PRELIMINARY DATA SHEET

MOS INTEGRATED CIRCUIT

μ PD78P0308

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD78P0308 is a member of the μ PD780308 Subseries of the 78K/0 Series, in which the on-chip mask ROM of the μ PD780308 is replaced with a one-time PROM or EPROM.

Because this device can be programmed by users, it is ideally suited for system evaluation, small-scale and multiple-device production, and early development and time-to-market.

Caution The μ PD78P0308KL-T does not maintain planned reliability when used in your systems' mass-produced products. Please use only experimentally or for evaluation purposes during trial manufacture.

The details of functions are described in the user's manuals. Be sure to read the following manuals before designing.

 μ PD780308, 780308Y Subseries User's Manual : U11377E 78K/0 Series User's Manual Instructions : U12326E

FEATURES

• Pin-compatible with mask ROM version (except VPP pin)

• Internal PROM: 60 KbytesNote

• μ PD78P0308KL-T : Reprogrammable (ideally suited for system evaluation)

μPD78P0308GC, μPD78P0308GF
 One-time programmable (ideally suited for small-scale production)

Internal high-speed RAM
 Internal expansion RAM
 LCD display RAM
 Supply voltage
 1024 bytes
 40 x 4 bits
 VDD = 2.7 to 5.5 V

Corresponding to QTOP™ Microcontrollers (under planning)

, , , , , ,

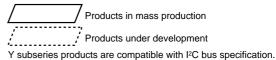
Note The internal PROM capacity can be changed by setting the memory size switching register (IMS).

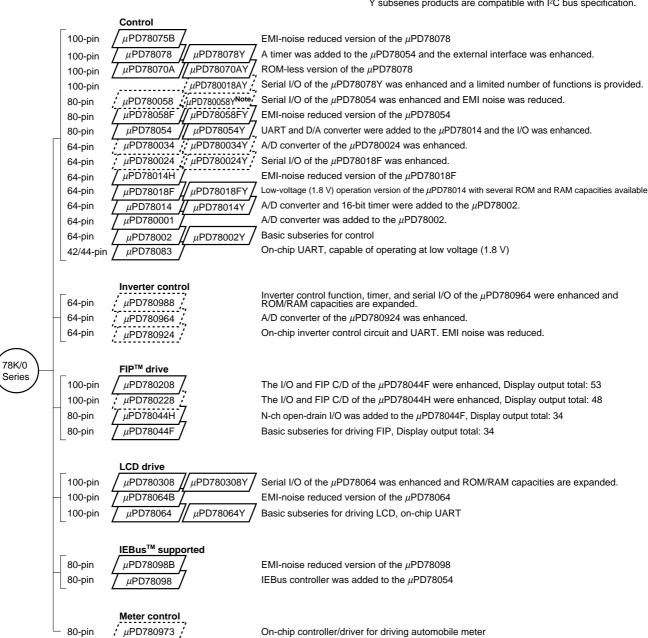
Remarks 1. QTOP microcontroller is a general term for microcontrollers that incorporate one-time PROM and are totally supported by NEC's programming service (from programming to marking, screening, and verification).

2. Refer to 1. DIFFERENCES BETWEEN THE μ PD78P0308 AND MASK ROM VERSIONS for the difference between the PROM and mask ROM versions.

In this document, the term PROM is used in parts common to one-time PROM versions and EPROM versions.

The information in this document is subject to change without notice.


ORDERING INFORMATION


	Part Number	Package	Internal ROM	Quality Grades
*	μPD78P0308GC-8EU	100-pin plastic LQFP (fine pitch) (14 \times 14 mm)	One-Time PROM	Standard
	μ PD78P0308GF-3BA	100-pin plastic QFP (14 \times 20 mm)	One-Time PROM	Standard
	μPD78P0308KL-T	100-pin ceramic WQFN (14 \times 20 mm)	EPROM	Not applicable (for evaluation)

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document number C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

78K/0 SERIES DEVELOPMENT

The following shows the 78K/0 Series product lineup. Subseries names are shown inside frames.

Note Under planning

The following lists the main functional differences between subseries products.

	Function	ROM		Tin	ner		8-bit	10-bit	8-bit	Covial Interface	I/O	VDD MIN.	External
Subseries Name		Capacity	8-bit	16-bit	Watch	WDT	A/D	A/D	D/A	Serial Interface	1/0	Value	Expansion
Control	μPD78075B	32K-40K	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1 ch)	88	1.8 V	А
	μPD78078	48K-60K]										
	μPD78070A	-									61	2.7 V	
	μPD780058	24K-60K	2 ch							3 ch (time division UART: 1 ch)	68	1.8 V	
	μPD78058F	48K-60K								3 ch (UART: 1 ch)	69	2.7 V	
	μPD78054	16K-60K										2.0 V	
	μPD780034	8K-32K					_	8 ch	1	3 ch (UART: 1 ch,	51	1.8 V	
	μPD780024						8 ch	_		time division 3-wire: 1 ch)			
	μPD78014H									2 ch	53		
	μPD78018F	8K-60K											
	μPD78014	8K-32K										2.7 V	
	μPD780001	8K		-	_					1 ch	39		N/A
	μPD78002	8K-16K			1 ch		-				53		Α
	μPD78083				_		8 ch			1 ch (UART: 1 ch)	33	1.8 V	N/A
Inverter	μPD780988	8K-60K	3 ch	Note1	_	1 ch	-	8 ch	1	3 ch (UART: 2 ch)	47	2.7 V	Α
control	μPD780964	8K-32K		Note2						2 ch (UART: 2 ch)		4.0 V	
	μPD780924						8 ch	-					
FIP	μPD780208	32K-60K	2 ch	1 ch	1 ch	1 ch	8 ch	-	-	2 ch	74	2.7 V	N/A
drive	μPD780228	48K-60K	3 ch	-	-					1 ch	72	4.5 V	
	μPD78044H	32K-48K	2 ch	1 ch	1 ch						68	2.7 V	
	μPD78044F	16K-40K								2 ch			
LCD	μPD780308	48K-60K	2 ch	1 ch	1 ch	1 ch	8 ch	-	-	3 ch (time division UART: 1 ch)	57	2.0 V	N/A
drive	μPD78064B	32K								2 ch (UART: 1 ch)			
	μPD78064	16K-32K											
IEBus	μPD78098B	40K-60K	2 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1 ch)	69	2.7 V	Α
supported	μPD78098	32K-60K											
Meter	μPD780973	24K-32K	3 ch	1 ch	1 ch	1 ch	5 ch	_	_	2 ch (UART: 1 ch)	56	4.5 V	N/A

Notes 1. 16-bit timer: 2 channels

10-bit timer: 1 channel2. 10-bit timer: 1 channel

Remark A : Available

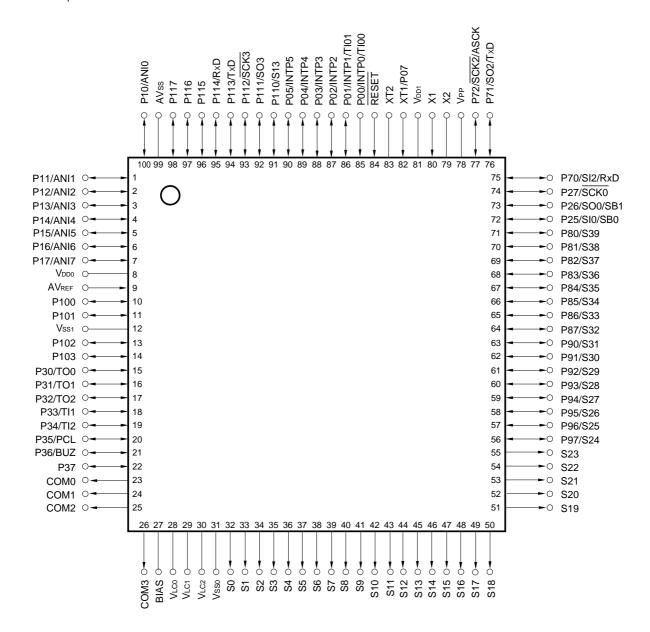
N/A: Not available

FUNCTION DESCRIPTION

Item		Function				
Internal memory		PROM: 60 Kbytes ^{Note}				
		• RAM				
		High-speed RAM: 1024 bytes				
		Expansion RAM: 1024 bytes				
		LCD display RAM: 40 x 4 bits				
General register		8 bits x 32 registers (8 bits x 8 registers x 4 banks)				
Minimum instruction execution time		Minimum instruction execution time variable function is integrate	ed.			
	When main system	0.4 μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs/12.8 μs (@ 5.0-MHz operatio	n)			
	clock is selected					
	When subsystem	122 μs (@ 32.768-kHz operation)				
	clock is selected					
Instruction set		16-bit operation				
		Multiply/divide (8 bits x 8 bits, 16 bits ÷ 8 bits)				
		Bit manipulate (set, reset, test, Boolean operation)				
		BCD adjust, etc.				
I/O ports		Total : 57				
(Segment signal	output pin included)	CMOS input : 2				
		CMOS input/output : 55				
A/D converter		8-bit resolution x 8 channels				
		• Supply voltage : VDD0 = VDD1 = AVREF = 4.0 to 5.5 V				
LCD Controller/dr	river	Segment signal output : 40 pins maximum				
		Common signal output : 4 pins maximum				
		Bias : 1/2,1/3 bias convertible				
Serial interface		• 3-wire serial I/O/SBI/2-wire serial I/O mode selectable : 1	channel			
		• 3-wire serial I/O/UART mode selectable : 1	channel			
			channel			
Timer		• 16-bit timer/event counter : 1 channel				
		8-bit timer/event counter : 2 channels				
		Watch timer : 1 channel				
		Watchdog timer : 1 channel				
Timer output		3 pins (14-bit PWM output enable: 1 pin)				
Clock output		19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz, 2.5 MHz,				
		and 5.0 MHz (@ 5.0-MHz operation with main system clock)				
		32.768 kHz (@ 32.768-kHz operation with subsystem clock)				
Buzzer output		1.2 kHz, 2.4 kHz, 4.9 kHz, and 9.8 kHz				
		(@ 5.0-MHz operation with main system clock)				

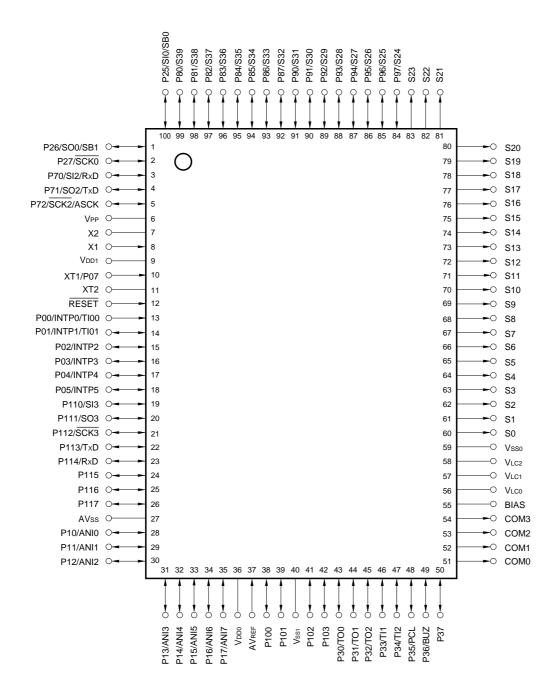
Note Internal PROM capacity can be changed with the memory size switching register (IMS).

*


	I	tem	Function			
	Vectored Maskable		Internal: 13, External: 6			
	interrupt sources Non-maskable		Internal: 1			
		Software	1			
	Test input		Internal: 1, External: 1			
k	Supply voltage		V _{DD} = 2.7 to 5.5 V			
۲	Package		100-pin plastic LQFP (fine pitch) (14 × 14 mm)			
			100-pin plastic QFP (14 × 20 mm)			
			• 100-pin ceramic WQFN (14 × 20 mm)			

Preliminary Data Sheet

PIN CONFIGURATIONS (Top View)


- (1) Normal operating mode
- 100-pin plastic LQFP (fine pitch) (14 × 14 mm)
 μPD78P0308GC-8EU

- ★ Cautions 1. Connect VPP pin directly to Vsso or Vss1.
 - 2. Connect AVss pin to Vsso.

Remark When this device is used in applications where noise generated from the microcontroller should be reduced, V_{DD0} and V_{DD1} should be powered separately, and noise reduction measures should be implemented, such as connecting V_{SS0} and V_{SS1} to separate ground lines.

- 100-pin plastic QFP (14 × 20 mm) μPD78P0308GF-3BA
- 100-pin ceramic WQFN (14 \times 20 mm) μ PD78P0308KL-T

Cautions 1. Connect VPP pin directly to Vsso or Vss1.

2. Connect AVss pin to Vsso.

Remark When this device is used in applications where noise generated from the microcontroller should be reduced, V_{DD0} and V_{DD1} should be powered separately, and noise reduction measures should be implemented, such as connecting V_{SS0} and V_{SS1} to separate ground lines.

ANI0-ANI7 : Analog Input PCL : Programmable Clock

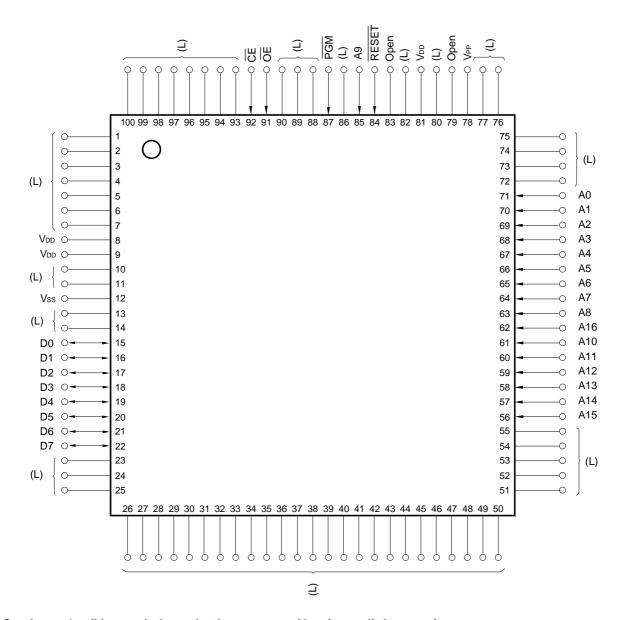
ASCK : Asynchronous Serial Clock RESET : Reset

AVREF : Analog Reference Voltage RxD : Receive Data
AVss : Analog Ground S0-S39 : Segment Output

BIAS : LCD Power Supply Bias Control SB0, SB1 : Serial Bus
BUZ : Buzzer Clock SCK0, SCK2, SCK3 : Serial Clock
COM0-COM3 : Common Output SI0, SI2, SI3 : Serial Input

: Interrupt from Peripherals : Serial Output INTP0-INTP5 SO0, SO2, SO3 P00-P05, P07 : Port 0 TI00, TI01, TI1, TI2 : Timer Input P10-P17 : Port 1 TO0-TO2 : Timer Output P25-P27 : Port 2 TxD : Transmit Data

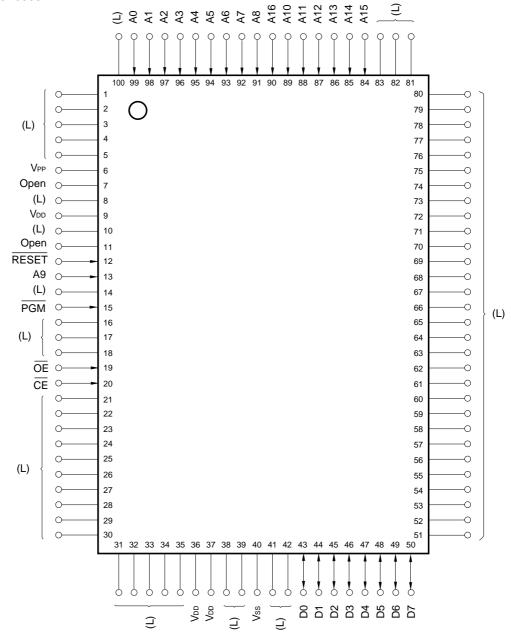
 P25-P27
 : Port 2
 TxD
 : Transmit Data


 P30-P37
 : Port 3
 VDD0, VDD1
 : Power Supply

 P70-P72
 : Port 7
 VLC0-VLC2
 : LCD Power Supply

P100-P103 : Port 10 X1, X2 : Crystal (Main System Clock)
P110-P117 : Port 11 XT1, XT2 : Crystal (Subsystem Clock)

(2) PROM programming mode


100-pin plastic LQFP (fine pitch) (14 × 14 mm)
 μPD78P0308GC-8EU

Cautions 1. (L): Independently connect to Vss via a pull-down resistor.

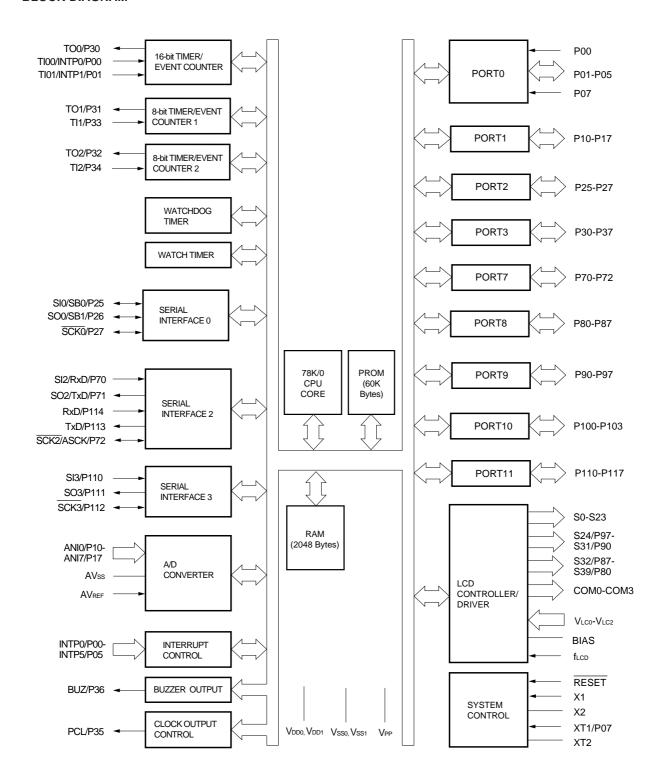
Vss: Connect to GND.
 RESET: Set to low level.
 Open: Leave open.

- 100-pin plastic QFP (14 \times 20 mm) μ PD78P0308GF-3BA
- 100-pin ceramic WQFN μPD78P0308KL-T

Cautions 1. (L): Independently connect to Vss via a pull-down resistor.

Vss: Connect to GND.
 RESET: Set to low level.
 Open: Leave open.

A0 to A16 : Address Bus RESET : Reset


CE : Chip Enable VDD : Power Supply

D0 to D7 : Data Bus VPP : Programming Power Supply

OE : Output Enable Vss : Ground

PGM : Program

BLOCK DIAGRAM

CONTENTS

	1.	DIFFERENCES BETWEEN THE μ PD78P0308 AND MASK ROM VERSIONS	14
	2.	PIN FUNCTIONS	15
		2.1 Pins in Normal Operating Mode	
		2.2 Pins in PROM Programming Mode	
		2.3 Pin Input/Output Circuits and Recommended Connection of Unused Pins	19
	3.	MEMORY SIZE SWITCHING REGISTER (IMS)	23
	4.	INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)	24
	5.	PROM PROGRAMMING	25
		5.1 Operating Modes	
		5.2 PROM Write Procedure	
		5.3 PROM Read Procedure	31
	6.	PROGRAM ERASURE (μ PD78P0308KL-T ONLY)	32
	7.	OPAQUE FILM ON ERASURE WINDOW (μ PD78P0308KL-T ONLY)	32
	8.	ONE-TIME PROM VERSION SCREENING	32
*	9.	ELECTRICAL SPECIFICATIONS	33
	10	PACKAGE DRAWINGS	57
	AP	PENDIX A. DEVELOPMENT TOOLS	60
	۸۵	DENDLY B. DELATED DOCUMENTS	66

1. DIFFERENCES BETWEEN THE μ PD78P0308 AND MASK ROM VERSIONS

The μ PD78P0308 is a single-chip microcontroller with an on-chip one-time PROM or with an on-chip EPROM, which has program write, erasure, and rewrite capability.

It is possible to make all the functions except for PROM specification, and mask option of LCD drive power supply split resistor, the same as those of mask ROM versions by setting the memory size switching register (IMS).

Difference between the PROM version (μ PD78P0308) and mask ROM versions (μ PD780306, 780308) are shown in Table 1-1.

Table 1-1. Differences between the μ PD78P0308 and Mask ROM Versions

Item	μPD78P0308	Mask ROM Versions
Internal ROM configuration	One-time PROM/EPROM	Mask ROM
Internal ROM capacity	60 Kbytes	μPD780306: 48 Kbytes
		μPD780308: 60 Kbytes
Internal ROM capacity change by the	Possible ^{Note}	Impossible
memory size switching register (IMS)		
IC pin	No	Yes
V _{PP} pin	Yes	No
Mask options of LCD drive power supply split resistor	None	Available
Electrical specifications, recommended soldering conditions	Refer to data sheet of the individual prod	uct.

Note The internal PROM capacity is set to 60 Kbytes by RESET input.

★ Caution There are differences in noise immunity and noise radiation between the PROM and mask ROM versions. When pre-producing an application set with the PROM version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations for the set using consumer samples (not engineering samples) of the mask ROM version.

2. PIN FUNCTIONS

2.1 Pins in Normal Operating Mode

(1) Port pins (1/2)

Pin Name	Input/Output		Function	After Reset	Alternate Function
P00	Input	Port 0	Input only	Input	INTP0/TI00
P01	Input/output	7-bit input/output port	Input/output is specifiable	Input	INTP1/TI01
P02			bit-wise. When used as the		INTP2
P03			input port, on-chip pull-up		INTP3
P04			resistor connection can be		INTP4
P05			specified by means of software.		INTP5
P07 ^{Note 1}	Input		Input only	Input	XT1
P10-P17	Input/output	Port 1	•	Input	ANI0-ANI7
		8-bit input/output port			
		Input/output is specifiab	le bit-wise.		
		When used as the input	port, on-chip pull-up resistor		
		connection can be spec	ified by means of software. Note 2		
P25	Input/output	Port 2		Input	SI0/SB0
		3-bit input/output port			
P26		Input/output is specifiab	le bit-wise.		SO0/SB1
P27		When used as the input	port, on-chip pull-up resistor		SCK0
1 21		connection can be spec	ified by means of software.		SCRU
P30	Input/output	Port 3		Input	TO0
P31		8-bit input/output port			TO1
P32		Input/output is specifiab	le bit-wise.		TO2
P33		When used as the input	port, on-chip pull-up resistor		TI1
P34		connection can be spec	ified by means of software.		TI2
P35					PCL
P36					BUZ
P37					_

- **Notes 1.** When P07/XT1 pins are used as the input ports, set bit 6 (FRC) of the processor clock control register (PCC) to 1, and be sure not to use the feedback resistor of the subsystem clock oscillator.
 - 2. When P10/ANI0-P17/ANI7 pins are used as the analog inputs for the A/D converter, shift port 1 to input mode. The on-chip pull-up resistor is automatically disabled.

(1) Port pins (2/2)

Pin Name	Input/Output	Function	After Reset	Alternate Function
P70	Input/output	Port 7	Input	SI2/RxD
		3-bit input/output port		
P71		Input/output is specifiable bit-wise.		SO2/TxD
P72	-	When used as the input port, on-chip pull-up resistor		SCK2/ASCK
		connection can be specified by means of software.		OOK2/AOOK
P80-P87	Input/output	Port 8	Input	S39-S32
		8-bit input/output port		
		Input/output is specifiable bit-wise.		
		When used as the input port, on-chip pull-up resistor		
		connection can be specified by means of software.		
		Input/output port/segment signal output function is		
		specifiable in 2-bit units by the LCD display control		
		register (LCDC).		
P90-P97	Input/output	Port 9	Input	S31-S24
		8-bit input/output port		
		Input/output is specifiable bit-wise.		
		When used as the input port, on-chip pull-up resistor		
		connection can be specified by means of software.		
		Input/output port/segment signal output function is		
		specifiable in 2-bit units by the LCD display control		
		register (LCDC).		
P100-P103	Input/output	Port 10	Input	_
		4-bit input/output port		
		Input/output is specifiable bit-wise.		
		When used as the input port, on-chip pull-up resistor		
		connection can be specified by means of software.		
		It is possible to directly drive LEDs.		
P110	Input/output	Port 11	Input	SI3
P111		8-bit input/output port		SO3
P112		Input/output is specifiable bit-wise.		SCK3
P113		When used as the input port, on-chip pull-up resistor		TxD
P114		connection can be specified by means of software.		RxD
P115-P117		Falling edge detection is possible.		_

(2) Non-port pins (1/2)

Pin Name	Input/Output	Function	After Reset	Alternate Function
INTP0	Input	External interrupt request input for which the active edge	Input	P00/TI00
INTP1		(rising edge, falling edge, or both rising and falling edges)		P01/TI01
INTP2		can be specified.		P02
INTP3				P03
INTP4				P04
INTP5				P05
SI0	Input	Serial interface serial data input.	Input	P25/SB0
SI2				P70/RxD
SI3				P110
SO0	Output	Serial interface serial data output.	Input	P26/SB1
SO2				P71/TxD
SO3				P111
SB0	Input/output	Serial interface serial data input/output.	Input	P25/SI0
SB1				P26/SO0
SCK0	Input/output	Serial interface serial clock input/output.	Input	P27
SCK2				P72/ASCK
SCK3				P112
RxD	Input	Asynchronous serial interface serial data input.	Input	P70/SI2, P114
TxD	Output	Asynchronous serial interface serial data output.	Input	P71/SO2, P113
ASCK	Input	Asynchronous serial interface serial clock input.	Input	P72/SCK2
TI00	Input	External count clock input to 16-bit timer (TM0).	Input	P00/INTP0
TI01		Capture trigger signal input to capture register (CR00).		P01/INTP1
TI1		External count clock input to 8-bit timer (TM1).		P33
TI2		External count clock input to 8-bit timer (TM2).		P34
TO0	Output	16-bit timer (TM0) output (also used for 14-bit PWM output).	Input	P30
TO1		8-bit timer (TM1) output.		P31
TO2		8-bit timer (TM2) output.		P32
PCL	Output	Clock output (for main system clock, subsystem clock	Input	P35
		trimming).		
BUZ	Output	Buzzer output.	Input	P36
S0-S23	Output	LCD controller/driver segment signal output.	Output	_
S24-S31			Input	P97-P90
S32-S39				P87-P80
COM0-COM3	Output	LCD controller/driver common signal output.	Output	_
VLC0-VLC2	_	LCD drive voltage.	_	_
BIAS	_	LCD drive power supply.	_	_

(2) Non-port pins (2/2)

Pin Name	Input/Output	Function	After Reset	Alternate Function
ANI0-ANI7	Input	A/D converter analog input.	Input	P10-P17
AVREF	Input	A/D converter reference voltage input	_	_
		(also used for analog input).		
AVss	_	A/D converter ground potential. Set to the same potential as Vsso.	_	_
RESET	Input	System reset input.	_	_
X1	Input	Crystal resonator connection for main system clock	_	_
X2	_	oscillation.	_	
XT1	Input	Crystal resonator connection for subsystem clock	Input	P07
XT2	_	oscillation.	_	
V _{DD0}	_	Positive power supply for ports.	_	_
Vsso	_	Ground potential for ports.	_	_
V _{DD1}	_	Positive power supply (except for ports and analog).	_	_
Vss1	_	Ground potential (except for ports and analog).	_	_
V _{PP}	 High voltage application in program write/verify mode. 		_	_
		Connect directly to Vsso or Vss1 in normal operating mode.		

2.2 Pins in PROM Programming Mode

Pin Name	Input/Output	Function
RESET	Input	PROM programming mode setting.
		When +5 V or +12.5 V is applied to the VPP pin and a low-level signal is applied to the RESET
		pin, this chip is set in the PROM programming mode.
V _{PP}	Input	PROM programming mode setting and high voltage application during program write/verification.
A0-A16	Input	Address bus.
D0-D7	Input/output	Data bus.
CE	Input	PROM enable input/program pulse input.
ŌĒ	Input	Read strobe input to PROM.
PGM	Input	Program/program inhibit input in PROM programming mode.
V _{DD}	_	Positive power supply.
Vss	_	Ground potential.

18

2.3 Pin Input/Output Circuits and Recommended Connection of Unused Pins

Types of input/output circuits of the pins and recommended connection of unused pins are shown in Table 2-1. For the configuration of each type of input/output circuit, see Figure 2-1.

Table 2-1. Type of Input/Output Circuit of Each Pin (1/2)

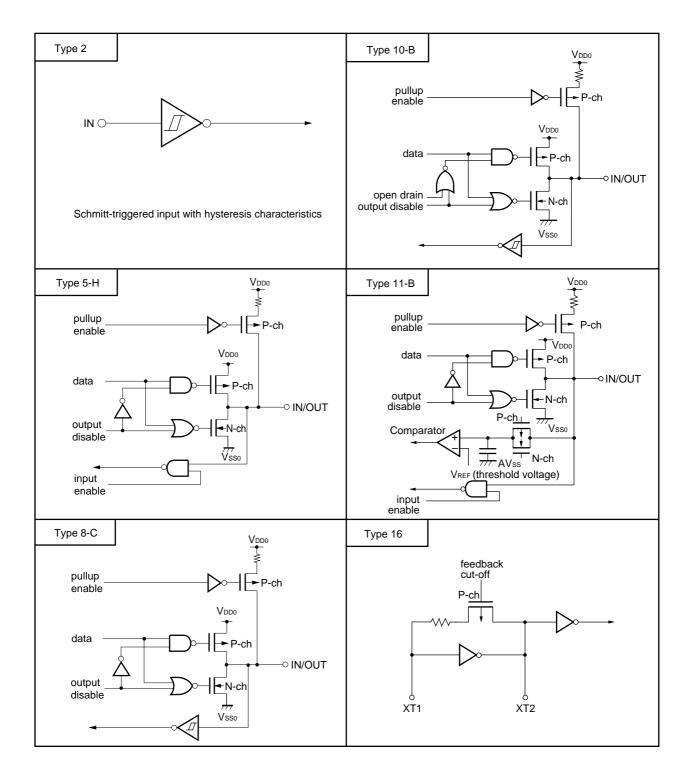

Pin Name	Input/Output Circuit Type	Input/Output	Recommended Connection for Unused Pins
P00/INTP0/TI00	2	Input	Connect to Vsso.
P01/INTP1/TI01	8-C	Input/output	Independently connect to Vsso via a resistor.
P02/INTP2			
P03/INTP3			
P04/INTP4			
P05/INTP5			
P07/XT1	16	Input	Connect to VDDO.
P10/ANI0-P17/ANI7	11-B	Input/output	Independently connect to VDDO or Vsso via
P25/SI0/SB0	10-B		a resistor.
P26/SO0/SB1			
P27/SCK0			
P30/TO0	5-H		
P31/TO1			
P32/TO2			
P33/TI1	8-C		
P34/TI2			
P35/PCL	5-H		
P36/BUZ			
P37			
P70/SI2/RxD	8-C		
P71/SO2/TxD	5-H		
P72/SCK2/ASCK	8-C		
P80/S39-P87/S32	17-C		
P90/S31-P97/S24			
P100-P103	5-H		
P110/SI3	8-C		Independently connect to VDD0 via
P111/SO3			a resistor.
P112/SCK3			
P113/TxD			
P114/RxD			
P115-P117			
S0-S23	17-B	Output	Leave open.
COM0-COM3	18-A		

Table 2-1. Type of Input/Output Circuit of Each Pin (2/2)

Pin Name	Input/Output	Input/Output	Recommended Connection for Unused Pins
	Circuit Type		
VLC0-VLC2	_	_	Leave open.
BIAS			
RESET	2	Input	_
XT2	16	_	Leave open.
AVREF	_	_	Connect to Vsso.
AVss			
VPP			Connect directly to Vsso or Vss1.

*



Figure 2-1. List of Pin Input/Output Circuits (2/2)

3. MEMORY SIZE SWITCHING REGISTER (IMS)

This is a register to disable use of part of internal memories by software. By setting this memory size switching register (IMS), it is possible to get the same memory map as that of the mask ROM versions with a different internal memory (ROM) capacity.

IMS is set with an 8-bit memory manipulation instruction.

RESET input sets IMS to CFH.

Figure 3-1. Memory Size Switching Register Format

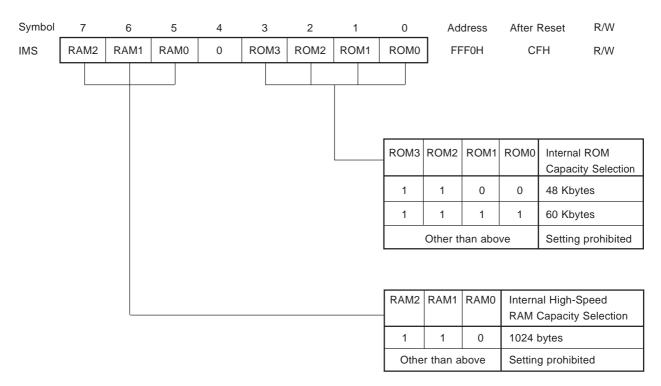


Table 3-1 shows the setting values of IMS that make the memory mapping the same as that of the mask ROM version.

Table 3-1. Memory Size Switching Register Setting Values

Target Mask ROM Versions	IMS Setting Value
μPD780306	ССН
μPD780308	CFH

4. INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)

This register is used to set the internal expansion RAM capacity by software. By setting this internal expansion RAM size switching register (IXS), it is possible to get the same memory map as that of the mask ROM versions with a different internal expansion RAM capacity.

IXS is set with an 8-bit memory manipulation instruction.

RESET input sets IXS to 0AH.

Figure 4-1. Internal Expansion RAM Size Switching Register Format

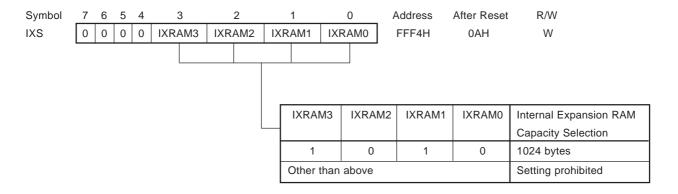


Table 4-1 shows the setting values of IXS that make the memory mapping the same as that of the mask ROM versions.

Table 4-1. Internal Expansion RAM Size Switching Register Setting Values

Target Mask ROM Versions	IXS Setting Value
μPD780306	0AH
μPD780308	

5. PROM PROGRAMMING

The μ PD78P0308 has an on-chip 60-Kbyte PROM as a program memory. For programming, set the PROM programming mode with the V_{PP} and $\overline{\text{RESET}}$ pins. For the connection of unused pins, refer to "PIN CONFIGURATIONS (2) PROM programming mode."

Caution Programs must be written in addresses 0000H to EFFFH (The last address EFFFH must be specified).

They cannot be written by a PROM programmer that cannot specify the write address.

5.1 Operating Modes

When +5 V or +12.5 V is applied to the $\overline{\text{PPP}}$ pin and a low-level signal is applied to the $\overline{\text{RESET}}$ pin, the PROM programming mode is set. This mode will become the operating mode as shown in Table 5-1 when the $\overline{\text{CE}}$, $\overline{\text{OE}}$ and $\overline{\text{PGM}}$ pins are set as shown.

Further, when the read mode is set, it is possible to read the contents of the PROM.

RESET CE ŌĒ PGM Pin D0-D7 V_{PP} V_{DD} Operating Mode Page data latch L +12.5 V +6.5 V Н L Н Data input Page write Н Н L High-impedance Byte write ı Н L Data input Н Program verify L Data output L Program inhibit × Н Н High-impedance L L \times Read +5 V +5 V L L Н Data output Output disable L Н High-impedance × Standby Н × × High-impedance

Table 5-1. Operating Modes of PROM Programming

 $[\]times$: L or H

μPD78P0308

(1) Read mode

Read mode is set if $\overline{CE} = L$, $\overline{OE} = L$ is set.

(2) Output disable mode

Data output becomes high-impedance, and is in the output disable mode, if $\overline{OE} = H$ is set.

Therefore, it allows data to be read from any device by controlling the $\overline{\text{OE}}$ pin, if multiple μ PD78P0308s are connected to the data bus.

(3) Standby mode

Standby mode is set if $\overline{CE} = H$ is set.

In this mode, data outputs become high-impedance irrespective of the $\overline{\sf OE}$ status.

(4) Page data latch mode

Page data latch mode is set if $\overline{CE} = H$, $\overline{PGM} = H$, $\overline{OE} = L$ are set at the beginning of page write mode. In this mode, 1 page 4-byte data is latched in an internal address/data latch circuit.

(5) Page write mode

After 1 page 4 bytes of addresses and data are latched in the page data latch mode, a page write is executed by applying a 0.1-ms program pulse (active low) to the \overline{PGM} pin with $\overline{CE} = H$, $\overline{OE} = H$. Then, program verification can be performed, if $\overline{CE} = L$, $\overline{OE} = L$ are set.

If programming is not performed by a one-time program pulse, X times ($X \le 10$) write and verification operations should be executed repeatedly.

(6) Byte write mode

Byte write is executed when a 0.1-ms program pulse (active low) is applied to the \overline{PGM} pin with $\overline{CE} = L$, $\overline{OE} = H$. Then, program verification can be performed if $\overline{OE} = L$ is set.

If programming is not performed by a one-time program pulse, X times ($X \le 10$) write and verification operations should be executed repeatedly.

(7) Program verify mode

Program verify mode is set if $\overline{CE} = L$, $\overline{PGM} = H$, $\overline{OE} = L$ are set.

In this mode, check if a write operation is performed correctly after the write.

(8) Program inhibit mode

Program inhibit mode is used when the $\overline{\text{OE}}$ pin, V_{PP} pin, and D0-D7 pins of multiple μ PD78P0308s are connected in parallel and a write is performed to one of those devices.

When a write operation is performed, the page write mode or byte write mode described above is used. At this time, a write is not performed to a device whose $\overline{\text{PGM}}$ pin is driven high.

5.2 PROM Write Procedure

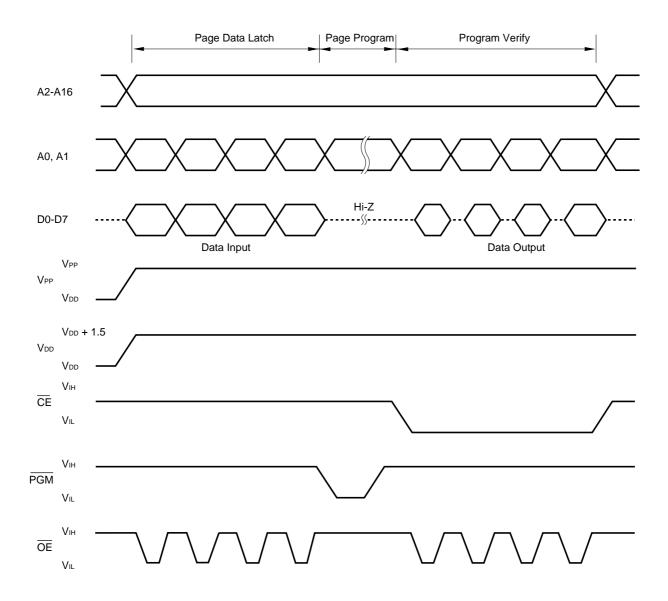

Start Address = G $V_{DD} = 6.5 \text{ V}, V_{PP} = 12.5 \text{ V}$ X = 0Latch Address = Address + 1 Latch Address = Address + 1 Latch Address = Address + 1 Address = Address + 1 Latch No X = X + 1Yes X = 10 ? 0.1-ms program pulse Fail Verify 4 bytes Pass Address = N? Yes $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, V_{PP} = V_{DD}$ Pass Fail Verify all bytes All Pass Write end Defective product

Figure 5-1. Page Program Mode Flow Chart

G = Start address

N = Program last address

Figure 5-2. Page Program Mode Timing

 μ PD78P0308

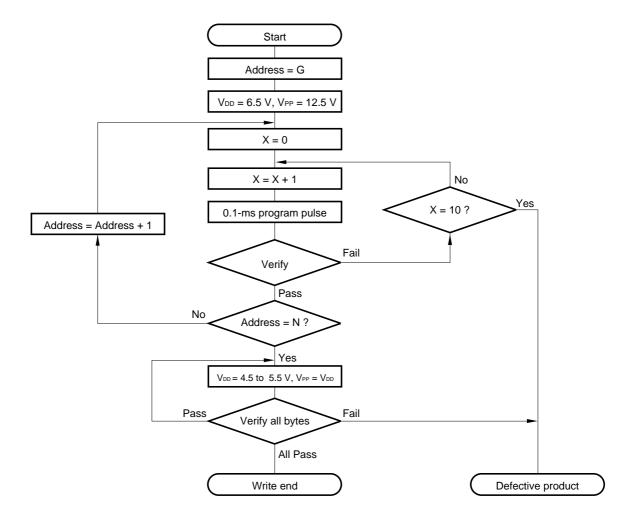


Figure 5-3. Byte Program Mode Flow Chart

G = Start address

N = Program last address

Program Verify A0-A16 D0-D7 Data Output Data Input V_{PP} V_{DD} $V_{DD} + 1.5$ V_{DD} V_{DD} CE VIL PGM V_{IL} ŌE

Figure 5-4. Byte Program Mode Timing

- Cautions 1. VDD should be applied before VPP, and cut after VPP.
 - 2. VPP should not exceed +13.5 V including overshoot.
 - 3. Disconnection during application of ± 12.5 V to V_{PP} may have an adverse effect on reliability.

5.3 PROM Read Procedure

The contents of PROM are readable to the external data bus (D0-D7) according to the read procedure shown below.

- (1) Fix the RESET pin at low level, supply +5 V to the VPP pin, and connect all other unused pins as shown in "PIN CONFIGURATIONS (2) PROM programming mode".
- (2) Supply +5 V to the VDD and VPP pins.
- (3) Input address of data to be read into the A0-A16 pins.
- (4) Read mode
- (5) Output data to D0-D7 pins.

The timings of the above steps (2) to (5) are shown in Figure 5-5.

Figure 5-5. PROM Read Timings

6. PROGRAM ERASURE (μPD78P0308YKL-T ONLY)

The μ PD78P0308KL-T is capable of erasing (FFH) the data written in a program memory and rewriting. To erase the programmed data, expose the erasure window to light having a wavelength shorter than about 400 nm. Normally, irradiate ultraviolet rays of 254-nm wavelength. The amount of exposure required to completely erase the programmed data is as follows:

- UV intensity × erasing time : 30 W s/cm² or more
- Erasure time: 40 min. or more (When a UV lamp of 12 mW/cm² is used. However, a longer time may be needed because of deterioration in performance of the UV lamp, soiled erasure window, etc.)

When erasing the contents of data, set up the UV lamp within 2.5 cm from the erasure window. Further, if a filter is provided for a UV lamp, irradiate the ultraviolet rays after removing the filter.

7. OPAQUE FILM ON ERASURE WINDOW (μPD78P0308KL-T ONLY)

To protect from unintentional erasure by rays other than that of the lamp for erasing EPROM contents, or to protect internal circuit other than EPROM from misoperating by rays, cover the erasure window with an opaque film when EPROM contents erasure is not performed.

8. ONE-TIME PROM VERSION SCREENING

The one-time PROM version (μ PD78P0308GC-8EU and 78P0308GF-3BA) cannot be tested completely by NEC before it is shipped, because of its structure. It is recommended to perform screening to verify PROM after writing necessary data and performing high-temperature storage under the condition below.

Storage Temperature	Storage Time
125°C	24 hours

NEC offers for an additional fee service from one-time PROM writing to marking, screening, and verify for products designated as "QTOP microcontroller". This additional fee service is being planned for μ PD78P0308. Please contact an NEC sales representative for details.

* 9. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (TA = 25°C)

Parameter	Symbol	Tes	st Conditions		Ratings	Unit	
Supply voltage	V _{DD}				-0.3 to +7.0	V	
	VPP				-0.3 to +13.5	V	
	AVREF				-0.3 to V _{DD} + 0.3	V	
	AVss				-0.3 to +0.3	V	
Input voltage	V _{I1}	P00-P05, P07, P10	-P17, P25-P2	7, P30-P37,	-0.3 to V _{DD} + 0.3	V	
		P70-P72, P80-P87,	, P90-P97, P1	00-P103,			
		P110-P117, X1, X2	P110-P117, X1, X2, XT2, RESET				
	V _{I2}	A9	PROM Pro	graming mode	-0.3 to +13.5	V	
Output Voltage	Vo				-0.3 to V _{DD} + 0.3	V	
Analog input voltage	Van	P10-P17	Analog inp	ut pin	AVss - 0.3 to AVREF + 0.3		
Output current, high	Іон	1 pin Total for P01-P05, P10-P17, P25-P27, P70-P72, P110-P117		pin –10		mA	
				-15	mA		
		Total for P30-P37, P	80-P87, P90-P	-15	mA		
Output current, low	Іоь	1 pin Peak value		30	mA		
				r.m.s. value	15 ^{Note}	mA	
		Total for P01-P05, P10-P17, Peak value		Total for P01-P05, P10-P17, Peak value 60		60	mA
		P110-P117		r.m.s. value	40 ^{Note}	mA	
		Total for P30-P37, P100-P103 Peak value		Total for P30-P37, P100-P103		140	mA
				r.m.s. value	100 ^{Note}	mA	
		Total for P25-P27,	P70-P72,	Peak value	50	mA	
		P80-P87, P90-P97		r.m.s. value	20 ^{Note}	mA	
Operating ambient temperature	TA		-40 to +85		-40 to +85	°C	
Storage temperature	Tstg				-65 to +150	°C	

Note The root mean square (r.m.s.) value should be calculated as follows: [r.m.s. value] = [Peak value] $\times \sqrt{\text{Duty}}$

Caution The product quality may be damaged even if a value of only one of the above parameters exceeds the absolute maximum rating or any value exceeds the absolute maximum rating for an instant. That is, the absolute maximum rating is a rating value which may cause a product to be damaged physically. The absolute maximum rating values must therefore be observed in using the product.

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

CAPACITANCE (TA = 25°C, VDD = Vss = 0 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	f = 1 MHz			15	pF
Output capacitance	Соит	Unmeasured pins returned			15	pF
I/O capacitance	Сю	to 0 V.			15	pF

MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS (TA = -40 to +85°C, VDD = 2.7 to 5.5 V)

Resonator	Recommended circuit	Parameter	Test conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator		Oscillation frequency (fx)Note 1	V _{DD} = Oscillation voltage range	1.0		5.0	MHz
		Oscillation stabilization time ^{Note 2}	After VDD reaches oscillation voltage range MIN.			4	ms
Crystal resonator	 	Oscillation frequency (fx)Note 1		1.0		5.0	MHz
	C2+ C1+	Oscillation stabilization time ^{Note 2}	V _{DD} = 4.5 to 5.5 V			10	ms
	'- <u>-</u>					30	
External clock	X2 X1	X1 input frequency (fx)Note 1		1.0		5.0	MHz
	μPD74HCU04Δ	X1 input high-/low-level width (txH, txL)		85		500	ns

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. Time required to stabilize oscillation after reset or STOP mode release.
- Cautions 1. When using the main system clock oscillator, wiring in the area enclosed with the broken line should be carried out as follows to avoid an adverse effect from wiring capacitance.
 - · Wiring should be as short as possible.
 - · Wiring should not cross other signal lines.
 - · Wiring should not be placed close to a varying high current.
 - The potential of the oscillator capacitor ground should be the same as Vss.
 - Do not ground it to the ground pattern in which a high current flows.
 - Do not fetch a signal from the oscillator.
 - 2. If the main system clock oscillator is operated by the subsystem clock when the main system clock is stopped, reswitching to the main system clock should be performed after the oscillation stabilization time has been obtained by the program.

SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS (TA = -40 to +85°C, VDD = 2.7 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	V _{PP} XT1 XT2	Oscillation frequency (fxT) ^{Note 1}		32	32.768	35	kHz
	C3 = C4 =	Oscillation stabilization	V _{DD} = 4.5 to 5.5 V		1.2	2	s
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	time ^{Note 2}				10	
External clock	XT1 XT2	XT1 input frequency (fxT)Note 1		32		100	kHz
	A	XT1 input high-/low-level width (txth/txtl)		5		15	μs

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. Time required to stabilize oscillation after VDD has reached the minimum oscillation voltage range.

Cautions 1. When using the subsystem clock oscillator, wiring in the area enclosed with the broken line should be carried out as follows to avoid an adverse effect from wiring capacitance.

- · Wiring should be as short as possible.
- · Wiring should not cross other signal lines.
- · Wiring should not be placed close to a varying high current.
- . The potential of the oscillator capacitor ground should be the same as Vss.
- · Do not ground it to the ground pattern in which a high current flows.
- · Do not fetch a signal from the oscillator.
- The subsystem clock oscillator is designed as a low-amplification circuit to provide low consumption current, causing misoperation due to noise more frequently than the main system clock oscillator. Special care should therefore be taken regarding the wiring method when the subsystem clock is used.

DC CHARACTERISTICS (Ta = -40 to +85°C, Vdd = 2.7 to 5.5 V)

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
Input voltage,	V _{IH1}	P10-P17, P30-P32,		0.7V _{DD}		V _{DD}	V
high		P35-P37, P80-P87,					
		P90-P97, P100-P103					
	V _{IH2}	P00-P05, P25-P27,		0.8Vpd		V _{DD}	V
		P33, P34, P70-P72,					
		P110-P117, RESET					
	V _{IH3}	X1, X2		V _{DD} - 0.5		V _{DD}	V
	V _{IH4}	XT1/P07, XT2	4.5 ≤ V _{DD} ≤ 5.5 V	0.8Vpd		V _{DD}	V
			2.7 ≤ V _{DD} < 4.5 V	0.9V _{DD}		V _{DD}	V
Input voltage,	V _{IL1}	P10-P17, P30-P32,		0		0.3V _{DD}	V
low		P35-P37, P80-P87,					
		P90-P97, P100-P103					
	V _{IL2}	P00-P05, P25-P27,		0		0.2V _{DD}	V
		P33, P34, P70-P72,					
		P110-P117, RESET					
	VIL3	X1, X2		0		0.4	V
	VIL4	XT1/P07, XT2	4.5 ≤ V _{DD} ≤ 5.5 V	0		0.2V _{DD}	V
			2.7 ≤ V _{DD} < 4.5 V	0		0.1V _{DD}	V
Output voltage,	Vон	V _{DD} = 4.5 to 5.5 V I _{OH} = -	1 mA	V _{DD} - 1.0		V _{DD}	V
high		Іон = -100 μΑ		V _{DD} - 0.5		V _{DD}	V
Output voltage,	V _{OL1}	P100-P103	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V},$		0.4	2.0	V
low			IoL = 15 mA				
		P01-P05, P10-P17,	V _{DD} = 4.5 to 5.5 V,			0.4	V
		P25-P27, P30-P37,	IoL = 1.6 mA				
		P70-P72, P80-P87,					
		P90-P97, P110-P117					
	V _{OL2}	SB0, SB1, SCK0	V _{DD} = 4.5 to 5.5 V,			0.2V _{DD}	V
			open-drain,				
			pulled up (R = 1 k Ω)				
	Vol3	Ιοι = 400 μΑ	•			0.5	V

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as the those of port pins.

DC CHARACTERISTICS ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Test Cor	nditions	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішн1		P00-P05, P10-P17, P25-P27, P30-P37, P70-P72, P80-P87, P90-P97, P100-P103, P110-P117			3	μΑ
	I _{LIH2}		K1, X2, XT1/P07, XT2			20	μΑ
Input leakage current, low	ILIL1		P00-P05, P10-P17, P25-P27, P30-P37, P70-P72, P80-P87, P90-P97, P100-P103, P110-P117			-3	μΑ
	Іпн2		(1, X2, XT1/P07, XT2			-20	μΑ
Output leakage current, high	Ісон	Vout = Vdd				3	μΑ
Output leakage current, low	ILOL	Vout = 0 V				-3	μΑ
Software pull-up resistor	R	V _{IN} = 0 V	V _{IN} = 0 V P01-P05, P10-P17, P25- P27, P30-P37, P70-P72, P80-P87, P90-P97, P100-P103, P110-P117		40	90	kΩ
Supply currentNote 1	I _{DD1}	5.00-MHz crystal oscillation (fxx = 2.5 MHz) ^{Note 2}	V _{DD} = 5.0 V ±10% ^{Note 5}		5	15	mA
Current		operating mode	V _{DD} = 3.0 V ±10% ^{Note 6}		0.7	2.1	mA
		5.00-MHz crystal oscillation (f	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 5}}$		9	27	mA
		5.0 MHz)Note 3 operating mod	e $V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 6}}$		1	3	mA
	I _{DD2}	5.00-MHz crystal oscillation (fx = 2.5 MHz) ^{Note 2}	V _{DD} = 5.0 V ±10%		1.4	4.2	mA
		HALT mode	V _{DD} = 3.0 V ±10%		500	1500	μΑ
		5.00-MHz crystal oscillation (fxx V _{DD} = 5.0 V ±10%		1.6	4.8	mA
		= 5.0 MHz) ^{Note 3} HALT mode	V _{DD} = 3.0 V ±10%		650	1950	μΑ
	IDD3	32.768-kHz crystal oscillation	V _{DD} = 5.0 V ±10%		135	270	μΑ
		operating mode ^{Note 4}	VDD = 3.0 V ±10%		95	190	μΑ
	I _{DD4}	32.768-kHz crystal oscillation	V _{DD} = 5.0 V ±10%		25	55	μΑ
		HALT mode ^{Note 4}	VDD = 3.0 V ±10%		5	15	μΑ
	I _{DD5}	XT1 = V _{DD}	V _{DD} = 5.0 V ±10%		1	30	μΑ
		STOP mode When feedback resistor is connec	ved VDD = 3.0 V ±10%		0.5	10	μΑ
	I _{DD6}	XT1 = V _{DD}	VDD = 5.0 V ±10%		0.1	30	μΑ
		STOP mode When feedback resistor is disconnection	ted $V_{DD} = 3.0 \text{ V} \pm 10\%$		0.05	10	μΑ

- **Notes 1.** Current flowing into V_{DD} pin. Not including the current flowing into A/D converter, on-chip pull-up resistors, or LCD split resistors.
 - 2. Main system clock fxx = fx/2 operation (when oscillation mode selection register (OSMS) is set to 00H)
 - 3. Main system clock fxx = fx operation (when OSMS is set to 01H)
 - 4. When the main system clock is stopped.
 - 5. High-speed mode operation (when processor clock control register (PCC) is set to 00H)
 - 6. Low-speed mode operation (when PCC is set to 04H)

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as the those of port pins.

LCD CONTROLLER/DRIVER CHARACTERISTICS (AT NORMAL OPERATION)

(1) Static Display Mode ($T_A = -10 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Test Conditions			TYP.	MAX.	Unit
LCD drive voltage	VLCD			2.7		V _{DD}	V
LCD output voltage deviation ^{Note} (common)	Vodc	Io = ±5 μA	VLCD0 = VLCD	0		±0.2	V
LCD output voltage deviation ^{Note} (segment)	Vods	Io = ±1 μA		0		±0.2	V

Note The voltage deviation is the difference between the output voltage and the corresponding ideal value of the segment or common output (V_{LCDn} ; n = 0, 1, 2).

(2) 1/3 Bias Method ($T_A = -10 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Test Cond	MIN.	TYP.	MAX.	Unit	
LCD drive voltage	VLCD			2.7		V _{DD}	V
LCD output voltage	Vodc	$Io = \pm 5 \mu A$	VLCD0 = VLCD	0		±0.2	V
deviationNote (common)			$V_{LCD1} = V_{LCD} \times 2/3$				
LCD output voltage	Vods	Io = ±1 μA	VLCD2 = VLCD × 1/3	0		±0.2	V
deviationNote (segment)							

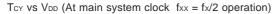
Note The voltage deviation is the difference between the output voltage and the corresponding ideal value of the segment or common output (V_{LCDn} ; n = 0, 1, 2).

(3) 1/2 Bias Method (T_A = -10 to +85°C, V_{DD} = 2.7 to 5.5 V)

Parameter	Symbol	Test Cond	MIN.	TYP.	MAX.	Unit	
LCD drive voltage	VLCD			2.7		V _{DD}	V
LCD output voltage	Vodc	Io = ±5 μA	VLCD0 = VLCD	0		±0.2	V
deviationNote (common)			VLCD1 = VLCD × 1/2				
LCD output voltage	Vods	$Io = \pm 1 \mu A$	VLCD2 = VLCD1	0		±0.2	V
deviationNote (segment)							

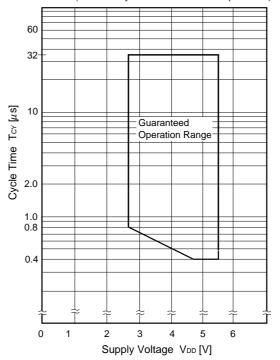
Note The voltage deviation is the difference between the output voltage and the corresponding ideal value of the segment or common output (V_{LCDn} ; n = 0, 1, 2).

Caution Characteristics at low-voltage operation are undecided.


AC CHARACTERISTICS


(1) Basic Operation (T_A = -40 to +85°C, V_{DD} = 2.7 to 5.5 V)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Cycle time	Тсч	Operating on main system clock (fxx =	2.5 MHz) ^{Note 1}	0.8		64	μs
(Min. instruction		Operating on main system clock	$4.5 \le V_{DD} \le 5.5 \text{ V}$	0.4		32	μs
execution time)		$(fxx = 5.0 MHz)^{Note 2}$	$2.7 \le V_{DD} < 4.5 V$	0.8		32	μs
		Operating on subsystem clock		40 ^{Note 3}	122	125	μs
TI00 input high/	t тіноо,	4.5 V ≤ V _{DD} ≤ 5.5 V		2/fsam+0.1 ^{Note 4}			μs
low-level width	t TILOO	2.7 V ≤ V _{DD} < 4.5 V		2/fsam+0.2 ^{Note 4}			μs
TI01 input high/	t тіно1,			10			μs
low-level width	t TIL01						
TI1, TI2 input	f _{Tl1}	V _{DD} = 4.5 to 5.5 V		0		4	MHz
frequency				0		275	kHz
TI1, TI2 input	t⊤ıнı,	V _{DD} = 4.5 to 5.5 V		100			ns
high/low-level width	t⊤ı∟ı			1.8			μs
Interrupt request	tinth,	INTP0	$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	2/f _{sam} +0.1 ^{Note 4}			μs
input high/low-	tintl		2.7 V ≤ V _{DD} < 4.5 V	2/f _{sam} +0.2 ^{Note 4}			μs
level width		INTP1-INTP5, P110-P117		10			μs
RESET low-level width	trsL			10			μs


Notes 1. Main system clock fxx = fx/2 operation (when oscillation mode selection register (OSMS) is set to 00H)

- **2.** Main system clock fxx = fx operation (when OSMS is set to 01H)
- 3. This is the value when the external clock is used. The value is 114 μ s (min.) when the crystal resonator is used.
- **4.** In combination with bits 0 (SCS0) and 1 (SCS1) of the sampling clock select register (SCS), selection of f_{sam} is possible between $f_{xx}/2^{N+1}$, $f_{xx}/32$, $f_{xx}/64$, and $f_{xx}/128$ (when N = 0 to 4).

 T_{CY} vs V_{DD} (At main system clock $f_{XX} = f_X$ operation)

(2) Serial Interface ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$)

(a) Serial interface channel 0

(i) 3-wire serial I/O mode (SCK0... Internal clock output)

Parameter	Symbol	Test Conditions	Test Conditions MIN. TYP.		MAX.	Unit
SCK0 cycle time	tkcy1	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
SCK0 high/low-level width	tĸнı,	V _{DD} = 4.5 to 5.5 V	tксү1/2 - 50			ns
	t KL1		tксү1/2 - 100			ns
SI0 setup time (to SCK0↑)	tsıĸı	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
		2.7 V ≤ V _{DD} < 4.5 V	150			ns
SI0 hold time (from SCK0↑)	tksi1		400			ns
SO0 output delay time	tkso1	C = 100 pF ^{Note}			300	ns
from SCK0↓						

Note C is the load capacitance of the $\overline{SCK0}$ and SO0 output lines.

(ii) 3-wire serial I/O mode (SCK0... External clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy2	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
SCK0 high/low-level width	t кн2,	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	400			ns
	t _{KL2}	2.7 V ≤ V _{DD} < 4.5 V	800			ns
SI0 setup time (to SCK0↑)	tsık2		100			ns
SI0 hold time (from SCK0↑)	tksi2		400			ns
SO0 output delay time from SCK0↓	tkso2	C = 100 pF ^{Note}			300	ns
SCK0 rise, fall time	t _{R2} ,				1000	ns
	t F2					

Note C is the load capacitance of the SO0 output line.

(iii) SBI mode (SCK0... Internal clock output)

Parameter	Symbol	Tes	t Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксүз	$V_{DD} = 4.5 \text{ to } 5.5$	V	800			ns
				3200			ns
SCK0 high-/low-level width	t кнз,	$V_{DD} = 4.5 \text{ to } 5.5$	V	tксүз/2 - 50			ns
	t KL3			tксүз/2 – 150			ns
SB0, SB1 setup time	tsıкз	V _{DD} = 4.5 to 5.5	V	100			ns
(to SCK0↑)				300			ns
SB0, SB1 hold time	tksi3			tксүз/2			ns
(from SCK0↑)							
SB0, SB1 output delay	tkso3	$R = 1 k\Omega$,	V _{DD} = 4.5 to 5.5 V	0		250	ns
time from SCK0↓		C = 100 pF ^{Note}		0		1000	ns
SB0, SB1↓ from SCK0↑	tкsв			tксүз			ns
SCK0↓ from SB0, SB1↓	tsвк			tксүз			ns
SB0, SB1 high-level width	tsвн			tксүз			ns
SB0, SB1 low-level width	tsbl			tксүз			ns

Note R and C are the load resistance and load capacitance of the SCK0, SB0, and SB1 output lines.

(iv) SBI mode (SCK0... External clock input)

Parameter	Symbol	Tes	t Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy4	V _{DD} = 4.5 to 5.5	V	800			ns
				3200			ns
SCK0 high-/low-level width	tĸн4,	V _{DD} = 4.5 to 5.5	V	400			ns
	t _{KL4}			1600			ns
SB0, SB1 setup time	tsık4	V _{DD} = 4.5 to 5.5	V	100			ns
(to SCK0↑)				300			ns
SB0, SB1 hold time	tksi4			tkcy4/2			ns
(from SCK0↑)							
SB0, SB1 output delay	tkso4	$R = 1 k\Omega$,	V _{DD} = 4.5 to 5.5 V	0		300	ns
time from SCK0↓		C = 100 pF ^{Note}		0		1000	ns
SB0, SB1↓ from SCK0↑	tĸsв			tkcy4			ns
SCK0↓ from SB0, SB1↓	tsвк			tkcy4			ns
SB0, SB1 high-level width	tsвн			tkcy4			ns
SB0, SB1 low-level width	tsbl			tkcy4			ns
SCK0 rising/falling time	t _{R4} ,					1000	ns
	t _{F4}						

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output lines.

(v) 2-wire serial I/O mode (SCK0... Internal clock output)

Parameter	Symbol	Tes	Test Conditions		TYP.	MAX.	Unit
SCK0 cycle time	tkcY5	$R = 1 k\Omega$,		1600			ns
SCK0 high-level width	t _{KH5}	C = 100 pF ^{Note}		tксү5/2 – 160			ns
SCK0 low-level width	t _{KL5}		$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$	tkcy5/2 - 50			ns
				tkcy5/2 - 100			ns
SB0, SB1 setup time	tsik5		$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	300			ns
(to SCK0 ↑)			2.7 V ≤ V _{DD} < 4.5 V	350			ns
SB0, SB1 hold time (from SCK0↑)	tksi5			600			ns
SB0, SB1 output delay time from SCK0↓	tkso5					300	ns

Note R and C are the load resistance and load capacitance of the SCK0, SB0, and SB1 output lines.

(vi) 2-wire serial I/O mode (SCK0... External clock input)

Parameter	Symbol	Tes	st Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	t ксу6			1600			ns
SCK0 high-level width	t кн6			650			ns
SCK0 low-level width	t _{KL6}			800			ns
SB0, SB1 setup time (to SCK0↑)	tsik6			100			ns
SB0, SB1 hold time (from SCK0↑)	tksi6			tксу6/2			ns
SB0, SB1 output delay	tkso6	$R = 1 k\Omega$,	V _{DD} = 4.5 to 5.5 V	0		300	ns
time from SCK0↓		C = 100 pF ^{Note}		0		500	ns
SCK0 rise, fall time	t _{R6} ,					1000	ns
	t _{F6}						

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output lines.

(b) Serial interface channel 2

(i) 3-wire serial I/O mode (SCK2... Internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	tkcy7	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
SCK2 high/low-level width	t кн7,	V _{DD} = 4.5 to 5.5 V	tксүл/2 - 50			ns
	t _{KL7}		tксүт/2 - 100			ns
SI2 setup time (to SCK2↑)	tsık7	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	100			ns
		2.7 V ≤ V _{DD} < 4.5 V	150			ns
SI2 hold time (from SCK2↑)	tksi7		400			ns
SO2 output delay time from SCK2↓	tkso7	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the $\overline{SCK2}$ and SO2 output lines.

(ii) 3-wire serial I/O mode (SCK2... External clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	tkcy8	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
SCK2 high/low-level width	tкнв,	4.5 V ≤ V _{DD} ≤ 5.5 V	400			ns
	tĸL8	2.7 V ≤ V _{DD} < 4.5 V	800			ns
SI2 setup time (to SCK2↑)	tsik8		100			ns
SI2 hold time (from SCK2↑)	tksi8		400			ns
SO2 output delay time from SCK2↓	tkso8	C = 100 pF ^{Note}			300	ns
SCK2 rise, fall time	t _{R8} ,				1000	ns
	t _{F8}					

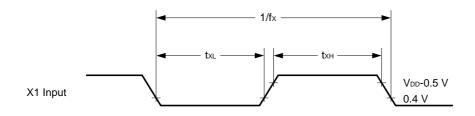
Note C is the load capacitance of the SO2 output line.

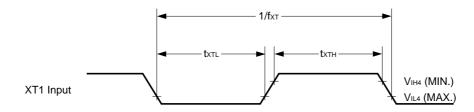
(iii) UART mode (Dedicated baud rate generator output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.5~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$			78125	bps
		$2.7 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$			39063	bps

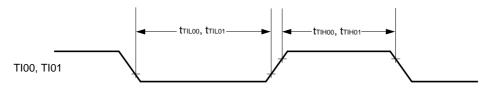
(iv) UART mode (External clock input)

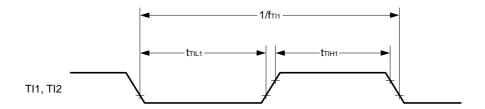
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	tkcy9	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
ASCK high/low-level	tкнэ,	4.5 V ≤ V _{DD} ≤ 5.5 V	400			ns
width	t _{KL9}	2.7 V ≤ V _{DD} < 4.5 V	800			ns
Transfer rate		4.5 V ≤ V _{DD} ≤ 5.5 V			39063	bps
		2.7 V ≤ V _{DD} < 4.5 V			19531	bps
ASCK rise, fall time	t _{R9} ,				1000	ns
	t F9					


(c) Serial interface channel 3

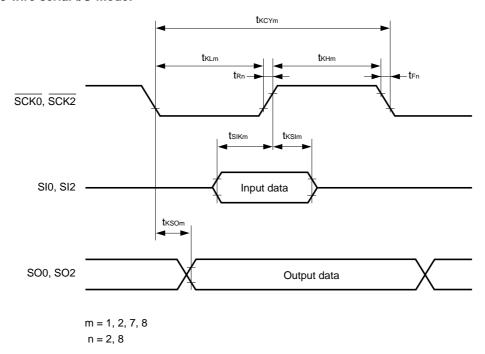

Undecided

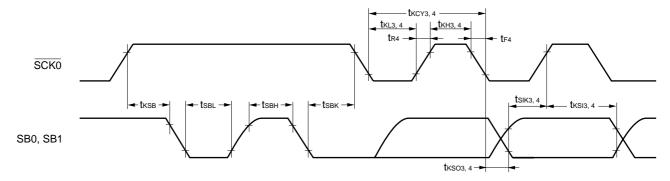
AC Timing Test Point (Excluding X1, XT1 Inputs)



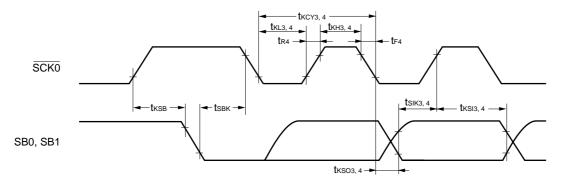

Clock Timing

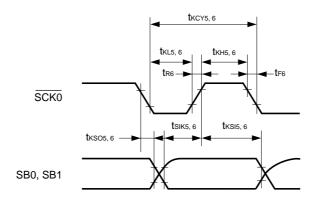
TI Timing

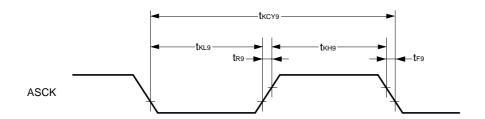




Serial Transfer Timing


3-wire serial I/O mode:


SBI mode (bus release signal transfer):


SBI mode (command signal transfer):

2-wire serial I/O mode:

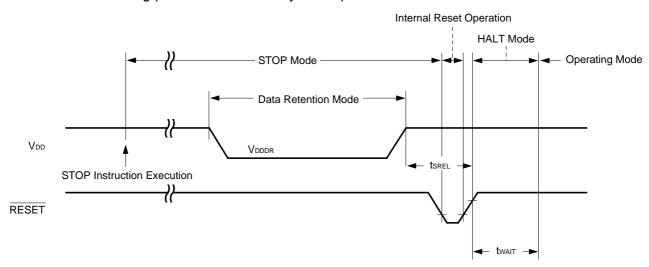
UART mode:

A/D Converter (TA = -40 to +85°C, AVDD = VDD = AVREF = 4.0 to 5.5 V, AVss = Vss = 0 V)

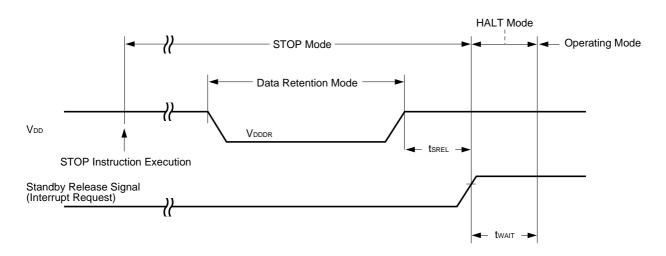
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall errorNote 1					±0.6	%
Conversion time	tconv		19.1		200	μs
Sampling time	t SAMP		12/fxx			μs
Analog input voltage	VIAN		AVss		AVREF	V
Reference voltage	AVREF		4.0		AVDD	V
AVREF-AVss resistance	RREF	When not operating A/D conversion	4	14		kΩ
AVREF current	Alref	When operating A/D conversionNote 2		2.0	4.0	mA
		When not operating A/D conversionNote 3		0.5	1.5	mA

Notes 1. Quantization error $(\pm 1/2 \text{ LSB})$ is not included. This is expressed in proportion to the full-scale value.

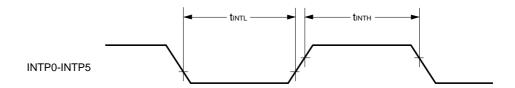
- 2. Indicates current flowing to AVREF pin when the CS bit of the A/D converter mode register (ADM) is 1.
- 3. Indicates current flowing to AVREF pin when the CS bit of ADM is 0.

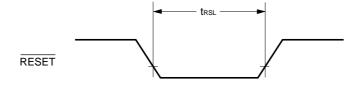


DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)


Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.8		5.5	V
Data retention power supply current	Idddr	VDDDR = 1.8 V Subsystem clock stop and feed-back resistor disconnected.		0.1	10	μΑ
Release signal set time	tsrel		0			μs
Oscillation stabilization wait time	twait	Release by RESET Release by interrupt request		2 ¹⁷ /fx Note		ms ms

Note In combination with bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS), selection of 2^{12} /fxx and 2^{14} /fxx to 2^{17} /fxx is possible.


Data Retention Timing (STOP Mode Release by RESET)


Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)

Interrupt Request Input Timing

RESET Input Timing

PROM PROGRAMMING CHARACTERISTICS

DC Characteristics

(1) PROM Write Mode (TA = 25 \pm 5°C, VDD = 6.5 \pm 0.25 V, VPP = 12.5 \pm 0.3 V)

Parameter	Symbol	Symbol Note	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage high	Vін	ViH		0.7V _{DD}		V _{DD}	V
Input voltage low	VIL	VIL		0		0.3V _{DD}	V
Output voltage high	Vон	Vон	lон = −1 mA	V _{DD} - 1.0			V
Output voltage low	Vol	Vol	IoL = 1.6 mA			0.4	V
Input leakage current	lu	lu	$0 \le V_{IN} \le V_{DD}$	-10		+10	μΑ
VPP supply voltage	V _{PP}	VPP		12.2	12.5	12.8	V
V _{DD} supply voltage	V _{DD}	Vcc		6.25	6.5	6.75	V
VPP supply current	IPP	I PP	PGM = VIL			50	mA
V _{DD} supply current	loo	Icc				50	mA

(2) PROM Read Mode (TA = 25 \pm 5°C, VDD = 5.0 \pm 0.5 V, VPP = VDD \pm 0.6 V)

Parameter	Symbol	Symbol Note	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage high	Vін	ViH		0.7V _{DD}		V _{DD}	V
Input voltage low	VIL	VIL		0		0.3V _{DD}	V
Output voltage high	V _{OH1}	V _{OH1}	Iон = −1 mA	V _{DD} - 1.0			V
	V _{OH2}	V _{OH2}	Ioн = −100 μA	V _{DD} - 0.5			V
Output voltage low	Vol	Vol	IoL = 1.6 mA			0.4	V
Input leakage current	lu	lu	$0 \le V_{IN} \le V_{DD}$	-10		+10	μΑ
Output leakage current	ILO	ILO	$0 \le V_{OUT} \le V_{DD}, \overline{OE} = V_{IH}$	-10		+10	μΑ
VPP supply voltage	VPP	Vpp		VDD - 0.6	V _{DD}	VDD + 0.6	V
V _{DD} supply voltage	V _{DD}	Vcc		4.5	5.0	5.5	V
VPP supply current	IPP	IPP	VPP = VDD			100	μΑ
V _{DD} supply current	IDD	ICCA1	CE = VIL, VIN = VIH			50	mA

Note Corresponding μ PD27C1001A symbol.

AC Characteristics

(1) PROM Write Mode

(a) Page program mode (TA = 25 $\pm 5^{\circ}$ C, VDD = 6.5 ± 0.25 V, VPP = 12.5 ± 0.3 V)

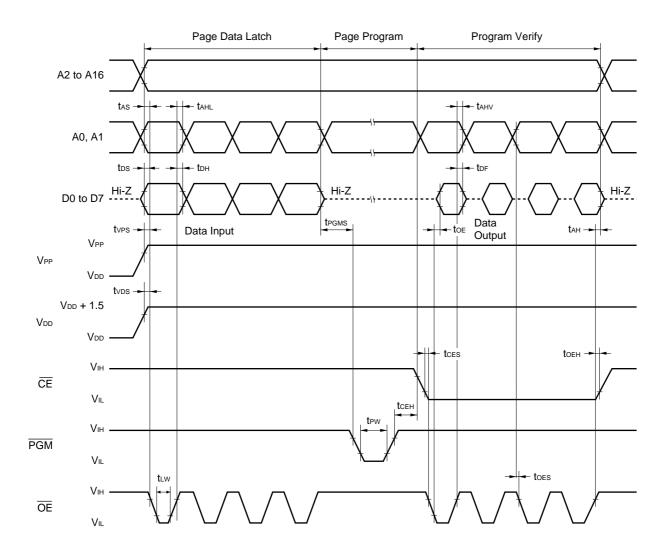
Parameter	Symbol	Symbol Note	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to OE ↓)	tas	t as		2			μs
OE setup time	toes	toes		2			μs
\overline{CE} setup time (to $\overline{OE} \downarrow$)	tces	tces		2			μs
Input data setup time (to OE↓)	tos	tos		2			μs
Address hold time (from OE↑)	tан	t AH		2			μs
	tahl	t ahl		2			μs
	tahv	tahv		0			μs
Input data hold time (from OE↑)	tон	tон		2			μs
Data output float delay time from OE↑	tor	tof		0		250	ns
V _{PP} setup time (to $\overline{\sf OE} \downarrow$)	tvps	tvps		1.0			ms
V _{DD} setup time (to $\overline{OE} \downarrow$)	tvos	tvcs		1.0		250	ms
Program pulse width	tpw	tpw		0.095		0.105	ms
Valid data delay time from OE↓	toe	toe				1	μs
OE pulse width during data latching	tLW	tLW		1			μs
PGM setup time	t PGMS	t PGMS		2			μs
CE hold time	tсен	tсен		2			μs
OE hold time	tоен	tоен		2			μs

(b) Byte program mode (TA = 25 $\pm 5^{\circ}$ C, VDD = 6.5 ± 0.25 V, VPP = 12.5 ± 0.3 V)

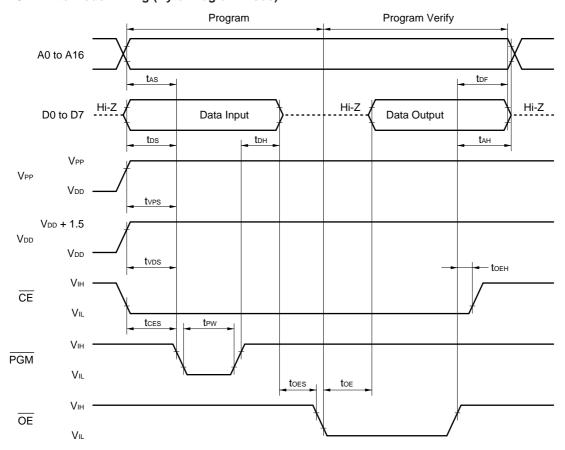
Parameter	Symbol	Symbol Note	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to PGM ↓)	t AS	tas		2			μs
OE setup time	toes	toes		2			μs
CE setup time (to PGM↓)	tces	tces		2			μs
Input data setup time (to PGM ↓)	tos	tos		2			μs
Address hold time (from OE↑)	tан	tан		2			μs
Input data hold time (from $\overline{\text{PGM}}\uparrow$)	tон	tон		2			μs
Data output float delay time from OE↑	t DF	t DF		0		250	ns
V _{PP} setup time (to \overline{PGM} ↓)	tvps	tvps		1.0			ms
V _{DD} setup time (to \overline{PGM} ↓)	tvos	tvcs		1.0			ms
Program pulse width	t PW	t PW		0.095		0.105	ms
Valid data delay time from OE↓	toe	toe				1	μs
OE hold time	tоен	_		2			μs

Note Corresponding μ PD27C1001A symbol

(2) PROM Read Mode (TA = 25 $\pm 5^{\circ}$ C, VDD = 5.0 ± 0.5 V, VPP = VDD ± 0.6 V)

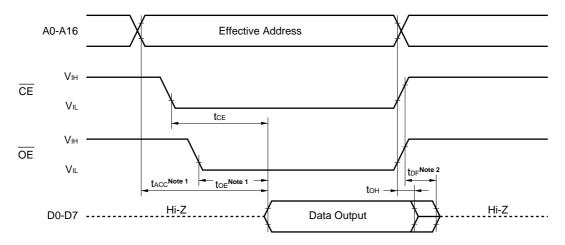

Parameter	Symbol	Symbol Note	Test Conditions	MIN.	TYP.	MAX.	Unit
Data output delay time from address	tacc	tacc	CE = OE = VIL			800	ns
Data output delay time from CE↓	tce	tce	OE = VIL			800	ns
Data output delay time from OE↓	toe	toe	CE = VIL			200	ns
Data output float delay time from OE↑	tof	tor	CE = VIL	0		60	ns
Data hold time from address	tон	tон	CE = OE = VIL	0			ns

Note Corresponding μ PD27C1001A symbol


(3) PROM Programming Mode Setting (T_A = 25°C, Vss = 0 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
PROM programing mode setup time	t sma		10			μs

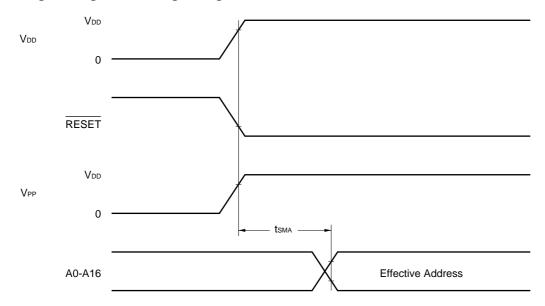
PROM Write Mode Timing (Page Program Mode)


PROM Write Mode Timing (Byte Program Mode)

Cautions 1. VDD should be applied before VPP, and cut after VPP.

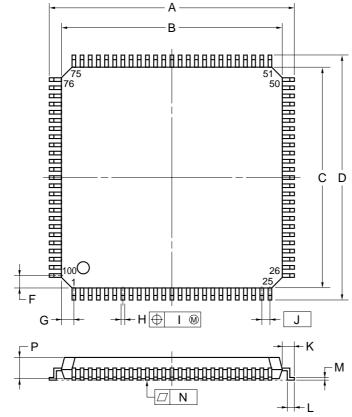
- 2. VPP should not exceed +13.5 V including overshoot.
- 3. Disconnection during application of ± 12.5 V to V_{PP} may have an adverse effect on reliability.

PROM Read Mode Timing

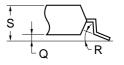


Notes 1. If you want to read within the tacc range, make the \overline{OE} input delay time from the fall of \overline{CE} the maximum of tacc – toe.

2. tDF is the time from when either \overline{OE} or \overline{CE} first reaches V_{IH}.


NEC μ PD78P0308

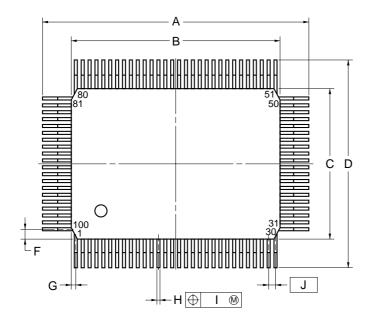
PROM Programming Mode Setting Timing

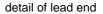


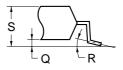
10. PACKAGE DRAWINGS

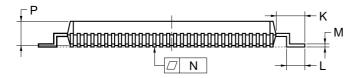
★ 100 PIN PLASTIC LQFP (FINE PITCH) (14×14)

detail of lead end

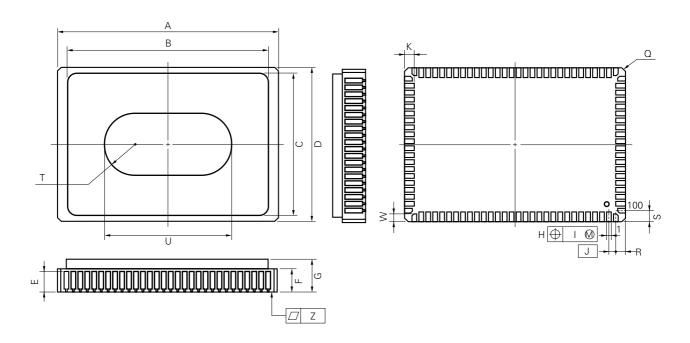

NOTE


Each lead centerline is located within 0.08 mm (0.003 inch) of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS	INCHES
A	16.00±0.20	0.630±0.008
В	14.00±0.20	0.551 + 0.009 -0.008
С	14.00±0.20	0.551+0.009
D	16.00±0.20	0.630±0.008
F	1.00	0.039
G	1.00	0.039
Н	$0.22^{+0.05}_{-0.04}$	0.009±0.002
ı	0.08	0.003
J	0.50 (T.P.)	0.020 (T.P.)
K	1.00±0.20	$0.039^{+0.009}_{-0.008}$
L	0.50±0.20	$0.020^{+0.008}_{-0.009}$
М	$0.17^{+0.03}_{-0.07}$	$0.007^{+0.001}_{-0.003}$
N	0.08	0.003
Р	1.40±0.05	0.055±0.002
Q	0.10±0.05	0.004±0.002
R	3°+7° -3°	3°+7°
S	1.60 MAX.	0.063 MAX.


S100GC-50-8EU

100PIN PLASTIC QFP (14x20)


NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	23.6±0.4	0.929±0.016
В	20.0±0.2	$0.795^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	0.8	0.031
G	0.6	0.024
Н	0.30±0.10	$0.012^{+0.004}_{-0.005}$
T	0.15	0.006
J	0.65 (T.P.)	0.026 (T.P.)
K	1.8±0.2	$0.071^{+0.008}_{-0.009}$
L	0.8±0.2	0.031+0.009
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	2.7±0.1	$0.106^{+0.005}_{-0.004}$
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.

P100GF-65-3BA1-3

100 PIN CERAMIC WQFN

ITEM

U

W

Ζ

12.0

0.10

0.75-0.2

NOTE

Each lead centerline is located within 0.06 mm (0.003 inch) of its true position (T.P.) at maximum material condition.

А	20.6-0.4	0.811-0.016
В	19.0	0.748
С	13.8	0.543
D	14.6-0.4	0.575-0.016
Е	1.94	0.076
F	2.14	0.084
G	3.5 MAX,	0.138 MAX.
Н	0.45-0.10	0.018 ^{+0.004} _{-0.005}
I	0.06	0.003
J	0.65	0.026
K	1.0-0.2	$0.039^{+0.009}_{-0.008}$
Q	C 0.3	C 0.012
R	0.875	0.034
S	1.125	0.044
Т	R 3.17	R 0.125

MILLIMETERS

X100KW-65A-1

INCHES

0.472 0.030^{+0.008}_{-0.009}

0.004

* APPENDIX A. DEVELOPMENT TOOLS

The following development tools are provided for system development using the μ PD78P0308.

Also refer to (5) Precautions in Using Development Tools.

(1) Language Processing Software

RA78K/0	Assembler package common to 78K/0 Series products	
CC78K/0	C compiler package common to 78K/0 Series products	
DF780308	Device file common to μ PD780308 Subseries products (part number: μ SxxxxxDF78064)	
CC78K/0-L	C compiler library source file common to 78K/0 Series products	

(2) PROM Write Tools

PG-1500	PROM programmer
PA-78P0308GC	Programmer adapter connected to the PG-1500
PA-78P0308GF	
PA-78P0308KL-T	
PG-1500 Controller	Control program for the PG-1500

(3) Debugging Tools

• When using the IE-78K0-NS as an in-circuit emulator

IE-78K0-NS ^{Note}	In-circuit emulator common to 78K/0 Series products	
IE-70000-MC-PS-B	Power supply unit for the IE-78K0-NS	
IE-70000-98-IF-C ^{Note}	Interface adapter when a PC-9800 series PC (excluding notebook-type PCs) is used as	
	the host machine	
IE-70000-CD-IF ^{Note}	PC card and interface cable when a PC-9800 series notebook-type PC is used as the	
	host machine	
IE-70000-PC-IF-CNote	Interface adapter when an IBM PC/AT TM or its compatible is used as the host machine	
IE-780308-NS-EM1 ^{Note}	Emulation board common to μ PD780308 Subseries products	
NP-100GC	Emulation probe for 100-pin plastic LQFP (GC-8EU type)	
NP-100GF	Emulation probe for 100-pin plastic QFP (GF-3BA type)	
TGC-100SDW	Conversion adapter to connect the NP-100GC with the target system board prepared	
	for mounting a 100-pin plastic LQFP (GC-8EU type)	
EV-9200GF-100	Socket to be mounted on the target system board prepared for 100-pin plastic QFP (GF-3BA type)	
ID78K0-NS ^{Note}	Integrated debugger for the IE-78K0-NS	
SM78K0	System simulator common to 78K/0 Series products	
DF780308	Device file common to μPD780308 Subseries products (part number: μSxxxxDF78064)	

Note Under development

• When using the IE-78001-R-A as an in-circuit emulator

IE-78001-R-A ^{Note}	In-circuit emulator common to 78K/0 Series products
IE-70000-98-IF-B	Interface adapter when a PC-9800 series PC (excluding notebook-type PCs) is used as
IE-70000-98-IF-C ^{Note}	the host machine
IE-70000-PC-IF-B	Interface adapter when an IBM PC/AT™ or its compatible is used as the host machine
IE-70000-PC-IF-CNote	
IE-78000-R-SV3	Interface adapter and cable when an EWS is used as the host machine
IE-780308-NS-EM1 ^{Note}	Emulation board common to μ PD780308 Subseries products
IE-780308-R-EM	
IE-78K0-R-EX1 ^{Note}	Emulation probe conversion board required when the IE-780308-NS-EM1 is used in the
	IE-78001-R-A
EP-78064GC-R	Emulation probe for 100-pin plastic LQFP (GC-8EU type)
EP-78064GF-R	Emulation probe for 100-pin plastic QFP (GF-3BA type)
TGC-100SDW	Conversion adapter to connect the EP-78064GC-R with the target system board prepared
	for mounting a 100-pin plastic LQFP (GC-8EU type)
EV-9200GF-100	Socket to be mounted on the target system board prepared for 100-pin plastic QFP
	(GF-3BA type)
ID78K0	Integrated debugger for the IE-78001-R-A
SM78K0	System simulator common to 78K/0 Series products
DF780308	Device file common to μPD780308 Subseries products (part number: μSxxxxDF78064)

Note Under development

(4) Real-Time OS

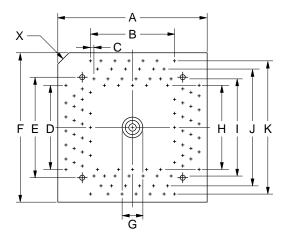
RX78K/0	Real-time OS for 78K/0 Series products
MX78K0	OS for 78K/0 Series products

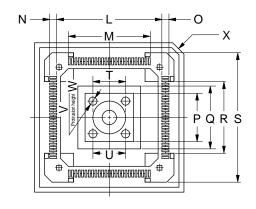
(5) Precautions in Using Development Tools

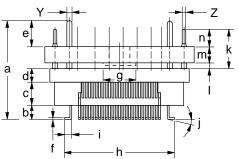
- The package name of the DF780308 is DF78064.
- Use the ID78K0-NS, ID78K0, and SM78K0 in combination with the DF780308.
- Use the CC78K/0 and RX78K/0 in combination with the RA78K/0 and DF780308.
- The NP-100GC and NP-100GF are products of Naitou Densei Machidaseisakusho Co., Ltd. (tel: (044) 822-3813). Contact an NEC dealer to purchase these products.
- The TGC-100SDW is a product of TOKYO ELETECH Corporation.

Contact: Daimaru Kogyo Co., Ltd. Tokyo Electronic Component Department (tel: (03) 3820-7112)

Osaka Electronic Component Department (tel: (06) 244-6672)


- Please refer to 78K/0 Series Selection Guide (U11126E) for information on the third party development tools.
- The following table shows what host machine and OS support each software.


Host machine	PC	EWS
[OS]	PC-9800 series [Windows™]	HP9000 series 700™ [HP-UX™]
	IBM PC/AT and its compatibles [Windows]	SPARCstation™ [SunOS™]
Software		NEWS™ (RISC) [NEWS-OS™]
RA78K/0	√Note	√
CC78K/0	√Note	√
PG-1500 controller	√Note	_
ID78K0-NS	V	_
ID78K0	V	√
SM78K0	V	_
RX78K/0	√Note	$\sqrt{}$
MX78K0	√Note	√


Note DOS-based software.

DRAWING OF CONVERSION ADAPTER (TGC-100SDW)

Figure A-1. Drawing of TGC-100SDW (for reference only) (unit: mm)

ITEM	MILLIMETERS	INCHES
Α	21.55	0.848
В	0.5x24=12	0.020x0.945=0.472
С	0.5	0.020
D	0.5x24=12	0.020x0.945=0.472
E	15.0	0.591
F	21.55	0.848
G	ϕ 3.55	ϕ 0.140
Н	10.9	0.429
ı	13.3	0.524
J	15.7	0.618
K	18.1	0.713
L	13.75	0.541
М	0.5x24=12.0	0.020x0.945=0.472
N	1.125±0.3	0.044±0.012
0	1.125±0.2	0.044±0.008
Р	7.5	0.295
Q	10.0	0.394
R	11.3	0.445
S	18.1	0.713
Т	ϕ 5.0	φ0.197
U	5.0	0.197
V	4- <i>ϕ</i> 1.3	$4-\phi$ 0.051
W	1.8	0.071
Х	C 2.0	C 0.079

 ϕ 0.035

 ϕ 0.012

_	ITEM	MILLIMETERS	INCHES
	а	14.45	0.569
	b	1.85±0.25	0.073±0.010
	С	3.5	0.138
_	d	2.0	0.079
	е	3.9	0.154
_	f	0.25	0.010
	g	ϕ 4.5	ϕ 0.177
_	h	16.0	0.630
	i	1.125±0.3	0.044±0.012
	j	0~5°	0.000~0.197°
	k	5.9	0.232
	- 1	0.8	0.031
_	m	2.4	0.094
	n	2.7	0.106
			TGC-100SDW-G1E
_			
_			

note: Product of TOKYO ELETECH CORPORATION.

Z

φ0.3

DRAWINGS OF CONVERSION SOCKET (EV-9200GF-100) AND RECOMMENDED FOOTPRINTS

No.1 pin index

Figure A-2. Drawing of EV-9200GF-100 (for reference only)

EV-9200GF-100-G0E

	MULIMETERS	EV-9200GF-100-G0E
ITEM	MILLIMETERS	INCHES
Α	24.6	0.969
В	21	0.827
С	15	0.591
D	18.6	0.732
Е	4-C 2	4-C 0.079
F	0.8	0.031
G	12.0	0.472
Н	22.6	0.89
I	25.3	0.996
J	6.0	0.236
K	16.6	0.654
L	19.3	0.76
М	8.2	0.323
N	8.0	0.315
0	2.5	0.098
Р	2.0	0.079
Q	0.35	0.014
R	φ2.3	φ0.091
S	φ1.5	φ0.059

Κ Ш С В Α

Figure A-3. Recommended Footprints of EV-9200GF-100 (for reference only)

EV-9200GF-	100-P1E
------------	---------

ITEM	MILLIMETERS	INCHES
Α	26.3	1.035
В	21.6	0.85
С	$0.65\pm0.02\times29=18.85\pm0.05$	$0.026^{+0.001}_{-0.002} \times 1.142 = 0.742^{+0.002}_{-0.002}$
D	0.65±0.02 × 19=12.35±0.05	$0.026^{+0.001}_{-0.002} \times 0.748 = 0.486^{+0.003}_{-0.002}$
Е	15.6	0.614
F	20.3	0.799
G	12±0.05	$0.472^{+0.003}_{-0.002}$
Н	6±0.05	$0.236^{+0.003}_{-0.002}$
I	0.35±0.02	$0.014^{+0.001}_{-0.001}$
J	φ2.36±0.03	$\phi_{0.093^{+0.001}_{-0.002}}$
K	φ2.3	φ0.091
L	φ1.57±0.03	φ0.062 ^{+0.001} _{-0.002}

Caution Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).

* APPENDIX B. RELATED DOCUMENTS

Documents Related to Devices

Document Name	Document Number	
	English	Japanese
μPD780308, 780308Y Subseries User's Manual	U11377E	U11377J
μPD780306, 780308 Data Sheet	U11105E	U11105J
μPD78P0308 Data Sheet	This document	U11776J
78K/0 Series User's Manual Instructions	U12326E	U12326J
78K/0 Series Instruction Application Table	_	U10903J
78K/0 Series Instruction Set	_	U10904J
μPD780308 Subseries Special Function Register Table	_	To be prepared
78K/0 Series Application Note — Basics III	U10182E	U10182J

Documents Related to Development Tools (User's Manual)

Document Name		Document Number	
		English	Japanese
RA78K0 Assembler Package	Operation	U11802E	U11802J
	Assembly Language	U11801E	U11801J
	Structured Assembly Language	U11789E	U11789J
RA78K Series Structured Assembler Preprocessor		EEU-1402	U12323J
CC78K0 C Compiler	Operation	U11517E	U11517J
	Language	U11518E	U11518J
CC78K0 C Compiler Application Note	Programming Know-how	EEA-1208	EEA-618
CC78K Series Library Source File		_	U12322J
PG-1500 PROM Programmer	U11940E	U11940J	
PG-1500 Controller PC-9800 series (MS-DOS™) based		EEU-1291	EEU-704
PG-1500 Controller IBM PC series (PC DOS™)	based	U10540E	EEU-5008
IE-78K0-NS		To be prepared	To be prepared
IE-78001-R-A		To be prepared	To be prepared
IE-78K0-R-EX1		To be prepared	To be prepared
IE-780308-NS-EM1		To be prepared	To be prepared
IE-780308-R-EM		U11362E	U11362J
EP-78064		EEU-1469	EEU-934
SM78K0 System Simulator Windows based	Reference	U10181E	U10181J
SM78K Series System Simulator	External Parts User's Open	U10092E	U10092J
	Interface Specifications		
ID78K0-NS Integrated Debugger	Reference	To be prepared	U12900J
ID78K0 Integrated Debugger EWS-based	Reference	_	U11151J
ID78K0 Integrated Debugger PC-based	Reference	U11539E	U11539J
ID78K0 Integrated Debugger Windows-based	Guide	U11649E	U11649J

Caution The contents of the above documents are subject to change without prior notice. Be sure to use the latest edition for design, etc.

Documents Related to Embedded Software (User's Manuals)

Document Name		Document Number	
		English	Japanese
78K/0 Series Real-Time OS	Basics	U11537E	U11537J
	Installation	U11536E	U11536J
78K/0 Series OS MX78K0	Basics	U12257E	U12257J

Others

Document Name	Document No.	
	English	Japanese
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535E	C10535J
Quality Grades on NEC Semiconductor Devices	C11531E	C11531J
NEC Semiconductor Device Reliability/Quality Control System	C10983E	C10983J
Guide to Prevent Damage for Semiconductor Devices by Electrostatic	C11892E	C11892J
Discharge (ESD)		
Guide to Quality Assurance for Semiconductor Devices	MEI-1202	_
Microcomputer Product Series Guide	_	U11416J

Caution The contents of the above documents are subject to change without notice. Be sure to use the latest edition for design, etc.

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130 Tel: 253-8311

Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Cumbica-Guarulhos-SP, Brasil

Tel: 011-6465-6810 Fax: 011-6465-6829

J97. 8

NEC μ PD78P0308

FIP, IEBus, and QTOP are trademarks of NEC Corporation.

MS-DOS and Windows are either registered trademarks or a trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT and PC DOS are trademarks of International Business Machines Corporation.

HP9000 series 700, and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

License not needed : μ PD78P0308KL-T

The customer must judge : μ PD78P0308GC-8EU, 78P0308GF-3BA

the need for license

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.