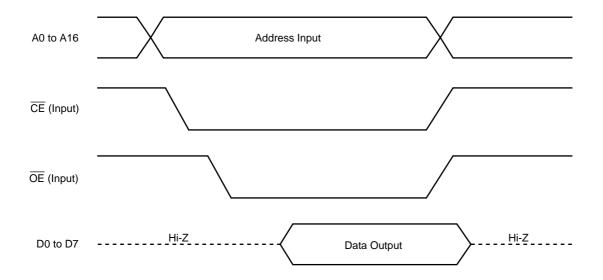


Figure 5-4. Byte Program Mode Timing

- Cautions 1. VDD should be applied before VPP and removed after VPP.
 - 2. $\ensuremath{\text{VPP}}$ must not exceed +13.5 V including overshoot.
 - 3. Reliability may be adversely affected if removal/reinsertion is performed while +12.5 V is being applied to V_{PP} .


5.3 PROM Read Procedure

The contents of PROM are readable to the external data bus (D0 to D7) according to the read procedure shown below.

- (1) Fix the RESET pin at low level, supply +5 V to the VPP pin, and connect all other unused pins as shown in "PIN CONFIGURATIONS (2) PROM programming mode".
- (2) Supply +5 V to the VDD and VPP pins.
- (3) Input address of read data into the A0 to A16 pins.
- (4) Read mode
- (5) Output data to D0 to D7 pins.

The timings of the above steps (2) to (5) are shown in Figure 5-5.

Figure 5-5. PROM Read Timings

6. PROGRAM ERASURE (μPD78P078YKL-T ONLY)

The μ PD78P078YKL-T is capable of erasing the data written in a program memory (to FFH) and rewriting. To erase the programmed data, expose the erasure window to light having a wavelength shorter than about 400 nm. Normally, irradiate ultraviolet rays of 254-nm wavelength. The amount of exposure required to completely erase the programmed data is as follows:

- UV intensity × erasing time: 30 W s/cm² or more
- Erasure time: 40 min. or more (When a UV lamp of 12,000 μ W/cm² is used. However, a longer time may be needed because of deterioration in performance of the UV lamp, soiled erasure window, etc.)

When erasing the contents of data, set up the UV lamp within 2.5 cm from the erasure window. Further, if a filter is provided for a UV lamp, irradiate the ultraviolet rays after removing the filter.

7. OPAQUE FILM ON ERASURE WINDOW (μPD78P078YKL-T ONLY)

To protect from unintentional erasure by rays other than that of the lamp for erasing EPROM contents, or to protect internal circuits other than EPROM from misoperating by rays, cover the erasure window with an opaque film when EPROM contents erasure is not performed.

8. ONE-TIME PROM VERSION SCREENING

The one-time PROM version (μ PD78P078YGC-8EU, 78P078YGF-3BA) cannot be tested completely by NEC before it is shipped, because of its structure. It is recommended to perform screening to verify PROM after writing necessary data and performing high-temperature storage under the condition below.

Storage Temperature	Storage Time
125°C	24 hours

NEC offers for an additional fee services from one-time PROM writing to marking, screening, and verify for products designated as "QTOP Microcontroller". For details, contact an NEC sales representative.

9. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

Parameter	Symbol	Test Conditions		Ratings	Unit	
Supply voltage	V _{DD}				-0.3 to +7.0	V
	V _{PP}				-0.3 to +13.5	V
	AV _{DD}				-0.3 to V _{DD} + 0.3	V
	AV _{REF0}				-0.3 to V _{DD} + 0.3	V
	AV _{REF1}				-0.3 to $V_{DD} + 0.3$	V
	AVss				-0.3 to +0.3	V
Input voltage	VI1	P00 to P07, P10 to P17, P20 to P27,			-0.3 to V _{DD} + 0.3	V
		P30 to P37, P40 to P47	, P50 to P5	7,		
		P64 to P67, P70 to P72	, P80 to P87	7,		
		P94 to P96, P100 to P1	03, P120 to	P127,		
		P130, P131, X1, X2, XT	2, RESET			
	V _{I2}	P60 to P63, P90 to 93	N-ch open	-drain	-0.3 to +16	V
	Vıз	A9	PROM prog	ramming mode	-0.3 to +13.5	V
Output voltage	Vo				-0.3 to V _{DD} + 0.3	V
Analog input voltage	Van	P10 to P17	Analog inp	ut pins	AVss - 0.3 to AVREF0 + 0.3	V
Output current, high	Іон	Per pin			-10	mA
		Total for P30 to P37, P56, P57, P60 to P67,			–15	mA
		P90 to P96, P100 to P103, P120 to P127				
		Total for P01 to P06, P10 to P17, P20 to P27,			-15	mA
		P40 to P47, P50 to P55, P70 to P72,				
		P80 to P87, P130, P131	l			
Output current, low	IOLNote	Per pin		Peak value 30		mA
				r.m.s. value	15	mA
		Total for P50 to P55		Peak value	100	mA
				r.m.s. value	ue 70	
		Total for P56, P57, P60	P56, P57, P60 to P63 Peak value		100	mA
				r.m.s. value	70	mA
		Total for P30 to P37, P6	64 to P67,	Peak value	100	mA
		P90 to P96, P100 to P1	03,	r.m.s. value	70	mA
		P120 to P127	P120 to P127		70	1117
		Total for P20 to P27, P40 to P47, Peak value		Peak value	50	mA
		P80 to P87		r.m.s. value	20	mA
		Total for P01 to P06, P	10 to P17,	Peak value	50	mA
		P70 to P72, P130, P13	<u> </u>	r.m.s. value	20	mA
Operating ambient temperature	TA				-40 to +85	°C
Storage temperature	T _{stg}				-65 to +150	°C

Note The r.m.s. (root mean square) value should be calculated as follows: [r.m.s. value] = [Peak value] $\times \sqrt{\text{Duty}}$

Caution Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The parameters apply independently. The device should be operated within the limits specified under DC and AC Characteristics.

Remark Unless otherwise specified, alternate-function pin characteristics are the same as port pin characteristics.

Capacitance (TA = 25°C, VDD = Vss = 0 V)

Parameter	Symbol	Test	Test Conditions		TYP.	MAX.	Unit
Input capacitance	Cin	f = 1 MHz, Unmeasured pins returned to 0 V.				15	pF
I/O capacitance	Сю	f = 1 MHz,	P01 to P07, P10 to P17,			15	pF
		Unmeasured pins	P20 to P27, P30 to P37,				
		returned to 0 V.	P40 to P47, P50 to P57,				
			P64 to P67, P70 to P72,				
			P80 to P87, P94 to P96,				
			P100 to P103, P120 to P127,				
			P130, P131				
			P60 to P63, P90 to P93			20	pF

Remark Unless otherwise specified, dual-function pin characteristics are the same as port pin characteristics.

Main System Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	VPP X2 X1	Oscillation frequency (fx)Note 1	V _{DD} = Oscillation voltage range	1.0		5.0	MHz
	C2= C1 =	Oscillation stabilization time ^{Note 2}	After VDD came to MIN. of oscillation voltage range			4	ms
Crystal resonator	VPP X2 X1	Oscillation frequency (fx) ^{Note 1}		1.0		5.0	MHz
	C2+ C1+	Oscillation stabilization timeNote 2	V _{DD} = 4.5 to 5.5 V			10 30	ms
External clock	[X2 X1]	X1 input frequency (f _X) ^{Note 1}		1.0		5.0	MHz
	μPD74HCU04	X1 input high- and low-level widths (txH, txL)		85		500	ns

- Notes 1. Only the oscillator characteristics are shown. For the instruction execution time, refer to AC Characteristics.
 - 2. Time required for oscillation to stabilize after a reset or the STOP mode has been released.
- Cautions 1. When using the oscillation circuit of the main system clock, wire the portion enclosed in broken lines in the figures as follows to avoid adverse influences on the wiring capacitance:
 - · Keep the wiring length as short as possible.
 - · Do not cross the wiring over other signal lines.
 - Do not route the wiring in the vicinity of lines through which a high fluctuating current flows.
 - Always keep the ground point of the capacitor of the oscillation circuit at the same potential as Vss.
 - Do not connect the power source pattern through which a high current flows.
 - Do not extract signals from the oscillation circuit.
 - When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Subsystem Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Resonator	Recommended	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
	Circuit						
Crystal	V _{PP} XT2 XT1	Oscillation frequency		32	32.768	35	kHz
resonator		(fxr)Note 1					
	C4 + C3+	Oscillation stabilization	V _{DD} = 4.5 to 5.5 V		1.2	2	S
	///	time ^{Note 2}				10	
External clock	[XT2 XT1]	XT1 input frequency		32		100	kHz
		(f _{XT})Note 1					
	μPD74HCU04	XT1 input high-, low-level		5		15	μs
	\vdash	widths (txтн, txть)					

- Notes 1. Only the oscillator characteristics are shown. For the instruction execution time, refer to AC Characteristics.
 - 2. Time required for oscillation to stabilize after Vpp reaches the minimum value of the oscillation voltage range.
- Cautions 1. When using the oscillation circuit of the subsystem clock, wire the portion enclosed in broken lines in the figures as follows to avoid adverse influences on the wiring capacitance:
 - · Keep the wiring length as short as possible.
 - · Do not cross the wiring over other signal lines.
 - · Do not route the wiring in the vicinity of lines through which a high fluctuating current flows.
 - Always keep the ground point of the capacitor of the oscillation circuit at the same potential as Vss.
 - · Do not connect the power source pattern through which a high current flows.
 - · Do not extract signals from the oscillation circuit.
 - 2. The amplification factor of the subsystem clock oscillator is designed to be low to reduce the current consumption and therefore, the subsystem clock oscillator is influenced by noise more easily than the main system clock oscillator. When using the subsystem clock, therefore, exercise utmost care in wiring the circuit.

 μ PD78P078Y

Recommended Oscillator Constant

Main System Clock : Ceramic Resonator ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

Manufacturer	Part number	Frequency	Recomme	ended circui	t constant	Oscillation v	oltage range	Remarks
			C1 (pF)	C2 (pF)	R1 (kΩ)	MIN. (V)	MAX. (V)	
TDK	CCR1000K2	1.00 MHz	150	150	0	2.0	5.5	On-chip capacitor
	CCR2.0MC3	2.00 MHz	On-chip	On-chip	0	2.0	5.5	On-chip capacitor surface mount type
	CCR4.0MC3	4.00 MHz	On-chip	On-chip	0	2.0	5.5	On-chip capacitor surface mount type
	FCR4.0MC5	4.00 MHz	On-chip	On-chip	0	2.0	5.5	On-chip capacitor insertion type
Murata Mfg.	CSB1000J	1.00 MHz	100	100	5.6	1.8	5.5	Insertion type
Corporation	CSA2.00MG040	2.00 MHz	100	100	0	1.8	5.5	Insertion type
	CST2.00MG040	2.00 MHz	On-chip	On-chip	0	1.8	5.5	On-chip capacitor insertion type
	CSA4.00MG	4.00 MHz	30	30	0	1.8	5.5	Insertion type
	CST4.00MGW	4.00 MHz	On-chip	On-chip	0	1.8	5.5	On-chip capacitor insertion type
	CSA4.00MGU	4.00 MHz	30	30	0	1.8	5.5	Insertion type
	CST4.00MGWU	4.00 MHz	On-chip	On-chip	0	1.8	5.5	On-chip capacitor insertion type

Main System Clock : Ceramic Resonator ($T_A = -20 \text{ to } +80^{\circ}\text{C}$)

Manufacturer	Part number	Frequency	Recomme	ended circui	t constant	Oscillation v	oltage range	Remarks
			C1 (pF)	C2 (pF)	R1 (kΩ)	MIN. (V)	MAX. (V)	
Kyocera	KFR-1000F	1.00 MHz	220	220	0	1.8	5.5	Insertion type
Corporation	PBR-1000Y	1.00 MHz	220	220	0	1.8	5.5	Surface mount type
	KBR-2.0MS	2.00 MHz	82	82	0	1.8	5.5	Insertion type
	KBR-4.0MKC	4.00 MHz	On-chip	On-chip	0	1.8	5.5	On-chip capacitor insertion type
	KBR-4.0MSB	4.00 MHz	33	33	0	1.8	5.5	Insertion type
	PBRC4.00B	4.00 MHz	On-chip	On-chip	0	1.8	5.5	On-chip capacitor surface mount type
	PBRC4.00A	4.00 MHz	33	33	0	1.8	5.5	Surface mount type

Caution The oscillator constant and oscillation voltage range indicate conditions for stable oscillation.

The oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit. For details, please contact directly the manufacturer of the resonator you will use.

DC Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Parameter	Symbol	Test Cond	itions	MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	P10 to P17, P21, P23, P30 to P32, P35 to P37, P40 to P47, P50 to P57,	V _{DD} = 2.7 to 5.5 V	0.7V _{DD}		VDD	V
		P64 to P67, P71, P80 to P87, P94 to P96, P102, P103, P120 to P127, P130, P131		0.8Vpd		VDD	V
	V _{IH2}	P00 to P06, P20, P22, P24 to P27, P33, P34,	V _{DD} = 2.7 to 5.5 V	0.8V _{DD}		V _{DD}	V
		P70, P72, P100, P101, RESET		0.85V _{DD}		V _{DD}	V
	VIH3	P60 to P63, P90 to P93	V _{DD} = 2.7 to 5.5 V	0.7V _{DD}		15	V
		(N-ch open-drain)		0.8Vpp		15	V
	V _{IH4}	X1, X2	V _{DD} = 2.7 to 5.5 V	V _{DD} -0.5		VDD	V
				V _{DD} -0.2		V _{DD}	V
	V _{IH5}	$XT1/P07, XT2$ $4.5 V \le V_{DD} \le 3$		0.8V _{DD}		V _{DD}	V
			2.7 V ≤ V _{DD} < 4.5 V	0.9V _{DD}		V _{DD}	V
			Note	0.9V _{DD}		V _{DD}	V
Input voltage, low	VIL1	P10 to P17, P21, P23, P30 to P32, P35 to P37, P40 to P47, P50 to P57,	V _{DD} = 2.7 to 5.5 V	0	0	0.3Vdd	V
		P64 to P67, P71, P80 to P87, P94 to P96, P102, P103, P120 to P127, P130, P131		0	0	0.2VDD	V
	V _{IL2}	P00 to P06, P20, P22, P24 to P27, P33, P34,	V _{DD} = 2.7 to 5.5 V	0	0).2V _{DD}	V
		P70, P72, P100, P101, RESET		0	0.	.15V _{DD}	V
	V _{IL3}	P60 to P63, P90 to P93	4.5 V ≤ V _{DD} ≤ 5.5 V	0	0	.3VDD	V
		(N-ch open-drain)	2.7 V ≤ V _{DD} < 4.5 V	0	0	.2V _{DD}	V
				0	0	0.1Vdd	V
	V _{IL4}	X1, X2	V _{DD} = 2.7 to 5.5 V	0		0.4	V
				0		0.2	V
	V _{IL5}	XT1/P07, XT2	4.5 V ≤ V _{DD} ≤ 5.5 V	0	0	.2V _{DD}	V
			2.7 V ≤ V _{DD} < 4.5 V	0		0.1Vpd	V
			Note	0).1V _{DD}	V
Output voltage, high	Vон	V _{DD} = 4.5 to 5.5 V, I _{OH} = -		V _{DD} -1.0			V
,		$I_{OH} = -100 \ \mu A$		V _{DD} -0.5			V

Note When used as P07, the reverse phase of P07 should be input to XT2 pin using an inverter.

Remark Unless otherwise specified, alternate-function pin characteristics are the same as port pin characteristics.

DC Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Parameter	Symbol	Test C	Conditions	MIN.	TYP.	MAX.	Unit
Output voltage, low	V _{OL1}	P50 to P57,	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V},$		0.4	2.0	V
		P60 to P63,	IoL = 15 mA				
		P90 to P93					
		P01 to P06,	V _{DD} = 4.5 to 5.5 V,			0.4	V
		P10 to P17,	IoL = 1.6 mA				
		P20 to P27,					
		P30 to P37,					
		P40 to P47,					
		P64 to P67,					
		P70 to P72,					
		P80 to P87,					
		P94 to P96,					
		P100 to P103,					
		P120 to P127, P130,					
		P131					
	V _{OL2}	SB0, SB1, SCK0	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V},$			0.2V _{DD}	V
			open-drain,				
			pulled up (R = 1 k Ω)				
	Vol3	IoL = 400 μA				0.5	V
Input leakage current, high	Ішн1	VIN = VDD	P00 to P06, P10 to P17,			3	μΑ
			P20 to P27, P30 to P37,				
			P40 to P47, P50 to P57,				
			P64 to P67, P70 to P72,				
			P80 to P87, P94 to P96,				
			P100 to P103,				
			P120 to P127,				
			P130, P131, RESET				
	ILIH2		X1, X2, XT1/P07, XT2			20	μΑ
	Ішнз	V _{IN} = 15 V	P60 to P63, P90 to P93			80	μΑ
Input leakage current, low	ILIL1	VIN = 0 V	P00 to P06, P10 to P17,			-3	μΑ
			P20 to P27, P30 to P37,				
			P40 to P47, P50 to P57,				
			P64 to P67, P70 to P72,				
			P80 to P87, P94 to P96,				
			P100 to P103,				
			P120 to P127,				
			P130, P131, RESET				
	ILIL2		X1, X2, XT1/P07, XT2			-20	μΑ
	ILIL3		P60 to P63, P90 to P93			-3 ^{Note}	μΑ
Output leakage current, high	Ісон	Vout = Vdd				3	μΑ
Output leakage current, low	ILOL	Vout = 0 V				-3	μΑ

Note The value is $-200 \,\mu\text{A}$ (MAX.) only for 1.5 clock cycles (no wait) when read-out instruction is executed to port 6 (P6), port mode register 6 (PM6), port 9 (P9) and port mode register 9 (PM9). For cases other than the 1.5 clock cycles of read-out instruction execution, the value is $-3 \,\mu\text{A}$ (MAX.).

Remark Unless otherwise specified, alternate-function pin characteristics are the same as port pin characteristics.

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Test Cor	ditions	MIN.	TYP.	MAX.	Unit
Software pull-up resistorNote 1	R	V _{IN} = 0 V, P10 to P17,	4.5 V ≤ V _{DD} ≤ 5.5 V	15	40	90	kΩ
		P20 to P27, P30 to P37,	2.7 V ≤ V _{DD} < 4.5 V	20		500	kΩ
		P40 to P47, P50 to P57,					
		P64 to P67, P70 to P72,					
		P80 to P87, P94 to P96,					
		P100 to P103, P120 to					
		P127, P130, P131					
Supply currentNote 2	I _{DD1}	5.0-MHz crystal oscilla-	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 6}}$		5.4	16.2	mA
		tion operating mode	V _{DD} = 3.0 V ± 10% ^{Note 7}		0.8	2.4	mA
		$(fxx = 2.5 \text{ MHz})^{\text{Note 3}}$	V _{DD} = 2.2 V ± 10% ^{Note 7}		0.45	1.35	mA
		5.0-MHz crystal oscilla-	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 6}}$		9.5	28.5	mA
		tion operating mode	V _{DD} = 3.0 V ± 10% ^{Note 7}		1.0	3.0	mA
		(fxx = 5.0 MHz) ^{Note 4}					
	I _{DD2}	5.0 MHz crystal oscilla-	V _{DD} = 5.0 V ± 10%		1.4	4.2	mA
		tion HALT mode	V _{DD} = 3.0 V ± 10%		0.5	1.5	mA
		(fxx = 2.5 MHz) ^{Note 3}	V _{DD} = 2.0 V ± 10%		280	840	μΑ
		5.0 MHz crystal oscilla-	V _{DD} = 5.0 V ± 10%		1.6	4.8	mA
		tion HALT mode	V _{DD} = 3.0 V ± 10%		0.65	1.95	mA
		(fxx = 5.0 MHz)Note 4					
	IDD3	32.768-kHz	V _{DD} = 5.0 V ± 10%		135	270	μΑ
		crystal oscillation	V _{DD} = 3.0 V ± 10%		95	190	μΑ
		operating modeNote 5	V _{DD} = 2.0 V ± 10%		70	140	μΑ
	I _{DD4}	32.768-kHz	V _{DD} = 5.0 V ± 10%		25	55	μΑ
		crystal oscillation	V _{DD} = 3.0 V ± 10%		5	15	μΑ
		HALT modeNote 5	V _{DD} = 2.0 V ± 10%		2.5	12.5	μΑ
	I _{DD5}	XT1 = VDD	V _{DD} = 5.0 V ± 10%		1	30	μΑ
		STOP mode	V _{DD} = 3.0 V ± 10%		0.5	10	μΑ
		Feedback resistor used	V _{DD} = 2.0 V ± 10%		0.3	10	μΑ
	I _{DD6}	XT1 = V _{DD}	V _{DD} = 5.0 V ± 10%		0.1	30	μΑ
		STOP mode	V _{DD} = 3.0 V ± 10%		0.05	10	μΑ
		Feedback resistor not	V _{DD} = 2.0 V ± 10%		0.05	10	μΑ
		used					

Notes 1. Software pull-up resistor can be used only within a range of V_{DD} = 2.7 to 5.5 V.

- 2. Supply current flowing to the VDD pin. It excludes the current flowing to the A/D, D/A converters and onchip pull-up resistors.
- 3. fxx = fx/2 operation (when oscillation mode selection register (OSMS) is set to 00H).
- **4.** fxx = fx operation (when OSMS is set to 01H).
- 5. When the main system clock is stopped.
- 6. High-speed mode operation (when processor clock control register (PCC) is set to 00H).
- 7. Low-speed mode operation (when PCC is set to 04H).

Remarks 1. Unless otherwise specified, alternate-function pin characteristics are the same as port pin characteristics.

- 2. fxx: Main system clock frequency (fx or fx/2)
- 3. fx: Main system clock oscillation frequency

AC Characteristics

(1) Basic Operation ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol		Test Condition	ons	MIN.	TYP.	MAX.	Unit
Cycle time	Тсч	Operating on	$fxx = fx/2^{\text{Note 1}}$	V _{DD} = 2.7 to 5.5 V	0.8		64	μs
(minimum instruction execution		main system			2.0		64	μs
time)		clock	$f_{XX} = f_{X}^{Note 2}$	$3.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0.4		32	μs
				2.7 V ≤ V _{DD} < 3.5 V	0.8		32	μs
		Operating on s	subsystem clod	ck	40	122	125	μs
TI00 input high-/low-level	t тіноо,	3.5 V ≤ V _{DD} ≤	5.5 V		2/fsam+0.1Note 3			μs
widths	t TILOO	2.7 V ≤ V _{DD} <	3.5 V		2/fsam+0.2 ^{Note 3}			μs
					2/fsam+0.5 ^{Note 3}			μs
TI01 input high-/low-level	t тіно1,	V _{DD} = 2.7 to 5.	.5 V		10			μs
widths	tTIL01				20			μs
TI1, TI2, TI5, TI6 input	f _{Tl1}	V _{DD} = 4.5 to 5.	.5 V		0		4	MHz
frequency					0		275	kHz
TI1, TI2, TI5, TI6 input high-/	t⊤ıнı,	V _{DD} = 4.5 to 5.	.5 V		100			ns
low-level widths	t _{TIL1}				1.8			μs
Interrupt request input high-/	tinth,	INTP0		$3.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	2/fsam+0.1 ^{Note 3}			μs
low-level widths	tintl			$2.7 \text{ V} \leq \text{V}_{DD} < 3.5 \text{ V}$	2/fsam+0.2 ^{Note 3}			μs
					2/fsam+0.5 ^{Note 3}			μs
		INTP1 to INTF	P6,	V _{DD} = 2.7 to 5.5 V	10			μs
		P40 to P47			20			μs
RESET low-level width	trsl	V _{DD} = 2.7 to 5.	.5 V	•	10			μs
					20			μs

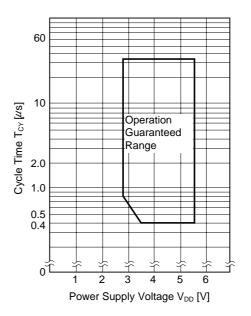
Notes 1. When oscillation mode selection register (OSMS) is set to 00H.

- 2. When OSMS is set to 01H.
- 3. f_{sam} can be selected as $f_{xx}/2^N$, $f_{xx}/32$, $f_{xx}/64$ or $f_{xx}/128$ (N = 0 to 4) by bits 0 and 1 (SCS0, SCS1) of the sampling clock selection register (SCS).

Remark fxx: Main system clock frequency (fx or fx/2)

fx: Main system clock oscillation frequency

NEC μ PD78P078Y


Tcy vs. V_{DD}
(Main System Clock fxx = fx/2 Operation)

60
Operation
Guaranteed Range

2.0
0.5
0.4
0 1 2 3 4 5 6

Power Supply Voltage V_{DD} [V]

Tcy vs. V_{DD}
(Main System Clock fxx = fx Operation)

(2) Read/Write Operation

(a) When MCS = 1, PCC2 to PCC0 = 000B ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level width	t ASTH		0.85tcy - 50		ns
Address setup time	tads		0.85tcy - 50		ns
Address hold time	tadh		50		ns
Address → Data input time	tadd1			(2.85 + 2n) tcy - 80	ns
	tADD2			(4 + 2n) tcy - 100	ns
$\overline{RD} \downarrow \to Data$ input time	trdd1			(2 + 2n) tcy - 100	ns
	trdd2			(2.85 + 2n) tcy - 100	ns
Read data hold time	t RDH		0		ns
RD low-level width	trdL1		(2 + 2n) tcy - 60		ns
	tRDL2		(2.85 + 2n) tcy - 60		ns
$\overline{RD} \downarrow \to \overline{WAIT} \downarrow input\ time$	trdwT1			0.85tcy - 50	ns
	trdwt2			2tcy - 60	ns
$\overline{WR} \downarrow \to \overline{WAIT} \downarrow input\ time$	twrwt			2tcy - 60	ns
WAIT low-level width	twTL		(1.15 + 2n) tcy	(2 + 2n) tcy	ns
Write data setup time	twos		(2.85 + 2n) tcy - 100		ns
Write data hold time	twoH	load resistance $\geq 5 \text{ k}\Omega$	20		ns
WR low-level width	twrl		(2.85 + 2n) tcy - 60		ns
$ASTB \downarrow \to \overline{RD} \downarrow delay \ time$	tastrd		25		ns
ASTB $\downarrow \rightarrow \overline{WR} \downarrow delay$ time	tastwr		0.85tcy + 20		ns
In external fetch $\overline{RD} \uparrow \to$	trdast		0.85tcy - 10	1.15tcy + 20	ns
ASTB ↑ delay time					
In external fetch $\overline{RD} \uparrow \to$	trdadh		0.85tcy - 50	1.15tcy + 50	ns
address hold time					
$\overline{RD} \uparrow \to write \ data \ output \ time$	trdwd		40		ns
$\overline{ m WR} \downarrow ightarrow m write$ data output time	twrwd		0	50	ns
$\overline{ m WR} \uparrow ightarrow$ address hold time	twradh		0.85tcy - 20	1.15tcy + 40	ns
$\overline{\text{WAIT}} \uparrow \to \overline{\text{RD}} \uparrow \text{delay time}$	twtrd		1.15tcy + 40	3.15tcy + 40	ns
$\overline{WAIT} \uparrow \to \overline{WR} \uparrow delay time$	twrwr		1.15tcy + 30	3.15tcy + 30	ns

Remarks 1. MCS: Bit 0 of the oscillation mode selection register (OSMS)

2. PCC2 to PCC0: Bit 2 to bit 0 of the processor clock control register (PCC)

3. tcy = Tcy/4

4. n indicates the number of waits.

(b) Except When MCS = 1, PCC2 to PCC0 = 000B ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		tcy - 80		ns
Address setup time	tads		tcy - 80		ns
Address hold time	tadh		0.4tcy - 10		ns
Address → Data input time	tADD1			(3 + 2n) tcy - 160	ns
	tADD2			(4 + 2n) tcy - 200	ns
$\overline{RD} \downarrow \to Data$ input time	trdd1			(1.4 + 2n) tcy - 70	ns
	tRDD2			(2.4 + 2n) tcy - 70	ns
Read data hold time	trdh		0		ns
RD low-level width	trdL1		(1.4 + 2n) tcy - 20		ns
	tRDL2		(2.4 + 2n) tcy - 20		ns
$\overline{RD} \downarrow \to \overline{WAIT} \downarrow input\ time$	trdwt1			tcy - 100	ns
	trdwt2			2tcy - 100	ns
$\overline{WR} \downarrow \to \overline{WAIT} \downarrow input\ time$	twrwt			2tcy - 100	ns
WAIT low-level width	twtL		(1 + 2n) tcy	(2 + 2n) tcy	ns
Write data setup time	twos		(2.4 + 2n) tcy - 60		ns
Write data hold time	twdн	load resistance $\geq 5 \text{ k}\Omega$	20		ns
WR low-level width	twrL		(2.4 + 2n) tcy - 20		ns
$ASTB \downarrow \to \overline{RD} \downarrow delay \ time$	tastrd		0.4tcy - 30		ns
$ASTB \downarrow \to \overline{WR} \downarrow delay \; time$	tastwr		1.4tcy - 30		ns
In external fetch $\overline{RD} \uparrow \to$	trdast		tcy - 10	tcy + 20	ns
ASTB ↑ delay time					
In external fetch $\overline{RD} \uparrow \to$	trdadh		tcy - 80	tcy + 50	ns
address hold time					
$\overline{RD} \uparrow \to write \ data \ output \ time$	trdwd		0.4tcy - 30		ns
$\overline{ m WR} \downarrow ightarrow m write$ data output time	twrwd		0	60	ns
$\overline{ m WR} \uparrow ightarrow$ address hold time	twradh		tcy - 60	tcy + 60	ns
$\overline{\text{WAIT}} \uparrow \to \overline{\text{RD}} \uparrow \text{delay time}$	twtrd		0.6tcy + 180	2.6tcy + 180	ns
$\overline{\text{WAIT}} \uparrow \rightarrow \overline{\text{WR}} \uparrow \text{delay time}$	twtwr		0.6tcy + 120	2.6tcy + 120	ns

- Remarks 1. MCS: Bit 0 of the oscillation mode selection register (OSMS)
 - 2. PCC2 to PCC0: Bit 2 to bit 0 of the processor clock control register (PCC)
 - 3. tcy = Tcy/4
 - 4. n indicates the number of waits.

(3) Serial Interface ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

(a) Serial Interface Channel 0

(i) 3-wire serial I/O mode (SCK0 ··· internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcY1	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7 V	3200			ns
			4800			ns
SCK0 high-/low-level width	t кн1,	V _{DD} = 4.5 to 5.5 V	tксү1/2-50			ns
	t _{KL1}		tксү1/2-100			ns
SI0 setup time	tsıĸ1	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
(to SCK0 ↑)		2.7 V ≤ V _{DD} < 4.5 V	150			ns
		2.0 V ≤ V _{DD} < 2.7 V	300			ns
			400			ns
SI0 hold time	tksi1		400			ns
(from SCK0 ↑)						
SCK0 ↓ → SO0	tkso1	C = 100 pF ^{Note}			300	ns
output delay time						

Note C is the SO0 output line load capacitance.

(ii) 3-wire serial I/O mode (SCK0 ··· external clock input)

Parameter	Symbol	Tes	st Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy2	4.5 V ≤ V _{DD} ≤ 5.5 \	J	800			ns
		2.7 V ≤ V _{DD} < 4.5 \	J	1600			ns
		2.0 V ≤ V _{DD} < 2.7 \	2.0 V ≤ V _{DD} < 2.7 V				ns
							ns
SCK0 high-/low-level width	t KH2,	4.5 V ≤ V _{DD} ≤ 5.5 \	J	400			ns
	t _{KL2}	2.7 V ≤ V _{DD} < 4.5 \	J	800			ns
		2.0 V ≤ V _{DD} < 2.7 \	J	1600			ns
							ns
SI0 setup time	tsik2	V _{DD} = 2.0 to 5.5 V		100			ns
(to SCK0 ↑)				150			ns
SI0 hold time	tksi2			400			ns
(from SCK0 ↑)							
SCK0 ↓ → SO0	tkso2	C = 100 pF ^{Note}	V _{DD} = 2.0 to 5.5 V			300	ns
output delay time						500	ns
SCK0 rise, fall time	t _{R2} ,	When using extern	al device expansion			160	ns
	t _{F2}	function					
		When not using ex	When not using external device			1000	ns
		expansion function	ı				

Note C is the SO0 output line load capacitance.

(iii) 2-wire serial I/O mode (SCKO ··· internal clock output)

Parameter	Symbol	Test C	onditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксүз	$R = 1 k\Omega$,	2.7 V ≤ V _{DD} ≤ 5.5 V	1600			ns
		C = 100 pF ^{Note}	2.0 V ≤ V _{DD} < 2.7 V	3200			ns
				4800			ns
SCK0 high-level width	tкнз		V _{DD} = 2.7 to 5.5 V	tксүз/2-160			ns
				tксүз/2-190			ns
SCK0 low-level width	tкLз		V _{DD} = 4.5 to 5.5 V	tксүз/2-50			ns
				tксүз/2-100			ns
SB0, SB1 setup time	tsik3		4.5 V ≤ V _{DD} ≤ 5.5 V	300			ns
(to SCK0 ↑)			2.7 V ≤ V _{DD} < 4.5 V	350			ns
			2.0 V ≤ V _{DD} < 2.7 V	400			ns
				500			ns
SB0, SB1 hold time	tksi3			600			ns
(from SCK0 ↑)							
SCK0 ↓ → SB0, SB1	tкsоз			0		300	ns
output delay time							

 $\textbf{Note} \quad \text{R and C are the } \overline{\text{SCK0}}, \, \text{SB0}, \, \text{SB1 output line load resistance and load capacitance}.$

(iv) 2-wire serial I/O mode ($\overline{\text{SCK0}}$... external clock input)

Parameter	Symbol	Test C	onditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy4	2.7 V ≤ V _{DD} ≤ 5.5	V	1600			ns
		2.0 V ≤ V _{DD} < 2.7	V	3200			ns
				4800			ns
SCK0 high-level width	t кн4	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5$	2.7 V ≤ V _{DD} ≤ 5.5 V				ns
		2.0 V ≤ V _{DD} < 2.7	V	1300			ns
							ns
SCK0 low-level width	tĸL4	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5$	V	800			ns
		2.0 V ≤ V _{DD} < 2.7	V	1600			ns
				2400			ns
SB0, SB1 setup time	tsik4	V _{DD} = 2.0 to 5.5 V	,	100			ns
(to SCK0 ↑)				150			ns
SB0, SB1 hold time	tksi4			tkcy4/2			ns
(from SCK0 ↑)							
$\overline{\text{SCK0}} \downarrow \rightarrow \text{SB0, SB1}$	tkso4	$R = 1 k\Omega$,	4.5 V ≤ V _{DD} ≤ 5.5 V	0		300	ns
output delay time		C = 100 pF ^{Note}	2.0 V ≤ V _{DD} < 4.5 V	0		500	ns
						800	ns
SCK0 rise, fall time	t _{R4} ,	When using exter	nal device expansion			160	ns
	t _{F4}	function					
		When not using e	xternal device			1000	ns
		expansion functio	n				

 $\textbf{Note} \quad \text{R and C are the SB0, SB1 output line load resistance and load capacitance}.$

(v) I2C bus mode (SCL ... internal clock output)

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCL cycle time	tkcy5	$R = 1 k\Omega$,	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	10			μs
		C = 100 pF ^{Note}	2.0 V ≤ V _{DD} < 2.7 V	20			μs
				30			μs
SCL high-level width	t кн5		V _{DD} = 2.7 to 5.5 V	tксү5-160			ns
				tксү5-190			ns
SCL low-level width	t _{KL5}		V _{DD} = 4.5 to 5.5 V	tксү5-50			ns
				tксү5-100			ns
SDA0, SDA1 setup time	tsik5		2.7 V ≤ V _{DD} ≤ 5.5 V	200			ns
(to SCL↑)			$2.0 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	300			ns
				400			ns
SDA0, SDA1 hold time	tksi5			0			ns
(from SCL↓)							
SCL↓→SDA0, SDA1	tks05		$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	0		300	ns
output delay time			$2.0 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	0		500	ns
				0		600	ns
SCL↑→SDA0, SDA1↓	tksB			200			ns
or							
SCL↑→ SDA0, SDA1↑							
SDA0, SDA1↓→SCL↓	tsвк		V _{DD} = 2.0 to 5.5 V	400			ns
				500			ns
SDA0, SDA1 high level width	tsвн			500			ns

Note R and C are the SCL, SDA0, SDA1 output line load resistance and load capacitance.

(vi) I2C bus mode (SCL ... external clock input)

Parameter	Symbol	Test	Conditions	MIN.	TYP.	MAX.	Unit
SCL cycle time	t ксү6			1000			ns
SCL high-/low-level width	t кн6,	$V_{DD} = 2.0 \text{ to } 5.5$	V	400			ns
	t _{KL6}			600			ns
SDA0, SDA1 setup time	tsik6	$V_{DD} = 2.0 \text{ to } 5.5$	V _{DD} = 2.0 to 5.5 V				ns
(to SCL↑)				300			ns
SDA0, SDA1 hold time	tksi6			0			ns
(from SCL↓)							
SCL↓→SDA0, SDA1	tkso6	$R = 1 k\Omega$,	4.5 V ≤ V _{DD} ≤ 5.5 V	0		300	ns
output delay time		C = 100 pF ^{Note}	2.0 V ≤ V _{DD} < 4.5 V	0		500	ns
				0		600	ns
SCL↑→SDA0, SDA1↓	tкsв			200			ns
or							
SCL↑→SDA0, SDA1↑							
SDA0, SDA1↓→SCL↓	tsвк	$V_{DD} = 2.0 \text{ to } 5.5$	V	400			ns
				500			ns
SDA0, SDA1 high-level	tsвн	$V_{DD} = 2.0 \text{ to } 5.5$	V	500			ns
width				800			ns
SCL rise, fall time	t _{R6} ,	When using externa	al device expansion function			160	ns
	t _{F6}	When not using exter	rnal device expansion function			1000	ns

Note R and C are the SDA0, SDA1 output line load resistance and load capacitance.

(b) Serial Interface Channel 1

(i) 3-wire serial I/O mode (SCK1 ··· internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	t ксү7	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7 V	3200			ns
			4800			ns
SCK1 high-/low-level width	t кн7,	V _{DD} = 4.5 to 5.5 V	tксүт/2-50			ns
	t _{KL7}		tксүл/2-100			ns
SI1 setup time	tsık7	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
(to SCK1 ↑)		2.7 V ≤ V _{DD} < 4.5 V	150			ns
		2.0 V ≤ V _{DD} < 2.7 V	300			ns
			400			ns
SI1 hold time	tksi7		400			ns
(from $\overline{SCK1} \uparrow$)						
SCK1 ↓ → SO1	tkso7	C = 100 pF ^{Note}			300	ns
output delay time						

Note C is the SO1 output line load capacitance.

(ii) 3-wire serial I/O mode (SCK1 ··· external clock input)

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkcy8	4.5 V ≤ V _{DD} ≤ 5.5 V	/	800			ns
		2.7 V ≤ V _{DD} < 4.5 \	/	1600			ns
		2.0 V ≤ V _{DD} < 2.7 \	/	3200			ns
							ns
SCK1 high-/low-level width	tĸн8,	4.5 V ≤ V _{DD} ≤ 5.5 V	4.5 V ≤ V _{DD} ≤ 5.5 V				ns
	t _{KL8}	2.7 V ≤ V _{DD} < 4.5 \	2.7 V ≤ V _{DD} < 4.5 V				ns
		2.0 V ≤ V _{DD} < 2.7 \	2.0 V ≤ V _{DD} < 2.7 V				ns
				2400			ns
SI1 setup time	tsik8	V _{DD} = 2.0 to 5.5 V		100			ns
(to SCK1 ↑)				150			ns
SI1 hold time	tksi8			400			ns
(from SCK1 ↑)							
SCK1 ↓ → SO1	tkso8	C = 100 pF ^{Note}	V _{DD} = 2.0 to 5.5 V			300	ns
output delay time						500	ns
SCK1 rise, fall time	t _{R8} ,	When using external device expansion				160	ns
	t _{F8}	function					
		When not using ex			1000	ns	
		expansion function					

Note C is the SO1 output line load capacitance.

(iii) 3-wire serial I/O mode with automatic transmission/reception function (SCK1 ... internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkCY9	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7 V	3200			ns
			4800			ns
SCK1 high-/low-level width	tкнэ,	V _{DD} = 4.5 to 5.5 V	tkcy9/2-50			ns
	tĸL9		tксү9/2-100			ns
SI1 setup time	tsik9	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
(to SCK1 ↑)		2.7 V ≤ V _{DD} < 4.5 V	150			ns
		2.0 V ≤ V _{DD} < 2.7 V	300			ns
			400			ns
SI1 hold time	tksi9		400			ns
(from SCK1 ↑)						
SCK1 ↓ → SO1	tkso9	C = 100 pF ^{Note}			300	ns
output delay time						
$\overline{SCK1} \uparrow \to STB \uparrow$	tsbd		tксү9/2-100		tксү9/2+100	ns
Strobe signal	tssw	2.7 V ≤ V _{DD} ≤ 5.5 V	tксү9-30		tксү9+30	ns
high-level width		2.0 V ≤ V _{DD} < 2.7 V	tксү9-60		tксү9+60	ns
			tксү9-90		tксү9+90	ns
Busy signal setup time	tBYS		100			ns
(to busy signal detection timing)						
Busy signal hold time	tвүн	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
(from busy signal detection		2.7 V ≤ V _{DD} < 4.5 V	150			ns
timing)		2.0 V ≤ V _{DD} < 2.7 V	200			ns
			300			ns
Busy inactive \rightarrow $\overline{\text{SCK1}}$ \downarrow	tsps				21ксү9	ns

Note C is the SO1 output line load capacitance.

(iv) 3-wire serial I/O mode with automatic transmission/reception function (SCK1 ··· external clock input)

Parameter	Symbol	Test C	onditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tKCY10	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5$	V	800			ns
		2.7 V ≤ V _{DD} < 4.5	V	1600			ns
		2.0 V ≤ V _{DD} < 2.7	V	3200			ns
							ns
SCK1 high-/low-level width	t кн10,	4.5 V ≤ V _{DD} ≤ 5.5	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$				ns
	t _{KL10}	2.7 V ≤ V _{DD} < 4.5	2.7 V ≤ V _{DD} < 4.5 V				ns
		2.0 V ≤ V _{DD} < 2.7	2.0 V ≤ V _{DD} < 2.7 V				ns
							ns
SI1 setup time	tsik10	V _{DD} = 2.0 to 5.5 V		100			ns
(to SCK1 ↑)				150			ns
SI1 hold time	t KSI10			400			ns
(from SCK1 ↑)							
SCK1 ↓ → SO1	t KSO10	C = 100 pF ^{Note}	V _{DD} = 2.0 to 5.5 V			300	ns
output delay time						500	ns
SCK1 rise, fall time	t R10,	When using external device expansion				160	ns
	t _{F10}	function					
		When not using ex			1000	ns	
		expansion function	ı				

Note C is the SO1 output line load capacitance.

(c) Serial Interface Channel 2

(i) 3-wire serial I/O mode (SCK2 ··· internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	tkcY11	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7 V	3200			ns
			4800			ns
SCK2 high-/low-level width	t KH11,	V _{DD} = 4.5 to 5.5 V	tkcy11/2-50			ns
	t _{KL11}		tkcy11/2-100			ns
SI2 setup time	tsik11	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	100			ns
(to SCK2 ↑)		2.7 V ≤ V _{DD} < 4.5 V	150			ns
		2.0 V ≤ V _{DD} < 2.7 V	300			ns
			400			ns
SI2 hold time	t KSI11		400			ns
(from SCK2 ↑)						
SCK2 ↓ → SO2	tks011	C = 100 pF ^{Note}			300	ns
output delay time						

Note C is the SO2 output line load capacitance.

(ii) 3-wire serial I/O mode (SCK2 ··· external clock input)

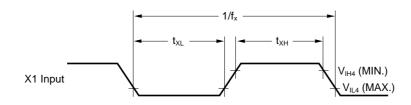
Parameter	Symbol	Test C	onditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	tKCY12	4.5 V ≤ V _{DD} ≤ 5.5	V	800			ns
		2.7 V ≤ V _{DD} < 4.5	V	1600			ns
		2.0 V ≤ V _{DD} < 2.7	V	3200			ns
				4800			ns
SCK2 high-/low-level width	t кн12,	4.5 V ≤ V _{DD} ≤ 5.5	V	400			ns
	t _{KL12}	2.7 V ≤ V _{DD} < 4.5	V	800			ns
		2.0 V ≤ V _{DD} < 2.7	2.0 V ≤ V _{DD} < 2.7 V				ns
				2400			ns
SI2 setup time	tsik12	V _{DD} = 2.0 to 5.5 V	,	100			ns
(to SCK2 ↑)				150			ns
SI2 hold time	tksi12			400			ns
(from SCK2 ↑)							
$\overline{SCK2} \downarrow \to SO2$	t KSO12	C = 100 pF ^{Note}	V _{DD} = 2.0 to 5.5 V			300	ns
output delay time						500	ns
SCK2 rise, fall time	t _{R12} ,	V _{DD} = 4.5 to 5.5 V				1000	ns
	t F12	When not using external device					
		expansion function	expansion function				
						160	ns

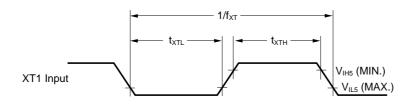
 $\begin{tabular}{ll} \textbf{Note} & C is the SO2 output line load capacitance. \end{tabular}$

(iii) UART mode (Dedicated baud rate generator output)

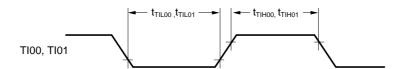
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		4.5 V ≤ V _{DD} ≤ 5.5 V			78125	bps
		2.7 V ≤ V _{DD} < 4.5 V			39063	bps
		2.0 V ≤ V _{DD} < 2.7 V			19531	bps
					9766	bps

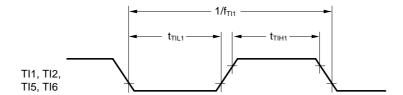
(iv) UART mode (External clock input)


Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	t KCY13	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7 V	3200			ns
			4800			ns
ASCK high-/low-level width	t кн13,	4.5 V ≤ V _{DD} ≤ 5.5 V	400			ns
	t _{KL13}	2.7 V ≤ V _{DD} < 4.5 V	800			ns
		2.0 V ≤ V _{DD} < 2.7 V	1600			ns
			2400			ns
Transfer rate		4.5 V ≤ V _{DD} ≤ 5.5 V			39063	bps
		2.7 V ≤ V _{DD} < 4.5 V			19531	bps
		2.0 V ≤ V _{DD} < 2.7 V			9766	bps
					6510	bps
ASCK rise, fall time	t _{R13} ,	V _{DD} = 4.5 to 5.5 V			1000	ns
	t F13	When not using external device				
		expansion function				
					160	ns

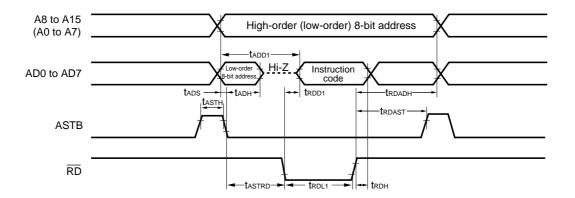

NEC μ PD78P078Y

AC Timing Test Point (Excluding X1, XT1 Input)

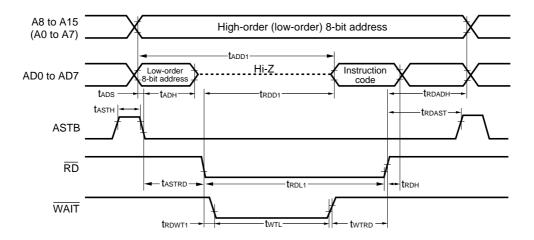



Clock Timing

TI Timing

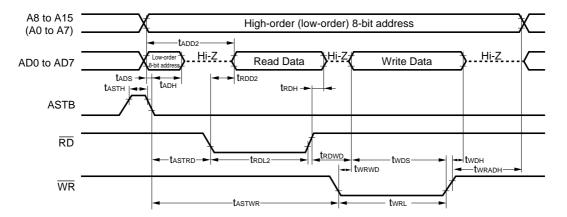


μ**PD78P078Y**

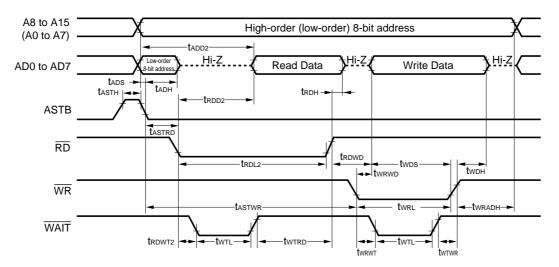

Read/Write Operation

External fetch (no wait):

Remark () is effective only in separate bus mode.


External fetch (wait insertion):

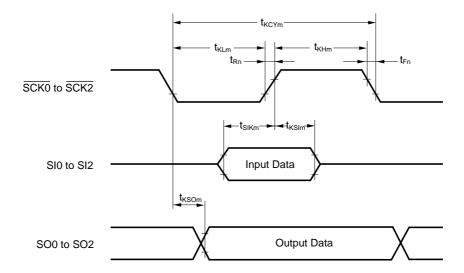
Remark () is effective only in separate bus mode.



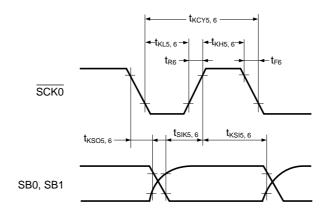
External data access (no wait):

Remark () is effective only in separate bus mode.

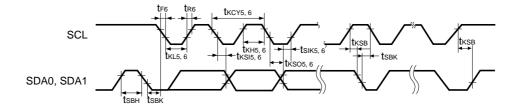
External data access (wait insertion):



Remark () is effective only in separate bus mode.

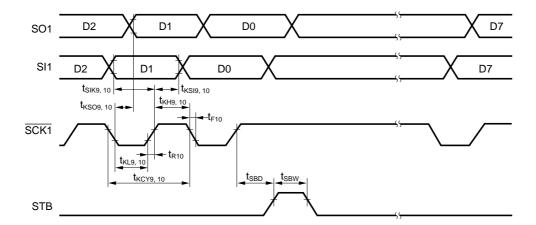

Serial Transfer Timing

3-wire serial I/O mode:

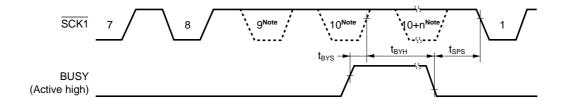


Remark m = 1, 2, 7, 8, 11, 12n = 2, 8, 12

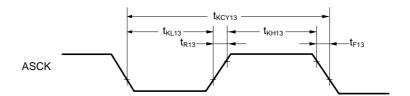
2-wire serial I/O mode:



I²C bus mode



3-wire serial I/O mode with automatic transmission/reception function:



3-wire serial I/O mode with automatic transmission/reception function (busy processing):

Note The signal is not actually low here, but is represented in this way to show the timing.

UART mode (external clock input):

A/D Converter Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $AV_{DD} = V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$, $AV_{SS} = V_{SS} = 0 \text{ V}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Total error ^{Note}		2.7 V ≤ AV _{REF0} ≤ AV _{DD}			1.4	%
Conversion time	tconv		19.1		200	μs
Sampling time	t SAMP		12/f _{xx}			μs
Analog input voltage	VIAN		AVss		AV _{REF0}	V
Reference voltage	AV _{REF0}		2.7		AVDD	V
AVREFO to AVss resistance	RAIREFO		4			kΩ

Note Excluding quantization error (±1/2 LSB). Shown as a percentage of the full scale value.

Remark fxx: Main system clock frequency (fx or fx/2)

fx: Main system clock oscillation frequency

D/A Converter Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$, $AV_{SS} = V_{SS} = 0 \text{ V}$)

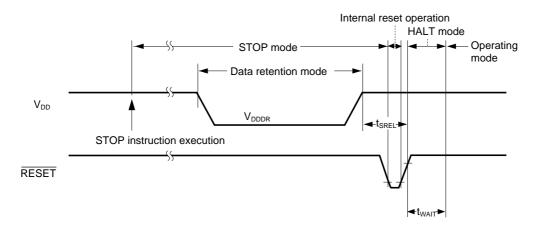
Parameter	Symbol	Te	st Conditions	MIN.	TYP.	MAX.	Unit
Resolution						8	bit
Total error		$R = 2 M\Omega^{Note 1}$	$R = 2 M\Omega^{\text{Note 1}}$			1.2	%
		$R = 4 M\Omega^{Note 1}$	= 4 MΩ ^{Note 1}			0.8	%
		$R = 10 \text{ M}\Omega^{\text{Note}}$	= 10 MΩ ^{Note 1}			0.6	%
Settling time		C = 30 pFNote 1	4.5 V ≤ AV _{REF1} ≤ 5.5 V			10	μs
			2.7 V ≤ AVREF1 < 4.5 V			15	μs
			1.8 V ≤ AVREF1 < 2.7 V			20	μs
Output resistor	Ro	Note 2			10		kΩ
Analog reference voltage	AV _{REF1}			1.8		V _{DD}	V
AVREF1 to AVss resistance	RAIREF1	DACSO, DACS	S1 = 55H ^{Note 2}	4	8		kΩ

Notes 1. R and C are the D/A converter output pin load resistance and load capacitance.

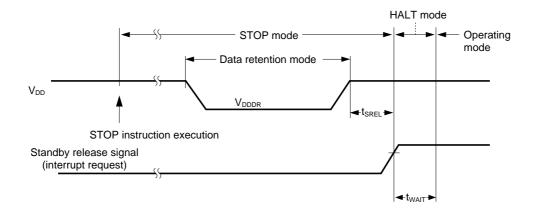
2. Value for one D/A converter channel.

Remark DACS0, DACS1: D/A conversion value setting register 0, 1

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = -40 to +85°C)

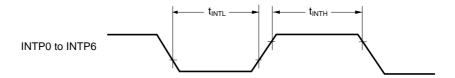

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.8		5.5	V
Data retention supply current	Idddr	VDDDR = 1.8 V		0.1	10	μΑ
		When subsystem clock stopped and				
		feedback resistor disconnected				
Release signal setup time	tsrel		0			μs
Oscillation stabilization wait	twait	Release by RESET		2 ¹⁷ /f _x		ms
time		Release by interrupt		Note		ms

Note 2¹²/fxx or 2¹⁴/fxx to 2¹⁷/fxx can be selected by bit 0 to bit 2 (OSTS0 to OSTS2) of oscillation stabilization time selection register.

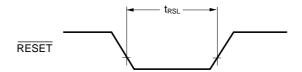

Remark fxx: Main system clock frequency (fx or fx/2)

fx: Main system clock oscillation frequency

Data Retention Timing (STOP mode released by RESET)



Data Retention Timing (Standby release signal: STOP mode released by interrupt signal)



NEC μ PD78P078Y

Interrupt Input Timing

RESET Input Timing

PROM Programming Characteristics

DC Characteristics

(1) **PROM Write Mode** (TA = $25 \pm 5^{\circ}$ C, VDD = 6.5 ± 0.25 V, VPP = 12.5 ± 0.3 V)

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	ViH	VIH		0.7V _{DD}		V _{DD}	V
Input voltage, low	VIL	VIL		0		0.3V _{DD}	V
Output voltage, high	Vон	Vон	lон = −1 mA	V _{DD} - 1.0			V
Output voltage, low	Vol	Vol	IoL = 1.6 mA			0.4	V
Input leakage current	Li	lu	$0 \le V_{IN} \le V_{DD}$	-10		+10	μΑ
VPP supply voltage	V _{PP}	VPP		12.2	12.5	12.8	V
V _{DD} supply voltage	V _{DD}	Vcc		6.25	6.5	6.75	V
VPP supply current	IPP	Ірр	PGM = VIL			50	mA
V _{DD} supply current	IDD	Icc				50	mA

(2) **PROM Read Mode** (TA = $25 \pm 5^{\circ}$ C, VDD = 5.0 ± 0.5 V, VPP = VDD ± 0.6 V)

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	Vін	ViH		0.7V _{DD}		V _{DD}	V
Input voltage, low	VIL	VIL		0		0.3Vpd	V
Output voltage, high	Vон1	V _{OH1}	lон = −1 mA	V _{DD} - 1.0			V
	V _{OH2}	V _{OH2}	Ioн = -100 μA	V _{DD} - 0.5			V
Output voltage, low	Vol	Vol	IoL = 1.6 mA			0.4	V
Input leakage current	Li	lu	$0 \le V_{IN} \le V_{DD}$	-10		+10	μΑ
Output leakage current	ILO	ILO	$0 \le V_{OUT} \le V_{DD}, \overline{OE} = V_{IH}$	-10		+10	μΑ
VPP supply voltage	V _{PP}	VPP		VDD - 0.6	VDD	V _{DD} + 0.6	V
V _{DD} supply voltage	V _{DD}	Vcc		4.5	5.0	5.5	V
VPP supply current	IPP	IPP	VPP = VDD			100	μΑ
VDD supply current	IDD	ICCA1	$\overline{CE} = VIL, \ VIN = VIH$			50	mA

Note Corresponding μ PD27C1001A symbol.

AC Characteristics

(1) PROM Write Mode

(a) Page program mode (TA = 25 $\pm 5^{\circ}$ C, VDD = 6.5 ± 0.25 V, VPP = 12.5 ± 0.3 V)

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to OE ↓)	tas	tas		2			μs
OE setup time	toes	toes		2			μs
CE setup time (to OE ↓)	tces	tces		2			μs
Input data setup time (to $\overline{\sf OE}\ \downarrow$)	tos	tos		2			μs
Address hold time (from OE ↑)	tан	tан		2			μs
	tahl	tahl		2			μs
	tahv	tahv		0			μs
Input data hold time (from OE ↑)	tон	tон		2			μs
$\overline{OE} \uparrow \to Data$ output float	tor	tor		0		250	ns
delay time							
V_{PP} setup time (to $\overline{OE} \downarrow$)	tvps	tvps		1.0			ms
V _{DD} setup time (to $\overline{\text{OE}}$ ↓)	tvps	tvcs		1.0			ms
Program pulse width	tpw	tpw		0.095	0.1	0.105	ms
$\overline{OE} \downarrow \to Valid$ data delay time	toe	toe				1	μs
OE pulse width during data	tuw	tuw		1			μs
latching							
PGM setup time	tpgms	t PGMS		2			μs
CE hold time	tcen	tсен		2			μs
OE hold time	tоен	tоен		2			μs

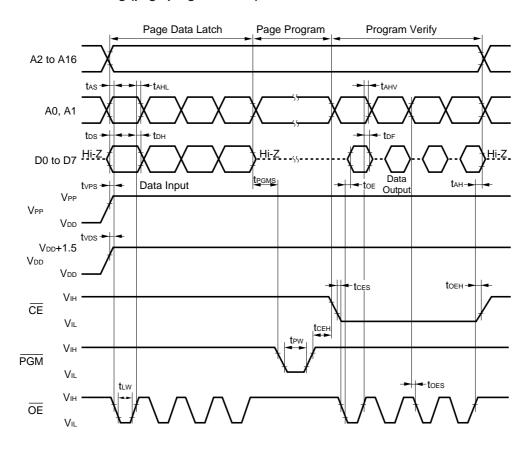
(b) Byte program mode (TA = $25 \pm 5^{\circ}$ C, VDD = 6.5 ± 0.25 V, VPP = 12.5 ± 0.3 V)

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to PGM ↓)	tas	tas		2			μs
OE setup time	toes	toes		2			μs
CE setup time (to PGM ↓)	tces	tces		2			μs
Input data setup time (to $\overline{\text{PGM}} \downarrow$)	tos	tos		2			μs
Address hold time (from OE ↑)	t AH	tан		2			μs
Input data hold time	tон	tон		2			μs
(from PGM ↑)							
$\overline{OE} \uparrow \to Data$ output float	tor	tor		0		250	ns
delay time							
V_{PP} setup time (to $\overline{PGM} \downarrow$)	tvps	tvps		1.0			ms
V _{DD} setup time (to PGM ↓)	tvds	tvcs		1.0			ms
Program pulse width	tpw	tpw		0.095	0.1	0.105	ms
$\overline{OE} \downarrow \to Valid$ data delay time	toe	toe				1	μs
OE hold time	tоен	_		2			μs

Note Corresponding μ PD27C1001A symbol.

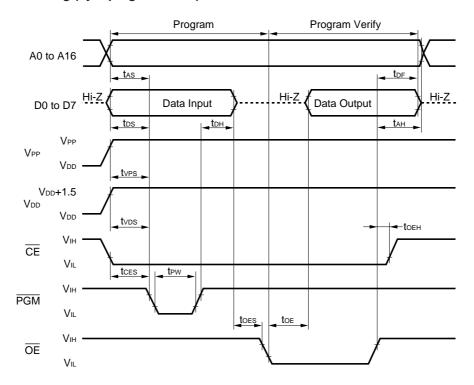
(2) **PROM Read Mode** $(T_A = 25 \pm 5^{\circ}C, V_{DD} = 5.0 \pm 0.5 \text{ V}, V_{PP} = V_{DD} \pm 0.6 \text{ V})$

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Address → Data output	tacc	tacc	$\overline{CE} = \overline{OE} = V_{IL}$			800	ns
delay time							
$\overline{CE} \downarrow \to Data$ output delay time	tce	tce	OE = VIL			800	ns
$\overline{OE} \downarrow \to Data$ output delay time	toe	toe	CE = VIL			200	ns
$\overline{OE} \uparrow \to Data$ output float	tor	tor	CE = VIL	0		60	ns
delay time							
Address → Data hold time	tон	tон	CE = OE = VIL	0			ns

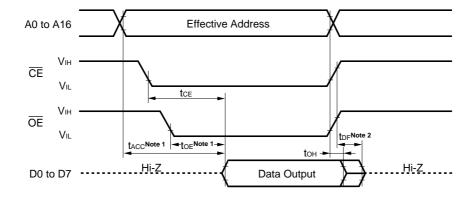

Note Corresponding μ PD27C1001A symbol.

(3) PROM Programming Mode (TA = 25°C, Vss = 0 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
PROM programming mode	tsма		10		·	μs
setup time						



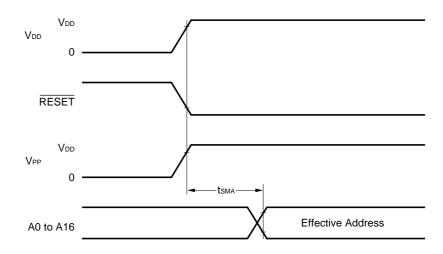
PROM Write Mode Timing (page program mode)


PROM Write Mode Timing (byte program mode)

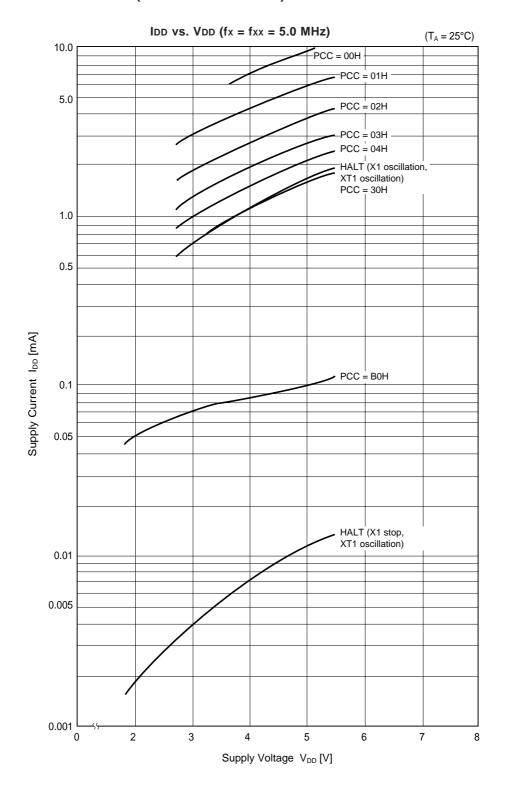
Cautions 1. VDD should be applied before VPP, and removed after VPP.

- 2. VPP must not exceed +13.5 V including overshoot.
- 3. Reliability may be adversely affected if removal/reinsertion is performed while +12.5 V is being applied to VPP.

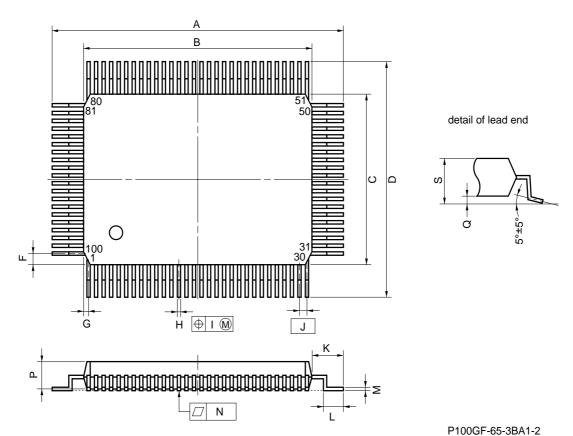
PROM Read Mode Timing



Notes 1. If you want to read within the range of tacc, make the $\overline{\text{OE}}$ input delay time from the fall of $\overline{\text{CE}}$ a maximum of tacc-toe.


2. tDF is the time from when either \overline{OE} or \overline{CE} first reaches VIH.

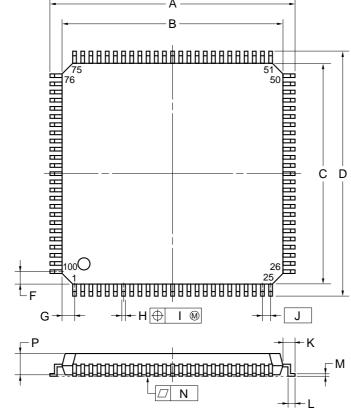
PROM Programming Mode Setting Timing


10. CHARACTERISTIC CURVES (REFERENCE VALUES)

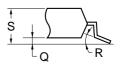
11. PACKAGE DRAWINGS

100 PIN PLASTIC QFP (14 imes 20)

NOTE


Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

		F 100G1 -03-3BA1-2
ITEM	MILLIMETERS	INCHES
Α	23.6±0.4	0.929±0.016
В	20.0±0.2	$0.795^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	0.8	0.031
G	0.6	0.024
Н	0.30±0.10	$0.012^{+0.004}_{-0.005}$
I	0.15	0.006
J	0.65 (T.P.)	0.026 (T.P.)
K	1.8±0.2	$0.071^{+0.008}_{-0.009}$
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	0.15 ^{+0.10} _{-0.05}	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
S	3.0 MAX.	0.119 MAX.

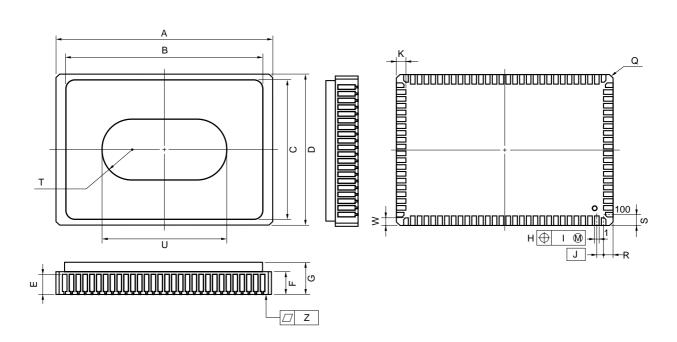

Remark The shape and material of ES versions are the same as those of mass-produced versions.

100 PIN PLASTIC LQFP (FINE PITCH) (14 \times 14)

detail of lead end

NOTE

Each lead centerline is located within 0.08 mm (0.003 inch) of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS	INCHES
Α	16.00±0.20	0.630±0.008
В	14.00±0.20	0.551 + 0.009 - 0.008
С	14.00±0.20	$0.551^{+0.009}_{-0.008}$
D	16.00±0.20	0.630±0.008
F	1.00	0.039
G	1.00	0.039
Н	$0.22^{+0.05}_{-0.04}$	0.009±0.002
I	0.08	0.003
J	0.50 (T.P.)	0.020 (T.P.)
K	1.00±0.20	$0.039^{+0.009}_{-0.008}$
L	0.50±0.20	$0.020^{+0.008}_{-0.009}$
М	0.17 ^{+0.03} -0.07	0.007+0.001
N	0.08	0.003
Р	1.40±0.05	0.055±0.002
Q	0.10±0.05	0.004±0.002
R	3°+7° -3°	3°+7°
S	1.60 MAX.	0.063 MAX.

S100GC-50-8EU

Remark The shape and material of ES versions are the same as those of mass-produced versions.

100 PIN CERAMIC WQFN

NOTE

Each lead centerline is located within 0.06 mm (0.003 inch) of its true position (T.P.) at maximum material condition.

K100KW-65A-1

ITEM	MILLIMETERS	INCHES
Α	20.6±0.4	0.811±0.016
В	19.0	0.748
С	13.8	0.543
D	14.6±0.4	0.575±0.016
Е	1.94	0.076
F	2.14	0.084
G	3.5 MAX,	0.138 MAX.
Н	0.45±0.10	0.018+0.004
I	0.06	0.003
J	0.65	0.026
K	1.0±0.2	$0.039^{+0.009}_{-0.008}$
Q	C 0.3	C 0.012
R	0.875	0.034
S	1.125	0.044
Т	R 3.17	R 0.125
U	12.0	0.472
W	0.75±0.2	0.030+0.008
Z	0.10	0.004

12. RECOMMENDED SOLDERING CONDITIONS

It is recommended that the μ PD78P078Y be soldered under the following conditions.

For details on the recommended soldering conditions, refer to information document "Semiconductor Device Mounting Technology Manual" (C10535E).

For soldering methods and conditions other than those recommended, please contact your NEC sales representative.

Table 12-1. Soldering Conditions for Surface Mount Devices

 μ PD78P078YGF-3BA: 100-pin plastic QFP (14 imes 20 mm, resin thickness: 2.7 mm)

Soldering Method	Soldering Conditions	Symbol
Infrared ray reflow	Package peak temperature: 235°C, Reflow time: 30 seconds or	IR35-00-3
	less (at 210°C or higher), Number of reflow processes: 3 or less	
VPS	Package peak temperature: 215°C, Reflow time: 40 seconds or	VP15-00-3
	less (at 200°C or higher), Number of reflow processes: 3 or less	
Wave soldering Solder temperature: 260°C or below, Flow time: 10 seconds or		WS60-00-1
less, Number of flow processes: 1,		
	Preheating temperature: 120°C max. (package surface	
	temperature)	
Partial heating	Pin temperature: 300°C or below,	_
	Flow time: 3 seconds or less (per pin row)	

Cautions 1. Do not use different soldering methods together (except for partial heating method).

2. Soldering conditions have not been fixed because the μ PD78P078YGC-8EU is still under development.

APPENDIX A. DEVELOPMENT TOOLS

The following dvelopment tools are available to support development of systems using the μ PD78P078Y.

Language Processing Software

RA78K/0 ^{Notes 1, 2, 3, 4}	Assembler package common to the 78K/0 Series
CC78K/0 ^{Notes 1, 2, 3, 4}	C compiler package common to the 78K/0 Series
DF78078Notes 1, 2, 3, 4	Device file common to the μPD78078 Subseries
CC78K/0-L ^{Notes 1, 2, 3, 4}	C compiler library source file common to the 78K/0 Series

PROM Writing Tools

PG-1500	PROM programmer
PA-78P078GC	Programmer adapter connected to the PG-1500
PA-78P078GF	
PA-78P078KL-T	
PG-1500 Controller Notes 1, 2	Control program for the PG-1500

Debugging Tools

	IE-78000-R	In-circuit emulator common to the 78K/0 Series		
*	IE-78000-R-A	In-circuit emulator common to the 78K/0 Series (for integrated debugger)		
	IE-78000-R-BK	Break board common to the 78K/0 Series		
IE-78078-R-EM Emulation board for evaluation of the μ PD78078 Subseries				
	EP-78064GC-R	Emulation probe common to the μ PD78064 Subseries		
	EP-78064GF-R			
	EV-9200GF-100 Socket mounted on the target system board prepared for 100-pin plastic QFP (GF-3			
*	GC-100SDW Adapter mounted on the target system board prepared for 100-pin plastic LQFP (GC-8E			
		This is a product of TOKYO ELETECH Corporation (Tokyo (03) 5295-1661). Consult an NEC		
		sales representative for purchase.		
	EV-9900	Tool used for removing the μ PD78P078YKL-T from the EV-9200GF-100.		
	SM78K0 ^{Notes 5, 6, 7}	System simulator common to the 78K/0 Series		
	ID78K0Notes 4, 5, 6, 7	Integrated debugger for the IE-78000-R-A		
	SD78K/0 ^{Notes 1, 2}	Screen debugger for the IE-78000-R		
	DF78078Notes 1, 2, 4, 5, 6, 7	Device file common to the μPD78078 Subseries		

Real-Time OS

RX78K/0 ^{Notes 1, 2, 3, 4}	Real-time OS used for the 78K/0 Series
MX78K0 ^{Notes 1, 2, 3, 4}	OS used for the 78K/0 Series

NEC **μPD78P078Y**

Fuzzy Inference Development Support System

FE9000 ^{Note 1} /FE9200 ^{Note 3}	Fuzzy knowledge data creation tool
FT9080 ^{Note 1} /FT9085 ^{Note 2}	Translator
FI78K0 ^{Notes 1, 2}	Fuzzy inference module
FD78K0 ^{Notes 1, 2}	Fuzzy inference debugger

Notes 1. PC-9800 Series (MS-DOS™) based

- 2. IBM PC/AT™ and its compatibles (PC DOS™/IBM DOS™/MS-DOS) based
- 3. HP9000 Series 300™(HP-UX™) based
- **4.** HP9000 Series 700[™] (HP-UX), SPARCstation[™] (SunOS[™]), and EWS4800 Series (EWS-UX/V) based
- 5. PC-9800 Series (MS-DOS + Windows™) based
- 6. IBM PC/AT and its compatibles (PC DOS/IBM DOS/MS-DOS + Windows) based
- 7. NEWS™ (NEWS-OS™) based

- Remarks 1. Refer to the 78K/0 Series Selection Guide (U11126E) for information on third party development tools.
 - 2. Use the RA78K/0, CC78K/0, SM78K/0, ID78K0, SD78K/0, and RX78K/0 in combination with the DF78078.

75

DRAWINGS OF CONVERSION SOCKET (EV-9200GF-100) AND RECOMMENDED FOOTPRINT

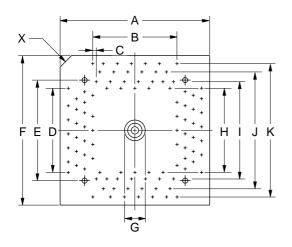
No.1 pin index

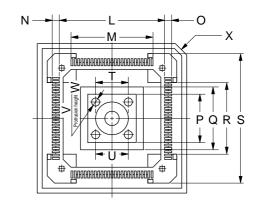
Figure A-1. Drawing of EV-9200GF-100 (for reference only)

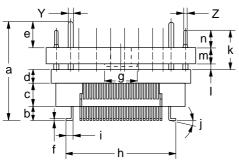
EV-9200GF-100-G0

ITEM	MILLIMETERS	INCHES	
Α	24.6	0.969	
В	21	0.827	
С	15	0.591	
D	18.6	0.732	
Е	4-C 2	4-C 0.079	
F	0.8	0.031	
G	12.0	0.472	
Н	22.6	0.89	
I	25.3	0.996	
J	6.0	0.236	
K	16.6	0.654	
L	19.3	076	
М	8.2	0.323	
N	8.0	0.315	
0	2.5	0.098	
Р	2.0	0.079	
Q	0.35	0.014	
R	φ2.3	φ0.091	
S	φ1.5	φ0.059	

Figure A-2. Recommended Footprint of EV-9200GF-100 (for reference only)


EV-9200GF-100-P1


ITEM	MILLIMETERS	INCHES	
Α	26.3	1.035	
В	21.6	0.85	
С	0.65±0.02 x 29=18.85±0.05	$0.026^{+0.001}_{-0.002} \text{ x } 1.142 = 0.742^{+0.002}_{-0.002}$	
D	0.65±0.02 x 19=12.35±0.05	$0.026^{+0.001}_{-0.002} \times 0.748 = 0.486^{+0.003}_{-0.002}$	
Е	15.6	0.614	
F	20.3	0.799	
G	12±0.05	$0.472^{+0.003}_{-0.002}$	
Н	6±0.05	$0.236^{+0.003}_{-0.002}$	
I	0.35±0.02	0.014 ^{+0.001}	
J	φ2.36±0.03	ϕ 0.093 ^{+0.001} _{-0.002}	
K	φ2.3	φ0.091	
L	φ1.57±0.03	φ0.062 ^{+0.001} _{-0.002}	


Caution Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).

★ DRAWINGS OF CONVERSION ADAPTER (TGC-100SDW)

Figure A-3. Drawings of TGC-100SDW (for reference only) (Unit: mm)

ITEM	M MILLIMETERS INCHES		
Α	21.55	0.848	
В	0.5x24=12	0.020x0.945=0.472	
С	0.5	0.020	
D	0.5x24=12	0.020x0.945=0.472	
E	15.0	0.591	
F	21.55	0.848	
G	ϕ 3.55	ϕ 0.140	
Н	10.9	0.429	
1	13.3	0.524	
J	15.7	0.618	
K	18.1	0.713	
L	13.75	0.541	
М	0.5x24=12.0	0.020x0.945=0.472	
N	1.125±0.3	0.044±0.012	
0	1.125±0.2	0.044±0.008	
Р	7.5	0.295	
Q	10.0	0.394	
R	11.3	0.445	
S	18.1	0.713	
Т	ϕ 5.0	φ0.197	
U	5.0	0.197	
V	4- <i>ϕ</i> 1.3	$4-\phi 0.051$	
W	1.8	0.071	
Х	C 2.0	C 0.079	
Υ	ϕ 0.9	ϕ 0.035	
Z	φ0.3	φ0.012	

	ITEM	MILLIMETERS	NCHES
_	а	14.45	0.569
	b	1.85±0.25	0.073±0.010
	С	3.5	0.138
	d	2.0	0.079
	е	3.9	0.154
	f	0.25	0.010
	g	ϕ 4.5	φ0.177
	h	16.0	0.630
	i	1.125±0.3	0.044±0.012
_	j	0~5°	0.000~0.197°
	k	5.9	0.232
	I	0.8	0.031
	m	2.4	0.094
	n	2.7	0.106
_			TCC-100SDW-C0E

TGC-100SDW-G0E

Note Product by TOKYO ELETECH CORPORATION.

* APPENDIX B. RELATED DOCUMENTS

Documents Related to Devices

Document Name	Docur	Document No.	
	Japanese	English	
μPD78078, 78078Y Subseries User's Manual	U10641J	U10641E	
μPD78076Y, 78078Y Data Sheet	U10605J	U10605E	
μPD78P078Y Data Sheet	U10606J	This document	
μPD78074BY, 78075BY Data Sheet	Planned	Planned	
μPD78075B, 78075BY Subseries User's Manual	U12560J	Planned	
78K/0 Series User's Manual—Instructions	U12326J	U12326E	
78K/0 Series Instruction Table	U10903J	_	
78K/0 Series Instruction Set	U10904J	_	
μPD78078Y Subseries Special Function Register Table	IEM-5601	_	
78K/0 Series Application Note—Basics (III)	IEA-767	U10182E	

Documents Related to Development Tools (User's Manual) (1/2)

Document Name		Document No.	
		Japanese	English
RA78K Series Assembler Package	Operation	EEU-809	EEU-1399
	Language	EEU-815	EEU-1404
RA78K Series Structured Assembler Preprocessor		EEU-817	EEU-1402
RA78K0 Assembler Package	Operation	U11802J	U11802E
	Assembly language	U11801J	U11801E
	Structured assembly	U11789J	U11789E
	language		
CC78K Series C Compiler	Operation	EEU-656	EEU-1280
	Language	EEU-655	EEU-1284
CC78K0 C Compiler	Operation	U11517J	U11517E
	Language	U11518J	U11518E
CC78K/0 C Compiler Application Note	Programming	EEA-618	EEA-1208
	know-how		
CC78K Series Library Source File	·	U12322J	_
PG-1500 PROM Programmer		U11940J	EEU-1335
PG-1500 Controller PC-9800 Series (MS-DOS) Based		EEU-704	EEU-1291
PG-1500 Controller IBM PC Series (PC DOS) Based		EEU-5008	U10540E
IE-78000-R		U11376J	U11376E
IE-78000-R-BK		EEU-867	EEU-1427
IE-78000-R-A		U10057J	U10057E
IE-78078-R-EM		U10775J	U10775E
EP-78064		EEU-934	EEU-1522

Caution The contents of the documents listed above are subject to change without prior notice. Make sure to use the latest edition when starting design.

 μ PD78P078Y

Documents Related to Development Tools (User's Manual) (2/2)

Document Name		Document No.	
		Japanese	English
SM78K0 System Simulator Windows Based	Reference	U10181J	U10181E
SM78K Series System Simulator	External parts user open	U10092J	U10092E
	interface specification		
ID78K0 Integrated Debugger EWS Based	Reference	U11151J	_
ID78K0 Integrated Debugger PC Based	Reference	U11539J	U11539E
ID78K0 Integrated Debugger Windows Based	Guides	U11649J	U11649E
SD78K/0 Screen Debugger	Introduction	EEU-852	U10539E
PC-9800 Series (MS-DOS) Based	Reference	U10952J	_
SD78K/0 Screen Debugger	Introduction	EEU-5024	EEU-1414
IBM PC/AT (PC DOS) Based	Reference	U11279J	U11279E

Documents Related to Embedded Software (User's Manual)

Document Name		Document No.	
		Japanese	English
78K/0 Series Real-time OS	Basics	U11537J	_
	Installation	U11536J	_
78K/0 Series OS MX78K0	Basics	U12257J	_
Fuzzy Knowledge Data Creation Tool		EEU-829	EEU-1438
78K/0, 78K/II, and 87AD Series Fuzzy Inference Development Support System Translator		EEU-862	EEU-1444
78K/0 Series Fuzzy Inference Development Support System Fuzzy Inference Module		EEU-858	EEU-1441
78K/0 Series Fuzzy Inference Development Support System Fuzzy Inference Debugger		EEU-921	EEU-1458

Other Documents

Document Name	Docu	Document No.	
	Japanese	English	
IC Package Manual	C10943X		
Semiconductor Device Mounting Technology Manual	C10535J	C10535E	
Quality Grades on NEC Semiconductor Devices	C11531J	C11531E	
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E	
Electrostatic Discharge (ESD) Test	MEM-539	_	
Guide to Quality Assurance for Semiconductor Devices	C11893J	MEI-1202	
Microcomputer Product Series Guide – Third Party Products –	U11416J	_	

Caution The contents of the documents listed above are subject to change without prior notice. Be sure to use the latest edition when starting design.

[MEMO]

NOTES FOR CMOS DEVICES-

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- · Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130 Tel: 253-8311

Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

J96. 8

Purchase of NEC I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

FIP, IEBus, and QTOP are trademarks of NEC Corporation.

MS-DOS and Windows are registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machines Corporation.

HP9000 Series 300, HP9000 Series 700, and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems Corporation.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

License not needed : μ PD78P078YKL-T

The customer must judge : μ PD78P078YGC-8EU, μ PD78P078YGF-3BA

the need for license

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.