mos integrated circuit μ **PD78P048A**

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD78P048A is a product in the μ PD78044F subseries within the 78K/0 series, in which the internal ROM of the μ PD78042F, 78043F, 78044F, and 78045F is replaced with one-time PROM or EPROM.

As the μ PD78P048A is user-programmable, it is ideal for evaluation in system development, short-run and multipledevice production, and early start-up.

 Caution The μPD78P048AKL-S does not provide the reliability intended for mass production of user systems. Use this model only for experiments and evaluation of functions.

Details of functions are described in the User's Manuals shown below. Be sure to read in design. μ PD78044F subseries User's Manual: U10908E 78K/0 series User's Manual -Instruction: U12326E

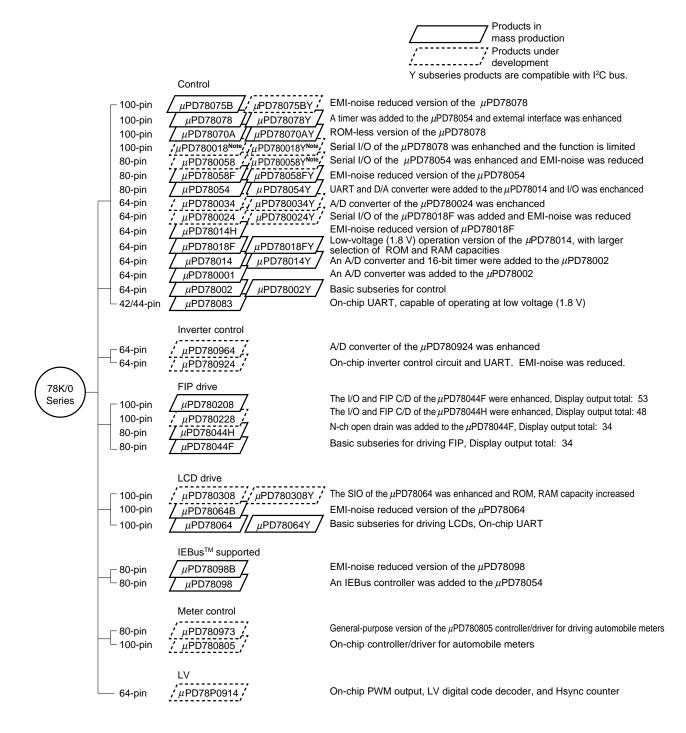
FEATURES

- Pin compatible with mask ROM products (except the VPP pin)
- Internal PROM: 60K bytes^{Note 1}
- μPD78P048AKL-S: Reprogrammable. (ideal for system evaluation)
- μPD78P048AGF-3B9: Programmable only once (ideal for limited production)
- Internal high-speed RAM: 1024 bytes^{Note 1}
- Internal expansion RAM: 1024 bytes^{Note 2}
- Buffer RAM: 64 bytes
- FIPTM display RAM: 48 bytes
- Operable in the same supply voltage as mask ROM products: V_{DD} = 2.7 to 6.0 V (except A/D converter) A/D converter supply voltage: AV_{DD} = 4.0 to 6.0
 - **Notes 1.** Internal PROM and internal high-speed RAM capacities can be changed by memory size switching register (IMS).
 - 2. Internal expansion RAM capacity can be changed by internal expansion RAM size switching register (IXS).

Remark For the difference between ROM products and mask ROM products, refer to **1. DIFFERENCES BETWEEN** μ**PD78P048A AND MASK ROM PRODUCTS**.

In this document, "PROM" is used in parts common to one-time PROM products and EPROM products.

The information in this document is subject to change without notice.


ORDERING INFORMATION

Part Number	Package	Internal ROM	Quality Grade
μPD78P048AGF-3B9	80-pin plastic QFP (14 $ imes$ 20 mm)	One-time PROM	Standard
μ PD78P048AKL-S	80-pin ceramic WQFN	EPROM	Not applicable

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

★ 78K/0 SERIES PRODUCT DEVELOPMENT

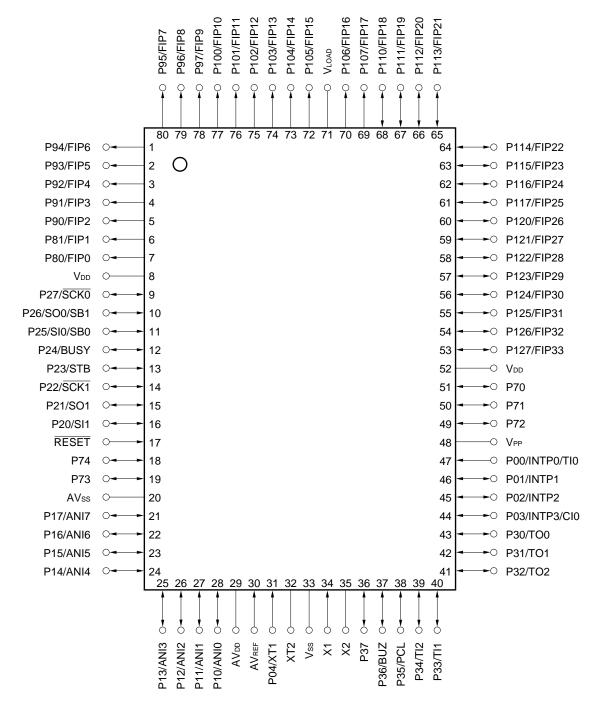
The following shows the 78K/0 Series products development. Subseries name are shown inside frames.

The following lists the main functional differences between subseries products.

	Function	ROM		Tin	ner		8-bit	10-bit	8-bit	Serial	I/O	Vdd MIN	External
Subseries	Name	Capacity	8-bit	16-bit	Watch	WDT	A/D	A/D	D/A	Interface	., 0	Value	Expansion
Control	μPD78075B	32 K-40 K	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART : 1 ch)	88	1.8 V	0
	μPD78078	48 K-60 K											
	μPD78070A	-									61	2.7 V	
	μPD780018	48 K-60 K							-	2 ch (time division 3-wire: 1ch)	88		
	μPD780058	24 K-60 K	2 ch						2 ch	3 ch (time division UART: 1ch)	68	1.8 V	
	μPD78058F	48 K-60 K								3 ch (UART: 1 ch)	69	2.7 V	
	μPD78054	16 K-60 K										2.0 V	
	μPD780034	8 K-32 K					_	8 ch	_	3 ch (UART: 1 ch, time	51	1.8 V	
	μPD780024						8 ch	-		division 3-wire: 1 ch)			
	μPD78014H									2 ch	53	1	
	μPD78018F	8 K-60 K											
	μPD78014	8 K-32 K										2.7 V	
	μPD780001	8 K		-	_					1 ch	39		_
	μPD78002	8 K-16 K			1 ch		-				53	1	0
	μPD78083				_		8 ch			1 ch (UART: 1 ch)	33	1.8 V	-
Inverter	μPD780964	8 K-32 K	3 ch	Note	-	1 ch	-	8 ch	-	2 ch (UART: 2 ch)	47	2.7 V	0
control	μPD780924						8 ch	-					
FIP	μPD780208	32 K-60 K	2 ch	1 ch	1 ch	1 ch	8 ch	-	-	2 ch	74	2.7 V	-
drive	μPD780228	48 K-60 K	3 ch	-	-					1 ch	72	4.5 V	
	μPD78044H	32 K-48 K	2 ch	1 ch	1 ch						68	2.7 V	
	μPD78044F	16 K-40 K								2 ch			
LCD drive	μPD780308	48 K-60 K	2 ch	1 ch	1 ch	1 ch	8 ch	-	-	3 ch (time division UART: 1ch)	57	2.0 V	-
	μPD78064B	32 K								2 ch (UART : 1 ch)			
	μPD78064	16 K-32 K											
IEBus	μPD78098B	40 K-60 K	2 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART : 1 ch)	69	2.7 V	0
supported	μPD78098	32 K-60 K											
Meter	μPD780973	24 K-32 K	3 ch	1 ch	1 ch	1 ch	5 ch	-	-	2 ch (UART : 1 ch)	56	4.5 V	-
control	μPD780805	40 K-60 K	2 ch				8 ch				39	2.7 V	
LV	μPD78P0914	32 K	6 ch	-	_	1 ch	8 ch	-	-	2 ch	54	4.5 V	0

Note 10-bit timer: 1 channel

FUNCTION DESCRIPTION

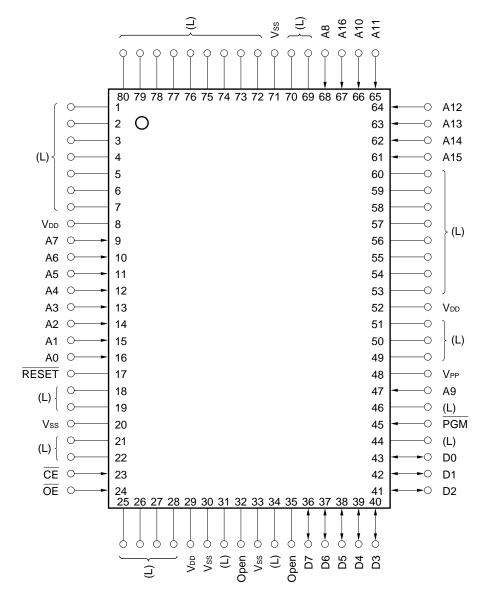

	ltem	Function					
la tama al	PROM	60 K bytes ^{Note 1}					
Internal memory	High-speed RAM	1024 bytes ^{Note 1}					
	Expansion RAM	1024 bytes ^{Note 2}					
	Buffer RAM	64 bytes					
	FIP display RAM	48 bytes					
General-purpose register		8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)					
Minimum i	nstruction execution time	Instruction execution time variable function is built in.					
When n	nain system clock is selected	0.4 μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs (when operating at 5.0 MHz)					
When s	ubsystem clock is selected	122 μ s (when operating at 32.768 kHz)					
Instruction	set	 Multiplication/division (8 bits × 8 bits, 16 bits ÷ 8 bits) Bit manipulation (set, reset, test, boolean operation) 					
I/O ports (including	FIP dual-function pin)	Total:68• CMOS input:2• CMOS input/output:27• N-ch open-drain input/output:5• P-ch open-drain input/output:16• P-ch open-drain output:18					
FIP contro	ller/driver	Display output total : 34 • No. of segments : 9 to 24 • No. of digits : 2 to 16					
A/D conve	rter	 8-bit resolution × 8 ch Supply voltage: AV_{DD} = 4.0 to 6.0 V 					
Serial inter	face	3-wire serial I/O/SBI/2-wire serial I/O mode selectable : 1 ch 3-wire serial I/O mode (on-chip max. 64 bytes automatic data transmit/receive function): 1 ch					
Timer		 16-bit timer/event counter: 1 channel 8-bit timer/event counter: 2 channels Clock timer : 1 channel Watchdog timer : 1 channel 6-bit up/down counter : 1 channel 					
Timer outp	out	3 (14-bit PWM output capability : 1)					
Clock outp	ut	19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz (When operating at main system clock 5.0 MHz) 32.768 kHz (when operating at subsystem clock 32.768 kHz)					
Buzzer out	tput	1.2 kHz, 2.4 kHz, 4.9 kHz (when operating at main system clock 5.0 MHz)					
Vectored	Maskable	Internal: 10, External: 4					
interrupt	Non-maskable	Internal: 1					
sources	Software	1					
Test input		Internal: 1					
Supply vol	tage	V _{DD} = 2.7 to 6.0 V					
Package		 80-pin plastic QFP (14 × 20 mm) 80-pin ceramic WQFN 					

Notes 1. Internal PROM/internal high-speed RAM capacity can be changed by memory size switching register (IMS).

2. Internal expansion RAM capacity can be changed by internal expansion RAM size switching register (IXS).

PIN CONFIGURATION (Top View)

- (1) Normal operating mode
 - 80-pin plastic QFP (14 \times 20 mm) μ PD78P048AGF-3B9
 - 80-pin ceramic WQFN μPD78P048AKL-S


Cautions 1. Connect VPP pin directly to Vss.

- 2. Connect AVDD pin to VDD.
- 3. Connect AVss pin to Vss.

P00 to P04	:	Port 0
P10 to P17	:	Port 1
P20 to P27	:	Port 2
P30 to P37	:	Port 3
P70 to 74	:	Port 7
P80, P81	:	Port 8
P90 to P97	:	Port 9
P100 to P107	:	Port 10
P110 to P117	:	Port 11
P120 to 127	:	Port 12
INTP0 to INTP3	:	Interrupt from Peripherals
TI0 to TI2	:	Timer Input
TO0 to TO2	:	Timer Output
CI0	:	Clock Input
SB0, SB1	:	Serial Bus
SI0, SI1	:	Serial Input
SO0, SO1	:	Serial Output

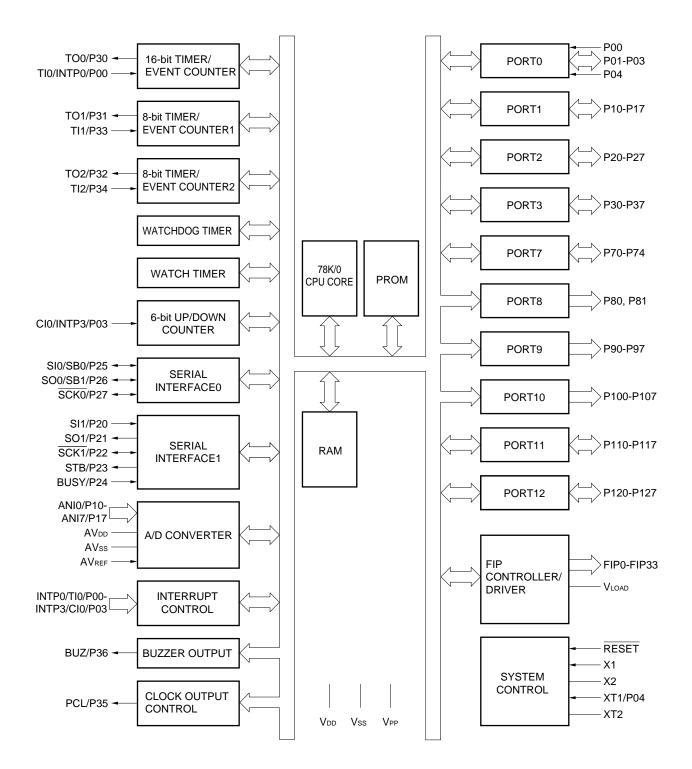
SCK0, SCK2	:	Serial Clock
PCL	:	Programmable Clock
BUZ	:	Buzzer Clock
STB	:	Strobe
BUSY	:	Busy
FIP0 to FIP33	:	Fluorescent Indicator Panel
Vload	:	Negative Power Supply
X1, X2	:	Crystal (Main System Clock)
XT1, XT2	:	Crystal (Subsystem Clock)
RESET	:	Reset
ANI0 to ANI7	:	Analog Input
AVdd	:	Analog Power Supply
AVss	:	Analog Ground
AVREF	:	Analog Reference Voltage
Vdd	:	Power Supply
Vpp	:	Programming Power Supply
Vss	:	Ground

- (2) PROM programming mode
 - 80-pin plastic QFP (14 \times 20 mm) μ PD78P048AGF-3B9
 - 80-pin ceramic WQFN μPD78P048AKL-S

Cautions 1. (L) : Individually connect to Vss via a pull-down resistor.

- 2. Vss : Connect to ground.
- 3. RESET : Set to low level.
- 4. Open : No connection.

A0 to A16	:	Address Bus
D0 to D7	:	Data Bus
CE	:	Chip Enable
OE	:	Output Enable
PGM	:	Program


 RESET:
 Reset

 VDD
 :
 Power Supply

 VPP
 :
 Programming Power Supply

 Vss
 :
 Ground

BLOCK DIAGRAM

CONTENTS

	1.	DIFFERENCES BETWEEN μ PD78P048A AND MASK ROM PRODUCTS	11
	2.	PIN FUNCTION	12
		2.1 Pins in Normal Operating Mode	12
		2.2 Pins in PROM Programming Mode	15
		2.3 Pin Input/Output Circuits and Recommended Connection of Unused Pins	16
	3.	MEMORY SIZE SWITCHING REGISTER (IMS)	19
	4.	INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)	20
	5.	PROM PROGRAMMING	21
		5.1 Operating Modes	21
		5.2 PROM Write Procedure	23
		5.3 PROM Read Procedure	27
	6.	ERASURE METHOD (μPD78P048AKL-S ONLΥ)	28
	7.	ERASURE WINDOW SEAL (µPD78P048AKL-S ONLY)	28
	8.	ONE-TIME PROM PRODUCTS SCREENING	28
	9.	ELECTRICAL SPECIFICATIONS	29
*	10.	CHARACTERISTIC CURVE (REFERENCE VALUE)	56
	11.	PACKAGE DRAWINGS	61
	12.	RECOMMENDED SOLDERING CONDITIONS	63
	AP	PENDIX A. DEVELOPMENT TOOLS	64
	AP	PENDIX B. RELATED DOCUMENTS	68

1. DIFFERENCES BETWEEN μ PD78P048A AND MASK ROM PRODUCTS

The μ PD78P048A is a single-chip microcontroller with an on-chip one-time writable PROM or with an on-chip EPROM which has program write, erasure and rewrite capability.

It is possible to make all the functions except for PROM specification, and mask option, to the same as those of mask ROM products by setting the memory size switching register (IMS) and the internal expansion RAM size switching register (IXS).

Differences between the μ PD78P048A and mask ROM products (μ PD78042F, 78043F, 78044F, and 78045F) are shown in Table 1-1.

★

Table 1-1. Differences between μ PD78P048A and Mask ROM Products

Item	μPD78P048A	Mask ROM Products
Internal ROM structure	One-time PROM/EPROM	Mask ROM
Internal ROM capacity	60K bytes	μPD78042F: 16K bytes μPD78043F: 24K bytes μPD78044F: 32K bytes μPD78045F: 40K bytes
Internal high-speed RAM capacity	1024K bytes	μPD78042F: 512 bytes μPD78043F: 512 bytes μPD78044F: 1024 bytes μPD78045F: 1024 bytes
Changes of internal ROM and internal high-speed RAM capacities by memory size switching register (IMS)	Available ^{Notes} 1	Not available
Change of internal expansion RAM capacity by internal expansion RAM size switching register (IXS)	Available ^{Notes 2}	Not available
IC pin	No	Yes
VPP pin	Yes	No
Mask option with internal pull-down resistor for pins P30-P37, P106, P107, P110-P117, and P120-P127.	No	Yes
Mask option with internal pull-up resistor for pins P70-P74.	No	Yes
Electrical characteristics	Refer to the Data Sheet for each produ	ict.

- **Notes 1.** The internal PROM becomes to 60K bytes and the internal high-speed RAM becomes 1024 bytes by the RESET input.
 - 2. The internal expansion RAM becomes to 1024 bytes by the RESET input.
- Caution Noise resistance and noise radiation are different in PROM version and mask ROM versions. If using a mask ROM version instead of the PROM version for processes between prototype development and full production, be sure to fully evaluate the CS of the mask ROM version (not ES).

2. PIN FUNCTION

2.1 Pins in Normal Operating Mode

(1) Port pins (1/2)

Pin Name	Input/Output		Function	On Reset	Dual-Function Pin
P00	Input	Port 0	Input only Input	Input	INTP0/TI0
P01	Input/output	5-bit input/	Input/Output is specifiable bit-wise.		INTP1
P02		output port	When used as the input port, it is possible to use an on-chip pull-up	Input	INTP2
P03			resistor in software.		INTP3/CI0
P04 ^{Note 1}	Input		Input only	Input	XT1
P10 to P17	Input/output			Input	ANI0 to ANI7
P20	Input/output	Port 2		Input	SI1
P21		8-bit input/output p			SO1
P22		Input/output is spe When used as the	input port, it is possible to		SCK1
P23			l-up resistor in software.		STB
P24					BUSY
P25]				SI0/SB0
P26					SO0/SB1
P27					SCK0
P30	Input/output	Port 3		Input	TO0
P31		8-bit input/output p			TO1
P32		Input/output is spe Direct LED drive c			TO2
P33			input port, it is possible to		TI1
P34		use an on-chip pul	l-up resistor in software.		TI2
P35					PCL
P36					BUZ
P37					_

Notes 1. When the P04/XT1 pins are used as input ports, processor clock control register (PCC) bit 6 (FRC) should be set to 1 (the subsystem clock oscillator incorporated feedback resistor should not be used).

2. When the P10/ANI0 to P17/ANI7 pins are used as A/D converter analog input, port 1 should be set to the input mode. The on-chip pull-up resistor is not automatically used.

(1) Port pins (2/2)

Pin Name	Input/Output	Function	On Reset	Dual-Function Pin
P70 to P74	Input/output	Port 7 N-ch open-drain 5-bit input/output port. Direct LED drive capability. Input/output is specifiable bit-wise.	Input	_
P80, P81	Output	Port 8 P-ch open-drain 2-bit high-voltage output port. Direct LED drive capability. Pull-down resistor (connected to VLOAD) on chip.	Output	FIP0, FIP1
P90 to P97	Output	Port 9 P-ch open-drain 8-bit high-voltage output port. Direct LED drive capability. Pull-down resistor (connected to VLOAD) on chip.	Output	FIP2 to FIP9
P100 to P107	Output	Port 10 P-ch open-drain 8-bit high-voltage output port. Direct LED drive capability. Pull-down resistor (connected to VLOAD) on chip in P100 to P105.	Output	FIP10 to FIP17
P110 to P117	Input/output	Port 11 P-ch open-drain 8-bit high-voltage output port. Input/output is specifiable bit-wise.	Input	FIP18 to FIP25
P120 to P127	Input/output	Port 12 P-ch open-drain 8-bit high-voltage output port. Direct LED drive capability. Input/output is specifiable bit-wise.	Input	FIP26 to FIP33

(2) Non-port pins (1/2)

Pin Name	Input/Output	Function	On Reset	Dual-Function Pin
INTP0	Input	Specifiable valid edges (rising edge, falling edge,	Input	P00/TI0
INTP1		and both rising and falling edges).		P01
INTP2		External interrupt request input		P02
INTP3		Falling edge detection external interrupt request input	Input	P03/CI0
S10	Input	Serial data input of the serial interface	Input	P25/SB0
SI1				P20
SO0	Output	Serial data output of the serial interface	Input	P26/SB1
SO1				P21
SB0	Input/output	Serial data input/output of the serial interface	Input	P25/SI0
SB1				P26/SO0
SCK0	Input/output	Serial clock input/output of the serial interface	Input	P27
SCK1				P22
STB	Output	Serial interface automatic transmit/receive strobe output	Input	P23
BUSY	Input	Serial interface automatic transmit/receive busy input	Input	P24
TIO	Input	External count clock input to 16-bit timer (TM0)	Input	P00/INTP0
TI1		External count clock input to 8-bit timer (TM1)		P33
TI2		External count clock input to 8-bit timer (TM2)		P34
TO0	Output	16-bit timer (TM0) output (shared with 14-bit PWM output)	lutput	P30
TO1		8-bit timer (TM1) output		P31
TO2		8-bit timer (TM2) output		P32
CIO	Input	Clock input of the 6-bit up/down counter	Input	P03/INTP3
PCL	Output	Clock output (for main system clock, subsystem clock trimming)	Input	P35
BUZ	Output	Buzzer output	Input	P36
FIP0, FIP1	Output	FIP controller/driver digit output high-voltage high-	Output	P80, P81
FIP2 to FIP9		current output		P90 to P97
FIP10 to FIP15	Output	FIP controller/driver digit/segment output high- voltage high-current output	Output	P100 to P105
FIP16, FIP17	Output	FIP controller/driver segment output high-voltage	Output	P106, P107
FIP18 to FIP25		output	Input	P110 to P117
FIP26 to FIP33				P120 to P127
Vload	_	FIP controller/driver pull-down resistor connection	_	-
ANI0 to ANI7	Input	A/D converter analog input	Input	P10 to P17
AVREF	Input	A/D converter reference voltage input	_	-
AVss	_	A/D converter ground potential. Connected to Vss	_	_
AVdd	_	A/D converter analog power supply. Connected to VDD	_	_

(2) Non-port pins (2/2)

Pin Name	Input/Output	Function	On Reset	Dual-Function Pin
RESET	Input	System reset input	—	—
X1	Input	Main system clock oscillation crystal connection	—	—
X2	_		_	—
XT1	Input	Subsystem clock oscillation crystal connection	Input	P04
XT2	—		_	—
Vdd	—	Positive power supply	—	—
Vpp	_	Directly connected to Vss	—	—
Vss	_	Ground potential		_

2.2 Pins in PROM Programming Mode

Pin Name	Input/Output	Function
RESET	Input	PROM programming mode setting When +5 V or +12.5 V is applied to the VPP pin and a low level signal is applied to the RESET pin, this chip is set in the PROM programming mode.
Vpp	Input	PROM programming mode setting and high-voltage applied during program write/ verification
A0 to A16	Input	Address bus
D0 to D7	Input/output	Data bus
CE	Input	PROM enable input/program pulse input
ŌĒ	Input	Read strobe input to PROM
PGM	Input	Program/program inhibit input in PROM programing mode.
Vdd		Positive power supply
Vss	_	Ground potential

2.3 Pin Input/Output Circuits and Recommended Connection of Unused Pins

Types of input/output circuits of the pins and recommeded connection of unused pins are shown in Table 2-1. For the configuration of each type of input/output circuit, refer to **Figure 2-1**.

Pin Name	Input/Output Circuit Type	Input/Output	Recommended Connecting Method when Unused
P00/TI0/INTP0	2	Input	Connect to Vss.
P01/INTP1	8-A	Input/output	Individually connect to Vss via resistor
P02/INTP2	1		
P03/INTP3/CI0			
P04/XT1	16	Input	Connect to VDD or Vss.
P10A/ANI0 to P17/AN7	11	Input/output	Individually connect to VDD or VSS via resistor
P20/SI1	8-A		
P21/SO1	5-A		
P22/SCK1	8-A		
P23/STB	5-A		
P24/BUSY	8-A		
P25/SI0/SB0]		
P26/SO0/SB1	10-A		
P27/SCK0			
P30/TO0]		
P31/TO1	5-A		
P32/TO2]		
P33/TI1	8-A		
P34/TI2	-		
P35/PCL	5-A		
P36/BUZ			
P37			
P70 to P74	13-D		
P80/FIP0, P81/FIP1	14	Output	Leave open.
P90/FIP2 to P97/FIP9			
P100/FIP10 to P105/FIP15			
P106/FIP16, P107/FIP17	14-B		
P110/FIP18 to P117/FIP25	15-B	Input/output	Individually connect to VDD or Vss via resistor
P120/FIP26 to P127/FIP33			
RESET	2	Input	
XT2	16	-	Leave open
AVREF	_		Connect to Vss
AVDD]		Connect to VDD
AVss			Connect to Vss
Vload]		
Vpp			Directly connect to Vss

Table 2-1. Type of Input/Output Circuit of Each Pin

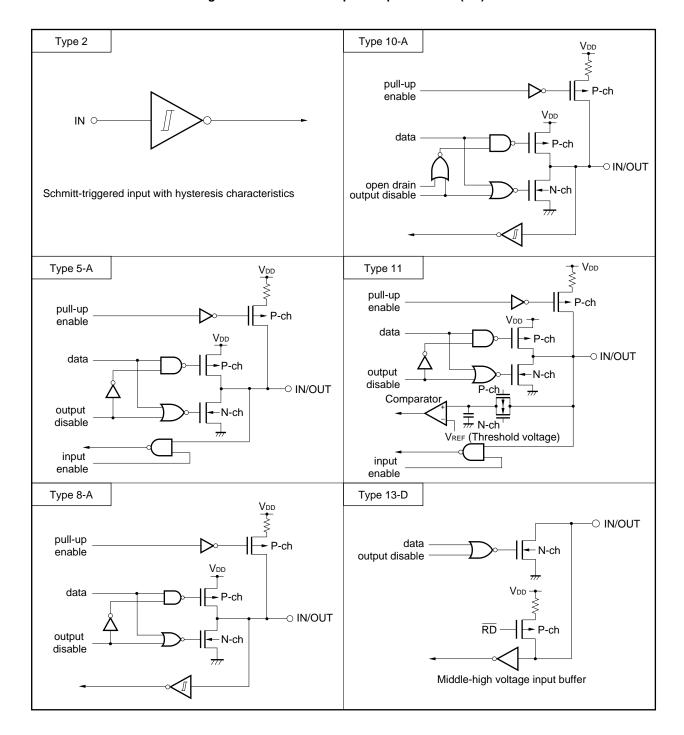
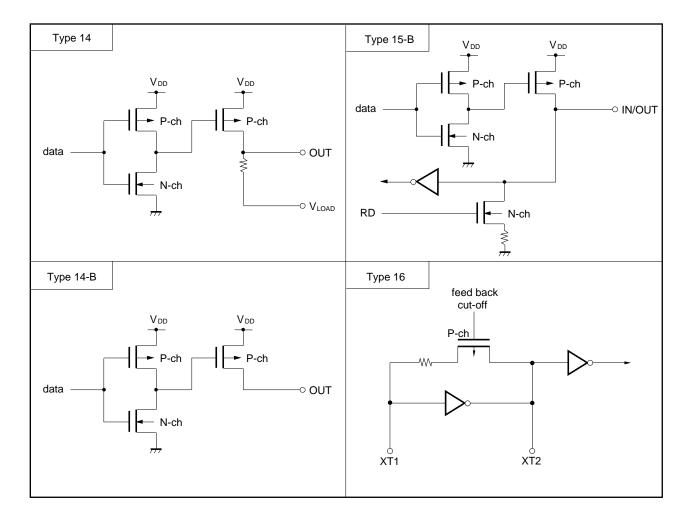
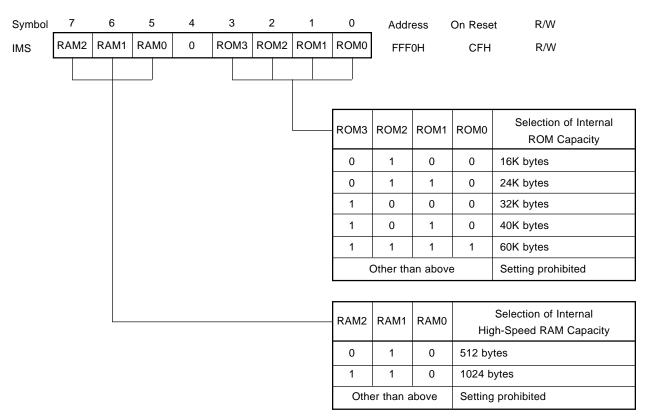


Figure 2-1. List of Pin Input/Output Circuits (1/2)




Figure 2-1. List of Pin Input/Output Circuits (2/2)

3. MEMORY SIZE SWITCHING REGISTER (IMS)

This is a register to disable use of part of internal memories by software. By setting this memory size switching register (IMS), it is possible to get the same memory mapping as that of mask ROM product having different internal memories.

The IMS is set up by the 8-bit memory manipulation instruction.

CFH will result by the $\overline{\text{RESET}}$ input.

Figure 3-1. Memory Size Switching Register Format

Table 3-1 shows the setting values of IMS which makes the memory mapping the same as that of the various mask ROM model.

 Table 3-1. Memory Size Switching Register Setting Values

Target Mask ROM Product	IMS Setting Value
μPD78042F	44H
μPD78043F	46H
μPD78044F	C8H
μPD78045F	САН

4. INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)

By using this register, the internal expansion RAM of the μ PD78P048A can be mapped in the same manner as a mask ROM model.

IXS is set by an 8-bit memory manipulation instruction.

The contents of this register are set to 0AH at RESET.

Figure 4-1. Format of Internal Expansion RAM Size Switching Register

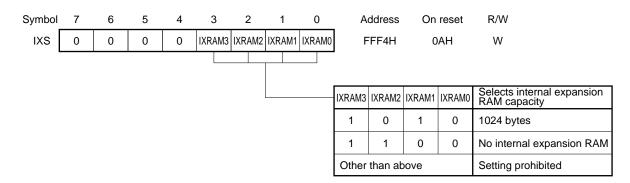


Table 4-1 shows the value settings of IXS to map the internal expansion RAM of the μ PD78P048A in the same manner as the respective mask ROM models.

Table 4-1. Memory Size Switching Register Setting Values

Mask ROM Model	IXS Value Setting
μPD78042F	0CH
μPD78043F	
μPD78044F	
μPD78045F	

5. PROM PROGRAMMING

The μ PD78P048A has an on-chip 60K-byte PROM as a program memory. For programming, set the PROM programming mode by the V_{PP} and $\overline{\text{RESET}}$ pins. For connecting unused pins, refer to **PIN CONFIGURATION (2) PROM programming mode**.

Caution Program writing should be performed in the address range 0000H to EFFFH (the last address, EFFFH, should be specified). Writing cannot be performed with a PROM programmer that cannot specify the write addresses.

5.1 Operating Modes

When +5 V or +12.5 V is applied to the VPP pin and a low level signal is applied to the $\overline{\text{RESET}}$ pin, the PROM programming mode is set. This mode will become the operating mode as shown in Table 5-1 when the $\overline{\text{CE}}$, $\overline{\text{OE}}$ and $\overline{\text{PGM}}$ pins are set as shown.

Further, when the read mode is set, it is possible to read the contents of the PROM.

Pin	RESET	Vpp	Vdd	CE	ŌĒ	PGM	D0 to D7
Operating Mode							
Page data latch	L	+12.5 V	+6.5 V	Н	L	Н	Data input
Page write				Н	Н	L	High-impedance
Byte write				L	н	L	Data input
Program verify				L	L	Н	Data output
Program inhibit				×	Н	Н	High-impedance
				×	L	L	
Read		+5 V	+5 V	L	L	Н	Data output
Output disable	1			L	Н	×	High-impedance
Standby]			Н	×	×	High-impedance

Table 5-1. Operating Modes of PROM Programming

 \times : L or H

(1) Read mode

Read mode is set if $\overline{CE} = L$, $\overline{OE} = L$ is set.

(2) Output disable mode

Data output becomes high-impedance, and is in the output disable mode, if $\overline{OE} = H$ is set. Therefore, it allows data to be read from any device by controlling the \overline{OE} pin, if multiple μ PD78P048As are connected to the data bus.

(3) Standby mode

Standby mode is set if $\overline{CE} = H$ is set. In this mode, data outputs become high-impedance irrespective of the \overline{OE} status.

(4) Page data latch mode

Page data latch mode is set if $\overline{CE} = H$, $\overline{PGM} = H$, $\overline{OE} = L$ are set at the beginning of page write mode. In this mode, 1 page 4-byte data is latched in an internal address/data latch circuit.

(5) Page write mode

After 1 page 4 bytes of addresses and data are latched in the page data latch mode, a page write is executed by applying a 0.1 ms program pulse (active low) to the \overrightarrow{PGM} pin with $\overrightarrow{CE} = H$, $\overrightarrow{OE} = H$. Then, program verification can be performed, if $\overrightarrow{CE} = L$, $\overrightarrow{OE} = L$ are set.

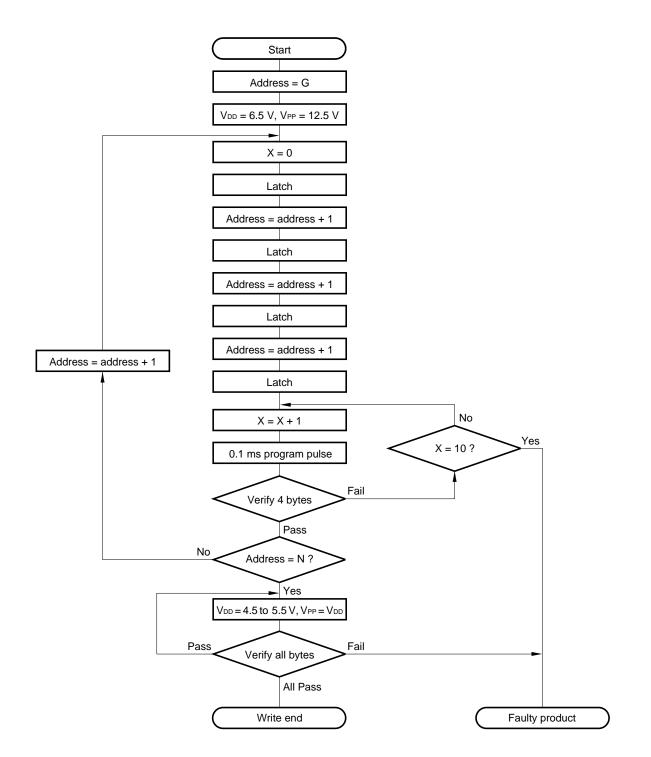
If programming is not performed by a one-time program pulse, X (X \leq 10) write and verification operations should be executed repeatedly.

(6) Byte write mode

Byte write is executed when a 0.1 ms program pulse (active low) is applied to the \overline{PGM} pin with $\overline{CE} = L$, $\overline{OE} = H$. Then, program verification can be performed if $\overline{OE} = L$ is set.

If programming is not performed by a one-time program pulse, X (X \leq 10) write and verification operations should be executed repeatedly.

(7) Program verify mode


Program verify mode is set if $\overline{CE} = L$, $\overline{PGM} = H$, $\overline{OE} = L$ are set. In this mode, check if a write operation is performed correctly, after the write.

(8) Program inhibit mode

Program inhibit mode is used when the \overline{OE} pin, VPP pin and D0 to D7 pins of multiple μ PD78P048As are connected in parallel and a write is performed to one of those devices.

When a write operation is performed, the page write mode or byte write mode described above is used. At this time, a write is not performed to a device which has the \overline{PGM} pin driven high.

5.2 PROM Write Procedure

G = Start address

N = Program last address

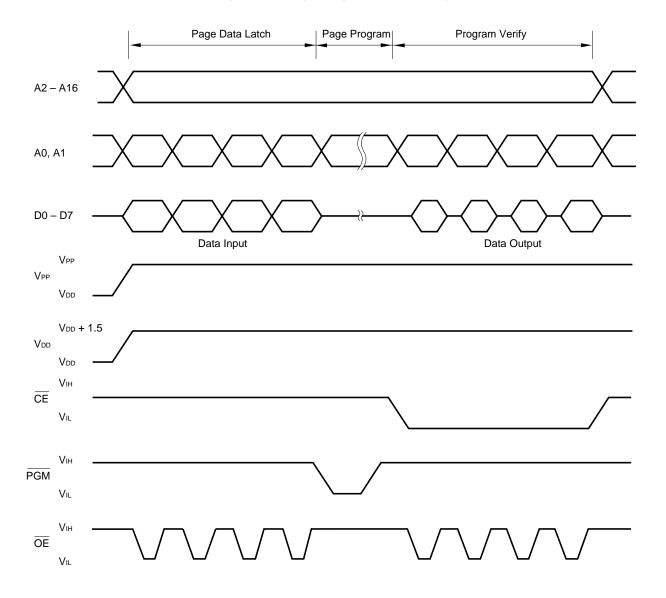
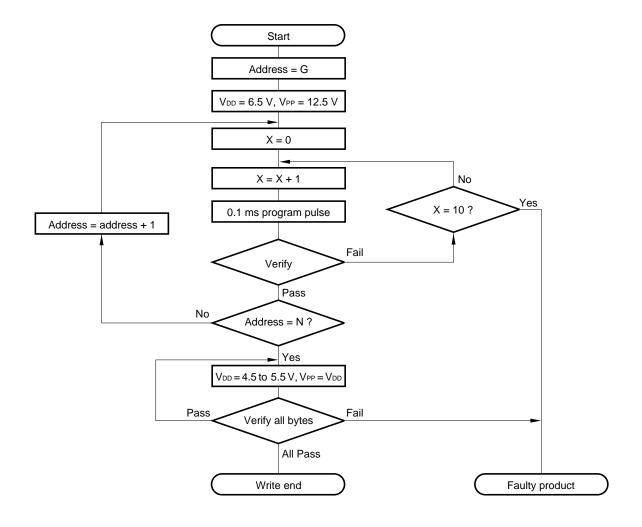



Figure 5-2. Page Program Mode Timing

Figure 5-3. Byte Program Mode Flow Chart

G = Start address

N = Program last address

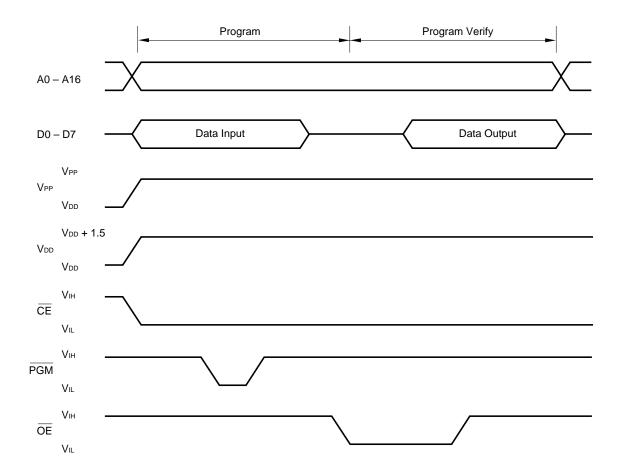
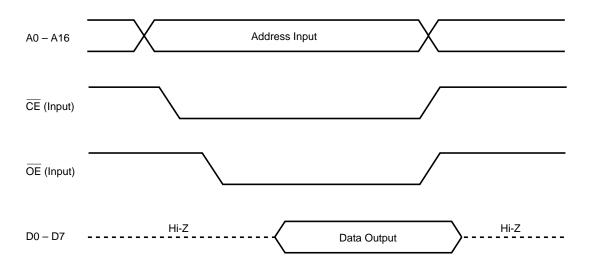


Figure 5-4. Byte Program Mode Timing

Cautions 1. VDD should be applied before VPP and cut after VPP.


- 2. VPP must not exceed +13.5 V including overshoot.
- 3. Reliability may be adversely affected if removal/reinsertion is performed while +12.5 V is being applied to VPP.

5.3 PROM Read Procedure

The contents of PROM are readable to the external data bus (D0 to D7) according to the read procedure shown below.

- (1) Fix the RESET pin at low level, supply +5 V to the VPP pin, and connect all other unused pins as shown in **PIN CONFIGURATION (2) PROM programming mode**.
- (2) Supply +5 V to the VDD and VPP pins.
- (3) Input address of read data into the A0 to A16 pins.
- (4) Read mode
- (5) Output data to D0 to D7 pins.

The timings of the above steps (2) to (5) are shown in Figure 5-5.

Figure 5-5. PROM Read Timings

6. ERASURE METHOD (µPD78P048AKL-S ONLY)

The μPD78P048AKL-S is capable of erasing (FFH) the contents of data written in a program memory and rewriting. When erasing the contents of data, irradiate light having a wavelength of less than about 400 nm to the erasing window. Normally, irradiate ultraviolet rays of 254 nm wavelength. Volume of irradiation required to completely erase the contents of data is as follows:

- ★ UV intensity × erasing time: 30 W•s/cm² or more
- \star
- Erasing time: 40 minutes (MIN.) (When a UV lamp of 12,000 μW/cm² is used. However, a longer time may be needed because of deterioration in performance of the UV lamp, contamination of the erasing window, etc.)

When erasing the contents of data, set up the UV lamp within 2.5 cm from the erasing window. Further, if a filter is provided for a UV lamp, irradiate the ultraviolet rays after removing the filter.

7. ERASURE WINDOW SEAL (µPD78P048AKL-S ONLY)

To protect from miserasure by rays other than that of the lamp for erasing EPROM contents, or to protect internal circuit other than EPROM from misoperating by rays, stick a protection seal on the erasure window when EPROM contents erasure is not performed.

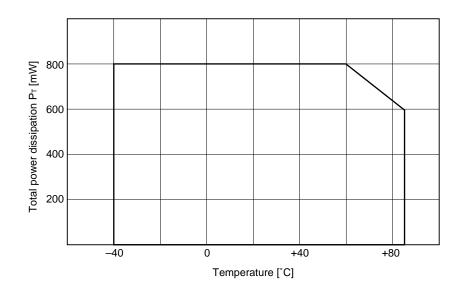
8. ONE-TIME PROM PRODUCTS SCREENING

The one-time PROM product (μ PD78P048AGF-3B9) can not be tested completely by NEC before it is shipped, because of its structure. It is recommended to perform screening to verify PROM after writing necessary data and performing high-temperature storage under the condition below.

Storage Temperature	Storage Time
125 °C	24 hours

9. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25 °C)


Parameter	Symbol	Conditions	Rating	Unit				
Supply voltage	Vdd				-0.3 to +7.0	V		
	Vload				VDD -40 to VDD +0.3	V		
	Vpp				-0.3 to 13.5	V		
	AVDD				-0.3 to VDD +0.3	V		
	AVREF				-0.3 to VDD +0.3	V		
	AVss				-0.3 to +0.3	V		
Input voltage	VI1	P00 to P04, P10 to P17, P20 to P27 XT2, RESET	, P30	to P37, X1, X2,	-0.3 to VDD +0.3	V		
	VI2	P70-P74	N-ch open drain		-0.3 to +16	V		
	Vıз	P110 to P117, P120 to P127	P-ch	open drain	VDD -40 to VDD +0.3	V		
Output voltage	V ₀₁	P01 to P03, P10 to P17, P20 to P27	01 to P03, P10 to P17, P20 to P27, P30 to P37 70 to P74			V		
	V ₀₂	P70 to P74	-0.3 to +16	V				
	Vod P80, P81, P90 to P97, P100 to P107, P110 to P		0 to P1	17, P120 to P127	VDD -40 to VDD +0.3	V		
Analog input voltage	Van	ANI0 to ANI7 Analog input pins			AVss -0.3 to AVREF0 +0.3	V		
High-level	Іон	1 pin of P01 to P03, P10 to P17, P20 to P27, P30 to P37			1 pin of P01 to P03, P10 to P17, P20 to P27, P30 to P37 -10		-10	mA
output current		Total for P01 to P03, P10 to P17, P0	-30	mA				
		1 pin of P80, P81, P90 to P97, P100 to P107, P110 to P117, P120 to P127 Total for P80, P81, P90 to P97, P100 to P107, P110 to P117, P120 to P127			1 pin of P80, P81, P90 to P97, P100 to P107, P110 to P117, P120 to P127		-30	mA
					-120	mA		
Low-level	I _{OL} Note 1	1 pin of P01 to P03, P10 to P17, P2	0 to	Peak value	30	mA		
output current		P27, P30 to P37, P70 to P74		rms	15	mA		
		Total for P01 to P03, P10 to P17,		Peak value	50	mA		
		P20 to P27, P30 to P37		rms	20	mA		
		Total for P56, P57, P60 to P63		Peak value	100	mA		
				rms	60	mA		
		Total for P70 to P74		Peak value	100	mA		
				rms	60	mA		
Total power	P _T Note 2	T _A = -40 to +60 °C			800	mW		
dissipation		T _A = +85 °C	600	mW				
Operating ambient temperature	TA				-40 to +85	°C		
Storage temperature	Tstg				-65 to +150	°C		

Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter, or even momentarily. In other words, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, dual-function pin characteristics are the same as port pin characteristics.

Notes 1. The rms should be calculated as follows: [rms value] = [Peak value] $\times \sqrt{\text{Duty}}$

Notes 2. Total power dissipation differs depending on the temperature (refer to the following figure).

How to calculate total power dissipation

The following three power dissipation are available for the μ PD78P048A. The sum of the three power dissipation should be less than the total power dissipation PT (80 % or less of ratings is recommended).

<1> CPU power dissipation: calculate VDD (MAX.) \times IDD (MAX.).

<2> Output pin power dissipation: Power dissipation when maximum current flows into display output pin.

<3> Pull-down resistor power dissipation: Power dissipation by pull-down resistor incorporated in display output pin by mask option.

The following is how to calculate total power dissipation for the example in Figure 9-1.

★ Example Assume the following conditions:

 $V_{DD} = 5 V \pm 10 \%, 5.0 \text{ MHz oscillator}$ Supply current (IDD) = 21.6 mA Display output: 11 grids × 10 segments (Cut width = 1/16) Maximum current at the grid pin is 15 mA. Maximum current at the segment pin is 3 mA. At the key scan timing, display output pin is OFF. Display output voltage: grid $V_{OD} = V_{DD} - 2 V$ (voltage drop of 2 V) segments $V_{OD} = V_{DD} - 0.4 V$ (voltage drop of 0.4 V) Fluorescent display control voltage (VLOAD) = -30 V Mask option pull-down resistor = 25 kΩ

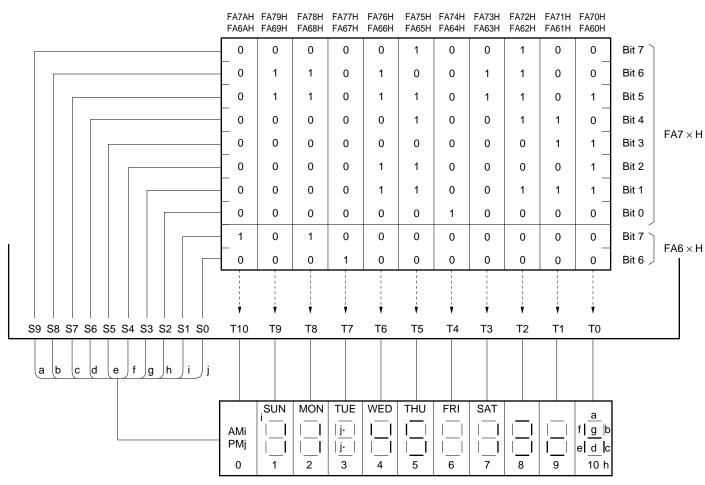
By placing the above conditions in calculation <1> to <3>, the total dissipation can be worked out.

<1> CPU power dissipation: 5.5 V × 21.6 mA = 118.8 mW

<2> Output pin power dissipation:

$$\begin{array}{ll} \mbox{Grid} & (V_{DD} - V_{OD}) \times \frac{\mbox{Total current value of each grid}}{\mbox{The number of grids + 1}} \times \mbox{Digit width (1 - Cut width)} \\ &= 2 \ V \times \frac{\mbox{15 mA} \times \mbox{11 Grids}}{\mbox{11 Grids}} \times \mbox{(1 - \frac{1}{16})} = 25.8 \ \mbox{mW} \\ \mbox{Segment (V_{DD} - V_{OD})} \times \frac{\mbox{Total segment current value of illuminated dots}}{\mbox{The number of grids +1}} \\ &= 0.4 \ \ V \times \frac{\mbox{3 mA} \times \mbox{31 Dots}}{\mbox{11 Grids}} = 3.1 \ \mbox{mW} \\ \end{array}$$

<3> Pull-down resistor power dissipation:


 $\begin{array}{l} \text{Grid} \qquad \frac{(\text{V}_{\text{OD}} - \text{V}_{\text{LOAD}})^2}{\text{Pull-down resistor value}} \times \frac{\text{The number of grids}}{\text{The number of grids} + 1} \times \text{Digit width} \\ = \frac{(5.5 \text{ V} - 2 \text{ V} - (-30 \text{ V}))^2}{25 \text{ k}\Omega} \times \frac{11 \text{ Grids}}{11 \text{ Grids} + 1} \times (1 - \frac{1}{16}) = 38.6 \text{ mW} \\ \text{Segment} \quad \frac{(\text{V}_{\text{OD}} - \text{V}_{\text{LOAD}})^2}{\text{Pull-down resistor value}} \times \frac{\text{The number of illuminated dots}}{\text{The number of grids} + 1} \\ = \frac{(5.5 \text{ V} - 0.4 \text{ V} - (-30 \text{ V}))^2}{25 \text{ k}\Omega} \times \frac{31 \text{ dots}}{11 \text{ Grids} + 1} = 127.3 \text{ mW} \end{array}$

Total power dissipation = <1> + <2> + <3> = 118.8 + 25.8 + 3.1 + 38.6 + 127.3 = 313.6 mW

In this example, the total power dissipation do not exceed the rating of the total power dissipation shown in the figure above, so there is no problem in power dissipation.

However, when the total power dissipation exceeds the rating of the total power dissipation, it is necessary to lower the power dissipation. To reduce power dissipation, reduce the number of pull-down resistor.

Display Data Memory

NEC

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator		Oscillator frequency (fx) ^{Note 1}		1		5	MHz
		Oscillator stabilization time ^{Note 2}				4	ms
Crystal resonator		Oscillator frequency (fx) ^{Note 1}		1	4.19	5	MHz
		Oscillator stabilization	VDD = 4.5 to 6.0 V			10	ms
		time ^{Note 2}				30	
External clock		X1 input frequency (fx) ^{Note 1}		1		5	MHz
	μPD74HCU04	X1 input high-/low-level width (txн/txL)		85		500	ns

Main System Clock Oscillation Circuit Characteristics (TA = -40 to +85 $^{\circ}$ C, VDD = 2.7 to 6.0 V)

- Notes 1. Only the oscillator characteristics are shown. Refer to AC characteristics for instruction execution times.
 2. This is the time required for oscillation to stabilize after addition of VDD, or STOP mode release.
- Cautions 1. When the main system clock oscillator is used, the following should be noted concerning wiring in the area in the figure enclosed by a broken line to prevent the influence of wiring capacitance, etc.
 - The wiring should be kept as short as possible.
 - No other signal lines should be crossed.
 - Keep away from lines carrying a high fluctuating current.
 - The oscillator capacitor grounding point should always be at the same potential as Vss.
 - Do not connect to a ground pattern carrying a high current.
 - A signal should not be taken from the oscillator.
 - 2. When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Subsystem Clock Osillator Characteristics (TA = -40 to +85 °C, VDD = 2.7 to 6.0 V)

	Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
	Crystal resonator		Oscillator frequency (f _{XT}) ^{Note1}		32	32.768	35	kHz
			Oscillator stabilization time ^{Note2}	VDD = 4.5 to 6.0 V		1.2	2	S
			(IIIIe				10	
*	External clock	XT1 XT2	XT1 input frequency (f _{XT}) ^{Note1}		32		100	kHz
*			XT1 input high-/low-level width (txth/txtL)		5		15	μs

Notes 1. Only the oscillator characteristics are shown. Refer to AC characteristics for instruction execution times.
 2. This is the time required for oscillation to stabilize after power (VDD) is turned on.

- Cautions 1. When the subsystem clock oscillator is used, the following should be noted concerning wiring in the area in the figure enclosed by a broken line to prevent the influence of wiring capacitance, etc.
 - The wiring should be kept as short as possible.
 - No other signal lines should be crossed.
 - Keep away from lines carrying a high fluctuating current.
 - The oscillator capacitor grounding point should always be at the same potential as Vss.
 - Do not connect to a ground pattern carrying a high current.
 - A signal should not be taken from the oscillator.
 - 2. The subsystem clock oscillator is a low-amplitude circuit in order to achieve a low consumption current, and is more prone to misoperation due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.

Recommended Oscillator Constant

Manufacturer	Product Name	Frequency	Cir	cuit Const	Constant Oscillator Voltage Range			Remark
		(MHz)	C1 (pF)	C2 (pF)	R1 (kΩ)	MIN. (V)	MAX. (V)	
Murata Mfg. Co., Ltd.	CSB1000J	1.00	100	100	5.6	2.8	6.0	
	CSA2.00MG	2.00			_	2.9		
	CST2.00MG	2.00	_	_				Built-in capacito
	CSA×.××MG	3.00 to 5.00	30	30		2.8		
	CST×.××MGW	3.00 to 5.00	_	_				Built-in capacito
Matsushita Electronics	EFOGC2004A4	2.00				2.7		Built-in capacito
Components Co., Lltd.	EFOEC3004A4	3.00						Built-in capacito
	EFOEC4004A4	4.00						Built-in capacito
	EFOEC4194A4	4.19						Built-in capacito
	EFOGC5004A4	5.00						Built-in capacito
TDK Corp.	FCR2.0MC3	2.00						Built-in capacito
	FCR4.0MC5	4.00						Built-in capacito
	OCR4.0MC3Note	4.00						Built-in capacito
	CCR5.0MC5Note	5.00						Built-in capacito

Main system clock: ceramic resonator (T_A = -40 to +85 $^{\circ}$ C)

Note Surface-mount type

Remark x.xx indicates frequencies.

Subsystem clock: crystal resonator (T_A = -40 to +85 °C)

Manufacturer	Product Name	Frequency	Circuit Constant			Oscillator Vo	oltage Range
		(kHz)	C3 (pF)	C4 (pF)	R2 (kΩ)	MIN. (V)	MAX. (V)
Kyocera Corp.	KF-38G ^{Note} (Load capacitance 12 pF)	32.768	15	22	220	2.7	6.0

Note Maintained product.

Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation. However, they do not guarantee accuracy of the oscillation frequency. If the application circuit requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency in the application circuit. For this, it is necessary to directly contact the manufacturer of the resonator that being used.

Capacitance (TA = 25 °C, VDD = Vss = 0 V)

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Input capacitance	CIN	f = 1 MHz Unmeasured pins retu			15	pF	
Output capacitance	Соит	f = 1 MHz Unmeasured pins retu			35	pF	
Input/output capacitance	Сю	f = 1 MHz Unmeasured pins returned to 0 V	P01 to P03, P10 to P17, P20 to P27, P30 to P37			15	pF
			P70 to P74			20	pF
			P110 to P117, P120 to P127			35	pF

Remark Unless otherwise specified, the characteristics of the shared pin are the same as the characteristics of the port pin.

Operating power supply voltage ($T_A = -40$ to +85 °C)

Parameter	Conditions	MIN.	TYP.	MAX.	Unit
CPU ^{Note 1}		2.7 ^{Note 2}		6.0	V
Display controller		4.5		6.0	V
PWM mode of 16-bit time/event counter (TM0)		4.5		6.0	V
A/D converter		4.0		6.0	V
Other hardware		2.7		6.0	V

Notes 1. Except for system clock oscillator, display controller/driver, and PWM.

2. Operating power supply voltage differs depending on the cycle time. Refer to AC Characteristics.

★

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
High-level	VIH1	P21, P23		0.7 Vdd		Vdd	V
input voltage	VIH2	P00 to P03, P20, P22, P24 to P2	27, P33, P34, RESET	0.8 Vdd		Vdd	V
	Vінз	P70 to P74	N-ch open-drain	0.7 Vdd		15	V
	VIH4	X1, X2		Vdd - 0.5		Vdd	V
	VIH5	XT1/P04, XT2	V _{DD} = 4.5 to 6.0 V	Vdd - 0.5		Vdd	V
				Vdd - 0.3		Vdd	V
	VIH6	P10 to P17, P30 to P32,	V _{DD} = 4.5 to 6.0 V	0.65 Vdd		Vdd	V
		P35 to P37		0.7 Vdd		Vdd	V
	VIH7	P110 to P117, P120 to P127	V _{DD} = 4.5 to 6.0 V	0.7 Vdd		Vdd	V
				Vdd - 0.5		Vdd	V
Low-level	VIL1	P21, P23		0		0.3 Vdd	V
input voltage	VIL2	P00 to P03, P20, P22, P24 to P2	27, P33, P34, RESET	0		0.2 Vdd	V
	VIL3	P70 to P74	V _{DD} = 4.5 to 6.0 V	0		0.3 Vdd	V
				0		0.2 Vdd	V
	VIL4	X1, X2		0		0.4	V
	VIL5	XT1/P04, XT2	V _{DD} = 4.5 to 6.0 V	0		0.4	V
				0		0.3	V
	VIL6	P10 to P17, P30 to P32, P35 to P37	VDD = 4.5 to 6.0 V	0		0.3 Vdd	V
	VIL7	P110 to P117, P120 to P127		Vdd - 3.5		0.3 Vdd	V
High-level Vон	P01 to P03, P10 to P17, P20 to	V _{DD} = 4.5 to 6.0 V,	Vdd - 1.0			V	
output voltage		P27, P30 to P37, P80, P81, P90	Іон = –1 mA				
		to P97, P100 to P107, P110 to P117, P120 to P127	Іон = −100 μА	V _{DD} – 0.5			V
Low-level output voltage	Vol1	P30 to P37, P70 to P74	V _{DD} = 4.5 to 6.0 V I _{OL} = 15 mA		0.4	2.0	V
		P01 to P03, P10 to P17, P20 to P27	V _{DD} = 4.5 to 6.0 V I _{OL} = 1.6 mA			0.4	V
	Vol2	SB0, SB1, <u>SCK0</u>	V_{DD} = 4.5 to 6.0 V With open-drain and pull-up (R = 1 k Ω)			0.2 Vdd	V
	Vol3	P01 to P03, P10 to P17, P20 to P27, P30 to P37, P70 to P74	Iol = 400 μA			0.5	V
High-level input leakage current	ILIH1	V _{IN} = V _{DD}	P00 to P03, P10 to P17, P20 to P27, P30 to P37, RESET			3	μA
	ILIH2		X1, X2, XT1/P04, XT2			20	μA
	Ілнз	VIN = 15 V	P70 to P74			20	μA
	Ілн4	P110 to P117, P120 to P127	V _{DD} = 4.5 to 6.0 V			3Note 1	μA
		VIN = VDD				3Note 2	μA

DC Characteristics (TA = -40 to +85 $^{\circ}$ C, VDD = 2.7 to 6.0 V)

- **Notes 1.** For P110 to P117 and P120 to P127, a high-level input leak current of 150 μA (MAX.) flows only during the 1.5 clocks after an instruction has been executed to read out ports 11, 12 (P11, 12) or port mode registers 11, 12 (PM11, 12). Outside the period of 1.5 clocks following executing a read-out instruction, the current is 3 μA (MAX.).
- For P110 to P117 and P120 to P127, a high-level input leak current of 90 μA (MAX.) flows only during the 1.5 clocks after an instruction has been executed to read out P11, P12, PM11, and PM12. Outside the period of 1.5 clocks following executing a read-out instruction, the current is 3 μA (MAX.).

Remark Unless otherwise specified, the characteristics of a shared pin are the same as those of a port pin.

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Uni
Low-level input leakage current		$V_{IN} = 0 V$	P00 to P03, P10 to P17, P20 to P27, P30 to P37, RESET			-3	μA
	ILIL2		X1, X2, XT1/P04 XT2			-20	μA
	ILIL3		P70 to P74			_3Note 4	μA
	ILIL4		P110 to P117, P120 to P127			-10	μA
High-level output leakage current	ILOH1	Vout = Vdd	P01 to P03, P10 to P17, P20 to P27, P30 to P37, P80, P81, P90 to P97, P100 to P107, P110 to P117, P120 to P127			3	μA
	ILOH2	Vout = 15 V	P70 to P74			20	μA
Low-level output leakage current	ILOL1	Vout = 0 V	P01 to P03, P10 to P17, P10 to P27, P30 to P37, P70 to P74			-3	μA
ILOL2 VOUT = VLOAD = VDD - 35	Vout = Vload = Vdd - 35 V	P80, P81, P90 to P97, P100 to 107, P110 to P117, P120 to P127			-10	μA	
Display output current	Iod	$V_{DD} = 4.5$ to 6.0 V, $V_{OD} = V_{DD}$	o – 2 V	-15	-25		mA
Software	R1	$V_{IN} = 0 V,$	VDD = 4.5 to 6.0 V	15	40	90	kΩ
pull-up resistor		P01 to P03, P10 to P17, P20 to P27, P30 to P37		20		500	kΩ
On-chip pull-down resistor	R2	P80, P81, P90 to P97, P100 to P105	Vod - Vload = 35 V	25	70	135	kΩ
Power supply	IDD1	5.0 MHz crystal oscillation	V _{DD} = 5.0 V ± 10 % ^{Note 2}		9.5	28.5	m/
currentNote 1		operation mode			9.75 ^{Note 5}	29 ^{Note 5}	m/
			$V_{DD} = 3.0 \text{ V} \pm 10 \text{ \%}^{Note 3}$		0.9	2.7	m/
	IDD2	5.0 MHz crystal oscillation	$V_{DD} = 5.0 V \pm 10 \%$		2.5	7.5	m
		HALT mode	$V_{DD} = 3.0 \text{ V} \pm 10 \%$		1.0	3.0	m
	Іррз	32.768 kHz crystal oscillation	$V_{DD} = 5.0 V \pm 10 \%$		90	180	μŀ
		operation mode	$V_{DD} = 3.0 \text{ V} \pm 10 \%$		55	110	μA
	IDD4	32.768 kHz crystal oscillation	$V_{DD} = 5.0 V \pm 10 \%$		25	50	μA
		HALT mode	$V_{DD} = 3.0 \text{ V} \pm 10 \%$		5	10	μA
	IDD5	XT1 = 0 V STOP mode when	$V_{DD} = 5.0 \text{ V} \pm 10 \%$		1	20	μA
		connecting to feedback resistor	$V_{DD} = 3.0 \text{ V} \pm 10 \%$		0.5	10	μA
		XT1 = 0 V STOP mode when not	$V_{DD} = 5.0 \text{ V} \pm 10 \%$		0.1	20	μA
		connecting to feedback resistor	VDD = 3.0 V ± 10 %		0.05	10	μA

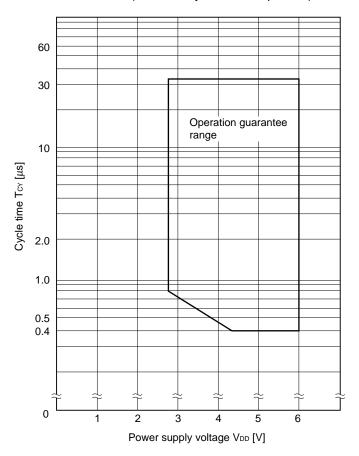
DC Characteristics (T_A = -40 to +85 °C, V_{DD} = 2.7 to 6.0 V)

Notes 1. This current excludes the AVREF current, port current, and current which flows in the built-in pull-down resistor.

- 2. When operating at high-speed mode (when the processor clock control register (PCC) is set to 00H)
- 3. When operating at low-speed mode (when the PCC is set to 04H)
- **4.** For P70 to P74, a low-level input leak current of $-150 \ \mu$ A (MAX.) flows only during the 1.5 clocks after an instruction has been executed to read out port 7 (P7) or port mode register 7 (PM7). Outside the period
- of 1.5 clocks following executing a read-out instruction, the current is –3 μ A (MAX.).
- 5. This current includes the AVDD current by the A/D converter operation.

Remark Unless otherwise specified, the characteritics of a shared pin are the same as those of a port pin.

*


AC Characteristics

		-		-				
	Parameter	Symbol	Condition	s	MIN.	TYP.	MAX.	Unit
	Cycle time (minimum)	Тсч	Operated with main system	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$	0.4		32	μs
	instruction execution		clock		0.8		32	μs
time)			Operated with subsystem clock		40 ^{Note 1}	122	125	μs
	TI1, 2 input	fтı	V _{DD} = 4.5 to 6.0 V		0		2	MHz
	frequency				0		138	kHz
	TI1, 2 input high,	fтıн	V _{DD} = 4.5 to 6.0 V	V _{DD} = 4.5 to 6.0 V				ns
	low-level width	f⊤ı∟			3.6			μs
	Interrupt input high,	finth	INTP0		8/f _{sam} Note 2			μs
	low-level width	fintl	INTP1 to INTP3		10			μs
	RESET low-level width	trsl			10			μs

(1) Basic operation (T_A = -40 to +85 °C, V_{DD} = 2.7 to 6.0 V)

Notes 1. Value when external clock input is used as subsystem clock. When crystal is used, the value becomes 114 μ s.

2. Selection of $f_{sam} = fx/2^{N+1}$, fx/64, fx/128 is available (N = 0 to 4) by bits 0 and 1 (SCS0, SCS1) of sampling clock select register (SCS).

TCY VS VDD (with main system clock operated)

(2) Serial interface (T_A = -40 to +85 $^{\circ}$ C, V_{DD} = 2.7 to 6.0 V)

(a) Serial interface channel 0

(i) 3-wire serial I/O mode (SCK0: Internal clock output)

Parameter	Symbol	Conditior	IS	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy1	VDD = 4.5 to 6.0 V		800			ns
				3200			ns
SCK0 high, low-level	t кн1	V _{DD} = 4.5 to 6.0 V		tксү₁/2 – 50			ns
width	t KL1			tксү1/2 – 150			ns
SI0 setup time to SCK0↑	tsik1			100			ns
SI0 hold time from SCK0	tksi1			400			ns
$\overline{\text{SCK0}} \downarrow \rightarrow \text{SO0}$	tkso1	C = 100 pF ^{Note}	V _{DD} = 4.5 to 6.0 V			300	ns
output delay time						1000	ns

Note C is a load capacitance of the $\overline{SCK0}$ or SO0 output line.

(ii) 3-wire serial I/O mode (SCK0: External clock input)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkCY2	V _{DD} = 4.5 to 6.0 V		800			ns
				3200			ns
SCK0 high, low-level	tĸн2	V _{DD} = 4.5 to 6.0 V		400			ns
width	tĸ∟2			1600			ns
SI0 setup time to SCK0↑	tsik2			100			ns
SI0 hold time from SCK0↑	tksi2			400			ns
$\overline{SCK0} \downarrow \rightarrow SO0$	tkso2	C = 100 pF ^{Note}	V _{DD} = 4.5 to 6.0 V			300	ns
output delay time						1000	ns
SCK0 rise, fall time	t _{R2}					160	ns
	tF2						

Note C is a load capacitance of the SO0 output line.

Parameter	Symbol	Condition	าร	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксүз	V _{DD} = 4.5 to 6.0 V		800			ns
				3200			ns
SCK0 high, low-level	tкнз	V _{DD} = 4.5 to 6.0 V		tксүз/2 – 50			ns
width	tк∟з		tксүз/2 – 150			ns	
SB0, SB1 setup time	tsıкз	V _{DD} = 4.5 to 6.0 V		100			ns
to SCK↑				300			ns
SB0, <u>SB1</u> hold time from SCK0↑	tĸsıз			tксүз/2			ns
$\overline{\text{SCK0}} \downarrow \rightarrow \text{SB0, SB1}$	tкsoз	$R = 1 k\Omega$, $C = 100 pF^{Note}$	V _{DD} = 4.5 to 6.0 V	0		250	ns
output delay time				0		1000	ns
$\overline{SCK0}$ $\uparrow \rightarrow SB0, SB1 \downarrow$	tкsв			tксүз			ns
SB0, SB1 $\downarrow \rightarrow \overline{SCK0}\downarrow$	tsвк			tксүз			ns
SB0, SB1 high-level width	tsвн			tксүз			ns
SB0, SB1 low-level width	tsBL			tксүз			ns

(iii) SBI mode (SCK0: Internal clock output)

Note R is a load resistance of the SCK0, SB0, or SB1 output line, and C is its load capacitance.

(iv) SBI mode (SCK0:	External clock input)
----------------------	-----------------------

Parameter	Symbol	Conditior	IS	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkCY4	V _{DD} = 4.5 to 6.0 V		800			ns
				3200			ns
SCK0 high, low-level	tкн4	V _{DD} = 4.5 to 6.0 V		400			ns
width	tĸ∟4			1600			ns
SB0, SB1 setup time	tsiĸ4	V _{DD} = 4.5 to 6.0 V		100			ns
to SCK0↑				300			ns
SB0, SB1 hold time from SCK0↑	tksi4			tксү4/2			ns
$\overline{\text{SCK0}} \downarrow \rightarrow \text{SB0, SB1}$	tksO4	$R = 1 k\Omega$, $C = 100 pF^{Note}$	V _{DD} = 4.5 to 6.0 V	0		300	ns
output delay time				0		1000	ns
$\overline{SCK0}^{\uparrow} \rightarrow SB0, SB1^{\downarrow}$	tкsв			tkCY4			ns
SB0, SB1 $\downarrow \rightarrow \overline{SCK0}\downarrow$	tsвк			tkCY4			ns
SB0, SB1 high-level width	tsвн			tkCY4			ns
SB0, SB1 low-level width	tsвL			t ксү4			ns
SCK0 rise, fall time	tR4 tF4					160	ns

Note R is a load resistance of the SB0 or SB1 output line, and C is its load capacitance.

(v) 2-wire serial I/O mode (SCK0: Internal clock output)

Parameter	Symbol	Condition	IS	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксү5	$R = 1 k\Omega$, $C = 100 pF^{Note}$	V _{DD} = 4.5 to 6.0 V	1600			ns
				3800			ns
SCK0 high-level width	tкн5			tскү5/2 – 160			ns
SCK0 low-level width	tĸ∟₅			tскү5/2 – 50			ns
SB0, SB1 setup time to SCK0↑	tsik5			300			ns
SB0, SB1 hold time from SCK0↑	tksi₅			600			ns
SCK0↓→SB0, SB1	tkso5		V _{DD} = 4.5 to 6.0 V	0		250	ns
output delay time				0		1000	ns

Note R is a load resistance of the SCK0, SB0, or SB1 output line, and C is its load capacitance.

(vi) 2-wire serial I/O mode (SCK0: External clock input)

Parameter	Symbol	Condition	IS	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	t ксү6	$R = 1 k\Omega$, $C = 100 pF^{Note}$	V _{DD} = 4.5 to 6.0 V	1600			ns
				3800			ns
SCK0 high-level width	tкн6			650			ns
SCK0 low-level width	tĸl6			800			ns
SB0, SB1 setup time to SCK0↑	tsik6			100			ns
SB0, SB1 hold time from SCK0↑	tksi6			tксү6/2			ns
SCK0↓→SB0, SB1	tkso6		V _{DD} = 4.5 to 6.0 V	0		300	ns
output delay time				0		1000	ns
SCK0 rise, fall time	tre tre					160	ns

Note R is a load resistance of the SB0 or SB1 output line, and C is its load capacitance.

(b) Serial interface channel 1

(i) 3-wire serial I/O mode (SCK1: Internal clock o	output)
--	---------

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCK1 cycle time	t ксү7	V _{DD} = 4.5 to 6.0 V		800			ns
				3200			ns
SCK1 high, low-level	tĸн7	V _{DD} = 4.5 to 6.0 V		tксү7/2 – 50			ns
width	tĸ∟7			tксү7/2 – 100			ns
SI1 setup time to SCK1↑	tsik7			100			ns
SI1 hold time from SCK1↑	tksi7			400			ns
$\overline{\text{SCK1}} \downarrow \rightarrow \text{SO1}$	tkso7	C = 100 pF ^{Note}	V _{DD} = 4.5 to 6.0 V			300	ns
output delay time						1000	ns

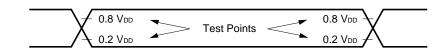
Note C is a load capacitance of the $\overline{SCK1}$ or SO1 output line.

(ii) 3-wire serial I/O mode (SCK1: External clock input)

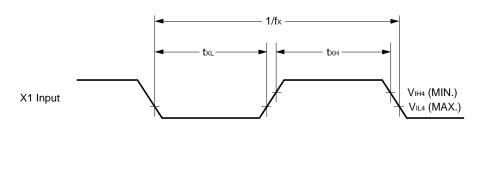
Parameter	Symbol	Conditior	IS	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tксув	V _{DD} = 4.5 to 6.0 V		800			ns
				3200			ns
SCK1 high, low-level	tкнв	V _{DD} = 4.5 to 6.0 V	400			ns	
width	tĸl8			1600			ns
SI1 setup time to SCK1↑	tsik8			100			ns
SI1 hold time from SCK1↑	tksi8		_	400			ns
$\overline{\text{SCK1}} \downarrow \rightarrow \text{SO1}$	tkso8	C = 100 pF ^{Note}	V _{DD} = 4.5 to 6.0 V			300	ns
output delay time						1000	ns
SCK1 rise, fall time	t _{R8}					160	ns
	tF8						

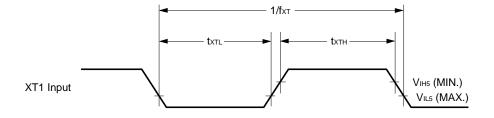
Note C is a load capacitance of the SO1 output line.

Parameter	Symbol	Condition	IS	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tксүэ	V _{DD} = 4.5 to 6.0 V		800			ns
				3200			ns
SCK1 high, low-level	tкнэ	V _{DD} = 4.5 to 6.0 V	tксү9/2 − 50			ns	
width	tĸ∟9		tксүя/2 − 150			ns	
SI1 setup time (to $\overline{SCK1}$)	tsik9			100			ns
SI1 hold time (from $\overline{\text{SCK1}}$)	tksi9			400			ns
SO1 output delay time	tĸso9	R = 1 kΩ, C = 100 pF ^{Note}	V _{DD} = 4.5 to 6.0 V			300	ns
from SCK1↓						1000	ns
STB↑ from SCK1↓	tsвd		·	tксүя/2 – 100		tксү9/2 + 100	ns
Strobe signal high-level width	tsвw			tксүэ – 30		tксү9 + 30	ns
B signal setup time (to busy signal detection timing)	teys			100			ns
Busy signal hold time (from busy signal detection timing	tвүн			100			ns
SCK1↓ from busy inactibe	tsps					2tксүэ	ns

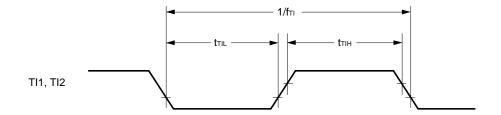

(iii) 3-wire serial I/O mode with automatic transmit/receive function (SCK1: Internal clock output)

Note R is a load resistance of the $\overline{SCK1}$ or SO1 output line, and C is its load capacitance.

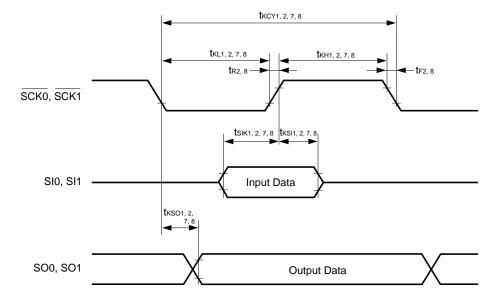

Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	t ксү10	V _{DD} = 4.5 to 6.0 V	800			ns	
				3200			ns
SCK1 high, low-level	t кн10	V _{DD} = 4.5 to 6.0 V	400			ns	
width	tĸ∟10		1600			ns	
SI1 setup time (to $\overline{\text{SCK1}}$)	tsik10		100			ns	
SI1 hold time (from $\overline{\text{SCK1}}$)	tksi10			400			ns
SO1 output delay time	t KSO10	C = 100 pF ^{Note}	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$			300	ns
from SCK1↓						1000	ns
SCK1 rise, fall time	t R10					160	ns
	t F10						


Note C is a load capacitance of the SO1 output line.

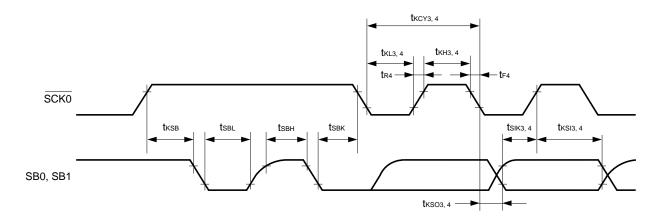
AC Timing Test Point (Excluding X1, XT1 Input)



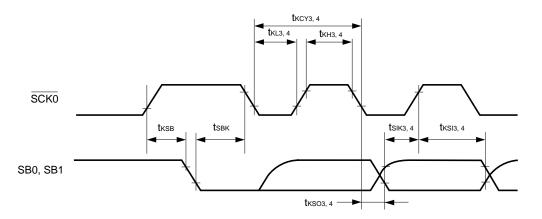
Clock timing

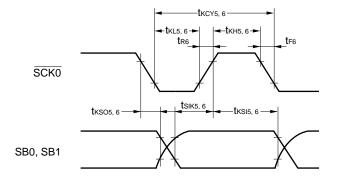


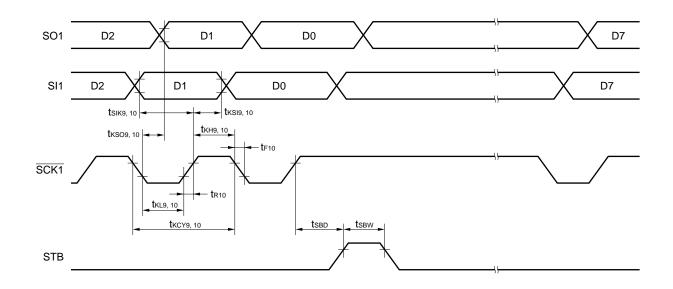
TI timing

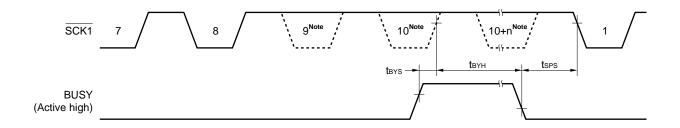


Serial Transfer Timing


3-wire serial I/O mode:


SBI mode (bus release signal transfer):


SBI mode (command signal transfer):


2-wire serail I/O mode:

3-wire serial I/O mode with automatic transmit/receive function:

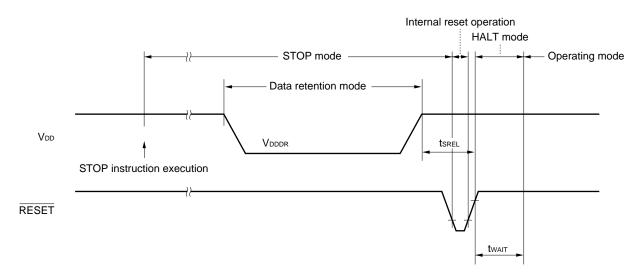
3-wire serial I/O mode with automatic transmit/receive function (Busy processing):

Note Though it does not become low level actually, heve described as it does due to the timing rule.

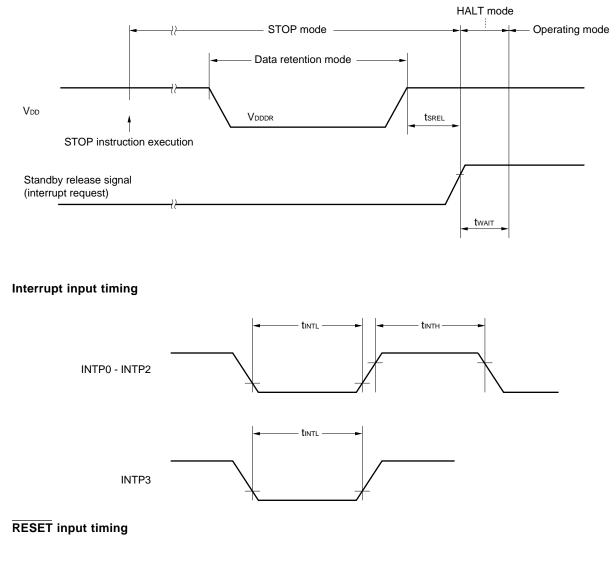
A/D Converter Characteristics (T_A = -40 to +85 $^{\circ}$ C, AV_{DD} = V_{DD} = 4.0 to 6.0 V, AV_{SS} = V_{SS} = 0 V)

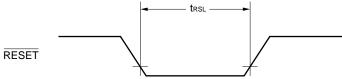
	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	Resolution			8	8	8	bit
*	Total error ^{Note 1}					0.8	%
	Conversion time ^{Note 2}	t CONV	$1 \text{ MHz} \le fx \le 5.0 \text{ MHz}$	19.1		200	μs
	Sampling time ^{Note 3}	t SAMP		2.86		30	μs
	Analog signal input voltage	Vian		AVss		AVREF	V
	Reference voltage	AVref		4.0		AVdd	V
	AVREF resistor	RAIREF		4	14		kΩ

Notes 1. Quantization error (+1/2LSB) is not included. This parameter is indicated as the ratio to the full-scale value.


- 2. Set the A/D conversion time to 19.1 μs or more.
- 3. Sampling time depends on the conversion time.

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (T_A = -40 to +85 °C)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		2.0		6.0	V
Data retention supply current	Idddr	V _{DDDR} = 2.0 V Subsystem clock stopped, Feedback resistor non-connected		0.1	10	μA
Release signal set time	tsrel		0			μs
Oscillation stabilization	twait	Release by RESET		2 ¹⁷ /fx		ms
wait time		Release by interrupt		Note		ms


Note Selection of 2¹²/fx, 2¹⁴/fx to 2¹⁷/fx is available by bits 0 to 2 (OSTS0 to OSTS2) of oscillation stabilization time select register (OSTS).

Data retention timing (STOP mode release by RESET)

Data retention timing (standby release signal: STOP mode release by interrupt signal)

PROM Programming Characteristics

DC characteristics

(1) PROM write mode (T_A = 25 \pm 5 °C, V_{DD} = 6.5 \pm 0.25 V, V_{PP} = 12.5 \pm 0.3 V)

Parameter	Symbol	Symbol ^{Note}	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage high	Vін	Vін		0.7 Vdd		Vdd	V
Input voltage low	VIL	VIL		0		0.3 Vdd	V
Output voltage high	Vон	Vон	Iон = -1 mA	Vdd -1.0			V
Output voltage low	Vol	Vol	lo∟ = 1.6 mA			0.4	V
Input leakage current	lu	lu	$0 \leq V_{\text{IN}} \leq V_{\text{DD}}$	-10		+10	μΑ
VPP supply voltage	Vpp	Vpp		12.2	12.5	12.8	V
VDD supply voltage	Vdd	Vcc		6.25	6.5	6.75	V
VPP supply current	Ірр	Ірр	PGM = VIL			50	mA
VDD supply current	DD	lcc				50	mA

(2) PROM read mode (TA = 25 \pm 5 °C, VDD = 5.0 \pm 0.5 V, VPP = VDD \pm 0.6 V)

Parameter	Symbol	Symbol ^{Note}	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage high	Vін	Vін		0.7 Vdd		Vdd	V
Input voltage low	VIL	VIL		0		0.3 Vdd	V
Output voltage high	Vон1	Vон1	Iон = -1 mA	Vdd -1.0			V
	Vон2	Vон2	Іон = -100 <i>µ</i> А	Vdd -0.5			V
Output voltage low	Vol	Vol	lo∟ = 1.6 mA			0.4	V
Input leakage current	lu	lu	$0 \leq V_{\text{IN}} \leq V_{\text{DD}}$	-10		+10	μΑ
Output leakage current	Ilo	Ilo	$0 \le V_{\text{OUT}} \le V_{\text{DD}}, \ \overline{\text{OE}} = V_{\text{IH}}$	-10		+10	μΑ
VPP supply voltage	Vpp	Vpp		Vdd -0.6	Vdd	Vdd +0.6	V
VDD supply voltage	Vdd	Vcc		4.5	5.0	5.5	V
VPP supply current	Ірр	Ірр	Vpp = Vdd			100	μΑ
VDD supply current	ldd	ICCA1	$\overline{CE} = V_{IL}, V_{IN} = V_{IH}$			50	mA

Note Corresponding μ PD27C1001A symbol.

AC characteristics

(1) PROM write mode

(a) Page program mode (TA = 25 \pm 5 °C, VDD = 6.5 \pm 0.25 V, VPP = 12.5 \pm 0.3 V)

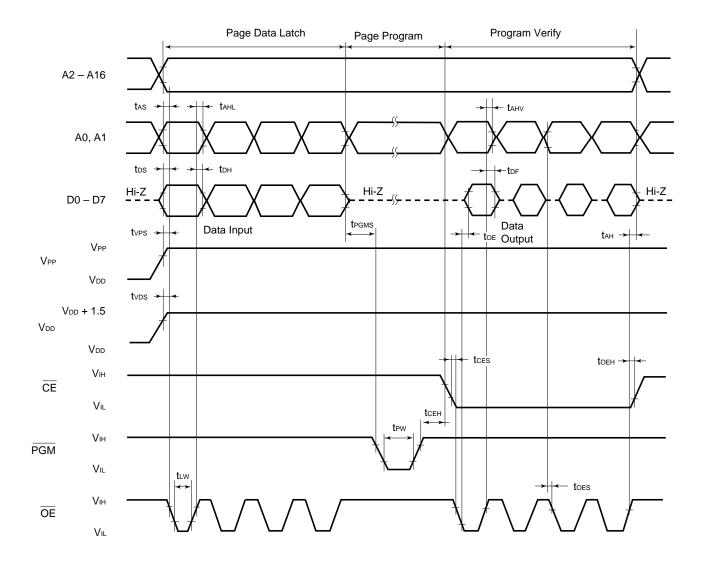
Parameter	Symbol	Symbol ^{Note}	Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to $\overline{OE}\downarrow$)	tas	tas		2			μs
OE setup time	toes	toes		2			μs
\overline{CE} setup time (to $\overline{OE}\downarrow$)	tces	tces		2			μs
Input data setup time (to $\overline{OE}\downarrow$)	tos	tos		2			μs
Address hold time (from $\overline{OE}\uparrow$)	tан	tан		2			μs
	t AHL	t AHL		2			μs
	t ahv	tанv		0			μs
Input data hold time (from \overline{OE})	tdн	tон		2			μs
Data output float delay time from $\overline{\rm OE} \uparrow$	t DF	t DF		0		250	ns
V_{PP} setup time (to $\overline{OE}\downarrow$)	tvps	tvps		1.0			ms
V_{DD} setup time (to $\overline{OE}\downarrow$)	tvds	tvcs		1.0			ms
Program pulse width	tew	tew		0.095	0.1	0.105	ms
Valid data delay time from $\overline{\text{OE}} \downarrow$	toe	toe				1	μs
OE pulse width during data latching	t∟w	t∟w		1			μs
PGM setup time	t PGMS	t PGMS		2			μs
CE hold time	tсен	tсен		2			μs
OE hold time	tоен	tоен		2			μs

(b) Byte program mode (TA = 25 \pm 5 °C, VDD = 6.5 \pm 0.25 V, VPP = 12.5 \pm 0.3 V)

Parameter	Symbol	Symbol ^{Note}	Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to $\overline{PGM}\downarrow$)	tas	tas		2			μs
OE setup time	toes	toes		2			μs
\overline{CE} setup time (to $\overline{PGM}\downarrow$)	tces	tces		2			μs
Input data setup time (to $\overline{PGM}\downarrow$)	tos	tos		2			μs
Address hold time (from $\overline{OE}\uparrow$)	t ahl	t ahl		2			μs
Input data hold time (from \overline{PGM})	tdн	tdн		2			μs
Data output float delay time from $\overline{\text{OE}} \uparrow$	t DF	t DF		0		250	ns
V_{PP} setup time (to $\overline{PGM}\downarrow$)	tvps	tvps		1.0			ms
V_{DD} setup time (to $\overline{PGM}\downarrow$)	tvds	tvcs		1.0			ms
Program pulse width	tew	tew		0.095	0.1	0.105	ms
Valid data delay time from $\overline{\text{OE}} \downarrow$	toe	toe				1	μs
OE hold time	tоен	_		2			μs

Note Corresponding *µ*PD27C1001A symbol

(2) PROM read mode (T_A = 25 \pm 5 °C, V_{DD} = 5.0 \pm 0.5 V, V_{PP} = V_{DD} \pm 0.6 V)

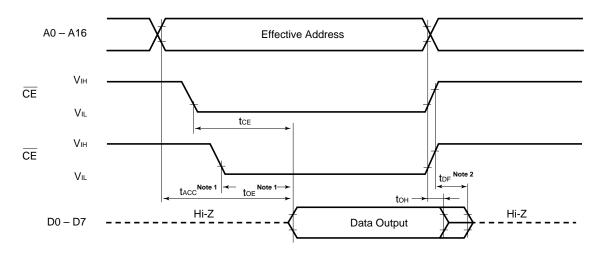

Parameter	Symbol	Symbol ^{Note}	Conditions	MIN.	TYP.	MAX.	Unit
Data output delay time from address	t ACC	tacc	$\overline{CE} = \overline{OE} = V_{IL}$			800	ns
Data output delay time from $\overline{\text{CE}} \downarrow$	tce.	tce	OE = VIL			800	ns
Data output delay time from $\overline{\text{OE}} \downarrow$	toe	toe	CE = VIL			200	ns
Data output float delay time from \overline{OE}^\uparrow	t DF	t DF	CE = VIL	0		60	ns
Data hold time from address	tон	tон	$\overline{CE} = \overline{OE} = V_{IL}$	0			ns

Note Corresponding μ PD27C1001A symbol

(3) PROM programming mode setting (T_A = 25 $^{\circ}$ C, Vss = 0 V)

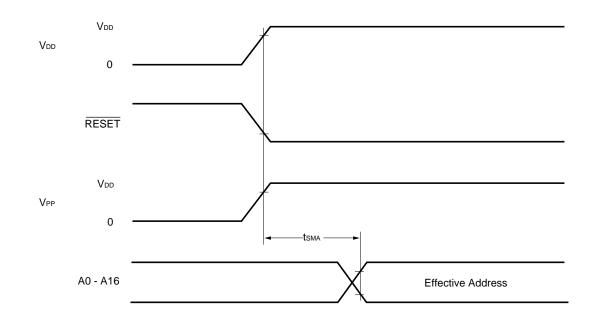
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
PROM programming mode setup time	tsma		10			μs

PROM write mode timing (page program mode)

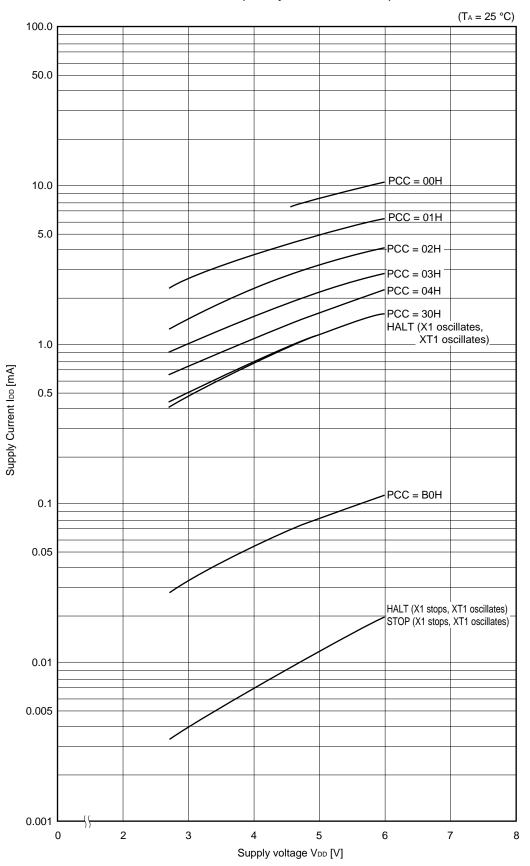

Program Program Verify A0 – A16 tas **t**df Hi-Z Hi-Z Hi-Z D0 – D7 Data Input Data Output tos tdн tан V_{PP} VPP $\mathsf{V}_{\mathsf{D}\mathsf{D}}$ tvps Vdd + 1.5 Vdd V_{DD} tvds - toeh Vін CE VIL tces t₽w Vн PGM VIL toes toe Vн CE VIL

PROM write mode timing (byte program mode)

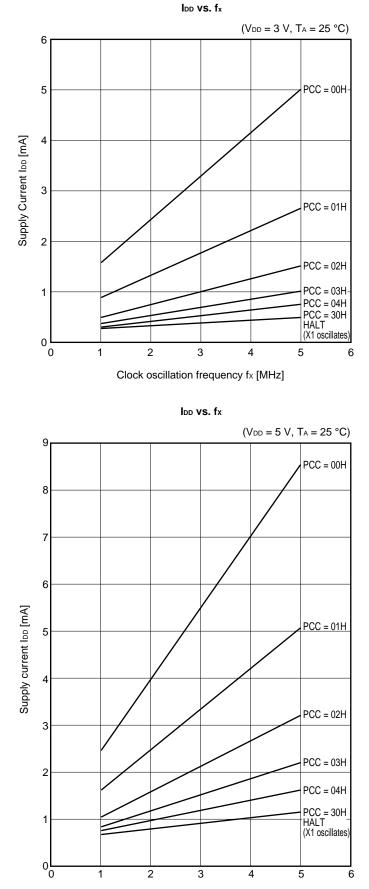
Cautions 1. VDD should be applied before VPP, and cut after VPP.

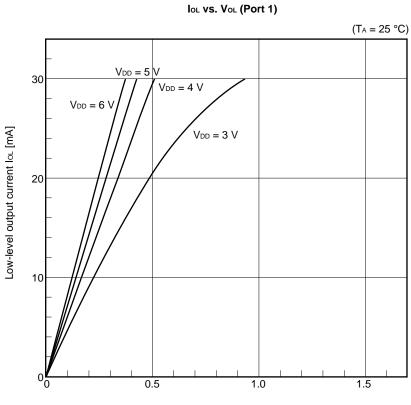

- 2. VPP should not exceed +13.5 V including overshoot.
- 3. Disconnection during application of \pm 12.5 V to VPP may have an adverse effect on reliability.

PROM read mode timing

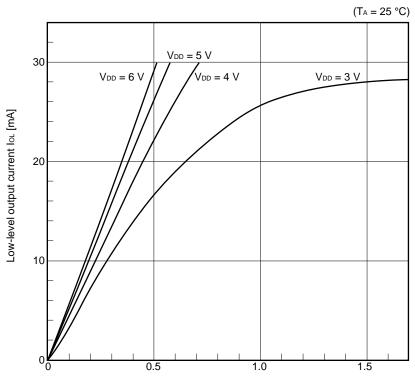


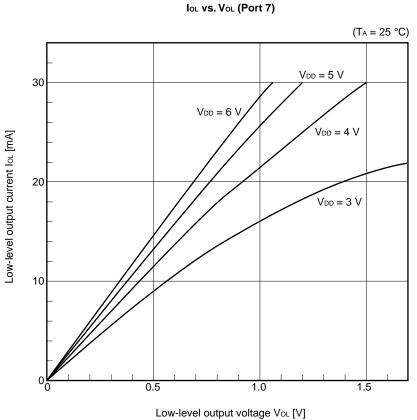
- **Notes 1.** If you want to read within the tacc range, make the \overline{OE} input delay time from the fall of \overline{CE} a maximum of tacc toe.
 - 2. tDF is the time from when either $\overline{\text{OE}}$ or $\overline{\text{CE}}$ first reaches VIH.

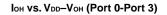

PROM programming mode setting timing

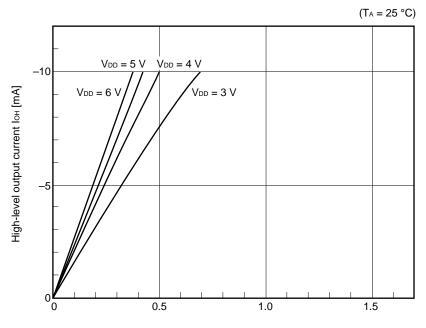

★ 10. CHARACTERISTIC CURVE (REFERENCE VALUE)

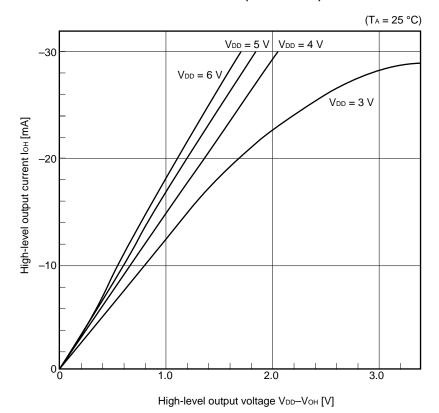
IDD vs. VDD (Main system clock : 5.0 MHz)

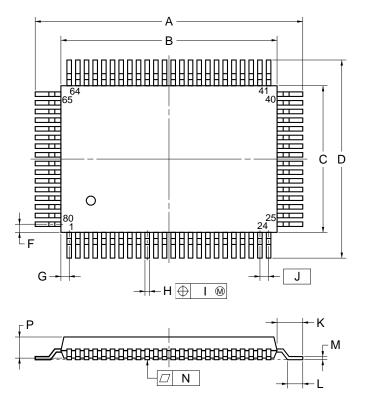


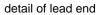


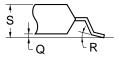

Low-level output voltage VoL [V]


IOL VS. VOL (Ports 0, 2, 3)


Low-level output voltage VoL [V]

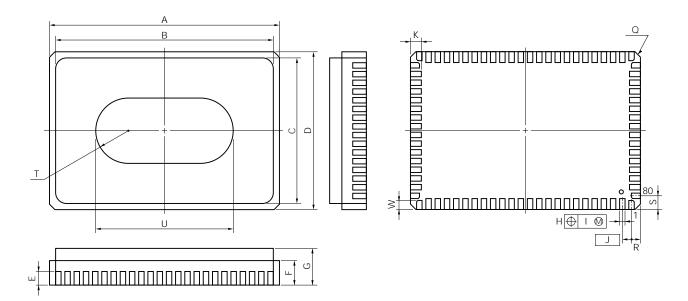

High-level output voltage VDD-VOH [V]




Іон vs. VDD-Voн (Port 8-Port 12)

11. PACKAGE DRAWINGS

80 PIN PLASTIC QFP (14×20)


NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	23.6±0.4	0.929±0.016
A	23.0±0.4	
В	20.0±0.2	$0.795^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	0.8	0.031
Н	0.35±0.10	$0.014^{+0.004}_{-0.005}$
I	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
к	1.8±0.2	$0.071^{+0.008}_{-0.009}$
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
P	2.7	0.106
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.
		P80GF-80-3B9-3

Remark Dimensions and materials of ES products are the same as those of mass-production products.

80 PIN CERAMIC WQFN

ΝΟΤΕ

Each lead centerline is located within 0.08 mm (0.003 inch) of its true position (T.P.) at maximum material condition.

X80KW-80A				
ITEM	EM MILLIMETERS INCHES			
А	20.0±0.4	$0.787^{+0.017}_{-0.016}$		
В	19.0	0.748		
С	13.2	0.520		
D	14.2±0.4	0.559±0.016		
E	1.64	0.065		
F	2.14	0.084		
G	4.064 MAX.	0.160 MAX.		
Н	0.51±0.10	0.020±0.004		
Ι	0.08	0.003		
J	0.8 (T.P.)	0.031 (T.P.)		
К	1.0±0.2	0.039 ^{+0.009} _{-0.008}		
Q	C 0.5	C 0.020		
R	0.8	0.031		
S	1.1	0.043		
Т	R 3.0	R 0.118		
U	12.0	0.472		
W	0.75±0.2	$0.030^{+0.008}_{-0.009}$		

Remark Dimensions and materials of ES products are the same as those of mass-production products.

12. RECOMMENDED SOLDERING CONDITIONS

The conditions listed below shall be met when soldering the μ PD78P048A.

For details of the recommended soldering conditions, refer to our information document **Semiconductor Device Mounting Technology Manual (C10535E)**.

Please consult with our sales offices in case any other soldering process is used, or in case soldering is done under different conditions.

Table 12-1. Soldering Conditions for Surface-Mount Type

$\mu \text{PD78P048AGF-3B9:}$ 80-pin plastic QFP (14 \times 20 mm)

	Soldering Method	Soldering Conditions	Recommended Condition Symbol
*	Infrared reflow	Package peak temperature: 235 °C, Duration: 30 sec. max. (at 210 °C or above), Number of times: Thrice max.	IR35-00-3
*	VPS	Package peak temperature: 215 °C, Duration: 40 sec. max. (at 200 °C or above), Number of times: Thrice max.	VP15-00-3
	Wave soldering	Solder bath temperature: 260 °C max. Duration: 10 sec. max. Number of times: Once Preliminary heat temperature: 120 °C max. (Package surface temperature)	WS60-00-1
	Partial heating	Pin temperature: 300 °C max., Duration: 3 sec. max. (per device side)	—

Caution Using more than one soldering method should be avoided (except in the case of partial heating).

APPENDIX A. DEVELOPMENT TOOLS

The following tools are available for development of systems using the μ PD78P048A:

Language Processing Software

RA78K/0 ^{Note 1, 2, 3, 4}	Assembler package common to 78K/0 series
CC78K/0 ^{Note 1, 2, 3, 4} C compiler package common to 78K/0 series	
DF78044 ^{Note 1, 2, 3, 4}	Device file for μ PD78044F subseries
CC78K/0-L ^{Note 1, 2, 3, 4}	C compiler library source file common to 78K/0 series

PROM Writing Tools

PG-1500	PROM programmer
PA-78P048GF PA-78P048KL-S	Programmer adapter connected to PG-1500
PG-1500 ControllerNote 1, 2	Control program for PG-1500

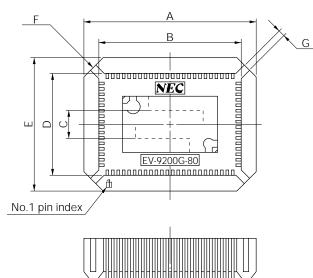
Debugging Tools

	IE-78000-R	In-circuit emulator common to 78K/0 series	
★ IE-78000-R-A In-circuit emulator common to 78K/0 series (fo		In-circuit emulator common to 78K/0 series (for integrated debugger)	
	IE-78000-R-BK	Break board common to 78K/0 series	
	IE-78044-R-EM	Emulation board for evaluating μ PD78044F subseries	
EP-78130GF-R Emulation probe common to µPD78134		Emulation probe common to µPD78134	
EV-9200G-80 Socket mounted to target system created for 80-pin plastic QFP (GF		Socket mounted to target system created for 80-pin plastic QFP (GF-3B9 type)	
SM78K0 ^{Note 5, 6, 7} System simulator common to 78K/0 series		System simulator common to 78K/0 series	
★ ID78K0 ^{Note 4, 5, 6, 7} Integrated debugger for IE-78000-R-A		Integrated debugger for IE-78000-R-A	
	SD78K/0 ^{Note 1, 2}	Screen debugger for IE-78000-R	
	DF78044Note 1, 2, 4, 5, 6, 7	Device file for μ PD78044F subseries	

Real-time OS

RX78K/0 ^{Note 1, 2, 3, 4}	Real-time OS for 78K/0 series
MX78K0 ^{Note 1, 2, 3, 4}	OS for 78K/0 series

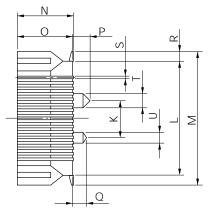
Notes 1. PC-9800 series (MS-DOSTM) based


- 2. IBM PC/ATTM and compatible (PC DOSTM/IBM DOSTM/MS-DOS) based
- **3.** HP9000 series 300^{TM} (HP-UXTM) based
- HP9000 series 700[™] (HP-UX) based, SPARCstation[™] (Sun OS[™]) based, EWS4800 series (EWS-UX/ V) based
- 5. PC-9800 series (MS-DOS + WindowsTM) based
- 6. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS + Windows) based
- **7.** NEWS[™] (NEWS-OS[™]) based

Fuzzy Inference Development Support System

FE9000 ^{Note 1} /FE9200 ^{Note 3}	Fuzzy knowledge data creation tool
FT9080 ^{Note 1} /FT9085 ^{Note 2}	Translator
FI78K0 ^{Note 1, 2}	Fuzzy inference module
FD78K0 ^{Note 1, 2}	Fuzzy inference debugger

- Notes 1. PC-9800 series (MS-DOS) based
 - 2. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS) based
 - 3. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS + Windows) based
- Remarks 1. Please refer to the 78K/0 Series Selection Guide (U11126E) for information on third party development tools.
 - 2. RA78K/0, CC78K/0, SM78K0, ID78K0, RX78K/0, and SD78K/0 are used in combination with DF78044.


DIMENSIONS AND RECOMMENDED MOUNTING PATTERN OF CONVERSION SOCKET

Н

T

Figure A-1. Dimensions of EV-9200G-80 (Reference)

EV-9200G-80-G0E

ITEM	MILLIMETERS INCHES		
A	25.0	0.984	
В	20.30	0.799	
C	4.0	0.157	
D	14.45	0.569	
E	19.0	0.748	
F	4-C 2.8	4-C 0.11	
G	0.8	0.031	
Н	11.0	0.433	
1	22.0	0.866	
J	24.7	0.972	
К	5.0	0.197	
L	16.2	0.638	
M	18.9	0.744	
N	8.0	0.315	
0	7.8	0.307	
Р	2.5	0.098	
Q	2.0	0.079	
R	1.35	0.053	
S	0.35±0.1	0.014 ^{+0.004} 0.005	
Т	ø2.3	ø0.091	
U	¢1.5	¢0.059	

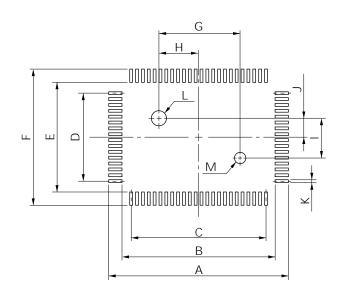


Figure A-2. Recommended Mounting Pattern of V-9200G-80

EV-9200G-80-P1E

ITEM	MILLIMETERS	INCHES
A 25.7		1.012
В	21.0	0.827
С	$0.8\pm0.02\times23=18.4\pm0.05$	$0.031^{+0.002}_{-0.001} \times 0.906 {=} 0.724 {}^{+0.003}_{-0.002}$
D	$0.8\pm0.02 \times 15=12.0\pm0.05$	$0.031^{+0.002}_{-0.001} \times 0.591 {=} 0.472 {}^{+0.003}_{-0.002}$
E	15.2	0.598
F	19.9	0.783
G	11.00±0.08	$0.433^{+0.004}_{-0.003}$
н	5.50±0.03	$0.217^{+0.001}_{-0.002}$
I	5.00±0.08	$0.197^{+0.003}_{-0.004}$
J	2.50±0.03	$0.098\substack{+0.002\\-0.001}$
К	0.5±0.02	$0.02^{+0.001}_{-0.002}$
L	\$\$\phi_2.36±0.03\$	Ø0.093 ^{+0.001} -0.002
М	Ø1.57±0.03	Ø0.062 ^{+0.001} -0.002

Caution Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).

APPENDIX B. RELATED DOCUMENTS

• Device Related Documents

Document Name	Docur	Document No.	
	Japanese	English	
μ PD78044F Subseries User's Manual	U10908J	U10908E	
μPD78042F, 78043F, 78044F, 78045F Data Sheet	U10700J	U10700E	
μPD78P048A Data Sheet	U10611J	This document	
μ PD78044A, 78044F Subseries Special Function Register Table	U10701J	_	
78K/0 Series User's Manual-Instruction	U12326J	U12326E	
78K/0 Series Instruction Set	U10904J	_	
78K/0 Series Instruction Table	U10903J	_	
78K/0 Series Application Note-Basics (II)	U10121J	U10121E	

• Development Tool Related Documents (User's Manual) (1/2)

	Document Name		Document No.	
			Japanese	English
	RA78K Series Assembler Package	Operation	EEU-809	EEU-1399
		Language	EEU-815	EEU-1404
	RA78K Series Structured Assembler Preprocessor		EEU-817	EEU-1402
	RA78K0 Assembler Package	Structured assembly language	U11789J	U11789E
		Assembly language	U11801J	U11801E
		Operation	U11802J	U11802E
	CC78K Series C Compiler	Operation	EEU-656	EEU-1280
		Language	EEU-655	EEU-1284
I	CC78K/0 C Compiler	Operation	U11517J	U11517E
		Language	U11518J	U11518E
CC78K Series Library Source File		U12322J	_	
	CC78K/0 C Compiler Application Note	Programming know-how	EEA-618	EEA-1208
	PG-1500 PROM Programmer		U11940J	EEU-1335
PG-1500 Controller PC-9800 Series (MS-DOS) Based		EEU-704	EEU-1291	
PG-1500 Controller IBM PC Series (PC DOS) Based		EEU-5008	U10540E	
IE-78000-R		U11376J	U11376E	
IE-78000-R-A		U10057J	U10057E	
IE-78000-R-BK		EEU-867	EEU-1427	
IE-78044-R-EM		EEU-833	EEU-1424	
EP-78130GF-R		EEU-943	EEU-1470	
ľ	SM78K0 System Simulator Windows Based	Reference	U10181J	U10181E
Í	SM78K Series System Simulator	External part user open interface specifications	U10092J	U10092E
	ID78K0 Integrated Debugger EWS Based	Reference	U11151J	_
Í	ID78K0 Integrated Debugger PC Based	Reference	U11539J	U11539E

• Development Tool Related Documents (User's Manual) (2/2)

	Document Name		Document No.	
			Japanese	English
*	ID78K0 Integrated Debugger Windows Based	Guide	U11649J	U11649E
	SD78K/0 Screen Debugger	Introduction	EEU-852	U10539E
	PC-9800 Series (MS-DOS) Based	Reference	U10952J	—
	SD78K/0 Screen Debugger	Introduction	EEU-5024	EEU-1414
	IBM PC/AT (PC DOS) Based	Reference	U11279J	U11279E

• Embedded Software Related Documents (User's Manual)

Document Name		Document No.	
		Japanese	English
78K/0 Series Real-Time OS	Fundamental	U11537J	—
	Installation	U11536J	_
78K/0 Series OS MX78K0	Fundamental	U12257J	_
Fuzzy Knowledge Data Creation Tool	·	EEU-829	EEU-1438
78K/0, 78K/II, 87AD Series Fuzzy Inference Developme Translator	ent Support System	EEU-862	EEU-1444
78K/0 Series Fuzzy Inference Development Support System Fuzzy Inference Module		EEU-858	EEU-1441
78K/0 Series Fuzzy Inference Development Support Sy Debugger	vstem Fuzzy Inference	EEU-921	EEU-1458

• Other Related Documents

Document Name	Document No.	
	Japanese	English
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability and Quality Control	C10983J	C10983E
Electrostatic Discharge (ESD) Test	MEM-539	_
Semiconductor Devices Quality Guarantee Guide	C11893J	MEI-1202
Microcomputer-Related Product Guide (Products by Other Manufacturers)	U11416J	

Caution The above related documents are subject to change without notice. For design purpose, etc., be sure to use the latest documents.

[MEMO]

NOTESFOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function. The documents referred to in this publication may include preliminary versions. However preliminary versions are not marked as such.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

License not needed: μ PD78P048AKL-S The customer must judge the need for license: μ PD78P048AGF-3B9

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5

FIP is a registered trademark of NEC Corporation.

IEBus is a trademark of NEC Corporation.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.

HP9000 series 300, HP9000 series 700 and HP-UX are trademarks of Hewlett Packard Inc.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun MicroSystems Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.