8-BIT SINGLE-CHIP MICROCOMPUTER

The μ PD78P0208 is a product in the μ PD780208 subseries within the $78 \mathrm{~K} / 0$ series, in which on-chip mask ROM of the μ PD780208 is replaced with one-time PROM or EPROM.

Since user programs can be written to PROM, this microcomputer is best suited for evaluation in system development, manufacture of small quantities of multiple products, and fast start-up of applications.

For specific functions and other detailed information, consult the following user's manual.
This manual is required reading for design work.
μ PD780208 Subseries User's Manual : IEU-1413
78K/0 Series User's Manual, Instruction : IEU-1372

FEATURES

- Pin compatible with mask ROM products (except for Vpp pin)
- Internal PROM: 60K bytes Note 1
- μ PD78P0208KL-T : EPROM (best suited for system evaluation)
- μ PD78P0208GF : PROM (best suited for manufacture of small quantities)
- Internal high-speed RAM : 1024 bytes
- Internal expansion RAM : 1024 bytes $^{\text {Note } 2}$
- Buffer RAM : 64 bytes
- FIP ${ }^{\circledR}$ display RAM : 80 bytes
- Can be operated at the same power supply voltage as mask ROM products:

VDD $=2.7$ to 5.5 V (except for A/D converter).
A / D converter's power supply voltage: $\mathrm{AVDD}=4.0$ to 5.5 V .

- QTOP ${ }^{\text {TM }}$ microcomputer

Notes 1. Internal PROM capacity can be changed according to the internal memory switching register (IMS).
2. Internal expansion RAM capacity can be changed according to the internal expansion RAM switching register (IXS).

Remark The QTOP microcomputer is a single-chip microcomputer with a built-in one-time PROM that is totally supported by NEC. The support includes writing application programs, marking, screening, and verification.

- This product differs from mask ROM products in the following respects.
- It can use the same memory mapping as mask ROM products, depending upon the IMS and IXS settings.
- FIP0 to FIP12 have on-chip pull-down resistors.
- Port 3 and FIP13 to FIP52 (port 8 to port 12) do not have on-chip pull-down resistors.
- Port 7 does not have a on-chip pull-up resistor.

In this reference, all ROM components that are common to one-time PROM and EPROM are referred to as PROM.

The information in this document is subject to change without notice.

ORDERING INFORMATION

Part No.	Package		Internal ROM
μ PD78P0208GF-3BA	100-pin plastic QFP	$(14 \times 20 \mathrm{~mm})$	One-Time PROM
μ PD78P0208KL-T	100-pin ceramic WQFN	$(14 \times 20 \mathrm{~mm})$	EPROM

78K/0 SERIES PRODUCT DEVELOPMENT

The 78K/0 series products were developed as shown below. The subseries names are indicated in frames.

The table below shows the main differences between subseries.

Function Subseries name		ROM capacity	Timer				8-bit A/D	8-bit D/A	Serial interface	I/O	Vod Min. value	External expansion	
		8-bit	16-bit	Watch	WDT								
For control	μ PD78078		32K-60K	4ch	1ch	1ch	1ch	8ch	2ch	3ch (UART : 1ch)	88 pins	1.8 V	\bigcirc
	μ PD78070A	-	61 pins								2.7 V		
	$\mu \mathrm{PD} 78058 \mathrm{~F}$	48K-60K	2ch	69 pins									
	μ PD78054	16K-60K									2.0 V		
	$\mu \mathrm{PD} 78018 \mathrm{~F}$	8K-60K		-					2ch	53 pins	1.8 V		
	μ PD78014	8K-32K									2.7 V		
	μ PD780001	8K		-	-				1 ch	39 pins		-	
	μ PD78002	8K-16K			1 ch	-				53 pins		\bigcirc	
	μ PD78083				-	8 ch			1 ch (UART : 1 ch)	33 pins	1.8 V	-	
For FIP driving	μ PD780208	32K-60K	2 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	74 pins	2.7 V	-	
	μ PD78044A	16K-40K								68 pins			
	μ PD78024	24K-32K								54 pins			
For LCD driving	μ PD780308	48K-60K	2 ch	1 ch	1 ch	1 ch	8 ch	-	3 ch (UART : 1 ch)	57 pins	1.8 V	-	
	μ PD78064B	32K							2 ch (UART : 1 ch)		2.0 V		
	μ PD78064	16K-32K											
Compatible with IEBus	μ PD78098	32K-60K	2 ch	1 ch	1 ch	1 ch	8 ch	2 ch	3 ch (UART : 1 ch)	69 pins	2.7 V	\bigcirc	
For LV	$\mu \mathrm{PD} 78 \mathrm{P} 0914$	32K	6 ch	-	-	1 ch	8 ch	-	2 ch	54 pins	4.5 V	\bigcirc	

OVERVIEW OF FUNCTIONS

Item	Function
Internal memory	- PROM: 60K bytes Note 1 - RAM Internal high-speed RAM : 1024 bytes Internal expansion RAM : 1024 bytes Note 2 Buffer RAM : 64 bytes FIP display RAM : 80 bytes
General register	8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)
Instruction	On-chip instruction execution time cycle modification function
cycle Main system clock selected	$0.4 \mu \mathrm{~s} / 0.8 \mu \mathrm{~s} / 1.6 \mu \mathrm{~s} / 3.2 \mu \mathrm{~s} / 6.4 \mu \mathrm{~s}$ (5.0 MHz operation)
Subsystem clock selected	$122 \mu \mathrm{~s}$ (32.768 kHz operation)
Instruction set	- Multiplier/divider (8 bits $\times 8$ bits, 16 bits $\div 8$ bits) - Bit handling (set, reset, test, Boolean operations)
I/O ports (including pins also used for FIP)	Total $: 74$ pins - CMOS input $: 2$ - CMOS I/O $: 27$ - N-ch open-drain I/O $: 5$ - P-ch open-drain I/O $: 24$ - P-ch open-drain output $: 16$
FIP controller/driver	Display output total $: 53$ - No. of segments $: 9$ to 40 - No. of digits $: 2$ to 16
A/D converter	- 8 -bit resolution $\times 8$ channels - Supply voltage: AVDD $=4.0$ to 5.5 V
Serial interface	- 3 -wire serial I/O/SBI/2-wire serial I/O selectable modes: 1 channel - 3-wire serial I/O mode (on-chip maximum 64-byte automatic transmit/receive function): 1 channel
Timers	- 16-bit timer/event counter - $: 1$ channel - Wit timer/event counters $: 2$ channels - Watch timer $: 1$ channel - $: 1$ channel
Timer outputs	3 (1 with 14 bit PWM output capability)
Clock output	$19.5 \mathrm{kHz}, 39.1 \mathrm{kHz}, 78.1 \mathrm{kHz}, 156 \mathrm{kHz}, 313 \mathrm{kHz}, 625 \mathrm{kHz}$ (5.0 MHz main system clock operation) 32.768 kHz (32.768 kHz subsystem clock operation)
Buzzer output	$1.2 \mathrm{kHz}, 2.4 \mathrm{kHz}, 4.9 \mathrm{kHz}$ (5.0 MHz main system clock operation)

Notes 1. The capacity of internal PROM can be changed according to the internal memory switching register (IMS) settings.
2. The capacity of internal expanded RAM can be changed according to the internal expanded RAM switching register (IXS) settings.

Item		Function	
Vector interrupts	Maskable interrupt	Internal: 9, external: 4	
	Non-maskable interrupt	Internal: 1	
	Software interrupt	Internal: 1	
Test input		Internal: 1	
Supply voltage		$V_{D D}=2.7 \text { to } 5.5 \mathrm{~V}$	
Package		- 100-pin plastic QFP - 100-pin ceramic WQFN	$\begin{aligned} & (14 \times 20 \mathrm{~mm}) \\ & (14 \times 20 \mathrm{~mm}) \end{aligned}$

PIN CONFIGURATION (TOP VIEW)

(1) Normal operating mode

- 100-pin plastic QFP $(14 \times 20 \mathrm{~mm})$ μ PD78P0208GF-3BA
- 100-pin ceramic WQFN $(14 \times 20 \mathrm{~mm})$

μ PD78P0208KL-T

Cautions 1. Connect the Vpp pin to Vss directly.
2. Connect the AVdd pin to Vdd.
3. Connect the AVss pin to Vss.

P00-P04	Port 0
P10-P17	Port 1
P20-P27	Port 2
P30-P37	Port 3
P70-P74	Port 7
P80-P87	Port 8
P90-P97	Port 9
P100-P107	Port 10
P110-P117	Port 11
P120-P127	Port 12
INTP0-INTP3	Interrupt from Peripherals
TIO-TI2	Timer Input
TO0-TO2	Timer Output
SB0, SB1	Serial Bus
SIO, SI1	Serial Input
SO0, SO1	Serial Output
$\overline{\text { SCK0, }}$ SCK1	Serial Clock

PCL	$:$ Programmable Clock	
BUZ	$:$	Buzzer Clock
STB	$:$	Strobe
BUSY	$:$	Busy
FIP0-FIP52	$:$	Fluorescent Indicator Panel
VLoAD	$:$	Negative Power Supply
X1, X2	$:$	Crystal (Main System Clock)
XT1, XT2	$:$	Crystal (Subsystem Clock)
RESET	: Reset	
ANI0-ANI7	$:$ Analog Input	
AVDD	$:$ Analog Power Supply	
AVss	$:$ Analog Ground	
AVREF	$:$ Analog Reference Voltage	
VDD	$:$ Power Supply	
VPP	$:$ Programming Power Supply	
VSS	$:$ Ground	

(2) PROM programming mode

- 100-pin plastic QFP $(14 \times 20 \mathrm{~mm})$
μ PD78P0208GF-3BA
- 100-pin ceramic WQFN $(14 \times 20 \mathrm{~mm})$
μ PD78P0208KL-T

Cautions 1. (L) : Connect to Vss through individual pull-down resistors.
2. (D) : To be connected through drivers.
3. Vss : Connect to ground.
4. RESET : Set to low level.
5. Open : Do not connect.

A0-A16	$:$	Address Bus	RESET	$:$	Reset
D0-D7	$:$	Data Bus	VDD	$:$	Power Supply
$\overline{\mathrm{CE}}$	$:$	Chip Enable	VPP	$:$	Programming Power Supply
$\overline{\mathrm{OE}}$	$:$	Output Enable	Vss	$:$	Ground
$\overline{\mathrm{PGM}}$	$:$	Program			

BLOCK DIAGRAM

CONTENTS

1. DIFFERENCES BETWEEN THE μ PD78P0208 AND MASK ROM PRODUCTS 11
2. LIST OF PIN FUNCTIONS 12
2.1 PINS FOR NORMAL OPERATING MODE 12
2.2 PINS FOR PROM PROGRAMMING MODE 15
2.3 I/O CIRCUITS FOR PINS AND TREATMENT OF UNUSED PINS 16
3. INTERNAL MEMORY SWITCHING (IMS) REGISTER 20
4. INTERNAL EXPANDED RAM SWITCHING (IXS) REGISTER 21
5. PROM PROGRAMMING 22
5.1 OPERATION MODE 22
5.2 PROM WRITE SEQUENCE 24
5.3 PROM READ SEQUENCE 28
6. ERASURE CHARACTERISTICS (μ PD78P0208KL-T ONLY) 29
7. PROTECTIVE FILM COVERING THE ERASURE WINDOW (μ PD78P0208KL-T ONLY) 29
8. SCREENING ONE-TIME PROM PRODUCTS 29
^ 9. ELECTRICAL SPECIFICATIONS 30
9. CHARACTERISTIC CURVE (REFERENCE VALUE) 57
10. PACKAGE DRAWINGS 62
11. RECOMMENDED SOLDERING CONDITIONS 64
APPENDIX A DEVELOPMENT TOOLS 65
APPENDIX B RELATED DOCUMENTS 69

1. DIFFERENCES BETWEEN THE μ PD78P0208 AND MASK ROM PRODUCTS

The μ PD78P0208 contains an on-chip one-time PROM in which data can be written once or an EPROM featuring repetitive program write and deletion.

Functions other than PROM specifications and mask options can be set as equivalent to those of mask ROM products, by setting the internal memory switching register (IMS) and internal expansion RAM switching register (IXS) accordingly.

Table 1-1 lists the points of difference between the μ PD78P0208 and mask ROM products.

Table 1-1 Differences between μ PD78P0208 and Mask ROM Products

Item	$\mu \mathrm{PD} 78 \mathrm{P} 0208$	Mask ROM products
ROM structure	One-time PROM/EPROM	Mask ROM
ROM capacity	60K bytes	μ PD780204: 32K bytes μ PD780205: 40K bytes μ PD780206: 48K bytes μ PD780208: 60K bytes
Internal expansion RAM capacity	1024 bytes	μ PD780204: None μ PD780205: None μ PD780206: 1024 bytes μ PD780208: 1024 bytes
Changing the internal ROM capacity using the internal memory switching register (IMS)	PossibleNote 1	Impossible
Changing the internal expansion RAM capacity using the internal expansion RAM switching register (IXS)	PossibleNote 2	Impossible
Includes IC pins	No	Yes
Includes Vpp pins	Yes	No
$\begin{aligned} & \text { P30/TO0-P32/TO2,P33/TI1 } \\ & \text { P34/TI2, P35/PCL, P36/BUZ, P37 } \end{aligned}$	No on-chip pull-down resistors	An on-chip pull-down resistor can be incorporated for each pin by specifying mask options.
P70-P74	No on-chip pull-up resistors	An on-chip pull-up resistor can be incorporated for each pin by specifying mask options.
FIP0-FIP12	On-chip pull-down resistors provided (connect to Vload)	An on-chip pull-down resistor can be incorporated for each pin by specifying mask options.
P80/FIP13-P87/FIP20 P90/FIP21-P97/FIP28 P100/FIP29-P107/FIP36 P110/FIP37-P117/FIP44 P120/FIP45-P127/FIP52	No on-chip pull-down resistors	An on-chip pull-down resistor can be incorporated for each pin by specifying mask options. (These pins can be connected to Vload or Vss in four-bit units.)
Electrical characteristics	Refer to the data sheet of each product.	

Notes 1. A $\overline{R E S E T}$ input sets the internal PROM capacity to 60K bytes.
2. A $\overline{\text { RESET }}$ input sets the internal expansion RAM capacity to 1024 bytes.

2. LIST OF PIN FUNCTIONS

2.1 PINS FOR NORMAL OPERATING MODE

(1) Port pins (1/2)

Pin name	I/O		Function	Reset	Combination pin	
P00	Input	Port 0. 5-bit I/O port.	Input only	Input	INTPO/TIO	
P01	I/O		Each pin can be designated as an input or output pin separately. If used as an input port, an on-chip pull-up resistor can be used by software.	Input	INTP1	
P02					INTP2	
P03					INTP3	
P04 ${ }^{\text {Note }} 1$	Input		Input only	Input	XT1	
P10-P17	I/O	Port 1. 8-bit I/O port. Each pin can be designated as an input or output pin separately. If used as an input port, an on-chip pull-up resistor can be used by software. Note 2		Input	ANIO-ANI7	
P20	I/O	Port 2. 8-bit I/O port. Each pin can be designated as an input or output pin separately. If used as an input port, an on-chip pull-up resistor can be used by software.		Input	SI1	
P21				SO1		
P22				$\overline{\text { SCK1 }}$		
P23				STB		
P24				BUSY		
P25				SIO/SB0		
P26				SO0/SB1		
P27				$\overline{\text { SCKO }}$		
P30	I/O	Port 3. 8-bit I/O port. Each pin can be designated as an input or output pin separately. Can directly drive LEDs. If used as an input port, an on-chip pull-up resistor can be used by software.			Input	TOO
P31				TO1		
P32				TO2		
P33				TI1		
P34				TI2		
P35				PCL		
P36				BUZ		
P37				-		

Notes 1. When using pin combination P04/XT1 as an input port, set bit 6 of the processor clock control register (PCC) to 1 (do not use the subsystem clock oscillator circuit's on-chip feedback resistor).
2. When using pin combination P10/ANI0-P17/ANI7 as the analog input for the A/D converter, set input mode for port 1. This setting disables the on-chip pull-up resistors.
(1) Port pins (2/2)

Pin name	I/O	Function	Reset	Combination pin
P70-P74	I/O	Port 7. N-ch open-drain 5-bit I/O port. Each pin can be designated as an input or output pin separately. Can directly drive LEDs.	Input	-
P80-P87	Output	Port 8. P-ch open-drain 8-bit high withstand voltage output port. Can directly drive LEDs.	Output	FIP13-FIP20
P90-P97	Output	Port 9. P-ch open-drain 8-bit high withstand voltage output port. Can directly drive LEDs.	Output	FIP21-FIP28
P100-P107	I/O	Port 10. P-ch open-drain 8-bit high withstand voltage output port. Each pin can be designated as an input or output pin separately. Can directly drive LEDs.	Input	FIP29-FIP36
P110-P117	I/O	Port 11. P-ch open-drain 8-bit high withstand voltage I/O port. Each pin can be designated as an input or output pin separately. Can directly drive LEDs.	Input	FIP37-FIP44
P120-P127	I/O	Port 12. P-ch open-drain 8-bit high withstand voltage I/O port. Each pin can be designated as an input or output pin separately. Can directly drive LEDs.	Input	FIP45-FIP52

(2) Non-port pins (1/2)

Pin name	1/O	Function	Reset	Combination pin
INTP0	Input	Can be set for effective edge (rising edge, falling edge, or both rising and falling edges). Inputs external interrupts.	Input	P00/TIO
INTP1				P01
INTP2				P02
INTP3		Falling edge detection and external interrupt input	Input	P03
SIO	Input	Input of serial data for serial interface	Input	P25/SB0
SI1				P20
SOO	Output	Output of serial data for serial interface	Input	P26/SB1
SO1				P21
SB0	I/O	Input/output of serial data for serial interface	Input	P25/SI0
SB1				P26/SO0
$\overline{\text { SCK0 }}$	I/O	Serial clock input/output for serial interface	Input	P27
$\overline{\text { SCK1 }}$				P22
STB	Output	Output of automatic transmit/receive strobe signal for serial interface	Input	P23
BUSY	Input	Input of automatic transmit/receive busy signal for serial interface	Input	P24
TIO	Input	External count clock input to 16-bit timer (TM0)	Input	P00/INTP0
TI1		External count clock input to 8-bit timer (TM1)		P33
TI2		External count clock input to 8-bit timer (TM2)		P34
TO0	Output	16-bit timer (TM0) output (combined with 14-bit PWM output)	Input	P30
TO1		8-bit timer (TM1) output		P31
TO2		8-bit timer (TM2) output		P32
PCL	Output	Clock output (for trimming main system clock or subsystem clock)	Input	P35
BUZ	Output	Buzzer output	Input	P36
FIP0-FIP12	Output	High current output with high withstand voltage for the grids/segments of FIP controller/driver On-chip pull-down resistors provided (connect to VLoad)	Output	-
FIP13-FIP20	Output	High current output with high withstand voltage for the grids/segments of FIP controller/driver	Output	P80-P87
FIP21-FIP28	Output	High current output with high withstand voltage for the grids/segments of FIP controller/driver	Output	P90-P97
FIP29-FIP36			Input	P100-P107
FIP37-FIP44				P110-P117
FIP45-FIP52				P120-P127
VLoad	-	Pull-down resistor connection for FIP controller/driver	-	-

(2) Non-port pins (2/2)

Pin name	I/O	Function	Reset	Combination pin
ANIO-ANI7	Input	Analog input for A/D converter	Input	P10-P17
AVref	Input	Reference voltage input for A/D converter	-	-
AV ${ }_{\text {do }}$	-	Analog power supply for A/D converter. Connect to Vdo.	-	-
AVss	-	Ground for A/D converter. Connect to Vss.	-	-
RESET	Input	System reset input	-	-
X1	Input	Crystal connection for main system clock oscillation	-	-
X2	-		-	-
XT1	Input	Crystal connection for subsystem clock oscillation	Input	P04
XT2	-		-	-
Vdo	-	Positive power supply	-	-
VPP	-	Connect to Vss.	-	-
Vss	-	Ground level	-	-

2.2 PINS FOR PROM PROGRAMMING MODE

Pin name	I/O	Function
$\overline{\text { RESET }}$	Input	PROM programming mode selection. PROM programming mode is selected when +5 V or +12.5 V is added to the VPP pin or low- level input is added to the $\overline{\text { RESET }}$ pin.
VPP	Input	PROM programming mode selection and high voltage input during program write or verification
A0-A16	Input	Address bus
DO-D7	I/O	Data bus
$\overline{\mathrm{CE}}$	Input	PROM enable input/program pulse input
$\overline{\mathrm{OE}}$	Input	Read strobe input to PROM
$\overline{\text { PGM }}$	Input	Program/program inhibit input during PROM programming mode
V_{DD}	-	Positive power supply
$\mathrm{V}_{\text {SS }}$	-	Ground level

2.3 I/O CIRCUITS FOR PINS AND TREATMENT OF UNUSED PINS

Table 2-1 describes the types of I/O circuits for pins and the treatment of unused pins.
Fig. 2-1 shows the configuration of these various types of I/O circuits.

Table 2-1 Types of I/O Circuits for Pins (1/2)

Pin name	I/O circuit type	I/O	Recommended connection method for unused pins
P00/INTP0/TIO	2	Input	Connect to Vss.
P01/INTP1	8-A	I/O	Connect to Vss through a separate resistor.
P02/INTP2			
P03/INTP3			
P04/XT1	16	Input	Connect to Vdd or Vss.
P10/ANI0-P17/ANI7	11	I/O	Connect to Vdd or Vss through a separate resistor.
P20/SI1	8-A		
P21/SO1	5-A		
P22/SCK1	8-A		
P23/STB	5-A		
P24/BUSY	8-A		
P25/SI0/SB0	10-A		
P26/SO0/SB1			
P27/SCK0			
P30/TO0	5-A		
P31/TO1			
P32/TO2			
P33/TI1	8-A		
P34/TI2			
P35/PCL	5-A		
P36/BUZ			
P37			
P70-P74	13-D		
FIP0-FIP12	14	Output	Open
P80/FIP13-P87/FIP20	14-B		
P90/FIP21-P97/FIP28			

Table 2-1 Types of I/O Circuits for Pins (2/2)

Pin name	I/O circuit type	1/O	Recommended connection method for unused pins
P100/FIP29-P107/FIP36	15-B	I/O	Connect to Vdo or Vss through a separate resistor.
P110/FIP37-P117/FIP44			
P120/FIP45-P127/FIP52			
RESET	2	Input	-
XT2	16	-	Open
$\mathrm{AV}_{\text {gef }}$	-		Connect to Vss.
AVDD			Connect to Vod.
AVss			Connect to Vss.
VLoad			
Vpp			Connect to Vss directly.

Fig. 2-1 List of I/O Circuits for Pins (1/2)
Type 2

Fig. 2-1 List of I/O Circuits for Pins (2/2)

3. INTERNAL MEMORY SWITCHING (IMS) REGISTER

This register enables the software to avoid using part of the internal memory. The IMS register can be set to establish the same memory mapping as used in ROM products that have a different internal ROM capacity.

The IMS register is set using 8-bit memory operation instructions.
A $\overline{\text { RESET input sets the IMS register to CFH. }}$

Fig. 3-1 Format of IMS Register

Table 3-1 lists IMS register settings for memory mapping equivalent to various mask ROM products.

Table 3-1 IMS Register Settings

Target mask ROM product	IMS setting
μ PD780204	C8H
μ PD780205	CAH
μ PD780206	CCH
μ PD780208	CFH

4. INTERNAL EXPANDED RAM SWITCHING (IXS) REGISTER

The μ PD78P0208 can set the IXS register to establish the same memory mapping as used in ROM products that have a different internal expanded RAM capacity.

The IXS register is set using 8-bit memory operation instructions.
A $\overline{\text { RESET input sets the IXS register to 0AH. }}$

Fig. 4-1 Format of IXS Register

Table 4-1 lists IXS register settings for memory mapping equivalent to various mask ROM products.

Table 4-1 IXS Register Settings

Target mask ROM product	IXS setting
μ PD780204	0CH
μ PD780205	
μ PD780206	0AH
μ PD780208	

5. PROM PROGRAMMING

The μ PD78P0208 has an on-chip 60KB PROM device for use as program memory. When programming, set the VPP and $\overline{R E S E T}$ pins for PROM programming mode. See (2) PROM programming mode in PIN CONFIGURATION (TOP VIEW) with regard to treatment of other, unused pins.

Caution Write a program in the range between addresses 0000H and EFFFH. (Set EFFFH in the programend address.) PROM programmers which cannot specify the writing address cannot be used.

5.1 OPERATION MODE

PROM programming mode is selected when +5 V or +12.5 V is added to the VPP pin or low-level input is added to the $\overline{\operatorname{RESET}}$ pin. This mode can be set to operation mode by setting the $\overline{\mathrm{CE}}$ pin, $\overline{\mathrm{OE}}$ pin, and $\overline{\mathrm{PGM}}$ pin as shown in Table 5-1 below.

In addition, the PROM contents can be read by setting read mode.

Table 5-1 PROM Programming Operation Mode

Operation mode Pin	RESET	Vpp	Vdo	$\overline{\mathrm{CE}}$	$\overline{\mathrm{OE}}$	$\overline{\text { PGM }}$	D0-D7
Page data latch	L	+12.5 V	+6.5 V	H	L	H	Data input
Page write				H	H	L	High impedance
Byte write				L	H	L	Data input
Program verify				L	L	H	Data output
Program inhibit				\times	H	H	High impedance
				\times	L	L	
Read		+5 V	+5 V	L	L	H	Data output
Output disable				L	H	\times	High impedance
Standby				H	\times	\times	High impedance

$$
x=\mathrm{L} \text { or } \mathrm{H}
$$

(1) Read mode

Set $\overline{\mathrm{CE}}$ to L and $\overline{\mathrm{OE}}$ to L to set read mode.

(2) Output disable mode

Set $\overline{\mathrm{OE}}$ to H to set high impedance for data output and output disable mode.
Consequently, if several μ PD78P0208 devices are connected to a data bus, the $\overline{\mathrm{OE}}$ pins can be controlled to select data output from any of the devices.
(3) Standby mode

Set $\overline{\mathrm{CE}}$ to H to set standby mode.
In this mode, data output is set to high impedance regardless of the $\overline{\mathrm{OE}}$ setting.

(4) Page data latch mode

At the beginning of page write mode, set $\overline{\mathrm{CE}}$ to $\mathrm{H}, \overline{\mathrm{PGM}}$ to H , and $\overline{\mathrm{OE}}$ to L to set page data latch mode.
In this mode, 1 page (4 bytes) of data are latched to the internal address/data latch circuit.
(5) Page write mode

After latching the address and data for one page (4 bytes) using page data latch mode, adding a 0.1 ms program pulse (active, low) to the $\overline{\mathrm{PGM}}$ pin with both $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ set to H causes page write to be executed. Later, setting both $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ to L causes program verification to be executed.
If programming is not completed after one program pulse, the write and verify operations may be repeated X times (where $X-10$).

(6) Byte write mode

Adding a 0.1 ms program pulse (active, low) to the $\overline{\mathrm{PGM}}$ pin with $\overline{\mathrm{CE}}$ set to L and $\overline{\mathrm{OE}}$ set to H causes byte write to be executed. Later, setting $\overline{\mathrm{OE}}$ to L causes program verification to be executed.
If programming is not completed after one program pulse, the write and verify operations may be repeated X times (where X-10).

(7) Program verify mode

Set $\overline{\mathrm{CE}}$ to $\mathrm{L}, \overline{\mathrm{PGM}}$ to H , and $\overline{\mathrm{OE}}$ to L to set program verify mode. Use verify mode for verification following each write operation.

(8) Program inhibit mode

Program inhibit mode is used to write to a single device when several μ PD78P0208 devices are connected in parallel to $\overline{\mathrm{OE}}$, VPP, and D0 to D7 pins.
Use the page write mode or byte write mode described above for each write operation. Write operations cannot be done for devices in which the $\overline{\mathrm{PGM}}$ pin has been set to H .

5.2 PROM WRITE SEQUENCE

Fig. 5-1 Page Program Mode Flowchart

G = Start address
$N=$ Program end address

Fig. 5-2 Page Program Mode Timing

Fig. 5-3 Byte Program Mode Flowchart

G = Start address
$\mathrm{N}=$ Program end address

Fig. 5-4 Byte Program Mode Timing

Cautions 1. Add Vdd before Vpp, and turn off the Vdd after Vpp.
2. Do not allow Vpp to exceed +13.5 V including overshoot.
3. Reliability problems may result if the device is inserted or pulled out while +12.5 V is applied at Vpp.

5.3 PROM READ SEQUENCE

Follow this sequence to read the PROM contents to an external data bus (D0 to D7).
(1) Set the $\overline{R E S E T}$ pin to low level and add +5 V to the Vpp pin. See (2) PROM programming mode in PIN CONFIGURATION (TOP VIEW) with regard to treatment of other, unused pins.
(2) Add +5 V to the Vdd and Vpp pins.
(3) Input the data address to be read to pins A0 to A16.
(4) Set read mode.
(5) Output the data to pins D0 to D7.

Fig. 5-5 shows the timing of steps (2) to (5) above.

Fig. 5-5 PROM Read Timing

6. ERASURE CHARACTERISTICS (μ PD78P0208KL-T ONLY)

Data written in the μ PD78P0208KL-T program memory can be erased (FFH); therefore users can write other data in the memory.

To erase the written data, expose the erasure window to light with a wavelength shorter than approx. 400 nm. Normally, ultraviolet light with a wavelength of 254 nm is employed. The amount of light required to completely erase the data is as follows:

- Intensity of ultraviolet light \times erasing time: $30 \mathrm{~W} \cdot \mathrm{~s} / \mathrm{cm}^{2} \mathrm{~min}$.
- Erasing time: 40 minutes or more (When using a $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ ultraviolet lamp. It may, however, take more time due to lamp deterioration, dirt on the erasure window, or the like.)

The ultraviolet lamp should be placed within 2.5 cm from the erasure window during erasure. In addition, if a filter is attached to the ultraviolet lamp, remove the filter before erasure.

7. PROTECTIVE FILM COVERING THE ERASURE WINDOW (μ PD78P0208KL-T ONLY)

To prevent EPROM from being erased inadvertently by light other than that from the lamp used for erasing EPROM, or to prevent the internal circuits other than EPROM from malfunctioning by light, stick a protective film on the erasure window except when EPROM is to be erased.

8. SCREENING ONE-TIME PROM PRODUCTS

NEC cannot execute a complete test of one-time PROM products (μ PD78P0208GF-3BA) due to their structure before shipment. It is recommended that you screen (verify) PROM products after writing necessary data into them and storing them at $125^{\circ} \mathrm{C}$ for 24 hours.

NEC offers a charged service called QTOP microcomputer service. This service includes writing to one-time PROM, marking, screening, and verification. Ask your sales representative for details.

9. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions			Rating	Unit
Supply voltage	V ${ }_{\text {dD }}$				-0.3 to +7.0	V
	Vload				$V_{D D}-45$ to $V_{\text {dD }}+0.3$	V
	Vpp				-0.3 to +13.5	V
	AVdd				-0.3 to VDD + 0.3	V
	AVref				-0.3 to $V_{\text {dD }}+0.3$	V
	AVss				-0.3 to +0.3	V
Input voltate	V_{11}	P01 to P04, P10 to P17, P20 to P27, P30 to P37, X1, X2, $\overline{\text { RESET }}$			-0.3 to VDD +0.3	V
	V12	P00/A9			-0.3 to +13.5	V
	V_{13}	P70-P74	N -ch	open drain	-0.3 to +16	V
	V_{14}	P100 to P107, P110 to P117, P120 to P127	P-ch	open drain	$V_{D D}-45$ to $V_{D D}+0.3$	V
Output voltage	Vo	P01 to P03, P10 to P17, P20 to P27, P30 to P37, P70 to P74			-0.3 to VDD +0.3	V
	Vod	P80 to P87, P90 to P97, P100 to P107, P110 to P117, P120 to P127, FIP0 to FIP12			$V_{D D}-45$ to $V_{D D}+0.3$	V
Analog input voltage	V ${ }_{\text {AN }}$	ANIO to ANI7	Analog input pins		$A V_{s S}-0.3$ to $A V_{\text {ref }}+0.3$	V
High-level output current	IohNote1	1 pin of P01 to P03, P10 to P17, P20 to P27, P30 to P37			-10	mA
		Total for P01 to P03, P10 to P17, P02 to P27, P30 to P37			-30	mA
		1 pin of FIP0 to FIP12, P80 to P87, P90 to P97, P100 to P107, P110 to P117, P120 to P127			-30	mA
		Total for P80 to P87, FIP0 to FIP12		Peak value	-240	mA
				RMS	-120	mA
		Total for P90 to P97, P100 to P107, P110 to P117, P120 to P127		Peak value	-100	mA
				RMS	-60	mA
Low-level output current	loLNote1	1 pin of P01 to P03, P10 to P17, P20 to P27, P30 to P37, P70 to P74		Peak value	30	mA
				RMS	15	mA
		Total for P01 to P03, P10 to P17, P20 to 27, P30 to P37		Peak value	50	mA
				RMS	20	mA
		Total for P70 to P74		Peak value	100	mA
				RMS	60	mA
Total power dissipation	PTNote 2	$\mathrm{T}_{\mathrm{A}}=-40$ to $+60^{\circ} \mathrm{C}$			800	mW
		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$			600	mW
Operating ambient temperature	TA				-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$				-65 to +150	${ }^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter,

 or even momentarily. In other words, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.Remark Unless otherwise specified, shared pin characteristics are the same as port pin characteristics.
Notes 1. The RMS should be calculated as follows: [RMS value] $=[$ Peak value $] \times \sqrt{\text { Duty }}$

Notes 2. Total power dissipation differs depending on the temperature (see the following figure).

How to calculate total power dissipation

The total power dissipation of the μ PD78P0208GF is the sum of the values at the following three parts. Design your application set so that the sum is lower than the total power dissipation P . (The recommended operating condition is 80% or lower of the rated value.)
<1> CPU: the power consumed by CPU and calculated with Vdd (max.) \times Idd1 (max.)
<2> Output pins: the power consumption when the maximum current flows at all output pins (normal output and display output).
<3> Pull-down resistors: the power dissipated at the on-chip pull-down resistors connected to display output pins

The calculation example of the total power dissipation is provided below. The following total power dissipation calculation example assumes the case where the characters shown in the figure on the next page are displayed.

Example: The operating conditions are as follows:
Vdd $=5 \mathrm{~V} \pm 10 \%$, operating at 5.0 MHz
Supply current (ldo1) $=21.6 \mathrm{~mA}$
FIP display outputs: 11 grids $\times 10$ segments (cut width is $1 / 16$)
It is assumed that up to 15 mA flows to each grid pin, and that up to 3 mA flows to each segment pin.
It is also assumed that all display outputs are turned off at key scan timings.
Display output voltage: grid $\quad V_{O D}=\mathrm{VDD}-2 \mathrm{~V}$ (Voltage drop of 2 V is assumed.)
segment $\mathrm{VOD}=\mathrm{V} D \mathrm{D}-0.4 \mathrm{~V}$ (Voltage drop of 0.4 V is assumed.)
Voltage applied to fluorescent indication panel (VLoad) $=-35 \mathrm{~V}$
On-chip pull-down resistor = 25 ký
<1> Power consumption of CPU: $5.5 \mathrm{~V} \times 21.6 \mathrm{~mA}=118.8 \mathrm{~mW}$
<2> Power consumption at output pins
Grid: $\quad 2 \mathrm{~V} \times 15 \mathrm{~mA} \times \frac{11 \text { grids }}{12 \text { timings }} \times(1-1 / 16)=25.8 \mathrm{~mW}$
Segment: $0.4 \mathrm{~V} \times 3 \mathrm{~mA} \times \frac{31 \text { segments }}{12 \text { timings }} \times(1-1 / 16)=2.9 \mathrm{~mW}$
<3> Power consumption at pull-down resistors
Grid: $\quad \frac{(35 \mathrm{~V}+(5.5 \mathrm{~V}-2 \mathrm{~V}))^{2}}{25 \mathrm{k} \Omega} \times \frac{11 \text { grids }}{12 \text { timings }} \times(1-1 / 16)=50.9 \mathrm{~mW}$
Segment: $\frac{(35 \mathrm{~V}+(5.5 \mathrm{~V}-0.4 \mathrm{~V}))^{2}}{25 \mathrm{k} \Omega} \times \frac{31 \text { segments }}{12 \text { timings }} \times(1-1 / 16)=155.8 \mathrm{~mW}$

Total power dissipation $=\langle 1\rangle+\langle 2\rangle+\langle 3\rangle=118.8+2.9+25.8+155.8+50.9=354.2 \mathrm{~mW}\left(<\mathrm{P}_{\mathrm{T}}\right.$
$=600 \mathrm{~mW}$)

According to the graph shown on the previous page,the total power dissipation in the temperature range of $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ must be lower than 600 mW . Therefore, the calculation result in this example (354.2 mW) satisfies the requirement. If the calculation result for the total power dissipation becomes higher than the rated value, the power consumption must be reduced.

MAIN SYSTEM CLOCK OSCILLATION CIRCUIT CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}_{\mathrm{DD}}=2.7$ to 5.5 V)

Notes 1. Only the oscillator characteristics are shown. See AC characteristics for instruction execution times.
2. This is the time required for oscillation to stabilize after a reset or STOP mode release.

Cautions 1. When the main system clock oscillator is used, the following should be noted concerning wiring in the area in the figure enclosed by a broken line to prevent the influence of wiring capacitance, etc.

- The wiring should be kept as short as possible.
- No other signal lines should be crossed.
- Keep away from lines carrying a high fluctuating current.
- The oscillator capacitor grounding point should always be at the same potential as Vss.
- Do not connect to a ground pattern carrying a high current.
- A signal should not be taken from the oscillator.

2. When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation settling time has been secured by the program before switching back to the main system clock.

SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V)

Resonator	Recommended circuit	Parameter	Conditions	Min.	Typ.	Max.	Unit
Crystal resonator		Oscillator frequency (fxt) Note 1		32	32.768	35	kHz
		Oscillation settling	$V_{\text {DD }}=4.5$ to 5.5 V		1.2	2	s
						10	
External clock	$\begin{array}{ll} \mathrm{XT} 1 & \mathrm{XT} 2 \\ \hline \end{array}$	XT1 input frequency (fxT) Note 1		32		100	kHz
	λ	XT1 input high-/lowlevel width (tхтн/txtL)		5		15	$\mu \mathrm{s}$

Notes 1. Only the oscillator characteristics are shown. See AC characteristics for instruction execution times.
2. This is the time required for oscillation to stabilize after power (V_{DD}) is turned on.

Cautions 1. When the subsystem clock oscillator is used, the following should be noted concerning wiring in the area in the figure enclosed by a broken line to prevent the influence of wiring capacitance, etc.

- The wiring should be kept as short as possible.
- No other signal lines should be crossed.
- Keep away from lines carrying a high fluctuating current.
- The oscillator capacitor grounding point should always be at the same potential as Vss.
- Do not connect to a ground pattern carrying a high current.
- A signal should not be taken from the oscillator.

2. The subsystem clock oscillator is a low-amplitude circuit in order to achieve a low consumption current, and is more prone to misoperation due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.

RECOMMENDED OSCILLATOR CONSTANT

Main System Clock: Ceramic Resonator ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to +851⁄2C)

Manufacturer	Product name	Frequency(MHz)	Circuit constant		Oscillator voltage range		Remark
			C1 (pF)	C 2 (pF)	Min. (V)	Max. (V)	
Murata Mfg. Co., Ltd. Toyama	CSB1000J	1.0	100	100	2.80	5.50	
	CSA2.00MG040	2.0	100	100	2.96	5.50	
	CST2.00MG040	2.0	-	-	2.96	5.50	Built-in capacitor
	CSA4.00MG	4.0	30	30	2.85	5.50	
	CST4.00MGW	4.0	-	-	2.85	5.50	Built-in capacitor
	CSA5.00MG	5.0	30	30	3.05	5.50	
	CST5.00MGW	5.0	-	-	3.05	5.50	Built-in capacitor
TDK Corp.	CCR1000K2	1.0	100	100	2.70	5.50	
	FCR4.00MC5	4.0	-	-	2.75	5.50	Built-in capacitor
	CCR4.00MC3	4.0	-	-	2.70	5.50	Built-in capacitor
	FCR5.00MC5	5.0	-	-	2.78	5.50	Built-in capacitor
	CCR5.00MC3	5.0	-	-	2.75	5.50	Built-in capacitor
Matsushita Electronics Components Co., Ltd.	EFOEC5004A4	5.0	-	-	2.70	5.50	Built-in capacitor
	EFOEN5004A4	5.0	-	-	2.70	5.50	Built-in capacitor
	EFOS5004B5	5.0	-	-	2.70	5.50	Built-in capacitor Surface-mount type

Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation but do not guarantee accuracy of the oscillation frequency. If the application circuit requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency of the resonator in the application circuit. For this, it is necessary to directly contact the manufacturer of the resonator being used.

Subsystem Clock: Crystal Resonator ($\mathrm{TA}_{\mathrm{A}}=\mathbf{- 4 0}$ to $\mathbf{+ 8 5} 1 / 2 \mathrm{C}$)

Manufacturer	Product name	Frequency(kHz)	Circuit constant			Oscillator voltage range	
			C3 (pF)	C4 (pF)	R (k $)^{\text {) }}$	Min. (V)	Max. (V)
Kinseki, Ltd.	P-3 (Load capacitance 12 pF)	32.768	15	33	220	2.7	5.5

Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation but do not guarantee accuracy of the oscillation frequency. If the application circuit requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency of the resonator in the application circuit. For this, it is necessary to directly contact the manufacturer of the resonator that being used.

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V} \mathrm{DD}=\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		Min.	Typ.	Max.	Unit
Input capacitance	Cin	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V				15	pF
Output capacitance	Cout	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V				35	pF
Input/output capacitance	$\mathrm{Cı}$	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V	P01 to P03, P10 to P17, P20 to P27, P30 to P37			15	pF
			P70 to P74			20	pF
			P100 to P107, P110 to P117, P120 to P127			35	pF

Remark Unless otherwise specified, shared pin characteristics are the same as port pin characteristics.

OPERATING POWER SUPPLY VOLTAGE (TA $=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Conditions	Min.	Typ.	Max.	Unit
CPUNote 1		2.7 Note 2		5.5	V
Display controller		4.5		5.5	V
PWM mode of 16-bit timer/ event counter (TM0)		4.5		5.5	V
A/D converter		4.0		5.5	V
Other hardware		2.7		5.5	V

Notes 1. Except for system clock oscillator, display controller, and PWM.
2. The operating power supply voltage differs depending on the cycle time. See AC Characteristics.

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V} D=2.7$ to 5.5 V)

Parameter	Symbol	Conditions		Min.	Typ.	Max.	Unit
High-level input voltage	V_{1+1}	P21, P23		0.7 V dD		VDD	V
	$\mathrm{V}_{\mathbf{H} 2}$	P00 to P03, P20, P22, P24 to P27, P33, P34, RESET		0.8 V DD		VDD	V
	Vін3	P70 to P74	N -ch open-drain	0.7 Vdd		15	V
	$\mathrm{V}_{\mathrm{IH} 4}$	X1, X2		VDD - 0.5		VDD	V
	VIH5	XT1/P04, XT2	$\mathrm{V} D \mathrm{D}=4.5$ to 5.5 V	0.8 V dD		V DD	V
				0.9 VdD		VDD	V
	VIH6	$\begin{aligned} & \text { P10 to P17, P30 to P32, P35 to } \\ & \text { P37 } \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	0.65Vdd		VDD	V
				0.7 V dD		VDD	V
	$\mathrm{V}_{\mathrm{H} 7}$	P100 to P107, P110 to P117, P120 to P127	$V_{\text {DD }}=4.5$ to 5.5 V	0.7 V dD		VDD	V
				VDD - 0.5		VDD	V
Low-level input voltage	VIL1	P21, P23		0		0.3 Vdd	V
	VIL2	P00 to P03, P20, P22, P24 to P27, P33, P34, $\overline{\mathrm{RESET}}$		0		0.2 VdD	V
	VIL3	P70 to P74	$V_{D D}=4.5$ to 5.5 V	0		0.3 VdD	V
				0		0.2 VDD	V
	VIL4	X1, X2		0		0.4	V
	VIL5	XT1/P04, XT2	$V_{\text {DD }}=4.5$ to 5.5 V	0		0.2 VdD	V
				0		0.1 Vdd	V
	VIL6	P10 to P17, P30 to P32, P35 to P37		0		0.3 VdD	V
	VIL7	P100 to P107, P110 to P117, P120 to P127		VDD - 40		0.3 Vdd	V
High-level output voltage	Vor	P01 to P03, P10 to P17, P20 to P27, P30 to P37, P80 to P87, P90 to P97, P100 to P107, P110 to P117, P120 to P127, FIP0 to FIP12	$\begin{aligned} & \mathrm{VDD}=4.5 \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{IoH}=-1 \mathrm{~mA} \end{aligned}$	VDD - 1.0			V
			$\mathrm{loh}=-100 \mu \mathrm{~A}$	VDD - 0.5			V
Low-level output voltage	Vol1	P30 to P37, P70 to P74	$\begin{aligned} & \mathrm{VDD}=4.5 \text { to } 5.5 \mathrm{~V} \\ & \mathrm{loL}=15 \mathrm{~mA} \end{aligned}$		0.4	2.0	V
		P01 to P03, P10 to P17, P20 to P27	$\begin{aligned} & \mathrm{VDD}=4.5 \text { to } 5.5 \mathrm{~V} \\ & \mathrm{loL}=1.6 \mathrm{~mA} \end{aligned}$			0.4	V
	Vol2	SB0, SB1, $\overline{\text { SCK0 }}$	$V_{D D}=4.5$ to 5.5 V With open-drain and pull-up ($R=1 \mathrm{k} \Omega$)			0.2 V D	V
	Vol3	$\text { lot }=400 \mu \mathrm{~A}$				0.5	V
High-level input leakage	ILIH1	V IN $=\mathrm{V}_{\mathrm{DD}}$	P00 to P03, P10 to P17, P20 to P27, P30 to P37, P70 to P74, RESET			3	$\mu \mathrm{A}$
	ILIH2		$\begin{aligned} & \text { X1, X2, XT1/P04, } \\ & \text { XT2 } \end{aligned}$			20	$\mu \mathrm{A}$
	ІІІн3	$\mathrm{VIN}=15 \mathrm{~V}$	P70 to P74			80	$\mu \mathrm{A}$
	ILIH4	P110 to P117, P120 to P127	$V_{D D}=4.5$ to 5.5 V			3Note 1	$\mu \mathrm{A}$
		$V_{I N}=V_{D D}$				3Note 2	$\mu \mathrm{A}$

Notes 1. For P110 to P117 and P120 to P127, a high-level input leakage current of $50 \mu \mathrm{~A}$ (MAX.) flows only during the 1.5 clocks (no-wait time) after an instruction has been executed to read out ports 11, 12 (P11, P12) or port mode registers 11, 12 (PM11, PM12). Outside the period of 1.5 clocks following executing a readout instruction, the current is $3 \mu \mathrm{~A}$ (MAX.).
2. For P110 to P117 and P120 to P127, a high-level input leakage current of $30 \mu \mathrm{~A}(\mathrm{MAX}$.$) flows only during$ the 1.5 clocks (no-wait time) after an instruction has been executed to read out P11, P12, PM11, and PM12. Outside the period of 1.5 clocks following executing a read-out instruction, the current is $3 \mu \mathrm{~A}$ (MAX.).
Remark Unless otherwise specified, shared pin characteristics are the same as port pin characteristics.

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to 5.5 V)

Parameter	Symbol	Conditions		Min.	Typ.	Max.	Unit
Low-level input leakage current	ILIL1	V IN $=0 \mathrm{~V}$	$\begin{aligned} & \text { P00 to P03, P10 to P17, } \\ & \text { P20 to P27, P30 to P37, } \\ & \text { RESET } \end{aligned}$			-3	$\mu \mathrm{A}$
	ILIL2		X1, X2, XT1/P04, XT2			-20	$\mu \mathrm{A}$
	ILıL3		P70 to P74			-3 Note 4	$\mu \mathrm{A}$
	ILIL4		P100 to P107, P110 to P117, P120 to P127			-10	$\mu \mathrm{A}$
High-level input leakage current	ILOH1	Vout $=\mathrm{V}_{\text {DD }}$	P01 to P03, P10 to P17, P20 to P27, P30 to P37, P80 to P87, P90 to P97, P100 to P107, P110 to P117, P120 to P127, FIP0 to FIP12			3	$\mu \mathrm{A}$
	ILOH2	Vout $=15 \mathrm{~V}$	P70 to P74			80	$\mu \mathrm{A}$
Low-level output leakage current	ILOL1	Vout $=0 \mathrm{~V}$	P01 to P03, P10 to P17, P20 to P27, P30 to P37, P70 to P74			-3	$\mu \mathrm{A}$
	ILoL2	VOUT $=\mathrm{V}_{\text {LOAD }}=\mathrm{V}_{\text {DD }}-40 \mathrm{~V}$	P80 to P87, P90 to P97, P100 to P107, P110 to P117, P120 to P127, FIP0 to FIP12			-10	$\mu \mathrm{A}$
Display output current	Iod	$\mathrm{V}_{\mathrm{DD}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OD}}=\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$		-15	-18		mA
Software pull-up resistor	R_{1}	Vin $=0 \mathrm{~V}, \mathrm{P} 01$ to P03, P10 to P17, P20 to P27, P30 to P37	$\mathrm{V} D \mathrm{D}=4.5$ to 5.5 V	15	40	90	$k \Omega$
				20		500	$k \Omega$
On-chip pull-down resistor	R2	FIP0 to FIP12	V OD - V Load $=40 \mathrm{~V}$	25	70	135	$\mathrm{k} \Omega$
Power supply currentNote 1	IDD1	5.0 MHz crystal oscillation operation mode	VDD $=5.0 \mathrm{~V} \pm 10$ \%Note 2		10.0	30.0	mA
			VDD $=3.0 \mathrm{~V} \pm 10$ \%Note 3		1.1	3.3	mA
	IdD2	5.0 MHz crystal oscillation HALT mode	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$		1.6	4.8	mA
			$V_{D D}=3.0 \mathrm{~V} \pm 10$ \%		0.65	1.95	mA
	Idd3	32.768 kHz crystal oscillation operation mode	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V} \pm 10 \%$		135	270	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$		95	190	$\mu \mathrm{A}$
	IdD4	32.768 kHz crystal oscillation HALT mode	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$		25	55	$\mu \mathrm{A}$
			$V_{D D}=3.0 \mathrm{~V} \pm 10$ \%		5	15	$\mu \mathrm{A}$
	IdD5	$\mathrm{XT} 1=0 \mathrm{~V}$ STOP mode when connecting to feedback resistor	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$		1	30	$\mu \mathrm{A}$
			$V_{D D}=3.0 \mathrm{~V} \pm 10$ \%		0.5	10	$\mu \mathrm{A}$
	Idd6	$\mathrm{XT} 1=0 \mathrm{~V}$ STOP mode when not connecting to feedback resistor	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$		0.1	30	$\mu \mathrm{A}$
			$V_{D D}=3.0 \mathrm{~V} \pm 10$ \%		0.05	10	$\mu \mathrm{A}$

Notes 1. This current excludes the $A V_{\text {ref }}$ current, port current, and current which flows in the on-chip pull-down resistor.
2. When operating at high-speed mode (when the processor clock control register (PCC) is set to 00 H)
3. When operating at low-speed mode (when the PCC is set to 04H)
4. For P70 to P74, a low-level input leakage current of $-200 \mu \mathrm{~A}$ (MAX.) flows only during the 1.5 clocks (nowait time) after an instruction has been executed to read out port 7 (P7) or port mode register 7 (PM7). Outside the period of 1.5 clocks following executing a read-out instruction, the current is $-3 \mu \mathrm{~A}$ (MAX.).

Remark Unless otherwise specified, shared pin characteristics are the same as port pin characteristics.

AC CHARACTERISTICS

(1) Basic operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V)

Parameter	Symbol	Conditions		Min.	Typ.	Max.	Unit
Cycle time (minimum) instruction execution time)	Tcy	Operated with main system clock	$V_{\text {DD }}=4.5$ to 5.5 V	0.4		32	$\mu \mathrm{s}$
				0.8		32	$\mu \mathrm{s}$
		Operated with subsystem clock		40Note 1	122	125	$\mu \mathrm{s}$
TI1, TI2 input frequency	$\mathrm{f}_{\text {T }}$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V		0		2	MHz
				0		138	kHz
TI1, TI2 input high, low-level width	$\begin{aligned} & \mathrm{f}_{\mathrm{fIH}} \\ & \mathrm{f}_{\text {TIL }} \end{aligned}$	$V_{\text {DD }}=4.5$ to 5.5 V		250			ns
				3.6			$\mu \mathrm{s}$
Interrupt input high, low-level width	finth fintl	INTPO		8/fsam Note 2			$\mu \mathrm{s}$
		INTP1 to INTP3		10			$\mu \mathrm{s}$
RESET low-level width	trsL			10			$\mu \mathrm{s}$

Notes 1. Value when external clock input is used as subsystem clock. When a crystal is used, the value becomes $114 \mu \mathrm{~s}$.
2. Selection of $\mathrm{f}_{\mathrm{sam}}=\mathrm{fx} / 2^{\mathrm{N}+1}, \mathrm{fx} / 64, \mathrm{fx} / 128$ is available ($\mathrm{N}=0$ to 4) by bits 0 and 1 (SCS0, SCS1) of sampling clock select register (SCS).

Tcy vs Vdd (with main system clock operated)

(2) Serial interface $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to 5.5 V$)$
(a) Serial interface channel 0
(i) 3-wire serial I/O mode (SCK0: Internal clock output)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
$\overline{\text { SCKO }}$ cycle time	tкcy1	$V_{D D}=4.5$ to 5.5 V	800			ns
			1600			ns
$\overline{\text { SCKO }}$ high, lowlevel width	$\begin{aligned} & \text { tKH1 } \\ & \text { tKL1 } \end{aligned}$	$V_{D D}=4.5$ to 5.5 V	tkcrı/2-50			ns
			tkcy2/2-100			ns
$\frac{\text { SIO setup time to }}{\operatorname{SCKO}_{\infty}}$	tsik1	$V_{\text {DD }}=4.5$ to 5.5 V	100			ns
			150			ns
SIO hold time from $\overline{\text { SCKO }} \infty$	tks11		400			ns
$\overline{\text { SCKO }} \downarrow \rightarrow$ SOO output delay time	tksol	$\mathrm{C}=100 \mathrm{pFNote}$			300	ns

Note C is a load capacitance of the SCKO or SOO output line.
(ii) 3-wire serial I/O mode (SCKO: External clock input)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
$\overline{\text { SCKO }}$ cycle time	tkcy2	$V_{D D}=4.5$ to 5.5 V	800			ns
			1600			ns
$\overline{\text { SCKO }}$ high, lowlevel width	$\begin{aligned} & \text { tкH2 } \\ & \text { tкL2 } \end{aligned}$	$\mathrm{V}_{\text {DD }}=4.5$ to 5.5 V	tксү2/2-50			ns
			tkcry/2-100			ns
SIO setup time to SCKO	tsik2	VDD $=4.5$ to 5.5 V	100			ns
			150			ns
SIO hold time from $\overline{\text { SCK0 }} \infty$	tks12		400			ns
$\overline{\text { SCKO }} \downarrow \rightarrow$ SOO output delay time	tksoz	$\mathrm{C}=100 \mathrm{pFNote}$			300	ns
$\overline{\text { SCK0 }}$ rise, fail time	$\begin{aligned} & \mathrm{t}_{\mathrm{R} 2} \\ & \mathrm{t}_{\mathrm{F} 2} \end{aligned}$				160	ns

Note C is a load capacitance of the SOO output line.
(iii) SBI mode (SCKO: Internal clock output)

Note R is a load resistance of the $\overline{\text { SCKO }}$, SB0, or SB1 output line, and C is its load capacitance.
(iv) SBI mode (SCK0: External clock input)

Parameter	Symbol	Conditions		Min.	Typ.	Max.	Unit
$\overline{\text { SCK0 }}$ cycle time	tKCY4	$V_{\text {DD }}=4.5$ to 5.5 V		800			ns
				3200			ns
SCKO high, low-level width	tkH4 tkL4	$V_{D D}=4.5$ to 5.5 V		400			ns
				1600			ns
SB0, SB1 setup time to $\overline{\mathrm{SCKO}}_{\infty}$	tsık4	$V_{\text {dD }}=4.5$ to 5.5 V		100			ns
				300			ns
SB0, SB1 hold time from SCK0 ∞	tks14			tkcy4/2			ns
$\overline{\mathrm{SCK}} \downarrow \rightarrow \mathrm{SB} 0, \mathrm{SB} 1$ output delay time	tksO4	$\mathrm{R}=1 \mathrm{k} \Omega, \mathrm{C}=100 \mathrm{pF}$ Note	$\mathrm{V} D \mathrm{DD}=4.5$ to 5.5 V	0		250	ns
				0		1000	ns
$\overline{\mathrm{SCKO}}_{\infty \rightarrow \text { SB0, SB1 } \downarrow ~}$	tksb			tkcy4			ns
SB0, SB1 $\downarrow \rightarrow \overline{\text { SCK0 }} \downarrow$	tsbk			tkcy4			ns
SB0, SB1 high-level width	tsbH			tkcy 4			ns
SB0, SB1 low-level width	tsbL			tkcy4			ns
$\overline{\text { SCKO }}$ rise, fall time	$\begin{aligned} & \mathrm{t}_{\mathrm{R} 4} \\ & \mathrm{t}_{\mathrm{F} 4} \end{aligned}$					160	ns

Note R is a load resistance of the SB0 or SB1 output line, and C is its load capacitance.
(v) 2-wire serial I/O mode ($\overline{\mathrm{SCKO}}$: Internal clock output)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
$\overline{\text { SCKO }}$ cycle time	tkcy		1600			ns
$\overline{\text { SCKO }}$ high-level width	tкн5		tkcys/2-160			ns
SCKO low-level width	tkL5	$V_{D D}=4.5$ to 5.5 V	tkcry/2-50			ns
			tKcys/2-100			ns
SB0, SB1 setup time to $\overline{\mathrm{SCK}}{ }_{\infty}$	tsiks	$V_{D D}=4.5$ to 5.5 V	300			ns
			350			ns
SB0, SB1 hold time from $\overline{\mathrm{SCKO}}_{\infty}$	tks15		600			ns
$\overline{\text { SCK0 }} \downarrow \rightarrow$ SB0, SB1 output delay time	tksos	$\mathrm{R}=1 \mathrm{k} \Omega, \mathrm{C}=100 \mathrm{pF}$ Note	0		300	ns

Note R is a load resistance of the $\overline{\text { SCK0 }}$, SB0, or SB1 output line, and C is its load capacitance.
(vi) 2-wire serial I/O mode (SCK0: External clock input)

Note R is a load resistance of the SB0 or SB1 output line, and C is its load capacitance.
(b) Serial interface channel 1
(i) 3-wire serial I/O mode (SCK1: Internal clock output)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
$\overline{\text { SCK1 }}$ cycle time	tkcy ${ }^{\text {c }}$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	800			ns
			1600			ns
$\overline{\text { SCK1 }}$ high, low-level width	tkH7 tkL7	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	tkcy7/2-50			ns
			tKCr7/2-100			ns
SI1 setup time to $\overline{\mathrm{SCK} 1} \infty$	tsik7	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	100			ns
			150			ns
SI1 hold time from $\overline{\text { SCK1 }} \infty$	tks17		400			ns
$\overline{\overline{\mathrm{SCK} 1} \downarrow} \rightarrow \mathrm{SO} 1$ output delay time	tksot	$C=100 \mathrm{pFNote}$			300	ns

Note C is a load capacitance of the SCK1 or SO1 output line.

(ii) 3-wire serial I/O mode (SCK1: External clock input)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
$\overline{\text { SCK1 }}$ cycle time	tксу8	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	800			ns
			1600			ns
$\overline{\text { SCK1 }}$ high, low-level width	tкH8 tkL8	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	tkcy/2-50			ns
			tkcys/2-100			ns
SI1 setup time to $\overline{\mathrm{SCK} 1} \infty$	tsik8	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	100			ns
			150			ns
SI1 hold time from $\overline{\text { SCK1 }} \propto$	tks18		400			ns
$\overline{\mathrm{SCK} 1} \downarrow \rightarrow$ SO1 output delay time	tksos	$\mathrm{C}=100 \mathrm{pF}$ Note			300	ns
SCK1 rise, fall time	$\begin{aligned} & \text { tr8 } \\ & \text { t } 788 \end{aligned}$				160	ns

Note C is a load capacitance of the SO1 output line.
(iii) 3-wire serial I/O mode with automatic transmit/receive function (SCK1: Internal clock output)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
$\overline{\text { SCK1 }}$ cycle time	tксү9	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	800			ns
			1600			ns
$\overline{\text { SCK1 }}$ high, low-level width	tкня tкı9	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	tkcy/2 - 50			ns
			tkcrol2 - 100			ns
SI1 setup time (to $\overline{\mathrm{SCK} 1} \infty$)	tsik9	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	100			ns
			150			ns
S11 hold time (from $\overline{\text { SCK1 }}$)	tкs19		400			ns
SO1 output delay time from $\overline{\text { SCK }} \downarrow$	tкso9	$\mathrm{C}=100 \mathrm{pF}$ Note			300	ns
STB ∞ from $\overline{\text { SCK1 }} \downarrow$	tsbo		tkcra/2-100		\|kcry/2 + 100	ns
Strobe signal high-level width	tsbw		tkcy9 - 30		tkcr9 +30	ns
Busy signal setup time (to busy signal detection timing)	ters		100			ns
Busy signal hold time	teym	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	100			ns
(from busy signal detection timing)			150			ns
$\overline{\text { SCK1 }} \downarrow$ from busy inactive	tsps				2tkcy9	ns

Note C is a load capacitance of the SO1 output line.
(iv) 3-wire serial I/O mode with automatic transmit/receive function (SCK1: External clock input)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
$\overline{\text { SCK1 }}$ cycle time	tkcy10	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	800			ns
			1600			ns
$\overline{\text { SCK1 }}$ high, low-level width	tкH10 tkL10	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	400			ns
			800			ns
SI1 setup time (to SCK1 ${ }^{\text {a }}$)	tsik10		100			ns
Sl1 hold time (from SCK1 $)$	tks110		400			ns
SO1 output delay time from SCK1 \downarrow	tksolo	$\mathrm{C}=100 \mathrm{pF}$ Note			300	ns
$\overline{\text { SCK1 }}$ rise, fall time	$\begin{aligned} & t_{R 10} \\ & t_{\text {F10 }} \end{aligned}$				160	ns

Note C is a load capacitance of the SO1 output line.

AC Timing Test Point (Excluding X1, XT1 Input)

Clock Timing

TI Timing

TI1, TI2

Serial Transfer Timing

3-wire serial I/O mode:

SBI mode (bus release signal transfer):

SBI mode (command signal transfer):

2-wire serail I/O mode:

3-wire serial I/O mode with automatic transmit/receive function:

3-wire serial I/O mode with automatic transmit/receive function (busy processing):

Note Though it does not become low level actually, here described as it does due to the timing rule.
A / D CONVERTER CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{AVDD}=\mathrm{V}_{\mathrm{DD}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Resolution			8	8	8	bit
Total error ${ }^{\text {Note }} 1$					0.6	\%
Conversion time ${ }^{\text {Note } 2}$	toonv	$1 \mathrm{MHz}-\mathrm{fx}-5.0 \mathrm{MHz}$	19.1		200	$\mu \mathrm{S}$
Sampling time ${ }^{\text {Note }} 3$	tsamp		24/fx			$\mu \mathrm{s}$
Analog signal input voltage	Vian		AVss		AV ${ }_{\text {ref }}$	V
Reference voltage	AV $\mathrm{VeFF}^{\text {f }}$		4.0		AVDD	V
AVref resistor	Rairef		4	14		$\mathrm{k} \Omega$

Notes 1. Quantization error ($\pm 1 / 2 L S B$) is not included. This parameter is indicated as the ratio to the full-scale value.
2. Set the A / D conversion time to $19.1 \mu \mathrm{~s}$ or more.
3. Sampling time depends on the conversion time.

DATA RETENTION CHARACTERISTICS AT LOW SUPPLY VOLTAGE IN DATA MEMORY STOP MODE ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Data retention supply voltage	VDDDR		1.8		5.5	V
Data retention supply current	IDDDR	VDDDR $=2.0$ V Subsystem clock stopped, Feedback resistor non-connected		0.1	10	$\mu \mathrm{~A}$
Release signal set time	tsREL		0			$\mu \mathrm{~s}$
Oscillation settling time	twait	Release by $\overline{\text { RESET }}$		$2^{17 / f x}$		ms
		Release by interrupt	Note		ms	

Note Selection of $212 / \mathrm{fx}$, $214 / \mathrm{fx}$ to $217 / \mathrm{fx}$ is available by bits 0 to 2 (OSTS0 to OSTS2) of oscillation settling time select register (OSTS).

Data Retention Timing (STOP Mode Release by $\overline{\text { RESET }}$)

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)

Interrupt Input Timing

RESET Input Timing
$\overline{R E S E T}$

PROM PROGRAMMING CHARACTERISTICS

DC Characteristics

(1) PROM write mode ($\mathrm{T}_{\mathrm{A}}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=6.5 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.5 \pm 0.3 \mathrm{~V}$)

Parameter	Symbol	Symbol ${ }^{\text {Note }}$	Conditions	Min.	Typ.	Max.	Unit
Input voltage high	V_{IH}	V_{IH}		0.7 VDD		VDD	V
Input voltage low	VIL	VIL		0		0.3 Vdo	V
Output voltage high	Vон	Voн	$\mathrm{IOH}=-1 \mathrm{~mA}$	VDD-1.0			V
Output voltage low	Vol	Vol	$\mathrm{loL}=1.6 \mathrm{~mA}$			0.4	V
Input leakage current	lı	lı	$0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{DD}}$	-10		+10	$\mu \mathrm{A}$
VPP supply voltage	VPP	$V_{\text {PP }}$		12.2	12.5	12.8	V
V DD supply voltage	Vdo	Vcc		6.25	6.5	6.75	\checkmark
VPP supply current	Ipp	Ipp	$\overline{\mathrm{PGM}}=\mathrm{V}_{\text {IL }}$			50	mA
VDD supply current	IDD	Icc				50	mA

(2) PROM read mode ($\left.\mathrm{T}_{\mathrm{A}}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \pm 0.5 \mathrm{~V}, \mathrm{~V}_{P P}=\mathrm{V}_{\mathrm{DD}} \pm 0.6 \mathrm{~V}\right)$

Parameter	Symbol	Symbol Note	Conditions	Min.	Typ.	Max.	Unit
Input voltage high	VIH	V_{H}		0.7 V dD		VDD	V
Input voltage low	VIL	VIL		0		0.3Vdd	V
Output voltage high	Voh1	Voh1	$\mathrm{IOH}=-1 \mathrm{~mA}$	VDD-1.0			V
	Voh2	Voh2	$\mathrm{IOH}=-100 \mu \mathrm{~A}$	VDD - 0.5			V
Output voltage low	Vol	Vol	$\mathrm{loL}=1.6 \mathrm{~mA}$			0.4	V
Input leakage current	ILI	ILI	$0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {DD }}$	-10		+10	$\mu \mathrm{A}$
Output leakage current	ILo	ILo	$0 \leq \mathrm{V}_{\text {OUt }} \leq \mathrm{V}_{\text {dd }}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$	-10		+10	$\mu \mathrm{A}$
VPP supply voltage	VPP	VPP		VDD-0.6	Vod	VDD +0.6	V
VDD supply voltage	VDD	Vcc		4.5	5.0	5.5	V
VPP supply current	IPP	IPP	$V_{P P}=V_{\text {DD }}$			100	$\mu \mathrm{A}$
VDD supply current	IdD	Iccal	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$			50	mA

Note Corresponding μ PD27C1001A symbol

AC Characteristics

(1) PROM write mode

(a) Page program mode ($\mathrm{T}_{\mathrm{A}}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=6.5 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.5 \pm 0.3 \mathrm{~V}$)

Parameter	Symbol	Symbol ${ }^{\text {Note }}$	Conditions	Min.	Typ.	Max.	Unit
Address setup time (to $\overline{\mathrm{OE}} \downarrow$)	tas	tas		2			$\mu \mathrm{s}$
$\overline{\mathrm{OE}}$ setup time	toes	toes		2			$\mu \mathrm{s}$
$\overline{\mathrm{CE}}$ setup time (to $\overline{\mathrm{OE}} \downarrow$)	tces	tces		2			$\mu \mathrm{s}$
Input data setup time (to $\overline{\mathrm{OE}} \downarrow$)	tos	tos		2			$\mu \mathrm{s}$
Address hold time (from $\overline{\mathrm{OE}} \infty$)	tah	tah		2			$\mu \mathrm{s}$
	$\mathrm{tahl}^{\text {a }}$	tahl		2			$\mu \mathrm{S}$
	$\mathrm{tahV}^{\text {a }}$	tahv		0			$\mu \mathrm{s}$
Input data hold time (from $\overline{\mathrm{OE}}_{\infty}$)	tDH	toh		2			$\mu \mathrm{s}$
Data output float delay time from $\overline{\mathrm{OE}}_{\infty}$	tDF	tDF		0		250	ns
V PP setup time (to $\overline{\mathrm{OE}} \downarrow$)	tvps	tvps		1.0			ms
Vdd setup time (to $\overline{\mathrm{OE}} \downarrow$)	tvos	tvcs		1.0			ms
Program pulse width	tpw	tpw		0.095	0.1	0.105	ms
Valid data delay time from $\overline{\mathrm{OE}} \downarrow$	toe	toe				1	$\mu \mathrm{s}$
$\overline{\mathrm{OE}}$ pulse width during data latching	tıw	tıw		1			$\mu \mathrm{s}$
$\overline{\text { PGM }}$ setup time	tPGMS	tpgms		2			$\mu \mathrm{s}$
$\overline{\mathrm{CE}}$ hold time	tcen	tcen		2			$\mu \mathrm{s}$
$\overline{\mathrm{OE}}$ hold time	toen	toen		2			$\mu \mathrm{s}$

(b) Byte program mode ($\mathrm{T}_{\mathrm{A}}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=6.5 \pm 0.25 \mathrm{~V}$, $\mathrm{V}_{\mathrm{PP}}=12.5 \pm 0.3 \mathrm{~V}$)

Parameter	Symbol	Symbol ${ }^{\text {Note }}$	Conditions	Min.	Typ.	Max.	Unit
Address setup time (to $\overline{\text { PGM }} \downarrow$)	tas	tas		2			$\mu \mathrm{s}$
$\overline{\mathrm{OE}}$ setup time	toes	toes		2			$\mu \mathrm{s}$
$\overline{\mathrm{CE}}$ setup time (to $\overline{\mathrm{PGM}} \downarrow$)	tces	tces		2			$\mu \mathrm{s}$
Input data setup time (to $\overline{\mathrm{PGM}} \downarrow$)	tos	tos		2			$\mu \mathrm{s}$
Address hold time (from $\overline{\mathrm{OE}}_{\infty}$)	$\mathrm{t}_{\text {AH }}$	tah		2			$\mu \mathrm{s}$
Input data hold time (from $\overline{\mathrm{PGM}} \infty$)	tD	toh		2			$\mu \mathrm{s}$
Data output float delay time from $\overline{\mathrm{OE}}_{\infty}$	tDF	tDF		0		250	ns
VPP setup time (to $\overline{\text { PGM }} \downarrow$)	tvps	tvps		1.0			ms
Vod setup time (to $\overline{\text { PGM }} \downarrow$)	tvos	tvcs		1.0			ms
Program pulse width	tpw	tpw		0.095		0.105	ms
Valid data delay time from $\overline{\mathrm{OE}} \downarrow$	toe	toe				1	$\mu \mathrm{s}$
$\overline{\mathrm{OE}}$ hold time	toen	-		2			$\mu \mathrm{s}$

Note Corresponding μ PD27C1001A symbol
(2) PROM read mode $\left(\mathrm{T}_{\mathrm{A}}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \pm 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{DD}} \pm 0.6 \mathrm{~V}\right)$

Parameter	Symbol	SymbolNote	Conditions	Min.	Typ.	Max.	Unit
Data output delay time from address	tacc	$t_{\text {Acc }}$	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$			800	ns
Data output delay time from $\overline{\mathrm{CE}} \downarrow$	tce	tce	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$			800	ns
Data output delay time from $\overline{\mathrm{OE}} \downarrow$	toe	toe	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$			200	ns
Data output float delay time from $\overline{\mathrm{OE}}_{\infty}$	tDF	tDF	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$	0		60	ns
Data hold time from address	tor	tor	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$	0			ns

Note Corresponding μ PD27C1001A symbol
(3) PROM programming mode setting ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	Min.	Typ.	Max.
PROM programming mode setup time	tsma		10		

PROM Write Mode Timing (Page Program Mode)

PROM Write Mode Timing (Byte Program Mode)

Cautions 1. Vdd should be applied before Vpp, and cut after Vpp.
2. Vpp should not exceed +13.5 V including overshoot.
3. Disconnection during application of +12.5 V to VPP may have an adverse effect on reliability.

PROM Read Mode Timing

Notes 1. If you want to read within the tacc range, make the $\overline{O E}$ input delay time from the fall of $\overline{C E}$ a maximum of tacc - toe.
2. tdF is the time from when either $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$ first reaches VIH .

PROM Programming Mode Setting Timing

10. CHARACTERISTIC CURVE (REFERENCE VALUE)

Vol vs. loL (Ports 0, 2, 3)

Vol vs. Iol (Port 7)

High-level output voltage VDD - VoH [V]

11. PACKAGE DRAWINGS

100 PIN PLASTIC OFP (14×20)

NOTE
Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM		MILLIMETERS
A	23.6 ± 0.4	INCHES
B	20.0 ± 0.2	0.929 ± 0.016
C	14.0 ± 0.2	$0.795_{-0.008}^{+0.009}$
D	17.6 ± 0.4	$0.551_{-0.008}^{+0.099}$
F	0.8	0.693 ± 0.016
G	0.6	0.031
H	0.30 ± 0.10	0.024
I	0.15	$0.012_{-0.005}^{+0.004}$
J	$0.65($ T.P.)	0.006
K	1.8 ± 0.2	0.026 (T.P.)
L	0.8 ± 0.2	$0.071_{-0.0009}^{+0.008}$
M	$0.15_{-0.05}^{+0.10}$	$0.031_{-0.0008}^{+0.009}$
N	0.10	$0.006_{-0.003}^{+0.004}$
P	2.7	0.004
Q	0.1 ± 0.1	0.106
S	3.0 MAX.	0.004 ± 0.004

100 PIN CERAMIC WOFN

NOTE
Each lead centerline is located within 0.06 mm (0.003 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	X100KW-65A-1
ANCHES		
B	20.6 ± 0.4	0.811 ± 0.016
C	19.0	0.748
D	14.6 ± 0.4	0.543
E	1.94	0.575 ± 0.016
F	2.14	0.076
G	3.5 MAX	0.084
H	0.45 ± 0.10	0.138 MAX.
I	0.06	$0.018_{-0.005}^{+0.004}$
J	0.65	0.003
K	1.0 ± 0.2	0.026
Q	C 0.3	$0.039_{-0.008}^{+0.009}$
R	0.875	C 0.012
S	1.125	0.034
T	R 3.17	0.044
U	12.0	R
W	0.75 ± 0.2	0.125
Z	0.10	$0.030_{-0.009}^{+0.008}$

12. RECOMMENDED SOLDERING CONDITIONS

The conditions listed below shall be met when soldering the μ PD78P0208.
For details of the recommended soldering conditions, refer to our document Semiconductor Device Mounting Technology Manual (C10535E).

Please consult with our sales offices in case any other soldering process is used, or in case soldering is done under different conditions.

Table 12-1 Soldering Conditions for Surface-Mount Devices
μ PD78P0208GF-3BA: 100-pin plastic QFP (14 $\times 20 \mathrm{~mm}$)

Soldering process	Soldering conditions	Recommended conditions
Infrared ray reflow	Peak package's surface temperature: $235^{\circ} \mathrm{C}$ Reflow time: 30 seconds or less (210 ${ }^{\circ} \mathrm{C}$ or more) Maximum allowable number of reflow processes: 2	IR35-00-2
VPS	Peak package's surface temperature: $215^{\circ} \mathrm{C}$ Reflow time: 40 seconds or less $\left(200^{\circ} \mathrm{C}\right.$ or more) Maximum allowable number of reflow processes: 2	VP15-00-2
Wave soldering	Solder temperature: $260^{\circ} \mathrm{C}$ or less Flow time: 10 seconds or less Number of flow processes: 1 Preheating temperature : $120^{\circ} \mathrm{C}$ max. (measured on the package surface)	WS60-00-1
Partial heating method	Terminal temperature: $300^{\circ} \mathrm{C}$ or less Heat time: 3 seconds or less (for one side of a device)	

Caution Do not apply two or more different soldering methods to one chip (except for partial heating method for terminal sections).

APPENDIX A DEVELOPMENT TOOLS

The following tools are available for development of systems using the μ PD78P0208.

Language processing software

RA78K/0Notes 1, 2, 3, 4	Assembler package common to $78 \mathrm{~K} / 0$ series
CC78K/0Notes 1, 2, 3,4	C compiler package common to $78 \mathrm{~K} / 0$ series
DF780208Notes $\mathbf{1 , 2 , 3 , 4}$	Device file for μ PD780208 subseries
CC78K/0-LNotes 1, 2, 3,4	C compiler library source file common to $78 \mathrm{~K} / 0$ series

PROM writing tools

PG-1500	PROM programmer
PA-78P0208GF PA-78P0208KL-T	Programmer adapter connected to PG-1500
PG-1500 controllerNotes 1, 2	

Debugging tools

IE-78000-R	In-circuit emulator common to $78 \mathrm{~K} / 0$ series
IE-78000-R-ANote 8	In-circuit emulator common to $78 \mathrm{~K} / 0$ series (for integrated debugger)
IE-78000-R-BK	Break board common to $78 \mathrm{~K} / 0$ series
IE-780208-R-EM	Emulation board for evaluating μ PD780208 subseries
EP-78064GF-R	Emulation probe common to μ PD78064 subseries
EV-9200GF-100	Socket mounted on target system created for 100-pin plastic QFP
SM78K0Notes 5, 6,7	System simulator common to 78K/0 series
ID78K0Notes 4, 5, 6, 7,8	Integrated debugger for IE-78000-R-A
SD78K/0Notes 1,2	Screen debugger for IE-78000-R
DF780208Notes 1, 2,5,6,7	Device file for μ PD780208 subseries

Real-time OS

RX78K/ONotes 1, 2, 3, 4	Real-time OS for 78K/0 series
MX78KONotes 1, 2, 3,4	OS for $78 \mathrm{~K} / 0$ series

Notes 1. PC-9800 series (MS-DOSTM) based
2. IBM PC/ATTM and compatible (PC DOSTM/IBM DOSTM/MS-DOS) based
3. HP9000 series 300 TM (HP-UXTM) based
4. HP9000 series $700^{\text {TM }}$ (HP-UX) based, SPARCstationTM (Sun OSTM) based, EWS-4800 series (EWSUX/V) based
5. PC-9800 series (MS-DOS + Windows ${ }^{\text {TM }}$) based
6. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS + Windows) based
7. NEWSTM (NEWS-OSTM) based
8. Under development

Remarks 1. Please refer to the 78K/O Series Selection Guide (U11126E) for information on third party development tools.
2. RA78K/0, CC78K/0, SD78K/0, ID78K0 and SM78K0 are used in combination with DF780208.

Fuzzy inference development support system

FE9000Note 1/FE9200Note 3	Fuzzy knowledge data creation tool
FT9080Note 1/FT9085Note 2	Translator
FI78K0Notes 1, 2	Fuzzy inference module
FD78K0Notes 1, 2	Fuzzy inference debugger

Notes 1. PC-9800 series (MS-DOS) based
2. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS) based
3. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS + Windows) based

Remark Please refer to the 78K/0 Series Selection Guide (U11126E) for information on third party development tools.

Conversion socket (EV-9200GF-100) package drawings and recommended pattern to mount the socket

Fig. A-1 Package Drawings of EV-9200GF-100 (Reference) (Unit: mm)
Based on EV-9200GF-100
(1) Package drawing (in mm)

ITEM	MILLIMETERS	INCHES
A	24.6	0.969
B	21	0.827
C	15	0.591
D	18.6	0.732
E	$4-C 2$	$4-C \quad 0.079$
F	0.8	0.031
G	12.0	0.472
H	22.6	0.89
I	25.3	0.996
J	6.0	0.236
K	16.6	0.654
L	19.3	076
M	8.2	0.323
N	8.0	0.315
O	2.5	0.098
P	2.0	0.079
Q	0.35	0.014
R	$\phi 2.3$	$\phi 0.091$
S	$\phi 1.5$	$\phi 0.059$
P		

Fig. A-2 Recommended Pattern to Mount EV-9200GF-100 on a Substrate (Reference) (Unit: mm)

Based on EV-9200GF-100

(2) Pad drawing (in mm)

EV-9200GF-100-PO		
ITEM	MILLIMETERS	INCHES
A	26.3	1.035
B	21.6	0.85
C	$0.65 \pm 0.02 \times 29=18.85 \pm 0.05$	$0.026_{-0.002}^{+0.001} \times 1.142=0.742_{-0.002}^{+0.002}$
D	$0.65 \pm 0.02 \times 19=12.35 \pm 0.05$	$0.026_{-0.002}^{+0.001} \times 0.748=0.486_{-0.002}^{+0.003}$
E	15.6	0.614
F	20.3	0.799
G	12 ± 0.05	$0.472_{-0.002}^{+0.003}$
H	6 ± 0.05	$0.236_{-0.002}^{+0.003}$
I	0.35 ± 0.02	$0.014_{-0.001}^{+0.001}$
J	$\phi 2.36 \pm 0.03$	$\phi 0.093_{-0.002}^{+0.001}$
K	$\phi 2.3$	$\phi 0.091$
L	$\phi 1.57 \pm 0.03$	$\phi 0.062_{-0.002}^{+0.001}$

Caution Dimensions of mount pad for EV-9200 and that for target device (OFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (IEI-1207).

APPENDIX B RELATED DOCUMENTS

Documents related to devices

Document name	Document No.	
	Japanese	English
μ PD780208 Subseries User's Manual	IEU-885	IEU-1413
μ PD780204, 780205, 780206, 780208 Data Sheet	U10436J	U10436E
$78 \mathrm{~K} / 0$ Series User's Manual, Instruction	IEU-849	IEU-1372
$78 \mathrm{~K} / 0$ Series Instruction Set	U10903J	-
$78 \mathrm{~K} / 0$ Series Instruction Summary Sheet	U10904J	-
μ PD780208 Subseries Special Function Registers Table	U10997J	-
$78 \mathrm{~K} / 0$ Series Application Note, Basic (II)	U10121J	U10121E

Documents related to development tools (user's manual)

Document name		Document No.	
		Japanese	English
RA78K Series Assembler Package	Operation	EEU-809	EEU-1399
	Language	EEU-815	EEU-1404
RA78K Series Structured Assembler Preprocessor		EEU-817	EEU-1402
CC78K Series C Compiler	Operation	EEU-656	EEU-1280
	Language	EEU-655	EEU-1284
CC78K/0 C Compiler Application Note	Programming Know-How	EEA-618	EEA-1208
CC78K Series Library Source File		EEU-777	-
PG-1500 PROM Programmer		EEU-651	EEU-1335
PG-1500 Controller, PC-9800 Series (MS-DOS) Base		EEU-704	EEU-1291
PG-1500 Controller, IBM PC/AT (PC DOS) Base		EEU-5008	U10540E
IE-78000-R		EEU-810	EEU-1398
IE-78000-R-A		U10057J	U10057E
IE-78000-R-BK		EEU-867	EEU-1427
IE-780208-R-EM		EEU-977	EEU-1501
EP-78064		EEU-934	EEU-1469
SM78K0 System Simulator	Reference	EEU-5002	U10181E
SM78K Series System Simulator	External Parts User-Open Interface Specification	U10092J	U10092E
SD78K/0 Screen Debugger	Introduction	EEU-852	U10539E
PC-9800 Series (MS-DOS) Base	Reference	EEU-816	-
SD78K/0 Screen Debugger	Introduction	EEU-5024	EEU-1414
IBM PC/AT (PC DOS) Base	Reference	U11279J	EEU-1413

Caution The above documents may be revised without notice. Use the latest versions when you design an application system

Documents related to embedded software (user's manual)

Document name	Document No.		
	Japanese	English	
$78 \mathrm{~K} / 0$ Series Real-time OS	Fundamental	EEU-912	-
	Installation	EEU-911	-
	Technical	EEU-913	-
$78 \mathrm{~K} / 0$ Series OS MX78K0	Fundamental	EEU-5010	-
Tool for Creating Fuzzy Knowledge Data	EEU-829	EEU-1438	
$78 K / 0, ~ 78 K / I I, ~ a n d ~ 87 A D ~ S e r i e s ~ F u z z y ~ I n f e r e n c e ~ D e v e l o p m e n t ~$ Support System, Translator	EEU-862	EEU-1444	
$78 K / 0 ~ S e r i e s ~ F u z z y ~ I n f e r e n c e ~ D e v e l o p m e n t ~ S u p p o r t ~ S y s t e m, ~$ Fuzzy Inference Module	EEU-858	EEU-1441	
$78 K / 0 ~ S e r i e s ~ F u z z y ~ I n f e r e n c e ~ D e v e l o p m e n t ~ S u p p o r t ~ S y s t e m, ~$ Fuzzy Inference Debugger	EEU-921	EEU-1458	

Other documents

Document name	Document No.	
	Japanese	English
Package Manual	IEI-635	IEI-1213
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Device	IEI-620	IEI-1209
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Electrostatic Discharge (ESD) Test	MEM-539	-
Guide to Quality Assurance for Semiconductor Device	MEI-603	MEI-1202
Guide for Products Related to Micro-Computer: Other Companies	MEI-604	-

Caution The above documents may be revised without notice. Use the latest versions when you design

 an application system.
Cautions on CMOS Devices

Countermeasures against static electricity for all MOSs

Caution When handling MOS devices, take care so that they are not electrostatically charged. Strong static electricity may cause dielectric breakdown in gates. When transporting or storing MOS devices, use conductive trays, magazine cases, shock absorbers, or metal cases that NEC uses for packaging and shipping. Be sure to ground MOS devices during assembling. Do not allow MOS devices to stand on plastic plates or do not touch pins. Also handle boards on which MOS devices are mounted in the same way.

CMOS-specific handling of unused input pins

Caution Hold CMOS devices at a fixed input level.
Unlike bipolar or NMOS devices, if a CMOS device is operated with no input, an intermediatelevel input may be caused by noise. This allows current to flow in the CMOS device, resulting in a malfunction. Use a pull-up or pull-down resistor to hold a fixed input level. Since unused pins may function as output pins at unexpected times, each unused pin should be separately connected to the VDd or GND pin through a resistor.
If handling of unused pins is documented, follow the instructions in the document.

Statuses of all MOS devices at initialization

Caution The initial status of a MOS device is unpredictable when power is turned on.
Since characteristics of a MOS device are determined by the amount of ions implanted in molecules, the initial status cannot be determined in the manufacture process. NEC has no responsibility for the output statuses of pins, input and output settings, and the contents of registers at power on. However, NEC assures operation after reset and items for mode setting if they are defined.
When you turn on a device having a reset function, be sure to reset the device first.

FIP is a registered trademark of NEC Corporation.
IEBus and QTOP are trademarks of NEC Corporation.
MS-DOS and Windows are trademarks of Microsoft Corporation.
IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.
HP9000 series 300, HP9000 series 700, and HP-UX are trademarks of Hewlett-Packard Company
SPARCstation is a trademark of SPARC International, Inc.
SunOS is a trademark of Sun Microsystems, Inc.
NEWS and NEWS-OS are trademarks of Sony Corporation.

Some related documents may be preliminary versions. Note that, however, what documents are preliminary is not indicated in this document.

Abstract

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

License not needed	$: \mu$ PD78P0208KL-T
The customer must judge the need for licence	$: \mu$ PD78P0208GF-3BA

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.
Anti-radioactive design is not implemented in this product.

