8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD78P064B is a product of μ PD78064B subseries in $78 \mathrm{~K} / 0$ series, in which the on-chip mask ROM of the $\mu \mathrm{PD} 78064 \mathrm{~B}$ is replaced by one-time PROM.

As program write by user is possible, the μ PD78P064B is best suited for evaluation, short-run and multiple-device production, and early rise upon system development.

Functions are described in detail in the following User's Manuals, which should be read when carrying out design work.
μ PD78064B Subseries User's Manual: U10785E
78K/0 Series User's Manual Instruction: U12326E

FEATURES

- Pin compatible with mask ROM products (except the VPP pin)
- Internal PROM: 32K bytes

One-time programming possible (most suitable for small-scale production)

- Internal high-speed RAM: 1024 bytes
- LCD display RAM: 40×4 bits
- Operable in the same supply voltage as mask ROM products ($\mathrm{V} D \mathrm{D}=2.0$ to 6.0 V)
- Corresponding to QTOP ${ }^{\text {TM }}$ microcomputers

Remarks 1. For the differences between PROM products and mask ROM products, refer to 1. DIFFERENCES BETWEEN μ PD78P064B AND MASK ROM PRODUCTS.
2. QTOP Microcomputer is the general name for a total support as far as writing service, marking, screening, and verification after programming one-time PROM internal signal-chip microcontroller offered by NEC.

ORDERING INFORMATION

| | Part Number | Package |
| :--- | :--- | :--- | On-Chip ROM

Caution The μ PD78P064BGC has two types of package. (Refer to 7. PACKAGE DRAWINGS). For the package suppliable to your device, consult NEC sales personnels.

The information in this document is subject to change without notice.

^ 78K/0 SERIES DEVELOPMENT

The following shows the products organized according to usage. The names in the parallelograms afe subseries names.

Note Under planning

The following lists the main functional differences between subseries products.

		ROM Capacity	Timer				$\begin{array}{\|l\|} 8-\text { bit } \\ \text { A/D } \end{array}$	$\left\|\begin{array}{c} 10-\mathrm{bit} \\ \text { A/D } \end{array}\right\|$	$\begin{array}{\|c\|} \hline \text { 8-bit } \\ \text { D/A } \end{array}$	Serial Interface	I/O	Vod MIN. Value	External Expansion	
		8-bit	16-bit	Watch	WDT									
Control	μ PD78075B		32K-40K	4ch	1ch	1ch	1ch	8ch	-	2ch	3ch (UART: 1ch)	88	1.8 V	\bigcirc
	μ PD78078	48K-60K												
	μ PD78070A	-	61									2.7 V		
	μ PD780018	48K-60K	-							2ch (time division 3-wire: 1ch)	88			
	μ PD780058	24K-60K	2ch	2ch						3ch (time division UART: 1ch)	68	1.8 V		
	μ PD78058F	48K-60K								3ch (UART: 1ch)	69	2.7 V		
	μ PD78054	16K-60K										2.0 V		
	μ PD780034	8K-32K		-				8ch	-	3ch (UART: 1ch, time division 3-wire: 1ch)	51	1.8 V		
	μ PD780024			8ch				-						
	μ PD78014H									2ch	53	1.8 V		
	μ PD78018F	8K-60K												
	μ PD78014	8K-32K										2.7 V		
	μ PD780001	8K		-	-					1ch	39		-	
	μ PD78002	8K-16K			1ch	-					53		\bigcirc	
	μ PD78083				-	8ch				1ch (UART: 1ch)	33	1.8 V	-	
Inverter control	μ PD780964	8K-32K	3ch	Note	-	1ch	-	8ch	-	2ch (UART: 2ch)	47	2.7 V	\bigcirc	
	μ PD780924						8ch	-						
FIP drive	μ PD780208	32K-60K	2ch	1ch	1ch	1ch	8ch	-	-	2ch	74	2.7 V	-	
	μ PD780228	48K-60K	3ch	-	-					1ch	72	4.5 V		
	μ PD78044H	32K-48K	2ch	1ch	1ch						68	2.7 V		
	μ PD78044F	16K-40K								2ch				
LCD drive	μ PD780308B	48K-60K	2ch	1ch	1ch	1ch	8ch	-	-	3ch (time division UART: 1ch)	57	2.0 V	-	
	μ PD78064	32 K								2ch (UART: 1ch)				
	μ PD78064	16K-32K												
IEBus supported	μ PD78098B	40K-60K	2ch	1ch	1ch	1ch	8ch	-	2ch	3ch (UART: 1ch)	69	2.7 V	\bigcirc	
	μ PD78098	32K-60K												
Meter control	μ PD780973	24K-32K	3ch	1ch	1ch	1ch	5ch	-	-	2ch (UART: 1ch)	56	4.5 V	-	
	μ PD780805	40K-60K	2ch				8ch				39	2.7 V		
LV	μ PD78P0914	32K	6ch	-	-	1ch	8ch	-	-	2ch	54	4.5 V	\bigcirc	

Note 10-bit timer: 1 channel

FUNCTION DESCRIPTION

Item		Function
Internal memory		- PROM $: 32 \mathrm{~K}$ bytes -RAM High-speed RAM LCD display RAM $: 1024$ bytesNote $: 40 \times 4$ bits
General-purpose register		8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)
Instruction cycles	When main system clock is selected	$0.4 \mu \mathrm{~s} / 0.8 \mu \mathrm{~s} / 1.6 \mu \mathrm{~s} / 3.2 \mu \mathrm{~s} / 6.4 \mu \mathrm{~s} / 12.8 \mu \mathrm{~s}$ (when operating at 5.0 MHz)
	When subsystem clock is selected	$122 \mu \mathrm{~s}$ (when operating at 32.768 kHz)
Instruction set		- 16-bit operation - Multiplication/division (8 bits $\times 8$ bits, 16 bits $\div 8$ bits) - Bit manipulation (set, reset, test, boolean operation) - BCD correction, etc.
```I/O ports [l}\begin{array}{l}{\mathrm{ Include segment signal}}\\{\mathrm{ output dual-function pin}}\end{array}```		Total $: 57$   CMOS input $: 2$   - CMOS input/output $: 55$
A/D converter		- 8 -bit resolution $\times 8 \mathrm{ch}$
LCD controller/driver		- Segment signal output : 40 max.   - Common signal output : 4 max.   - Bias : $1 / 2,1 / 3$, Bias switchable
Serial interface		- 3-wire serial I/O/SBI/2-wire serial I/O mode selectable : 1 ch   - 3-wire serial I/O/UART mode selectable : 1 ch
Timer		- 16-bit timer/event counter : 1 ch   - 8-bit timer/event counter : 2 ch   - Watch timer   - Watchdog timer   : 1 ch
Timer output		3 pins (14-bit PWM output enable 1 pin)
Clock output		$19.5 \mathrm{kHz}, 39.1 \mathrm{kHz}, 78.1 \mathrm{kHz}, 156 \mathrm{kHz}, 313 \mathrm{kHz}, 625 \mathrm{kHz}, 1.25 \mathrm{MHz}, 2.5 \mathrm{MHz}, 5.0$ MHz (when operating at main system clock 5.0 MHz ),   32.768 kHz (when operating at subsystem clock 32.768 kHz )
Buzzer output		$1.2 \mathrm{kHz}, 2.4 \mathrm{kHz}, 4.9 \mathrm{kHz}, 9.8 \mathrm{kHz}$ (when operating at main system clock 5.0 MHz )
Vectored interrupt sources	Maskable	Internal : 12, External : 6
	Non-maskable	Internal : 1
	Software	1
Test input		Internal : 1, External : 1
Supply voltage		$\mathrm{V}_{\text {DD }}=2.0$ to 6.0 V
Package		- 100-pin plastic (fine pitch) QFP $(14 \times 14 \mathrm{~mm})$   - 100-pin plastic LQFP (fine pitch) $(14 \times 14 \mathrm{~mm})$   - 100 -pin plastic QFP $(14 \times 20 \mathrm{~mm})$

## PIN CONFIGURATION (Top View)

(1) Normal operating mode

- 100-pin plastic QFP (fine pitch) ( $14 \times 14 \mathrm{~mm}$ ) $\mu$ PD78P064BGC-7EA
- 100-pin plastic LQFP (fine pitch) ( $14 \times 14 \mathrm{~mm}$ )
$\mu$ PD78P064BGC-8EU


Cautions 1. Connect Vpp pin directly to Vss.
2. AVdd pin shares the port power supply with that of the A/D converter. When using in applications where noise from inside the microcomputer has to be reduced, connect the AVDD pin to a separate power supply, whose electrical potential is the same as that of Vdd.
3. $A V$ ss pin shares the port GND with that of the $A / D$ converter. When using in applications where noise from inside the microcomputer has to be reduced, connect the AVss pin to a separate ground line.

- 100-pin plastic QFP ( $14 \times 20 \mathrm{~mm}$ )
$\mu$ PD78P068BGF-3BA


Cautions

1. Connect Vpp pin directly to Vss.
2. $A V$ dd pin shares the port power supply with that of the $A / D$ converter. When using in applications where noise from inside the microcomputer has to be reduced, connect the AVDd pin to a separate power supply, whose electrical potential is the same as that of Vdd.
3. AVss pin shares the port GND with that of the A/D converter. When using in applications where noise from inside the microcomputer has to be reduced, connect the AVss pin to a separate ground line.

ANI0-ANI7	$:$	Analog Input	PCL
ASCK	: Asynchronous Serial Clock	$\overline{\text { RESET }}$	$:$ Reserammable Clock
AVDD	$:$	Analog Power Supply	RxD

(2) PROM programming mode

- 100-pin plastic QFP (fine pitch) ( $14 \times 14 \mathrm{~mm}$ ) $\mu$ PD78P064BGC-7EA
- 100-pin plastic LQFP (fine pitch) ( $14 \times 14 \mathrm{~mm}$ ) $\mu$ PD78P064BGC-8EU



Cautions 1. (L) : Individually connect to Vss via a pull-down resistor.
2. Vss : Connect to GND.
3. $\overline{\text { RESET }}$ : Set to low level.
4. Open : No connection

- 100-pin plastic QFP ( $14 \times 20 \mathrm{~mm}$ ) $\mu$ PD78P064BGF-3BA


Cautions 1. (L) : Individually connect to Vss via a pull-down resistor.
2. Vss : Connect to GND.
3. RESET : Set to low level.
4. Open : No connection

A 0 to A16	$:$ Address Bus
$\overline{\mathrm{CE}}$	$:$ Chip Enable
D 0 to D7	: Data Bus
$\overline{\mathrm{OE}}$	$:$ Output Enable
$\overline{\mathrm{PGM}}$	$:$ Program


$\overline{R E S E T}$	$:$ Reset
VDD	$:$ Power Supply
VPP	$:$ Programming Power Supply
VSS	$:$ Ground

## BLOCK DIAGRAM



## CONTENTS

1. DIFFERENCES BETWEEN $\mu$ PD78P064B AND MASK ROM PRODUCTS ..... 12
2. PIN FUNCTION TABLE ..... 13
2.1 PINS IN NORMAL OPERATING MODE ..... 13
2.2 PINS IN PROM PROGRAMMING MODE ..... 16
2.3 PIN INPUT/OUTPUT CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS ..... 17
3. MEMORY SIZE SWITCHING REGISTER (IMS) ..... 20
4. PROM PROGRAMMING ..... 21
4.1 OPERATING MODES ..... 21
4.2 PROM WRITE PROCEDURE ..... 23
4.3 PROM READ PROCEDURE ..... 27
5. ONE-TIME PROM PRODUCTS SCREENING ..... 28
6. ELECTRICAL SPECIFICATIONS ..... 29
7. PACKAGE DRAWINGS ..... 52
8. RECOMMENDED SOLDERING CONDITIONS ..... 55
APPENDIX A. DEVELOPMENT TOOLS ..... 56
APPENDIX B. RELATED DOCUMENTS ..... 61

## 1. DIFFERENCES BETWEEN $\mu$ PD78P064B AND MASK ROM PRODUCTS

The $\mu$ PD78P064B is a single-chip microcontroller with an on-chip one-time writable PROM.
It is possible to make all the functions exception PROM specification, and mask option of LCD drive power supply dividing resistor, to the same as those of mask ROM products by setting the memory size switching register (IMS).

Difference between the PROM product ( $\mu \mathrm{PD} 78 \mathrm{P} 064 \mathrm{~B}$ ) and mask ROM product ( $\mu \mathrm{PD} 78064 \mathrm{~B}$ ) are shown is Table 1-1.

Table 1-1. Differences between $\mu$ PD78P064B and Mask ROM Products

Item	$\mu$ PD78P064B	Mask ROM Products			
Internal ROM structure	One-time PROM	Mask ROM			
IC pin	No	Yes			
VPP pin	Yes	No			
Mask option of LCD drive power   supply dividing resistor	No	Yes			
Electrical characteristics				Refer to Data Sheet for each product	

$\star$ Caution Noise resistance and noise radiation are different in PROM version and mask ROM versions. If using a mask ROM version instead of the PROM version for processes between prototype development and full production, be sure to fully evaluate the CS of the mask ROM version (not ES).

Remark The internal PROM becomes to 32K bytes and the internal high-speed RAM becomes 1024 bytes by the $\overline{\text { RESET }}$ input.

## 2. PIN FUNCTION TABLE

### 2.1 PINS IN NORMAL OPERATING MODE

(1) PORT PINS (1/2)

Pin Name	Input/Output	Function		After Reset	Dual-Function Pin	
P00	Input	Port 0   7-bit input/output port	Input only	Input	INTP0/TI00	
P01	Input/output		Input/output is specifiable bit-wise.   When used as the input port, an on-chip pull-up resistor can be used by software.	Input	INTP1/TI01	
P02					INTP2	
P03					INTP3	
P04					INTP4	
P05					INTP5	
P07 ${ }^{\text {Note }} 1$	Input		Input only	Input	XT1	
P10 to P17	Input/output	Port 1   8-bit input/output port   Input/output is specifiable bit-wise.   When used as the input port, an on-chip pull-up resistor can be used by software. Note 2		Input	ANIO to ANI7	
P25	Input/output	Port 2   3-bit input/output port Input/output is specifiable bit-wise. When used as the input port, an on-chip pull-up resistor can be used by software.		Input	SIO/SB0	
P26				SO0/SB1		
P27				$\overline{\text { SCKO }}$		
P30	Input/output	Port 3   8-bit input/output port   Input/output is specifiable bit-wise.   When used as the input port, an on-chip pull-up resistor can be used by software.			Input	TOO
P31				TO1		
P32				TO2		
P33				TI1		
P34				TI2		
P35				PCL		
P36				$B \cup Z$		
P37				-		
P70	Input/output	Port 7   3-bit input/output port Input/output is specifiable bit-wise. When used as the input port, an on-chip pull-up resistor can be used by software.			Input	SI2/RxD
P71				SO2/TxD		
P72				$\overline{\text { SCK2 }} /$ ASCK		

Notes 1. When P07/XT1 pins are used as the input ports, set processor clock control register (PCC) bit 6 (FRC) to 1. (Do not use the on-chip feedback resistor of the subsystem clock oscillation circuit.)
2. When P10/ANI0 to P17/ANI7 pins are used as the analog inputs for A/D converter, set port 1 to input mode. The on-chip pull-up resistor is automatically disabled.
(1) PORT PINS (2/2)

Pin Name	Input/Output	Function	After Reset	Dual-Function Pin
P80 to P87	Input/output	Port 8   8-bit input/output port   Input/output is specifiable bit-wise.   When used as the input port, an on-chip pull-up resistor   can be used by software.   Input/output port/segment signal output function   specifiable in 2-bit units by LCD display control register   (LCDC).	Input	
P90 to P97	Input/output	Port 9   8-bit input/output port.   Input/output is specifiable bit-wise.   When used as the input port, an on-chip pull-up resistor   can be used by software.   Input/output port/segment signal output function   specifiable in 2-bit units by LCD display control register.   (LCDC).		Input
P100 to P103	Input/output	Port 10   4-bit input/output port   Input/output is specifiable in bit-wise.   When used as the input port, an on-chip pull-up resistor   can be used by software.   It is possible to directly drive LED.		
P110 to P117	Input/output	Port 11   8-bit input/output port   Input/output is specifiable in bit-wise.   When used as the input port, an on-chip pull-up resistor   can be used by software.   Falling edge detection possible.		

## Caution Do not perform the following operation on the pins shared with port pins during A/D conversion

 operation; otherwise, the specifications of the total error during A/D conversion cannot be satisfied (except the pins shared with LCD segment output pins).(1) Rewriting the output latch of an output pin used as a port pin
(2) Changing the output level of an output pin even when it is not used as a port pin

## (2) PINS OTHER THAN PORT PINS (1/2)

Pin Name	Input/Output	Function	After Reset	Dual-Function Pin
INTP0	Input	External interrupt request input with specifiable Valid edges (rising edge, falling edge, and both rising and falling edges).	Input	P00/TI00
INTP1				P01/TI01
INTP2				P02
INTP3				P03
INTP4				P04
INTP5				P05
SIO	Input	Serial data input of the serial interface	Input	P25/SB0
SI2				P70/RxD
SOO	Output	Serial data output of the serial interface	Input	P26/SBI
SO2				P71/TxD
SB0	Input/output	Serial data input/output of the serial interface	Input	P25/SIO
SB1				P26/SO0
$\overline{\text { SCK0 }}$	Input/output	Serial clock input/output of the serial interface	Input	P27
$\overline{\text { SCK2 }}$				P72/ASCK
RxD	Input	Serial data input for asynchronouse serial interface	Input	P70/SI2
TxD	Outpu	Serial data output for asynchronous serial interface	Input	P71/SO2
ASCK	Input	Serial clock input for asynchronous serial interface	Input	P72/SCK2
TIOO	Input	External count clock input to the 16-bit timer (TM0).	Input	P00/INTP0
TI01		Capture trigger signal input to the capture register (CR00).		P01/INTP1
TI1		External count clock input to the 8-bit timer (TM1).		P33
TI2		External count clock input to the 8-bit timer (TM2).		P34
TOO	Output	16-bit timer (TM0) output (dual-function as 14-bit PWM output)	Input	P30
TO1		8-bit timer (TM1) output		P31
TO2		8-bit timer (TM2) output		P32
PCL	Output	Clock output (for trimming main system clock and subsystem clock)	Input	P35
BUZ	Output	Buzzer output	Input	P36
S0 to S23	Output	LCD controller/driver segment signal output	Output	-
S24 to S31			Input	P97-P90
S32 to S39				P87-P80
COM0 to COM3	Output	LCD controller/driver common signal output	Output	-
V Lco to V ${ }_{\text {LC2 }}$	-	LCD drive voltage	-	$\square$
BIAS	-	LCD drive power supply	-	-

(2) PINS OTHER THAN PORT PINS (2/2)

Pin Name	Input/Output	Function	After Reset	Dual-Function Pin
ANIO to ANI7	Input	Analog input of $A / D$ converter	Input	P10 to P17
$A V_{\text {ref }}$	Input	Reference voltage input of $A / D$ converter	-	-
AVdo	-	Analog power supply of A/D converter (shared by power supply of port)	-	-
AV ss	-	Ground potential of A/D converter (shared by ground potential of port)	-	-
$\overline{\text { RESET }}$	Input	System reset input	-	-
X1	Input	Main system clock oscillation crystal connection	-	-
X2	-		-	-
XT1	Input	Subsystem clock oscillation crystal connection	Input	P07
XT2	-		-	$\square$
VDD	-	Positive power supply (except port)	-	-
Vpp	-	High-voltage applied during program write/verification Connected directly to Vss in normal operating mode	-	$\square$
Vss	$\square$	Ground potential (except port)	-	-

Cautions 1. AVDD pin shares the port power supply with that of the A/D converter. When using in applications where noise from inside the microcomputer has to be reduced, connect the AVDD pin to a separate power supply, whose electrical potential is the same as that of Vdo.
2. $A V s s$ pin shares the port GND with that of the $A / D$ converter. When using in applications where noise from inside the microcomputer has to be reduced, connect the AVss pin to a separate ground line.

### 2.2 PINS IN PROM PROGRAMMING MODE

Pin Name	Input/Output	
$\overline{R E S E T}$	Input	PROM programming mode setting   When +5 V or +12.5 V is applied to the VPP pin and a low level signal is applied to the   RESET pin, this chip is set in the PROM programming mode.
VPP	Input	PROM programming mode setting and high-voltage applied during program write/   verification
AO to A16	Input	Address bus
DO to D7	Input/output	Data bus
$\overline{\mathrm{CE}}$	Input	PROM enable input/program pulse input
$\overline{\mathrm{OE}}$	Input	Read strobe input to PROM
$\overline{\mathrm{PGM}}$	Input	Program/program inhibit input in PROM programing mode.
VDD	-	Positive power supply
V		Ground potential

### 2.3 PIN INPUT/OUTPUT CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS

Types of input/output circuits of the pins and recommended connection of unused pins are shown in Table 2-1. For the configuration of each type of input/output circuit, refer to Figure 2-1.

Table 2-1. Type of Input/Output Circuit of Each Pin

Pin Name	Input/Output Circuit Type	I/O	Recommended Connection When not Used
P00/INTP0/TIO0	2	Input	Connect to Vss.
P01/INTP1/TI01	8-D	I/O	Individually connect to Vss via a resistor
P02/INTP2			
P03/INTP3			
P04/INTP4			
P05/INTP5			
P07/XT1	16	Input	Connect to Vdo.
P10/ANI0 to P17/ANI7	11-C	I/O	Individually connect to Vdd or $\mathrm{V}_{\text {ss }}$ via a resistor
P25/SI0/SB0	10-C		
P26/SO0/SB1			
P27/SCK0			
P30/TO0	5-J		
P31/TO1			
P32/TO2			
P33/T11	8-D		
P34/T12			
P35/PCL	5-J		
P36/BUZ			
P37			
P70/SI2/RxD	8-D		
P71/SO2/TxD	5-J		
P72/SCK2/ASCK	8-D		
P80/S39 to P87/S32	17-E		
P90/S31 to P97/S24			
P100 to P103	5-J		
P110 to P117	8-D		Individually connect to Vdd via resistor
S0 to S23	17-D	Output	Leave open
COM0 to COM3	18-B		
Vlco to V Lc 2	-	-	
BIAS			
RESET	2	Input	-
XT2	16	-	Leave open
$\mathrm{AV}_{\text {ref }}$	-		Connect to Vss
AVdd			Connect to separate power supply whose electrical potential is the same as that of Vdo.
AVss			Connect to separate ground line whose electrical potential is the same as that of Vss.
VPP			Connect directly to Vss

Figure 2-1. List of Pin Input/Output Circuits (1/2)


Figure 2-1. List of Pin Input/Output Circuits (2/2)


## 3. MEMORY SIZE SWITCHING REGISTER (IMS)

This is a register to disable use of part of internal memories by software. By setting this memory size switching register (IMS), it is possible to get the same memory mapping as that of mask ROM product having different internal memories (ROM, RAM).

The IMS is set up by the 8-bit memory manipulating instruction.
$\mathrm{C8H}$ will result by the $\overline{\mathrm{RESET}}$ input.
Figure 3-1. Memory Size Switching Register Format


Table 3-1 shows the set values of IMS which makes the memory map the same as that of the various mask ROM products.
Table 3-1. Memory Size Switching Register Setting Values

Target Mask ROM Product	IMS Setting Value
$\mu$ PD78064B	C 8 H

## 4. PROM PROGRAMMING

The $\mu$ PD78P064B has an on-chip 32K-byte PROM as a program memory. For programming, set the PROM programming mode by the VPP and RESET pins. For processing unused pins, refer to Pin Configuration (2) PROM programming mode.

Caution When writing in a program, use locations 0000H-7FFFH. (Specify the last address as 7FFFH). You cannot write in using a PROM programmer that cannot specify the addresses to write.

### 4.1 OPERATING MODES

When +5 V or +12.5 V is applied to the VPP pin and a low level signal is applied to the $\overline{\mathrm{RESET}}$ pin, the PROM programming mode is set. This mode will become the operating mode as shown in Table 4-1 when the $\overline{\mathrm{CE}}, \overline{\mathrm{OE}}$ and $\overline{\mathrm{PGM}}$ pins are set as shown.

Further, when the read mode is set, it is possible to read the contents of the PROM.

Table 4-1. Operating Modes of PROM Programming

Pin   Operating Mode	RESET	VPP	VDD	$\overline{\mathrm{CE}}$	$\overline{\mathrm{OE}}$	PGM	D0 to D7
Page data latch	L	+12.5 V	$+6.5 \mathrm{~V}$	H	L	H	Data input
Page write				H	H	L	High-impedance
Byte write				L	H	L	Data input
Program verify				L	L	H	Data output
Program inhibit				$\times$	H	H	High-impedance
				$\times$	L	L	
Read		+5 V	+5 V	L	L	H	Data output
Output disable				L	H	$\times$	High-impedance
Standby				H	$\times$	$\times$	High-impedance

## (1) Read mode

Read mode is set if $\overline{\mathrm{CE}}=\mathrm{L}, \overline{\mathrm{OE}}=\mathrm{L}$ is set.

## (2) Output disable mode

Data output becomes high-impedance, and is in the output disable mode, of $\overline{\mathrm{OE}}=\mathrm{H}$ is set.
Therefore, it allows data to be read from any device by controlling the $\overline{\mathrm{OE}}$ pin, if multiple $\mu$ PD78P064Bs are connected to the data bus.

## (3) Standby mode

Standby mode is set if $\overline{\mathrm{CE}}=\mathrm{H}$ is set.
In this mode, data outputs become high-impedance irrespective of the $\overline{\mathrm{OE}}$ status.

## (4) Page data latch mode

Page data latch mode is set if $\overline{\mathrm{CE}}=\mathrm{H}, \overline{\mathrm{PGM}}=\mathrm{H}, \overline{\mathrm{OE}}=L$ are set at the beginning of page write mode.
In this mode, 1 page 4-byte data is latched in an internal address/data latch circuit.

## (5) Page write mode

After 1 page 4 bytes of addresses and data are latched in the page data latch mode, a page write is executed by applying a 0.1 ms program pulse (active low) to the $\overline{\mathrm{PGM}}$ pin with $\overline{\mathrm{CE}}=\mathrm{H}, \overline{\mathrm{OE}}=\mathrm{H}$. Then, program verification can be performed, if $\overline{C E}=L, \overline{O E}=L$ are set.

If programming is not performed by a one-time program pulse, $X(X \leq 10)$ write and verification operations should be executed repeatedly.

## (6) Byte write mode

Byte write is executed when a 0.1 ms program pulse (active low) is applied to the $\overline{\mathrm{PGM}}$ pin with $\overline{\mathrm{CE}}=\mathrm{L}, \overline{\mathrm{OE}}=\mathrm{H}$. Then, program verification can be performed if $\overline{\mathrm{OE}}=\mathrm{L}$ is set.

If programming is not performed by a one-time program pulse, $X(X \leq 10)$ write and verification operations should be executed repeatedly.

## (7) Program verify mode

Program verify mode is set if $\overline{\mathrm{CE}}=\mathrm{L}, \overline{\mathrm{PGM}}=\mathrm{H}, \overline{\mathrm{OE}}=\mathrm{L}$ are set. In this mode, check if a write operation is performed correctly, after the write.

## (8) Program inhibit mode

Program inhibit mode is used when the $\overline{\text { OE }}$ pin, VPP pin and D0 to D7 pins of multiple $\mu$ PD78P064Bs are connected in parallel and a write is performed to one of those devices.

When a write operation is performed, the page write mode or byte write mode described above is used. At this time, a write is not performed to a device which has the $\overline{\mathrm{PGM}}$ pin driven high.

### 4.2 PROM WRITE PROCEDURE

Figure 4-1. Page Program Mode Flow Chart


Figure 4-2. Page Program Mode Timing


Figure 4-3. Byte Program Mode Flow Chart


G = Start address
$\mathrm{N}=$ Program last address

Figure 4-4. Byte Program Mode Timing


Cautions 1. Vdd should be applied before VPP and cut after Vpp.
2. Vpp must not exceed +13.5 V including overshoot.
3. Reliability may be adversely affected of removal/reinsertion is performed while +12.5 V is being applied to Vpp.

### 4.3 PROM READ PROCEDURE

The contents of PROM are readable to the external data bus (D0 to D7) according to the read procedure shown below.
(1) Fix the RESET pin at low level, supply +5 V to the Vpp pin, and process all other unused pins as shown in Pin Configuration (2) PROM programming mode.
(2) Supply +5 V to the VDD and VPP pins.
(3) Input address of read data into the A0 to A16 pins.
(4) Read mode
(5) Output data to D0 to D7 pins.

The timings of the above steps (2) to (5) are shown in Figure 4-5.
Figure 4-5. PROM Read Timings


## 5. ONE-TIME PROM PRODUCTS SCREENING

The one-time PROM product ( $\mu$ PD78P064BGC-7EA, $\mu$ PD78P064BGC-8EU, $\mu$ PD78P064BGF-3BA) can not be tested completely by NEC before it is shipped, because of its structure. It is recommended to perform screening to verify PROM after writing necessary data and performing high-temperature storage under the condition below.

Storage Temperature	Storage Time
$125^{\circ} \mathrm{C}$	24 hours

At present, a fee is charged by NEC for one-time PROM after-programming writing, marking, screening, and verify service for the QTOP Microcomputer. For details, contact your sales representative.

## 6. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ )


Note The r.m.s. value should be calculated as follows: [R.m.s. value $]=[$ Peak value $] \times \sqrt{\text { Duty }}$

Caution The product quality may be damaged even if a value of only one of the above parameters exceeds the absolute maximum rating or any value exceeds the absolute maximum rating for an instant. That is, the absolute maximum rating is a rating value which may cause a product to be damaged physically. The absolute maximum rating values must therefore be observed in using the product.

Remark Unless specified otherwise, the characteristics of dual-function pins are the same as the those of port pins.

CAPACITANCE ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V} s \mathrm{~s}=0 \mathrm{~V}$ )

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.
Input capacitance	CIN	$\mathrm{f}=1 \mathrm{MHz}$ unmeasured			
pins returned to 0 V.					

MAIN SYSTEM CLOCK OSCILLATION CIRCUIT CHARACTERISTICS ( $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{dd}}=2.0$ to 6.0 V )

Resonator	Recommended circuit	Parameter	Test conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	$\begin{array}{\|lll\|} \hline \mathrm{V}_{\mathrm{PP}} & \mathrm{X} 2 & \mathrm{X} 1 \\ \hline & & \text { \|l\| } \end{array}$	Oscillator frequency (fx) Note 1	VDD $=$ Oscillator voltage range	1		5	MHz
		Oscillation stabilization time ${ }^{\text {Note } 2}$	After Vod reaches oscillator voltage range MIN.			4	ms
Crystal resonator		Oscillator frequency (fx) ${ }^{\text {Note }} 1$		1		5	MHz
		Oscillation stabilization time ${ }^{\text {Note } 2}$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V			10	ms
						30	
External clock		X1 input frequency (fx) ${ }^{\text {Note }} 1$		1.0		5.0	MHz
		X1 input high/low level width ( $\mathrm{t} \times \mathrm{H}, \mathrm{txL}$ )		85		500	ns

Notes 1. Indicates only oscillation circuit characteristics. Refer to "AC Characteristics" for instruction execution time.
2. Time required to stabilize oscillation after reset or STOP mode release.

Cautions 1. When using the main system clock oscillator, wiring in the area enclosed with the broken line should be carried out as follows to avoid an adverse effect from wiring capacitance.

- Wiring should be as short as possible.
- Wiring should not cross other signal lines.
- Wiring should not be placed close to a varying high current.
- The potential of the oscillator capacitor ground should be the same as Vss.
- Do not ground it to the ground pattern in which a high current flows.
- Do not fetch a signal from the oscillator.

2. If the main system clock oscillation circuit is operated by the subsystem clock when the main system clock is stopped, reswitching to the main system clock should be performed after the stable oscillation time has been obtained by the program.

SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS (TA $=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{DD}}=2.0$ to 6.0 V )

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	$c_{3}=\underbrace{R 1}_{C 4}=$	Oscillator frequency $(\mathrm{fxT})^{\text {Note } 1}$		32	32.768	35	kHz
		Oscillation stabilization	$\mathrm{V}_{\text {DD }}=4.5$ to 6.0 V		1.2	2	s
						10	
External clock	XT1 XT 2	XT1 input frequency $(\mathrm{fxT})^{\text {Note }} 1$		32		100	kHz
		XT1 input high-low-level width (tхтн/tхтL)		5		15	$\mu \mathrm{S}$

Notes 1. Indicates only oscillation circuit characteristics. Refer to "AC Characteristics" for instruction execution time.
2. Time required to stabilize oscillation after $V_{D D}$ has reached the minimum oscillation voltage range.

Cautions 1. When using the subsystem clock oscillator, wiring in the area enclosed with the broken line should be carried out as follows to avoid an adverse effect from wiring capacitance.

- Wiring should be as short as possible.
- Wiring should not cross other signal lines.
- Wiring should not be placed close to a varying high current.
- The potential of the oscillator capacitor ground should be the same as Vss.
- Do not ground it to the ground pattern in which a high current flows.
- Do not fetch a signal from the oscillator.

2. The subsystem clock oscillation circuit is designed as a low amplification circuit to provide low consumption current, causing misoperation to noise more frequently than the main system clock oscillation circuit. Special care should therefore be taken to wiring method when the subsystem clock is used.

RECOMMENDED OSCILLATION CIRCUIT CONSTANT
MAIN SYSTEM CLOCK: CERAMIC RESONATOR (TA $=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$ )

Manufaturer	Product Name	Frequency (MHZ)	Recommended Circuit Constant		Oscillator Voltage Range		Remarks
			C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)	
Murata Mfg. Co., Ltd.	CSA5.00MG	5.00	30	30	2.7	6.0	
	CST5.00MGW	5.00	Built-in	Built-in	2.7	6.0	
Matsushita   Electronics   Components Co., Ltd.	EF0GC5004A4	5.00	Built-in	Built-in	2.7	6.0	Lead type
	EF0EC5004A4	5.00	Built-in	Built-in	2.7	6.0	Round lead type
	EFOEN5004A4	5.00	33	33	2.7	6.0	Lead type
	EFOS5004B4	5.00	Built-in	Built-in	2.7	6.0	Chip type
Kyocera Corporation	KBR-5.0MSA	5.00	33	33	2.7	6.0	Lead type
	PBRC5.00A	5.00	33	33	2.7	6.0	Chip type
	KBR-5.0MKS	5.00	Built-in	Built-in	2.7	6.0	Lead type
	KBR-5.0MWS	5.00	Built-in	Built-in	2.7	6.0	Chip type

Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation but do not guarantee accuracy of the oscillation frequency. If the application circuit requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency in the application circuit. For this, it is necessary to directly contact the manufacturer of the resonator being used.

DC CHARACTERISTICS $\left(T_{A}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.0$ to 6.0 V )

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	$\mathrm{V}_{\mathbf{H} 1}$	$\begin{aligned} & \text { P10-P17, P30-P32, } \\ & \text { P35-P37, P80-P87, } \\ & \text { P90-P97, P100-P103 } \end{aligned}$	$V_{D D}=2.7$ to 6.0 V	0.7 VDD		VDD	V
				0.8 VdD		VDD	V
	Vінг	P00-P05, P25-P27,   P33, P34, P70-P72,   P110-P117, RESET	$V_{\text {DD }}=2.7$ to 6.0 V	0.8 Vdo		VDD	V
				0.85 VDD		VDD	V
	Vінз	X1, X2	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V	VDD-0.5		VDD	V
				VDD-0.2		VDD	V
	$\mathrm{V}_{\text {IH4 }}$	XT1/P07, XT2	$4.5 \leq \mathrm{VDD}^{5} 56.0 \mathrm{~V}$	0.8 VdD		VDD	V
			$2.7 \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	0.9 VdD		VDD	V
			$2.0 \leq V_{\text {DD }}<2.7 \mathrm{~V}^{\text {Note }}$	0.9 VdD		VDD	V
Input voltage, low	VLL1	P10-P17, P30-P32, P35-P37, P80-P87, P90-P97, P100-P103	$V_{\text {DD }}=2.7$ to 6.0 V	0		0.3 VDD	V
				0		0.2 Vdo	V
	VIL2	P00-P05, P25-P27, P33, P34, P70-P72, P110-P117, RESET	$V_{\text {DD }}=2.7$ to 6.0 V	0		0.2 VDD	V
				0		0.15 VDD	V
	Vıı3	$\mathrm{X} 1, \mathrm{X} 2$	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V	0		0.4	V
				0		0.2	V
	VIL4	XT1/P07, XT2	$4.5 \leq \mathrm{V}_{\text {DD }} \leq 6.0 \mathrm{~V}$	0		0.2 VDD	V
			$2.7 \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	0		0.1 VDD	V
			$2.0 \leq V_{\text {DD }}<2.7 \mathrm{~V}^{\text {Note }}$	0		0.1 VDD	V
Output voltage, high	Vон	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V loh $=-1 \mathrm{~mA}$		VDD-1.0		Vod	V
		$\mathrm{IOH}=-100 \mu \mathrm{~A}$		VDD-0.5		VDD	V
Output voltage, low	Vol1	P100-P103	$\begin{aligned} & \mathrm{VDD}=4.5 \text { to } 6.0 \mathrm{~V}, \\ & \mathrm{loL}=15 \mathrm{~mA} \end{aligned}$		0.4	2.0	V
		$\begin{aligned} & \text { P01-P05, P10-P17, } \\ & \text { P25-P27, P30-P37, } \\ & \text { P70-P72, P80-P87, } \\ & \text { P90-P97, P110-P117 } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \text { to } 6.0 \mathrm{~V}, \\ & \text { loL }=1.6 \mathrm{~mA} \end{aligned}$			0.4	V
	Vol2	SB0, SB1, SCK0	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V , open-drain, pulled up ( $\mathrm{R}=1 \mathrm{k} \Omega$ )			0.2 Vdo	V
	Vol3	loL $=400 \mu \mathrm{~A}$				0.5	V

Note When used as P07, the inverse phase of P07 should be input to XT2 using an inverter.

Remark Unless specified otherwise, the characteristics of dual-function pins are the same as the those of port pins.

DC CHARACTERISTICS ( $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.0$ to 6.0 V )

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ІІн1		P00-P05, P10-P17, P25-P27, P30-P37, P70-P72, P80-P87, P90-P97, P100-P103, P110-P117			3	$\mu \mathrm{A}$
	ІІнг		X1, X2, XT1/P07, XT2			20	$\mu \mathrm{A}$
Input leakage current, low	ILLIT		P00-P05, P10-P17, P25-P27, P30-P37, P70-P72, P80-P87, P90-P97, P100-P103,   P110-P117			-3	$\mu \mathrm{A}$
	ІІн2		X1, X2, XT1/P07, XT2			-20	$\mu \mathrm{A}$
Output leakage current, high	ІІон	Vout $=$ Vdo				3	$\mu \mathrm{A}$
Output leakage current, low	ILOL	Vout $=0 \mathrm{~V}$				-3	$\mu \mathrm{A}$
Software pull-up resistor	R	$\begin{aligned} & \mathrm{V} \mathrm{~N}=0 \mathrm{~V}, \mathrm{P} 01-\mathrm{P} 05, \mathrm{P} 10-\mathrm{P} 17, \\ & \mathrm{P} 25-\mathrm{P} 27, \mathrm{P} 30-\mathrm{P} 37, \mathrm{P} 70-\mathrm{P} 72, \\ & \mathrm{P} 80-\mathrm{P} 87, \mathrm{P} 90-\mathrm{P} 97, \\ & \mathrm{P} 100-\mathrm{P} 103, \mathrm{P} 110-\mathrm{P} 117 \end{aligned}$	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 6.0 \mathrm{~V}$	15	40	90	k $\Omega$
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	20		500	k $\Omega$
Supply current ${ }^{\text {Note }} 1$	lod 1	5.00 MHz, Crystal oscillation $\left(\mathrm{f}_{\mathrm{xx}}=2.5 \mathrm{MHz}\right)^{\text {Note }} 2$ operating mode	$\mathrm{V}_{\text {DD }}=5.0 \mathrm{~V} \pm 10 \%^{\text {Note }} 5$		5.0	15.0	mA
			V $\mathrm{DD}=3.0 \mathrm{~V} \pm 10 \%^{\text {Note }} 6$		0.7	2.1	mA
			$\mathrm{V}_{\mathrm{DD}}=2.2 \mathrm{~V} \pm 10 \%^{\text {Note } 6}$		0.4	1.2	mA
		5.00 MHz, Crystal oscillation (fxx $=5.0 \mathrm{MHz})^{\text {Note } 3}$ operating mode	V DD $=5.0 \mathrm{~V} \pm 10$ \% ${ }^{\text {Note }} 5$		9.0	27.0	mA
			$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V} \pm 10$ \%Note 6		1.0	3.0	mA
	Idod	5.00 MHz , Crystal oscillation $\left(\mathrm{f}_{\mathrm{xx}}=2.5 \mathrm{MHz}\right)^{\text {Note } 2}$   HALT mode	$\mathrm{V} \mathrm{DD}=5.0 \mathrm{~V} \pm 10 \%$		1.4	4.2	mA
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$		500	1500	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DD}}=2.2 \mathrm{~V} \pm 10 \%$		280	840	$\mu \mathrm{A}$
		5.00 MHz, Crystal oscillation (fxx $=5.0 \mathrm{MHz})^{\text {Note } 3} \mathrm{HALT}$ mode	$\mathrm{V} \mathrm{DD}=5.0 \mathrm{~V} \pm 10 \%$		1.6	4.8	mA
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$		650	1950	$\mu \mathrm{A}$
	Ido3	32.768 kHz , Crystal oscillation operating mode ${ }^{\text {Note }} 4$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$		135	270	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$		95	190	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DD}}=2.2 \mathrm{~V} \pm 10 \%$		70	140	$\mu \mathrm{A}$
	Iod4	32.768 kHz, Crystal oscillation HALT modeNote 4	$\mathrm{V} \mathrm{DD}=5.0 \mathrm{~V} \pm 10 \%$		25	55	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$		5	15	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DD}}=2.2 \mathrm{~V} \pm 10 \%$		2.5	12.5	$\mu \mathrm{A}$
	Ido5	$\mathrm{XT} 1=\mathrm{V}_{\mathrm{DD}}$   STOP mode   When feedback resistor is connected	$\mathrm{V} \mathrm{DD}=5.0 \mathrm{~V} \pm 10 \%$		1	30	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$		0.5	10	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DD}}=2.2 \mathrm{~V} \pm 10 \%$		0.3	10	$\mu \mathrm{A}$
	Ido6	$\begin{aligned} & \mathrm{XT} 1=\mathrm{V}_{\mathrm{DD}} \\ & \text { STOP mode } \\ & \text { When feedback resistor is disconnected } \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$		0.1	30	$\mu \mathrm{A}$
			$\mathrm{V} \mathrm{DD}=3.0 \mathrm{~V} \pm 10 \%$		0.05	10	$\mu \mathrm{A}$
			$\mathrm{VDD}=2.2 \mathrm{~V} \pm 10$ \%		0.05	10	$\mu \mathrm{A}$

Notes 1. Current flowing Vdd and $A V D d p i n . ~ N o t ~ i n c l u d i n g ~ A / D ~ c o n v e r t e r, ~ o n-c h i p ~ p u l l-u p ~ r e s i s t o r s ~ o r ~ L C D ~ d i v i d i n g ~ r e s i s t o r s . ~$
2. Main system clock $f x x=f x / 2$ operation (when oscillation mode selection register (OSMS) is set to 00 H )
3. Main system clock $\mathrm{fxx}=\mathrm{fx}$ operation (when OSMS is set to 01 H )
4. When the main system clock is stopped.
5. High-speed mode operation (when processor clock control register (PCC) is set to 00 H )
6. Low-speed mode operation (when PCC is set to 04 H )

Remark Unless specified otherwise, the characteristics of dual-function pins are the same as the those of port pins.

DC CHARACTERISTICS ( $\mathrm{T}_{\mathrm{A}}=-10$ to $+85^{\circ} \mathrm{C}$ )
(1) Static Display Mode ( $\mathrm{V}_{\mathrm{DD}}=2.0$ to 6.0 V )

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
LCD drive voltage	V lcd			2.0		Vdd	V
LCD dividing resistor	Rlcd			60	100	150	k $\Omega$
LCD output voltage deviation ${ }^{\text {Note }}$ (common)	Vodc	$\mathrm{lo}= \pm 5 \mu \mathrm{~A}$	$\begin{aligned} & 2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{LCD}} \leq \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{LCDO}}=\mathrm{V}_{\mathrm{LCD}} \end{aligned}$	0		$\pm 0.2$	V
LCD output voltage deviation ${ }^{\text {Note }}$ (segment)	Vods	$\mathrm{lo}= \pm 1 \mu \mathrm{~A}$		0		$\pm 0.2$	V

Note The voltage deviation is the difference from the out voltage corresponding to the ideal value of the segment and common outputs (VLCDn; $\mathrm{n}=0,1,2$ ).
(2) $1 / 3$ Bias Method $\left(V_{D D}=2.5\right.$ to 6.0 V )

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
LCD drive voltage	VLcd			2.5		VDD	V
LCD dividing resistor	RLcd			60	100	150	$\mathrm{k} \Omega$
LCD output voltage deviation ${ }^{\text {Note }}$ (common)	Vodc	$\mathrm{lo}= \pm 5 \mu \mathrm{~A}$	$\begin{aligned} & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{LCD}} \leq \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{LCDO}}=\mathrm{V}_{\text {LCD }} \end{aligned}$	0		$\pm 0.2$	V
LCD output voltage deviation ${ }^{\text {Note }}$ (segment)	Vods	$\mathrm{l}= \pm 1 \mu \mathrm{~A}$	$\begin{aligned} & V_{\text {LCD1 } 1}=V_{\text {LCD }} \times \frac{2}{3} \\ & V_{\text {LCD2 } 2}=V_{\text {LCD }} \times \frac{1}{3} \end{aligned}$	0		$\pm 0.2$	V

Note The voltage deviation is the difference from the out voltage corresponding to the ideal value of the segment and common outputs (VLCDn; $n=0,1,2$ ).
(3) $1 / 2$ Bias Method $\left(V_{D D}=2.7\right.$ to 6.0 V$)$

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
LCD drive voltage	VLCD			2.7		VDD	V
LCD dividing resistor	Rlcd			60	100	150	$\mathrm{k} \Omega$
LCD output voltage deviation ${ }^{\text {Note }}$ (common)	Vodc	$\mathrm{lo}= \pm 5 \mu \mathrm{~A}$	$\begin{aligned} & \text { 2.7 } \mathrm{V} \leq \mathrm{V}_{\mathrm{LCD}} \leq \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{LCDO}}=\mathrm{V}_{\mathrm{LCD}} \end{aligned}$	0		$\pm 0.2$	V
LCD output voltage deviation ${ }^{\text {Note }}$ (segment)	Vods	$\mathrm{lo}= \pm 1 \mu \mathrm{~A}$	$\begin{aligned} & V_{L C D 1}=V_{L C D} \times \frac{1}{2} \\ & V_{L C D 2}=V_{L C D 1} \end{aligned}$	0		$\pm 0.2$	V

Note The voltage deviation is the difference from the out voltage corresponding to the ideal value of the segment and common outputs (VLCDn; $\mathrm{n}=0,1,2$ ).

## AC CHARACTERISTICS

(1) Basic Operation ( $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.0$ to 6.0 V )

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Cycle time (Min. instruction execution time)	Tcy	Operating on main system clock (fxx $=2.5 \mathrm{MHz}$ ) Note 1	$V_{D D}=2.7$ to 6.0 V	0.8		64	$\mu \mathrm{s}$
				2.2		64	$\mu \mathrm{s}$
		Operating on main system clock$(f \mathrm{fxx}=5.0 \mathrm{MHz})^{\text {Note } 2}$	$4.5 \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$	0.4		32	$\mu \mathrm{s}$
			$2.7 \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	0.8		32	$\mu \mathrm{s}$
		Operating on subsystem clock		$40^{\text {Note } 3}$	122	125	$\mu \mathrm{s}$
TIOO input high/ low-level width	tтіноо, ttiLoo	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$		$27 \mathrm{san+0} 0.1 \mathrm{IVPe}^{\text {Na }}$			$\mu \mathrm{s}$
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		$27 \mathrm{san}+0.2 \mathrm{~V}^{\text {Vote }}$			$\mu \mathrm{s}$
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		$27 \mathrm{san+0.5} 5^{\text {Vree } 4}$			$\mu \mathrm{s}$
TI01 input high/ low-level width	tтilHO1,   ttloor	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V		10			$\mu \mathrm{s}$
				20			$\mu \mathrm{s}$
TI input frequency	${ }_{\text {fti }}$	$V_{D D}=4.5$ to 6.0 V		0		4	MHz
				0		275	kHz
TI1, T12 input high/low-level width	tті,   tTiL	$\mathrm{V}_{\text {DD }}=4.5$ to 6.0 V		100			ns
				1.8			$\mu \mathrm{s}$
Interrupt input high/low-level width	tinth,   tintl	INTP0		8/fsam ${ }^{\text {Note } 4}$			$\mu \mathrm{s}$
		INTP1-INTP5, P110-P117	$V_{\text {DD }}=2.7$ to 6.0 V	10			$\mu \mathrm{s}$
				20			$\mu \mathrm{s}$
RESET low level width	trst	$V_{D D}=2.7$ to 6.0 V			10		$\mu \mathrm{s}$
				20			$\mu \mathrm{s}$

Notes 1. Main system clock $f x x=f x / 2$ operation (when oscillation mode selection register (OSMS) is set to 00 H )
2. Main system clock $f x x=f x$ operation (when OSMS is set to $01 H$ )
3. This is the value when the external clock is used. The value is $114 \mu \mathrm{~s}$ (min.) when the crystal resonator is used.
4. In combination with bits 0 (SCSO) and 1 (SCS1) of sampling clock select register (SCS), selection of fsam is possible between $f_{x x} / 2^{N+1}, f_{x x} / 32, f_{x x} / 64$ and $f_{x x} / 128$ (when $N=0$ to 4 ).

Tcy vs Vod (At main system clock $\mathrm{fxx}_{\mathrm{xx}}=\mathrm{fx} / 2$ operation)


Tcy vs Vod (At main system clock $\mathrm{fxx}_{\mathrm{xx}}=\mathrm{fx}$ operation)

(2) Serial Interface ( $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.0$ to 6.0 V )
(a) Serial interface channel 0
(i) 3-wire serial I/O mode (SCKO... Internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCKO cycle time	tkcy 1	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	1600			ns
			3200			ns
SCK0 high/low-level width	tkH1,   tкL1	$\mathrm{V} \mathrm{DD}=4.5$ to 6.0 V	tксү1/2-50			ns
			tкcy1/2-100			ns
SIO setup time (to $\overline{\text { SCKO }} \uparrow$ )	tsik1	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$	100			ns
		$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD}<4.5 \mathrm{~V}$	150			ns
			300			ns
SIO hold time (from $\overline{\text { SCKO }} \uparrow$ )	tks11		400			ns
SOO output delay time from $\overline{\text { SCKO }} \downarrow$	tksO1	$\mathrm{C}=100 \mathrm{pF}$ Note			300	ns

Note C is the load capacitance of $\overline{\text { SCKO }}$, SOO output line.
(ii) 3-wire serial I/O mode (SCK0...External clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK0 }}$ cycle time	tксү2	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	1600			ns
			3200			ns
$\overline{\text { SCKO }}$ high/low-level width	$\begin{aligned} & \text { tKH2 }^{2} \\ & \text { tkL2 }^{2} \end{aligned}$	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$	400			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<4.5 \mathrm{~V}$	800			ns
			1600			ns
SIO setup time (to $\overline{\text { SCK0 }} \uparrow$ )	tsik2		100			ns
SIO hold time (from $\overline{\text { SCKO }} \uparrow$ )	tкsı2		400			ns
SOO output delay time from SCKO $\downarrow$	tkso2	$\mathrm{C}=100 \mathrm{pF}^{\text {Note }}$			300	ns
$\overline{\text { SCK0 }}$ rise, fall time	tR2,   tF2				1000	ns

Note C is the load capacitance of SO0 output line.
(iii) SBI mode ( $\overline{\text { SCKO }}$...Internal clock output)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKO }}$ cycle time	tксүз	$V_{D D}=4.5$ to 6.0 V		800			ns
				3200			ns
$\overline{\text { SCKO }}$ high/low-level width	tкнз,   tкı3	$V_{\text {DD }}=4.5$ to 6.0 V		tксүз/2-50			ns
				tксүз/2-150			ns
SB0, SB1 setup time (to $\overline{\mathrm{SCK}} \uparrow$ )	tsik3	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V		100			ns
				300			ns
SB0, SB1 hold time (from SCKO $\uparrow$ )	tksi3			tксуз/2			ns
SB0, SB1 output delay time from SCK0 $\downarrow$	tkso3	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega, \\ & \mathrm{C}=100 \mathrm{pF}^{\text {Note }} \end{aligned}$	$V_{\text {DD }}=4.5$ to 6.0 V	0		250	ns
				0		1000	ns
SB0, SB1 $\downarrow$ from $\overline{\text { SCK0 }} \uparrow$	tksb			tксү3			ns
$\overline{\text { SCKO }} \downarrow$ from SB0, SB1 $\downarrow$	tsbk			tксү3			ns
SB0, SB1 high-level width	tsbн			tксүз			ns
SB0, SB1 low-level width	tsbL			tксүз			ns

Note $R$ and $C$ are the load resistance and load capacitance of the $\overline{\text { SCK0 }}$, SB0 and SB1 output line.
(iv) SBI mode (SCK0...External clock input)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKO }}$ cycle time	tксү4	$V_{D D}=4.5$ to 6.0 V		800			ns
				3200			ns
SCKO high/low-level width	tкн4, tkl4	$V_{\text {DD }}=4.5$ to 6.0 V		400			ns
				1600			ns
SB0, SB1 setup time (to $\overline{\mathrm{SCKO}} \uparrow$ )	tsik4	$V_{D D}=4.5$ to 6.0 V		100			ns
				300			ns
SB0, SB1 hold time (from $\overline{\mathrm{SCKO}} \uparrow$ )	tksi4			tкcy4/2			ns
SB0, SB1 output delay time from $\overline{\text { SCKO }} \downarrow$	tkso4	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega, \\ & \mathrm{C}=100 \mathrm{pF}^{\text {Note }} \end{aligned}$	$V_{D D}=4.5$ to 6.0 V	0		300	ns
				0		1000	ns
SB0, SB1 $\downarrow$ from $\overline{\text { SCKO }} \uparrow$	tksb			tkç4			ns
$\overline{\text { SCK0 }} \downarrow$ from SB0, SB1 $\downarrow$	tsbk			tксү4			ns
SB0, SB1 high-level width	tsвн			tксү4			ns
SB0, SB1 low-level width	tsbl			tкč4			ns
$\overline{\text { SCKO }}$ rise, fall time	$\begin{aligned} & \mathrm{t}_{\mathrm{R} 4}, \\ & \mathrm{t}_{\mathrm{F} 4} \end{aligned}$					1000	ns

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output line.
(v) 2-wire serial I/O mode (SCKO... Internal clock output)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
SCKO cycle time	tксү5	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega, \\ & \mathrm{C}=100 \mathrm{pF}^{\text {Note }} \end{aligned}$	$V_{D D}=2.7$ to 6.0 V	1600			ns
				3200			ns
$\overline{\text { SCK0 }}$ high-level width	tкн5		V ${ }_{\text {d }}=2.7$ to 6.0 V	tксу5/2-160			ns
				tксу5/2-190			ns
	tkL5		$V_{D D}=4.5$ to 6.0 V	tксү5/2-50			ns
CKO low-level width				tксүг/2-100			ns
SB0, SB1 setup time (to $\overline{\mathrm{SCKO}} \uparrow$ )	tsık5		$4.5 \mathrm{~V} \leq \mathrm{V} \mathrm{VD} \leq 6.0 \mathrm{~V}$	300			ns
			$2.7 \mathrm{~V} \leq \mathrm{V}$ do $<4.5 \mathrm{~V}$	350			ns
				400			ns
SB0, SB1 hold time (from $\overline{\mathrm{SCKO}} \uparrow$ )	tksı5			600			ns
SB0, SB1 output delay time from SCKO $\downarrow$	tksO5					300	ns

Note R and C are the load resistance and load capacitance of the $\overline{\text { SCK0 }}$, SB0 and SB1 output line.
(vi) 2-wire serial I/O mode (SCK0... External clock input)


Note R and C are the load resistance and load capacitance of the SB0 and SB1 output line.
(b) Serial interface channel 2
(i) 3-wire serial I/O mode ( $\overline{\mathrm{SCK}}$... Internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	tкcy7	$4.5 \mathrm{~V} \leq \mathrm{V}$ DD $\leq 6.0 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.5 \mathrm{~V}$	1600			ns
			3200			ns
$\overline{\text { SCK2 }}$ high/low-level width	$\begin{aligned} & \text { tкH7, } \\ & \text { tкL7 } \end{aligned}$	$\mathrm{V}_{\text {DD }}=4.5$ to 6.0 V	tксү7/2-50			ns
			tкcy7/2-100			ns
SI2 setup time (to $\overline{\text { SCK2 }} \uparrow$ )	tsik7	$4.5 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 6.0 \mathrm{~V}$	100			ns
		$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD}<4.5 \mathrm{~V}$	150			ns
			300			ns
SI2 hold time (from $\overline{\text { SCK2 }} \uparrow$ )	tks17		400			ns
SO2 output delay time from SCK2 $\downarrow$	tksO1	$\mathrm{C}=100 \mathrm{pF}^{\text {Note }}$			300	ns

Note C is the load capacitance of $\overline{\text { SCK2 }}, \mathrm{SO} 2$ output line.
(ii) 3-wire serial I/O mode (SCK2...External clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	tkcy	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	1600			ns
			3200			ns
SCK2 high/low-level width	$\begin{aligned} & \text { tкнв, } \\ & \text { tкட8 } \end{aligned}$	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$	400			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	800			ns
			1600			ns
SI2 setup time (to $\overline{\text { SCK2 }} \uparrow$ )	tsik8		100			ns
SI2 hold time (from $\overline{\text { SCK2 }} \uparrow$ )	tksis		400			ns
SO2 output delay time from $\overline{\text { SCK } 2} \downarrow$	tkso8	$\mathrm{C}=100 \mathrm{pF}$ Note			300	ns
$\overline{\text { SCK2 }}$ rise, fall time	$\begin{aligned} & \text { tr8, } \\ & \text { t } 88 \end{aligned}$				1000	ns

Note C is the load capacitance of SO 2 output line.
(iii) UART mode (Dedicated baud rate generator output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$			78125	bps
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dd}}<4.5 \mathrm{~V}$			39063	bps
					19531	bps

(iv) UART mode (External clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	tкcy9	$4.5 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 6.0 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	1600			ns
			3200			ns
ASCK high/low-level width	$\begin{aligned} & \text { tкне, } \\ & \text { tкட9 } \end{aligned}$	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 6.0 \mathrm{~V}$	400			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	800			ns
			1600			ns
Transfer rate		$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 6.0 \mathrm{~V}$			39063	bps
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$			19531	bps
					9766	bps
ASCK rise, fall time	$\begin{aligned} & \text { trg, } \\ & \text { tF9 } \end{aligned}$				1000	ns

AC Timing Test Point (Excluding X1, XT1 Input)


Clock Timing


TI Timing


Serial Transfer Timing

3-wire serial I/O mode:


$$
\begin{aligned}
\mathrm{m} & =1,2,7,8 \\
\mathrm{n} & =2,8
\end{aligned}
$$

SBI mode (bus release signal transfer):

SB0, SB1


SBI mode (command signal transfer):


## 2-wire serial I/O mode:



## UART mode:


$\mathrm{A} / \mathrm{D}$ Converter $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{AVDD}=\mathrm{VDD}=4.5$ to $\left.6.0 \mathrm{~V}, \mathrm{AV} s \mathrm{~S}=\mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error Note		$4.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq \mathrm{AV} \mathrm{VD}$			2.0	\%
Conversion time	tconv		19.1		200	$\mu \mathrm{s}$
Sampling time	tsamp		12/fxx			$\mu \mathrm{s}$
Analog input voltage	Vian		AVss		AVref	V
Reference voltage	AV ${ }_{\text {ref }}$		2.0		AVDD	V
AV ${ }_{\text {ref- }}$ AV $\mathrm{Vss}^{\text {resistance }}$	Rairef		4	14		k $\Omega$

Note Quantization error ( $\pm 1 / 2$ LSB) is not included. This is expressed in proportion to the full-scale value.

DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS ( $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ )

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.8		6.0	V
Data retention power supply current	Iddor	$V_{\text {DDDR }}=1.8 \mathrm{~V}$   Subsystem clock stop and feed-back resistor disconnected		0.1	10	$\mu \mathrm{A}$
Release signal set time	tsrel		0			$\mu \mathrm{s}$
Oscillation stabilization wait time	twalt	Release by $\overline{\mathrm{RESET}}$		$2^{17} / \mathrm{fx}$		ms
		Release by interrupt		Note		ms

Note In combination with bits 0 to 2 (OSTS0 to OSTS2) of oscillation stabilization time select register (OSTS), selection of $2^{12 / f x x ~ a n d ~} 2^{14} / \mathrm{fxx}$ to $2^{17} / \mathrm{fxx}$ is possible.

Data Retention Timing (STOP Mode Release by $\overline{\text { RESET }}$


Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)


Interrupt Input Timing

$\overline{\text { RESET }}$ Input Timing


## PROM PROGRAMMING CHARACTERISTICS

## DC Characteristics

(1) PROM Write Mode ( $\mathrm{T}_{\mathrm{A}}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=6.5 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.5 \pm 0.3 \mathrm{~V}$ )

Parameter	Symbol	Symbol ${ }^{\text {Note }}$	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	$\mathrm{V}_{\mathrm{H}}$	$\mathrm{V}_{\mathrm{H}}$		0.7 VDD		VDD	V
Input voltage, Iow	VIL	VIL		0		0.3 Vdd	V
Output voltage, high	V OH	V OH	I он $=-1 \mathrm{~mA}$	VDD -1.0			V
Output voltage, low	Vol	Vol	$\mathrm{loL}=1.6 \mathrm{~mA}$			0.4	V
Input leakage current	lıı	lıı	$0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {DD }}$	-10		+10	$\mu \mathrm{A}$
VPP supply voltage	VPP	VPP		12.2	12.5	12.8	V
VDD supply voltage	Vdd	Vcc		6.25	6.5	6.75	V
VPP supply current	Ipp	Ipp	$\overline{\mathrm{PGM}}=\mathrm{V}_{\mathrm{IL}}$			50	mA
VDD supply current	IdD	Icc				50	mA

Note Symbol corresponding to the $\mu$ PD27C1001A.
(2) PROM Read Mode ( $\mathrm{T}_{\mathrm{A}}=25 \pm 5{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \pm 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{DD}} \pm 0.6 \mathrm{~V}$ )

Parameter	Symbol	Symbol ${ }^{\text {Note }}$	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	$\mathrm{V}_{\mathrm{H}}$	$\mathrm{V}_{\mathrm{H}}$		0.7 VDD		VDD	V
Input voltage, low	VIL	VIL		0		0.3 VDD	V
Output voltage, high	Vor1	Voh1	$\mathrm{IOH}=-1 \mathrm{~mA}$	VDD - 1.0			V
	Voh2	Vон2	$\mathrm{loh}=-100 \mu \mathrm{~A}$	VDD -0.5			V
Output voltage, low	Vol	VoL	$\mathrm{loL}=1.6 \mathrm{~mA}$			0.4	V
Input leakage current	IL	ILI	$0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {DD }}$	-10		+10	$\mu \mathrm{A}$
Output leakage current	ILo	ILo	$0 \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {DD }}, \overline{\mathrm{OE}}=\mathrm{V}_{\text {IH }}$	-10		+10	$\mu \mathrm{A}$
VPP supply voltage	VPP	VPP		VDD -0.6	V ${ }_{\text {d }}$	V $\mathrm{DD}+0.6$	V
VDD supply voltage	VDD	Vcc		4.5	5.0	5.5	V
VPP supply current	IPP	IPP	$V_{\text {PP }}=V_{\text {D }}$			100	$\mu \mathrm{A}$
VDD supply current	IDD	Iccal	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}}$			50	mA

Note Symbol corresponding to the $\mu$ PD27C1001A.

## AC Characteristics

(1) PROM Write Mode
(a) Page program mode $\left(\mathrm{T}_{\mathrm{A}}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=6.5 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{P P}=12.5 \pm 0.3 \mathrm{~V}\right)$

Parameter	Symbol	Symbol ${ }^{\text {Note }}$	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to $\overline{\mathrm{OE}} \downarrow$ )	tas	tas		2			$\mu \mathrm{s}$
$\overline{\text { OE }}$ setup time	toes	toes		2			$\mu \mathrm{S}$
$\overline{\mathrm{CE}}$ setup time (to $\overline{\mathrm{OE}} \downarrow$ )	tces	tces		2			$\mu \mathrm{s}$
Input data setup time (to $\overline{\mathrm{OE}} \downarrow$ )	tbs	tos		2			$\mu \mathrm{s}$
Address hold time (from $\overline{\mathrm{OE}} \uparrow$ )	$\mathrm{taH}^{\text {H}}$	$\mathrm{t}_{\text {AH }}$		2			$\mu \mathrm{s}$
	$\mathrm{tahl}^{\text {L }}$	$t_{\text {AHL }}$		2			$\mu \mathrm{s}$
	$\mathrm{t}_{\text {AHV }}$	tahv		0			$\mu \mathrm{s}$
Input data hold time (from $\overline{\mathrm{OE}} \uparrow$ )	tD	toh		2			$\mu \mathrm{s}$
Data output float delay time from $\overline{\mathrm{OE}} \uparrow$	tbF	tDF		0		250	ns
VPP setup time (to $\overline{O E} \downarrow$ )	tvps	tvps		1.0			ms
VDD setup time (to $\overline{\mathrm{OE}} \downarrow$ )	tvos	tvcs		1.0			ms
Program pulse width	tpw	tpw		0.095	0.1	0.105	ms
Valid data delay time from $\overline{\mathrm{OE}} \downarrow$	toe	toe				1	$\mu \mathrm{s}$
$\overline{\mathrm{OE}}$ pulse width during data latching	tıw	tıw		1			$\mu \mathrm{S}$
$\overline{\text { PGM }}$ setup time	tPGMS	tPGMS		2			$\mu \mathrm{s}$
$\overline{\mathrm{CE}}$ hold time	tcen	tcen		2			$\mu \mathrm{s}$
$\overline{\mathrm{OE}}$ hold time	toen	toen		2			$\mu \mathrm{s}$

Note Corresponding $\mu$ PD27C1001A symbol
(b) Byte program mode ( $\mathrm{T}_{\mathrm{A}}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=6.5 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.5 \pm 0.3 \mathrm{~V}$ )

Parameter	Symbol	Symbol ${ }^{\text {Note }}$	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to $\overline{\mathrm{PGM}} \downarrow$ )	tas	tas		2			$\mu \mathrm{S}$
$\overline{\text { OE setup time }}$	toes	toes		2			$\mu \mathrm{S}$
$\overline{\mathrm{CE}}$ setup time (to $\overline{\mathrm{PGM}} \downarrow$ )	tces	tces		2			$\mu \mathrm{s}$
Input data setup time (to $\overline{\mathrm{PGM}} \downarrow$ )	tos	tos		2			$\mu \mathrm{s}$
Address hold time (from $\overline{\mathrm{OE}} \uparrow$ )	$\mathrm{taH}^{\text {H }}$	$\mathrm{taH}^{\text {}}$		2			$\mu \mathrm{S}$
nput data hold time (from $\overline{\mathrm{PGM}} \uparrow$ )	toh	toh		2			$\mu \mathrm{s}$
Data output float delay time from $\overline{\mathrm{OE}} \uparrow$	tDF	tDF		0		250	ns
VPP setup time (to $\overline{\text { PGM }} \downarrow$ )	tvps	tvps		1.0			ms
Vdd setup time (to $\overline{\text { PGM }} \downarrow$ )	tvos	tvcs		1.0			ms
Program pulse width	tpw	tpw		0.095	0.1	0.105	ms
Valid data delay time from $\overline{\mathrm{OE}} \downarrow$	toe	toe				1	$\mu \mathrm{s}$
$\overline{\mathrm{OE}}$ hold time	toen	-		2			$\mu \mathrm{s}$

Note Corresponding $\mu$ PD27C1001A symbol
(2) PROM Read Mode ( $\mathrm{T}_{\mathrm{A}}=25 \pm 5{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{dD}}=5.0 \pm 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{DD}} \pm 0.6 \mathrm{~V}$ )

Parameter	Symbol	Symbol ${ }^{\text {Note }}$	Test Conditions	MIN.	TYP.	MAX.	Unit
Data output time from address	tacc	tacc	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$			800	ns
Data output delay time from $\overline{\mathrm{CE}} \downarrow$	tce	tce	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$			800	ns
Data output delay time from $\overline{\mathrm{OE}} \downarrow$	toe	toe	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$			200	ns
Data output float delay time from $\overline{\mathrm{OE}} \uparrow$	tDF	tof	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$	0		60	ns
Data hold time from address	toh	toh	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$	0			ns

Note Corresponding $\mu$ PD27C1001A symbol
(3) PROM Programming Mode Setting ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$ )

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.
PROM programming   mode setup time	tsma		10		

PROM Write Mode Timing (Page program mode)


## PROM Write Mode Timing (Byte program mode)



Cautions 1. Vdd must be applied before Vpp and cut off after Vpp.
2. Vpp must not exceed +13.5 V including overshoot.
3. Removing and reinserting may adversely affect in reliability while +12.5 V is applied to Vpp.

PROM Read Mode Timing


Notes 1. When reading within the tacc range, the $\overline{\mathrm{OE}}$ input delay time from the $\overline{\mathrm{CE}}$ fall time must be maximum of tacc - toe.
2. tDF is the time from the point at which either $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$ (whichever is first) reaches $\mathrm{V}_{\mathrm{IH}}$.

PROM Programming Mode Setting Timing


## 7. PACKAGE DRAWINGS

## 100 PIN PLASTIC QFP (FINE PITCH) ( $\square 14$ )



NOTE
Each lead centerline is located within 0.10 mm ( 0.004 inch) of its true position (T.P.) at maximum material condition.

Remark Dimensions and materials of ES products are the same as those of the mass production product.

ITEM	MILLIMETERS	INCHES
A	$16.0 \pm 0.2$	$0.630 \pm 0.008$
B	$14.0 \pm 0.2$	$0.551{ }_{-0.008}^{+0.009}$
C	$14.0 \pm 0.2$	$0.551{ }_{-0.008}^{+0.009}$
D	$16.0 \pm 0.2$	$0.630 \pm 0.008$
F	1.0	0.039
G	1.0	0.039
H	$0.22{ }_{-0.04}^{+0.05}$	$0.009 \pm 0.002$
1	0.10	0.004
$J$	0.5 (T.P.)	0.020 (T.P.)
K	$1.0 \pm 0.2$	$0.039{ }_{-0.008}^{+0.009}$
L	$0.5 \pm 0.2$	$0.020{ }_{-0.008}^{+0.008}$
M	$0.17{ }_{-0.07}^{+0.03}$	$0.007{ }_{-0.001}^{+0.003}$
N	0.10	0.004
P	1.45	0.057
Q	$0.125 \pm 0.075$	$0.005 \pm 0.003$
R	$5^{\circ} \pm 5^{\circ}$	$5^{\circ} \pm 5^{\circ}$
S	1.7 MAX.	0.067 MAX.
		P100GC-50-7EA

## 100 PIN PLASTIC LQFP (FINE PITCH) (14×14)



NOTE
Each lead centerline is located within 0.08 mm ( 0.003 inch) of its true position (T.P.) at maximum material condition.

Remark Dimensions and materials of ES products are the same as those of the mass production product.

ITEM	MILLIMETERS	INCHES
A	$16.00 \pm 0.20$	$0.630 \pm 0.008$
B	$14.00 \pm 0.20$	$0.551+0.009$
C	$14.00 \pm 0.20$	$0.551+0.009$
D	$16.00 \pm 0.20$	$0.630 \pm 0.008$
F	1.00	0.039
G	1.00	0.039
H	$0.22+0.05$	$0.009 \pm 0.002$
I	0.08	0.003
J	0.50 (T.P.)	0.020 (T.P.)
K	$1.00 \pm 0.20$	$0.039+0.009$
L	$0.50 \pm 0.20$	$0.020_{-0.009}^{+0.008}$
M	$0.17{ }_{-0.07}^{+0.03}$	$0^{0.007}+0.001$
N	0.08	0.003
P	$1.40 \pm 0.05$	$0.055 \pm 0.002$
Q	$0.10 \pm 0.05$	$0.004 \pm 0.002$
R	$3^{\circ}+{ }_{-3^{\circ}}{ }^{\circ}$	$3^{\circ}{ }_{-3^{\circ}}{ }^{\circ}$
S	1.60 MAX.	0.063 MAX.
		S100GC-50-8EU

## 100 PIN PLASTIC QFP ( $\mathbf{1 4 \times 2 0}$ )



## 8. RECOMMENDED SOLDERING CONDITIONS

The $\mu$ PD78P064B should be soldered and mounted under the conditions recommended in the table below.
For detail of recommended soldering conditions, refer to the information document Semiconductor Device Mounting Technology Manual (C10535E).

For soldering methods and conditions other than those recommended below, contact our sales personnel.

Table 8-1. Surface Mounting Type Soldering Conditions
(1) $\mu$ PD78P064BGC-7EA: 100-pin plastic QFP (fine pitch) $(14 \times 14 \mathrm{~mm})$
$\star \quad \mu$ PD78P064BGC-8EU: 100-pin plastic LQFP (fine pitch) $(14 \times 14 \mathrm{~mm})$

Soldering Method	Soldering Conditions	Recommended   Soldering Symbols
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Duration: 30 sec. max. (at $210{ }^{\circ} \mathrm{C}$ or above),   Number of times: Twice max., Time limit: 7 days ${ }^{\text {Note (thereafter } 10 \text { hours prebaking }}$   required at $125^{\circ} \mathrm{C}$ )   <Precaution>   Products cannot be baked while packed in anything other than in a heat resistant tray   (i.e. they cannot be baked in a magazine, taping, or heat-labile tray).	IR35-107-2
VPS	Package peak temperature: $235^{\circ} \mathrm{C}$, Duration: 30 sec. max. (at $210{ }^{\circ} \mathrm{C}$ or above),   Number of times: Twice max., Time limit: 7 days ${ }^{\text {Note (thereafter } 10 \text { hours prebaking }}$   required at $125{ }^{\circ} \mathrm{C}$ )   <Precaution>   Products cannot be baked while packed in anything other than in a heat resistant tray   (i.e. they cannot be baked in a magazine, taping, or heat-labile tray).	VP15-107-2
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., Duration: 3 sec. max. (per device side)	-

Note For the storage period after dry-pack decapsulation, storage conditions are max. $25^{\circ} \mathrm{C}, 65 \% \mathrm{RH}$.
(2) $\mu$ PD78P064BGF-3BA: 100-pin plastic QFP $(14 \times 20 \mathrm{~mm})$

Soldering Method	Soldering Conditions	Recommended   Soldering Symbols
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Duration: 30 sec. max. (at $210^{\circ} \mathrm{C}$ or above),   Number of times: Three times max.	IR35-00-3
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Duration: 40 sec. (at $200^{\circ} \mathrm{C}$ or above),   Number of times: Three times max.	$\mathrm{VP} 15-00-3$
Wave soldering	Solder bath temperature: $260^{\circ} \mathrm{C}$ max., Duration: 10 sec. max., Number of times:   Once, Preheating temperature: $120^{\circ} \mathrm{C}$ max. (Package surface temperature)	$\mathrm{WS} 60-00-1$
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., Duration: 3 sec. max. (per device side)	-

Caution Use of more than one soldering method should be avoided (except in the case of partial heating).

## APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using $\mu$ PD78P064B.

## Language Processing Software

RA78K/0 ${ }^{\text {Note 1, 2, 3, } 4}$	78K/0 series common assembler package
CC78K/0 ${ }^{\text {Note 1, 2, 3, } 4}$	78K/0 series common C compiler package
DF78064 ${ }^{\text {Note 1, 2, 3, } 4}$	$\mu \mathrm{PD} 78064$ subseries common device file
CC78K/0-L Note 1, 2, 3, 4	78K/0 series common C compiler library source file

## PROM Writing Tools

PG-1500	PROM programmer
PA-78P064GC	Programmer adapters connected to PG-1500
PA-78P064GF	
PA-PG-1500 controllerNote $\mathbf{1 , 2}$	PG-1500 control program

## Debugging Tools

IE-78000-R	78K/0 series common in-circuit emulators
IE-78000-R-A	$78 \mathrm{~K} / 0$ series common in-circuit emulators (for integrated debugger)
IE-78000-R-BK	78K/0 series common break board
IE-780308-R-EM	$\mu$ PD780308 subseries common evaluation emulation boards
EP-78064GC-R	$\mu$ PD78064 subseries common emulation probes
EP-78064GF-R	
TGC-100SDW	Adapter to be mounted on a target system board made for 100-pin plastic QFP (GC-7EA, GC-8EU type)   A product of Tokyo Eletech Corp. (Tokyo 03-5295-1661). When purchasing this product, consult your NEC distributor.
EV-9200GF-100	Socket to be mounted on a target system board made for 100-pin plastic QFP (GF-3BA type)
SM78K0 ${ }^{\text {Note 5, 6,7 }}$	78K/0 series common system simulators
ID78K0 ${ }^{\text {Note 4, 5, 6, } 7}$	IE-78000-R-A integrated debuggers
SD78K/0 ${ }^{\text {Note 1, } 2}$	IE-78000-R screen debuggers
DF78064 ${ }^{\text {Note 1, 2, 4, 5, 6, } 7}$	$\mu$ PD78064 subseries common device file

## Real-Time OS

RX78K/0	Note $1,2,3,4$
MX78K/ONote $1,2,3,4$	$78 \mathrm{~K} / 0$ series real-time Series OS

## Fuzzy Inference Development Support System

FE9000 ${ }^{\text {Note 1 }}$, FE9200 ${ }^{\text {Note } 6}$	Fuzzy knowledge data creation tool
FT9080 ${ }^{\text {Note 1 }}$, FT9085 ${ }^{\text {Note } 2}$	Translator
FI78K/IINote 1,2	Fuzzy inference module
FD78K/IINote 1, 2	Fussy inference debugger

Notes 1. PC-9800 series (MS-DOS ${ }^{\text {TM }}$ ) based
2. IBM PC/AT ${ }^{T M}$ and compatible machines (PC DOS ${ }^{T M} / \mathrm{IBM} D O S^{T M} / M S-D O S$ ) based
3. HP9000 series $300^{\mathrm{TM}}\left(H P-U X^{T M}\right)$ based
4. HP9000 series $700^{\text {TM }}$ (HP-UX) based, SPARCstation ${ }^{\text {TM }}$ (SunOS ${ }^{\text {TM }}$ ) based, EWS4800 series (EWS-UX/V) based
5. PC-9800 series (MS-DOS + Windows ${ }^{\text {TM }}$ ) based
6. IBM PC/AT and compatible machines (PC DOS/IBM DOS/MS-DOS + Windows) based
7. NEWS $^{\text {TM }}$ (NEWS-OS ${ }^{\text {TM }}$ ) based

Remarks 1. For third party development tools, refer to 78K/0 Series Selection Guide (U11126E).
2. RA78K/0, CC78K/0, SM78K0, ID78K0, SD78K/0, and RX78K/0 are used in combination with DF78064.

## CONVERSION SOCKET (EV-9200GF-100) PACKAGE DRAWINGS AND

## RECOMMENDED BOARD MOUNTING PATTERN

Figure A-1. EV-9200GF-100 Package Drawing


ITEM	MILLIMETERS	EV-9200GF-100-GO
A	24.6	0.969
B	21	0.827
C	15	0.591
D	18.6	0.732
E	$4-C 2$	$4-C 0.079$
F	0.8	0.031
G	12.0	0.472
H	22.6	0.89
I	25.3	0.996
J	6.0	0.236
K	16.6	0.654
L	19.3	076
M	8.2	0.323
N	8.0	0.315
O	2.5	0.098
P	2.0	0.079
Q	0.35	0.014
R	$\phi 2.3$	$\phi 0.091$
S	$\phi 1.5$	$\phi 0.059$

Figure A-2. EV-9200GF-100 Board Mounting Pattern


EV-9200GF-100-P0		
ITEM	MILLIMETERS	INCHES
A	26.3	1.035
B	21.6	0.85
C	$0.65 \pm 0.02 \times 29=18.85 \pm 0.05$	$0.026_{-0.002}^{+0.001} \times 1.142=0.742_{-0.002}^{+0.002}$
D	$0.65 \pm 0.02 \times 19=12.35 \pm 0.05$	$0.026_{-0.002}^{+0.001} \times 0.748=0.486_{-0.002}^{+0.003}$
E	15.6	0.614
F	20.3	0.799
G	$12 \pm 0.05$	$0.472_{-0.002}^{+0.003}$
H	$6 \pm 0.05$	$0.236_{-0.002}^{+0.003}$
I	$0.35 \pm 0.02$	$0.014_{-0.0001}^{+0.001}$
J	$\phi 2.36 \pm 0.03$	$\phi 0.093_{-0.002}^{+0.001}$
K	$\phi 2.3$	$\phi 0.091$
L	$\phi 1.57 \pm 0.03$	$\phi 0.062_{-0.002}^{+0.001}$

Caution Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to 'SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).

Figure A-3. TGC-100SDW Package Drawing
Reference diagram: TGC-100SDW

## Package dimension (unit: mm)



ITEM	MILLIMETERS	INCHES	ITEM	MILLIMETERS	INCHES
A	21.55	0.848	a	14.45	0.569
B	$0.5 \times 24=12$	$0.020 \times 0.945=0.472$	b	$1.85 \pm 0.25$	$0.073 \pm 0.010$
C	0.5	0.020	c	3.5	0.138
D	$0.5 \times 24=12$	$0.020 \times 0.945=0.472$	d	2.0	0.079
E	15.0	0.591	e	3.9	0.154
F	21.55	0.848	$f$	0.25	0.010
G	¢3.55	$\phi 0.140$	g	¢4.5	$\phi 0.177$
H	10.9	0.429	h	16.0	0.630
I	13.3	0.524	i	$1.125 \pm 0.3$	$0.044 \pm 0.012$
J	15.7	0.618	j	0~5 ${ }^{\circ}$	0.000~0.197 ${ }^{\circ}$
K	18.1	0.713	k	5.9	0.232
L	13.75	0.541	I	0.8	0.031
M	$0.5 \times 24=12.0$	$0.020 \times 0.945=0.472$	m	2.4	0.094
N	$1.125 \pm 0.3$	$0.044 \pm 0.012$	n	2.7	0.106
$\bigcirc$	$1.125 \pm 0.2$	$0.044 \pm 0.008$			TGC-100SDW-G0E
P	7.5	0.295			
Q	10.0	0.394			
R	11.3	0.445			
S	18.1	0.713			
T	$\phi 5.0$	$\phi 0.197$			
U	5.0	0.197			
V	4- $\phi 1.3$	4- $\phi 0.051$			
W	1.8	0.071			
X	C 2.0	C 0.079			
Y	$\phi 0.9$	$\phi 0.035$			
Z	$\phi 0.3$	$\phi 0.012$			

Remark Manufactured by Tokyo Eletech Corp.

## APPENDIX B. RELATED DOCUMENTS

Device Related Documents

Document Name	Document No.	
	Japanese	English
$\mu$ PD78064B Subseries User's Manual	U10785J	U10785E
$\mu$ PD78064B Data Sheet	U11590J	U11590E
$\mu$ PD78P064B Data Sheet	U11598J	This document
$78 K / 0$ Series User's Manual (Instruction)	U12326J	U12326E
$78 K / 0$ Series Instruction List	U10903J	-
$78 K / 0$ Series Instruction Set	Planned	-
$\mu$ PD78064B Subseries Special Function Register Table	-	

Development Tool Related Documents (User's Manual) (1/2)

Document Name		Document No.	
		Japanese	English
RA78K Series Assembler Package	Operation	EEU-809	EEU-1399
	Language	EEU-815	EEU-1404
RA78K Series Structured Assembler Preprocessor		EEU-817	EEU-1402
RA78K0 Assembler Package	Operation	U11802J	U11802E
	Assembly language	U11801J	U11801E
	Structured assembly language	U11789J	U11789E
CC78K Series C Compiler	Operation	EEU-656	EEU-1280
	Language	EEU-655	EEU-1284
CC78K0 C Compiler	Operation	U11517J	U11517E
	Language	U11518J	U11518E
CC78K/0 C Compiler Application Note	Programming know-how	EEA-618	EEA-1208
CC78K Series Library Source File		U12322J	-
PG-1500 PROM Programmer		U11940J	U11940E
PG-1500 Controller PC-9800 Series (MS-DOS) Based		EEU-704	EEU-1291
PG-1500 Controller IBM PC Series (PC DOS) Based		EEU-5008	U10540E
IE-78000-R		U11376J	U11376E
IE-78000-R-A		U10057J	U10057E
IE-78000-R-BK		EEU-867	EEU-1427
IE-780308-R-EM		U11362J	U11362E
EP-78064		EEU-934	EEU-1469

Development Tool Related Documents (User's Manual) (2/2)

Document Name		Document No.	
		Japanese	English
SM78K0 System Sumilator Windows Based	Reference	EEU-5002	U10181E
SM78K Series System Simulator	External components user   open interface specification	U10092J	U10092E
ID78K0 Integrated Debugger EWS Based	Reference	U11151J	-
ID78K0 Integrated Debugger PC Based	Reference	U11539J	U11539E
ID78K0 Integrated Debugger Windows Based	Guide	U11649J	U11649E
SD78K/0 Screen Debugger	Introduction	EEU-852	U10539E
PC-9800 Series (MS-DOS) Based	Reference	U10952J	-
SD78K/0 Screen Debugger   IBM PC/AT (PC DOS) Based	Introduction	EEU-5024	EEU-1414
	Reference	U11279J	U11279E

Caution The above related documents are subject to change without notice. For design purpose, etc., be sure to use the latest documents.

Embedded Software Related Documents (User's Manual)

Document Name		Document No.	
	Japanese	English	
$78 \mathrm{~K} / 0$ Series Real-Time OS	Basic	U11537J	-
	Installation	U11536J	-
$78 \mathrm{~K} / 0$ Series OS MX78K0	U12257J	-	
Fuzzy Knowledge Data Creation Tool	EEU-829	EEU-1438	
78K/0, 78K/II, 87AD Series Fuzzy Inference Development Support System   Translator	EEU-862	EEU-1444	
$78 \mathrm{~K} / 0$ Series Fuzzy Inference Development Support System Fuzzy Inference   Module	EEU-858	EEU-1441	
78K/0 Series Fuzzy Inference Development Support System Fuzzy Inference   Debugger	EEU-921	EEU-1458	

## Other Related Documents

Document Name	Document No.	
	Japanese	English
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability and Quality Control	C10983J	C10983E
Electrostatic Discharge (ESD) Test	MEM-539	-
Semiconductor Devices Quality Guarantee Guide	C11893J	MEI-1202
Microcomputer-Related Product Guide (Products by Other Manufacturers)	U11416J	-

Caution The above related documents are subject to change without notice. For design purpose, etc., be sure to use the latest documents.
[MEMO]

## NOTES FOR CMOS DEVICES

## ① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

## (2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VdD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

## (3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

## Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 800-366-9782
Fax: 800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-67 5899
NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583

## NEC Electronics Taiwan Ltd.

Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951
NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689

# FIP, QTOP and IEBus are trademarks of NEC Corporation. <br> MS-DOS and Windows are trademarks of Microsoft Corporation. <br> IBM DOS, PC/AT and PC DOS are trademarks of IBM Corporation. <br> HP9000 series 300, HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company. <br> SPARCstation is a trademark of SPARC International, Inc. <br> Sun OS is a trademark of Sun Microsystems, Inc. <br> NEWS and NEWS-OS are trademarks of Sony Corporation. 

The documents referred to in this publication may include preliminary versions. However preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

