

mos integrated circuit $\mu PD78P018F$

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD78P018F is a member of the μ PD78018F Subseries within the 78K/0 Series. The internal mask ROM of the μ PD78018F is replaced with one-time PROM or EPROM.

Because the μ PD78P018F can be programmed by users, it is suited for applications involving the evaluation of systems in development stages, small-scale production of many different products, and rapid development and time-to-market of new products.

Caution The μ PD78P018FDW and 78P018FKK-S are not guaranteed to maintain the reliability level required for mass production of the customer's devices. Use only experimentally or for evaluation purposes during trial manufacture.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

μPD78018F, 78018FY Subseries User's Manual: U10659E 78K/0 Series User's Manual–Instructions: U12326E

FEATURES

- Pin compatible with mask ROM version (except VPP pin)
- Internal PROM: 60 Kbytes Note 1
 μPD78P018FDW, 78P018FKK-S: Re-programmable (suited for system evaluation)
 μPD78P018FCW, 78P018FGC-AB8, 78P018FGK-8A8: Programmable only once (suited for small-scale production)
- Internal high-speed RAM: 1024 bytes Note 1
- Internal expansion RAM: 1024 bytes Note 2
- Internal buffer RAM: 32 bytes
- Operable over same supply voltage range as mask ROM version: VDD = 1.8 to 5.5 V (except an A/D converter)
- QTOP[™] microcontroller supported
- **Notes 1.** The capacities of internal PROM and internal high-speed RAM can be changed by means of the internal memory size switching register (IMS).
 - 2. The capacity of the internal expansion RAM can be changed by means of the internal expansion RAM size switching register (IXS).
- **Remarks 1.** QTOP Microcontroller is a general term for microcontrollers that incorporate one-time PROM and are totally supported by NEC's programming service (from programming to marking, screening and verification).
 - 2. For differences between the PROM version and mask ROM versions, refer to 1. DIFFERENCES BETWEEN μ PD78P018F AND MASK ROM VERSIONS.

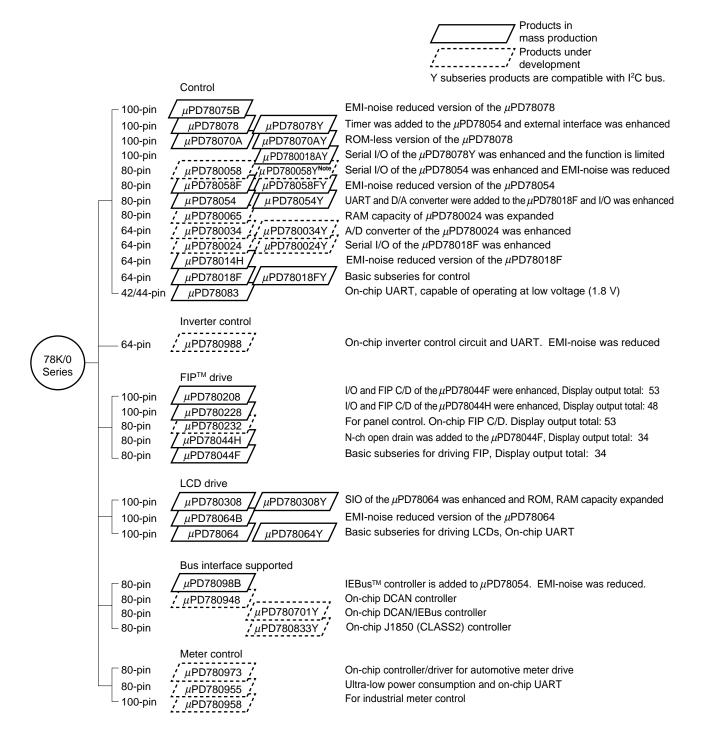
In this document, the term PROM is used in parts common to one-time PROM versions and EPROM versions.

The information in this document is subject to change without notice.

ORDERING INFORMATION

Part Number	Package	Internal ROM
μPD78P018FCW	64-pin plastic shrink DIP (750 mils)	One-time PROM
μ PD78P018FDW	64-pin ceramic shrink DIP (with window) (750 mils)	EPROM
μ PD78P018FGC-AB8	64-pin plastic QFP (14 × 14 mm)	One-time PROM
μ PD78P018FGK-8A8	64-pin plastic LQFP (12 × 12 mm)	One-time PROM
μ PD78P018FKK-S	64-pin ceramic WQFN (14 \times 14 mm)	EPROM

QUALITY GRADE


Part Number	Package	Quality Grade
μPD78P018FCW	64-pin plastic shrink DIP (750 mils)	Standard
μ PD78P018FDW	64-pin ceramic shrink DIP (with window) (750 mils)	Not applicable
μ PD78P018FGC-AB8	64-pin plastic QFP (14 × 14 mm)	Standard
μ PD78P018FGK-8A8	64-pin plastic LQFP (12 × 12 mm)	Standard
μ PD78P018FKK-S	64-pin ceramic WQFN (14 × 14 mm)	Not applicable

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

NEC μ PD78P018F

★ 78K/0 SERIES LINEUP

The products in the 78K/0 Series are listed below. The names enclosed in boxes are subseries names.

Note Under planning

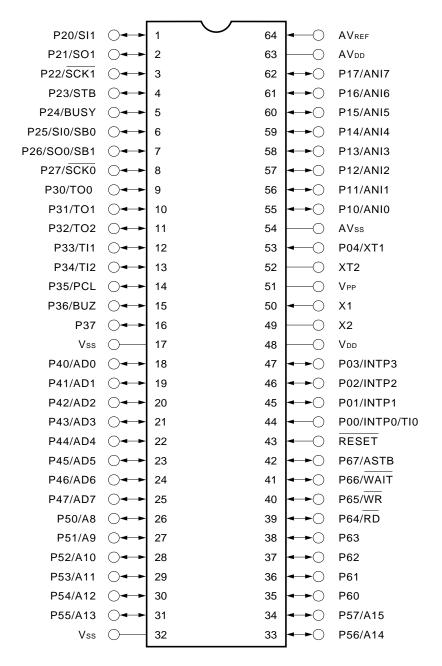
The major functional differences among subseries are shown below.

	Function	ROM		Tin	ner			10-bit		Serial Interface	I/O	V _{DD}	External
Subseries	Name	Capacity	8-bit	16-bit	Watch	WDT	A/D	A/D	D/A			Value	Expansion
Control	μPD78075B	32 K to 40 K	4 ch	1 ch	1 ch	1 ch	8 ch	_	2 ch	3 ch (UART: 1 ch)	88	1.8 V	Available
	μPD78078	48 K to 60 K											
	μPD78070A	_									61	2.7 V	
	μPD780058	24 K to 60 K	2 ch							3 ch (time-division UART: 1 ch)	68	1.8 V	
	μPD78058F	48 K to 60 K								3 ch (UART: 1 ch)	69	2.7 V	
	μPD78054	16 K to 60 K										2.0 V	
	μPD780065	40 K to 48 K							_	4 ch (UART: 1 ch)	60	2.7 V	
	μPD780034	8 K to 32 K					_	8 ch		3 ch (UART: 1 ch, time-	51	1.8 V	
	μPD780024						8 ch	_		division 3-wire: 1 ch)			
	μPD78014H									2 ch	53		
	μPD78018F	8 K to 60 K											
	μPD78083	8 K to 16 K		_	_	-				1 ch (UART: 1 ch)	33		_
Inverter control	μPD780988	16 K to 60 K	3 ch	Note	_	1 ch	_	8 ch	_	3 ch (UART: 2 ch)	47	4.0 V	Available
FIP drive	μPD780208	32 K to 60 K	2 ch	1 ch	1 ch	1 ch	8 ch	_	_	2 ch	74	2.7 V	_
	μPD780228	48 K to 60 K	3 ch	_	_					1 ch	72	4.5 V	
	μPD780232	16 K to 24 K					4 ch			2 ch	40		
	μPD78044H	32 K to 48 K	2 ch	1 ch	1 ch		8 ch			1 ch	68	2.7 V	
	μPD78044F	16 K to 40 K								2 ch			
LCD drive	μPD780308	48 K to 60 K	2 ch	1 ch	1 ch	1 ch	8 ch	_	_	3 ch (time-division UART: 1 ch)	57	2.0 V	_
	μPD78064B	32 K								2 ch (UART: 1 ch)			
	μPD78064	16 K to 32 K											
Bus interface	μPD78098B	40 K to 60 K	2 ch	1 ch	1 ch	1 ch	8 ch		2 ch	3 ch (UART: 1 ch)	69	2.7 V	_
supported	μPD780948	60 K		2 ch					_		79	4.0 V]
Meter	μPD780973	24 K to 32 K	3 ch	1 ch	1 ch	1 ch	5 ch		_	2 ch (UART: 1 ch)	56	4.5 V	_
control	μPD780955	40 K	6 ch		_		1 ch			2 ch (UART: 2 ch)	50	2.2 V	
	μPD780958	48 K to 60 K	4 ch	2 ch			_			2 ch (UART: 1 ch)	69		

Note 16-bit timer: 2 channels 10-bit timer: 1 channel

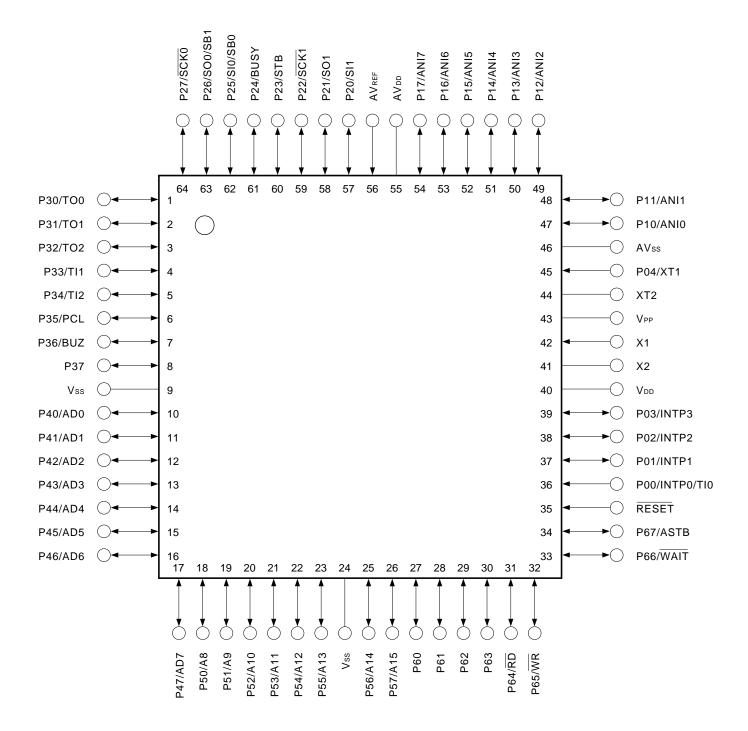
FUNCTION OVERVIEW

	Item	Function					
Internal	PROM	60 Kbytes Note 1					
memory	High-speed RAM	1024 bytes Note 1					
	Expansion RAM	1024 bytes Note 2					
	Buffer RAM	32 bytes					
Memory	space	64 Kbytes					
General-	purpose registers	8 bits × 32 registers (8 bits × 8 registers × 4 banks)					
Minimum	instruction execution	Minimum instruction execution time cycle modification function provided.					
time	When main system clock selected	0.4 μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs (@10.0-MHz operation)					
	When subsystem clock selected	122 μs (@32.768-kHz operation)					
Instruction	n set	 • 16-bit operation • Multiply/divide (8 bits × 8 bits, 16 bits ÷ 8 bits) • Bit manipulate (set, reset, test, Boolean operation) • BCD adjust, etc. 					
I/O ports		Total: 53					
		CMOS input: 2					
		• CMOS I/O: 47					
L.,_		N-channel open-drain I/O (15-V withstand voltage): 4					
A/D conv	erter	 8-bit resolution × 8 channels Operable over a wide power supply voltage range: VDD = 2.2 to 5.5 V 					
Serial int	erface	3-wire serial I/O/SBI/2-wire serial I/O mode selectable: 1 channel					
		3-wire serial I/O mode (on-chip max. 32 bytes automatic data transmit/receive function): 1 channel					
Timer		16-bit timer/event counter: 1 channel 8-bit timer/event counter: 2 channels Watch timer: 1 channel Watchdog timer: 1 channel					
Timer ou	tput	3 (14-bit PWM output × 1)					
Clock ou	tput	39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz (@10.0-MHz operation with main system clock), 32.768 kHz (@32.768-kHz operation with subsystem clock)					
Buzzer o	utput	2.4 kHz, 4.9 kHz, 9.8 kHz (@10.0-MHz operation with main system clock)					
Vectored	Maskable	Internal: 8, External: 4					
interrupt	Non-maskable	Internal: 1					
source	Software	1					
Test input		Internal: 1, External: 1					
Supply voltage		V _{DD} = 1.8 to 5.5 V					
Operating ambient temperature							
Package		• 64-pin plastic shrink DIP (750 mils) • 64-pin ceramic shrink DIP (with window) (750 mils) • 64-pin plastic QFP (14 × 14 mm) • 64-pin plastic LQFP (12 × 12 mm) • 64-pin ceramic WQFN (14 × 14 mm)					


Notes 1. The internal PROM and internal high-speed RAM capacities can be changed with the internal memory size switching register (IMS).

2. The internal expansion RAM capacity can be changed with the internal expansion RAM size switching register (IXS).

PIN CONFIGURATION (Top View)


- (1) Normal operating mode
 - 64-pin Plastic Shrink DIP (750 mils)
 μPD78P018FCW
 - 64-pin Ceramic Shrink DIP (with window) (750 mils)
 μPD78P018FDW

Cautions 1. Connect VPP pin directly to Vss.

- 2. Connect AVDD pin to VDD.
- 3. Connect AVss pin to Vss.

- 64-pin Plastic QFP (14 \times 14 mm) μ PD78P018FGC-AB8
- 64-pin Plastic LQFP (12 \times 12 mm) μ PD78P018FGK-8A8
- 64-pin Ceramic WQFN (14 \times 14 mm) μ PD78P018FKK-S

Cautions 1. Connect VPP pin directly to Vss.

- 2. Connect AVDD pin to VDD.
- 3. Connect AVss pin to Vss.

P40 to P47:

Port 4

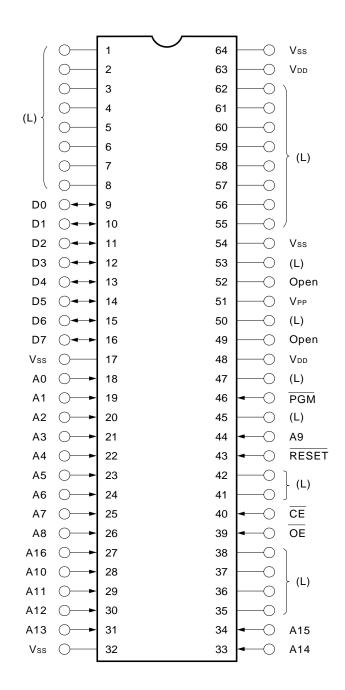
PCL: A8 to A15: Address Bus Programmable Clock RESET: AD0 to AD7: Address/Data Bus Reset ANI0 to ANI7: **Analog Input** RD: Read Strobe

ASTB: Address Strobe SB0, SB1: Serial Bus AVDD: SCK0, SCK1: Serial Clock Analog Power Supply AVREF: Analog Reference Voltage SIO, SI1: Serial Input

AVss: **Analog Ground** SO0, SO1: Serial Output BUSY: Busy STB: Strobe

BUZ: Buzzer Clock TI0 to TI2: Timer Input Interrupt from Peripherals TO0 to TO2: Timer Output INTP0 to INTP3: P00 to P04: Port 0 VDD: Power Supply

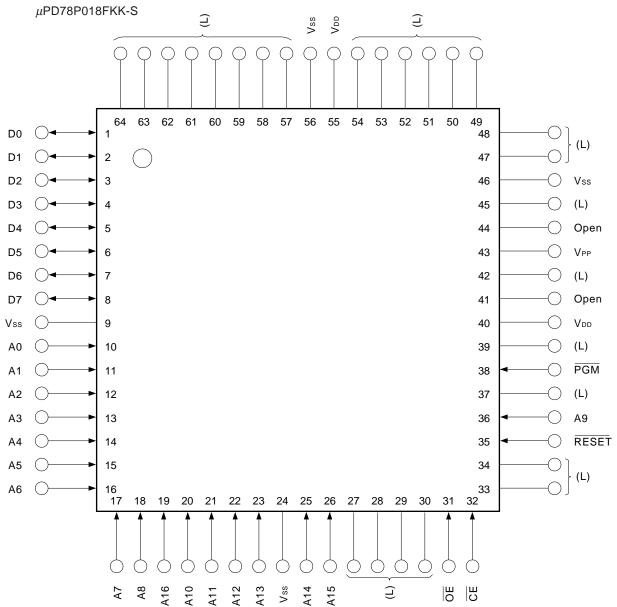
P10 to P17: Port 1 VPP: **Programming Power Supply**


P20 to P27: Port 2 Ground Vss: WAIT: P30 to P37: Port 3 Wait WR:

P50 to P57: Port 5 X1, X2: Crystal (Main System Clock) P60 to P67: XT1, XT2: Crystal (Subsystem Clock) Port 6

Write Strobe

(2) PROM programming mode


- 64-pin Plastic Shrink DIP (750 mils) μ PD78P018FCW
- 64-pin Ceramic Shrink DIP (with window) (750 mils) μ PD78P018FDW

Cautions 1. (L): Independently connect to Vss via a pull-down resistor.

Vss: Connect to GND.
 RESET: Set to low level.
 Open: Leave open.

- 64-pin Plastic QFP (14 \times 14 mm) μ PD78P018FGC-AB8
- 64-pin Plastic LQFP (12 \times 12 mm) μ PD78P018FGK-8A8
- 64-pin Ceramic WQFN (14 \times 14 mm)

Cautions 1. (L): Independently connect to Vss via a pull-down resistor.

Vss: Connect to GND.
 RESET: Set to low level.
 Open: Leave open.

A0 to A16: RESET: Reset

 CE:
 Chip Enable
 VDD:
 Power Supply


D0 to D7: Data Bus VPP: Programming Power Supply

OE: Output Enable Vss: Ground

PGM: Program

BLOCK DIAGRAM

CONTENTS

1.	DIFFERENCES BETWEEN μ PD78P018F AND MASK ROM VERSIONS	13
2.	PIN FUNCTIONS	. 14
	2.1 Pins During Normal Operating Mode	. 14
	2.2 Pins During PROM Programming Mode	. 16
	2.3 Pin I/O Circuits and Recommended Connection of Unused Pins	. 17
3.	INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)	. 19
4.	INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)	20
5.	PROM PROGRAMMING	. 21
	5.1 Operating Modes	. 21
	5.2 PROM Write Procedure	. 23
	5.3 PROM Read Procedure	. 27
6.	PROGRAM ERASURE (FOR μ PD78P018FDW, 78P018FKK-S)	. 28
7.	OPAQUE FILM ON ERASURE WINDOW (FOR μ PD78P018FDW, 78P018FKK-S)	28
8.	ONE-TIME PROM VERSION SCREENING	28
9.	ELECTRICAL SPECIFICATIONS	. 29
10.	CHARACTERISTIC CURVE (REFERENCE VALUE)	58
11.	PACKAGE DRAWINGS	. 59
12.	RECOMMENDED SOLDERING CONDITIONS	64
ΑP	PENDIX A. DEVELOPMENT TOOLS	65
ΔĐI	PENDLY R RELATED DOCUMENTS	71

1. DIFFERENCES BETWEEN μ PD78P018F AND MASK ROM VERSIONS

The μ PD78P018F is a single-chip microcontroller with an on-chip one-time PROM or EPROM that has program write, erase, and rewrite capability.

It is possible to make all the functions except for PROM specification and mask option of P60 to P63 pins, the same as those of mask ROM versions (μ PD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, and 78018F) by setting the internal memory size switching register (IMS) and the internal expansion RAM size switching register (IXS). Differences between the μ PD78P018F and mask ROM versions are shown in Table 1-1.

Table 1-1. Differences between μ PD78P018F and Mask ROM Versions

Parameter	μPD78P018F	Mask ROM Versions
Internal ROM type	One-time PROM or EPROM	Mask ROM
Internal ROM capacity	60 Kbytes	μPD78011F: 8 Kbytes μPD78012F: 16 Kbytes μPD78013F: 24 Kbytes μPD78014F: 32 Kbytes μPD78015F: 40 Kbytes μPD78016F: 48 Kbytes μPD78018F: 60 Kbytes
Internal high-speed RAM capacity	1024 bytes	μPD78011F: 512 bytes μPD78012F: 512 bytes μPD78013F: 1024 bytes μPD78014F: 1024 bytes μPD78015F: 1024 bytes μPD78016F: 1024 bytes μPD78018F: 1024 bytes
Internal expansion RAM capacity	1024 bytes	μPD78011F: No μPD78012F: No μPD78013F: No μPD78014F: No μPD78015F: 512 bytes μPD78016F: 512 bytes μPD78018F: 1024 bytes
Internal ROM, internal high-speed RAM capacity changeable with internal memory size switching register (IMS)	Yes Note 1	No
Internal expansion RAM capacity changeable with internal expansion RAM size switching register (IXS)	Yes Note 2	No
IC pin	No	Yes
V _{PP} pin	Yes	No
Mask option of P60 to P63 pins	Pull-up resistor is not incorporated.	Pull-up resistor can be incorporated by mask option.
Electrical specifications, recommended soldering conditions	See respective data sheet of	individual products.

- **Notes 1.** The internal PROM capacity becomes 60 Kbytes and the internal high-speed RAM capacity becomes 1024 bytes by input of RESET.
 - 2. The internal expansion RAM capacity becomes 1024 bytes by input of RESET.

Caution There are differences in noise immunity and noise radiation between the PROM and mask ROM versions. When pre-producing an application set with the PROM version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations for the commercial samples (not engineering samples) of the mask ROM version.

2. PIN FUNCTIONS

2.1 Pins During Normal Operating Mode

(1) Port Pins (1/2)

Pin Name	I/O		Function	After Reset	Alternate Function
P00	Input	Port 0	Input only	Input	INTP0/TI0
P01	Input/	5-bit I/O port	Input/output can be specified in 1-bit units.	Input	INTP1
P02	output		When used as an input port, an on-chip pull-up resistor can be		INTP2
P03			connected by software.		INTP3
P04 Note 1	Input		Input only	Input	XT1
P10 to P17	Input/ output	Input/output ca	Port 1 8-bit input/output port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be connected by		
P20	Input/	Port 2		Input	SI1
P21	output		•		SO1
P22			an be specified in 1-bit units.		SCK1
P23		software.	an input port, an on-chip pull-up resistor can be connected by		STB
P24					BUSY
P25					SI0/SB0
P26					SO0/SB1
P27					SCK0
P30	Input/	Port 3		Input	TO0
P31	output				TO1
P32			an be specified in 1-bit units. an input port, an on-chip pull-up resistor can be connected by		TO2
P33		software.	an input port, an one pull up received can be connected by		TI1
P34					TI2
P35					PCL
P36					BUZ
P37					_
P40 to P47	Input/ output	Input/output ca When used as software.	out port. an be specified in 8-bit units. an input port, an on-chip pull-up resistor can be connected by (KRIF) is set to 1 by falling edge detection.	Input	AD0 to AD7

Notes 1. When using the P04/XT1 pin as an input port, set bit 6 (FRC) of the processor clock control register (PCC) to 1. Do not use the internal feedback resistor of the subsystem clock oscillator.

2. When using the P10/ANI0 to P17/ANI7 pins as the A/D converter analog input, set port 1 to input mode. This causes the internal pull-up resistor is automatically disabled.

(1) Port Pins (2/2)

Pin Name	I/O	Fun	ction	After Reset	Alternate Function
P50 to P57	Input/ output	Port 5 8-bit input/output port. LEDs can be driven directly. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be connected by software.			A8 to A15
P60 P61 P62 P63	Input/ output	Port 6 8-bit input/output port. Input/output can be specified in 1-bit units.	N-ch open-drain input/output port. LEDs can be driven directly.	Input	_
P64 P65	-		When used as an input port, an on-chip pull-up resistor can be connected by software.		RD WR
P66 P67			Sutware.		ASTB

(2) Non-port Pins (1/2)

Pin Name	Pin Name I/O Function		After	Alternate
	., 0		Reset	Function
INTP0	Input/	External interrupt request input by which the valid edge (rising edge, falling	Input	P00/TI0
INTP1		edge, or both rising edge and falling edge) can be specified.		P01
INTP2				P02
INTP3		Falling edge detection external interrupt request input.		P03
SI0	Input	Serial interface serial data input.	Input	P25/SB0
SI1				P20
SO0	Output	Serial interface serial data output.	Input	P26/SB1
SO1				P21
SB0	Input/	Serial interface serial data input/output.	Input	P25/SI0
SB1	output			P26/SO0
SCK0	Input/	Serial interface serial clock input/output.	Input	P27
SCK1	output			P22
STB	Output	Serial interface automatic transmit/receive strobe output.	Input	P23
BUSY	Input	Serial interface automatic transmit/receive busy input.	Input	P24
TIO	Input	External count clock input to 16-bit timer (TM0).	Input	P00/INTP0
TI1		External count clock input to 8-bit timer (TM1).		P33
TI2		External count clock input to 8-bit timer (TM2).		P34
TO0	Output	16-bit timer (TM0) output (shared as 14-bit PWM output).	Input	P30
TO1		8-bit timer (TM1) output.		P31
TO2		8-bit timer (TM2) output.		P32
PCL	Output	Clock output (for main system clock, subsystem clock trimming).	Input	P35
BUZ	Output	Buzzer output.	Input	P36

(2) Non-port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
AD0 to AD7	Input/ output	Low-order address/data bus at external memory expansion.	Input	P40 to P47
A8 to A15	Output	High-order address bus at external memory expansion.	Input	P50 to P57
RD	Output	External memory read operation strobe signal output.	Input	P64
WR		External memory write operation strobe signal output.		P65
WAIT	Input	Wait insertion at external memory access.	Input	P66
ASTB	Output	Strobe output which latches the address information output at port 4 and port 5 to access external memory.		P67
ANI0 to ANI7	Input	A/D converter analog input.		P10 to P17
AVREF	Input	A/D converter reference voltage input.	_	_
AVDD	_	A/D converter analog power supply. Connect to VDD.	_	_
AVss	_	A/D converter ground potential. Connect to Vss.	_	_
RESET	Input	System reset input.	_	_
X1	Input	Main system clock oscillation crystal connection.	_	_
X2	_		_	_
XT1	Input	Subsystem clock oscillation crystal connection.	Input	P04
XT2	_			_
V _{DD}	_	Positive power supply.	_	_
VPP	_	High voltage applied during program write/verify. In normal operating mode, connect to Vss directly.		_
Vss		Ground potential.		_

2.2 Pins During PROM Programming Mode

Pin Name	I/O	Function
RESET	Input	Sets PROM programming mode.
		When +5 V or +12.5 V is applied to the VPP and low level is applied to RESET pin, microcontroller is
		shifted to PROM programming mode.
V _{PP}	Input	Applies high voltage during PROM programming mode setting and program write/verify.
A0 to A16	Input	Address bus
D0 to D7	Input/	Data bus
	output	
CE	Input	PROM enable input/program pulse input.
ŌE	Input	Read strobe input to PROM.
PGM	Input	Program/program inhibit input in PROM programming mode.
V _{DD}		Positive power supply
Vss	_	Ground potential

2.3 Pin I/O Circuits and Recommended Connection of Unused Pins

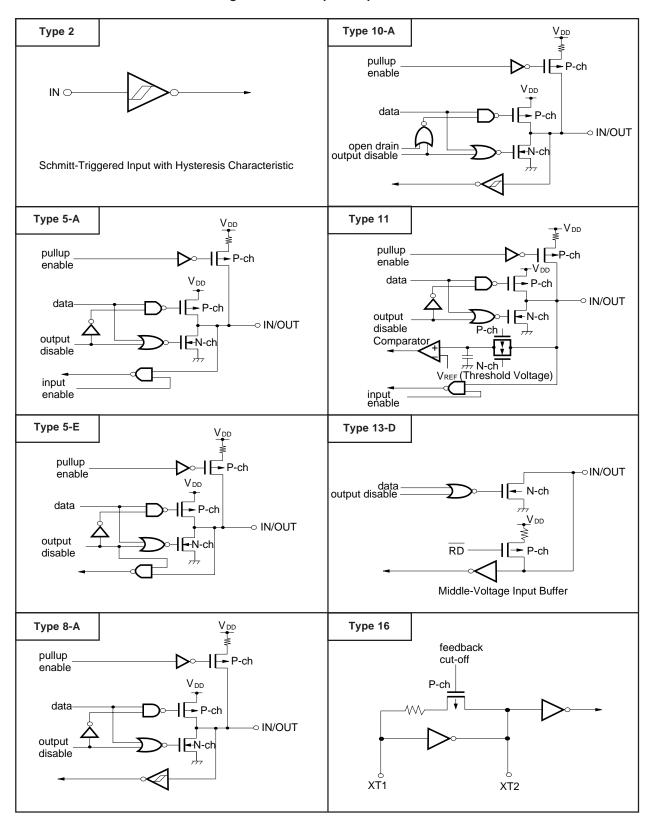

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 2-1. For the input/output circuit configuration of each type, see Figure 2-1.

Table 2-1. Types of Pin I/O Circuits

Pin Name	Input/output Circuit Type	I/O	Recommended Connection when Not Used
P00/INTP0/TI0	2	Input	Connect to Vss.
P01/INTP1	8-A	Input/output	Independently connect to Vss via a resistor.
P02/INTP2			
P03/INTP3			
P04/XT1	16	Input	Connect to V _{DD} .
P10/ANI0 to P17/ANI7	11	Input/output	Independently connect to VDD or VSS via a resistor.
P20/SI1	8-A		
P21/S01	5-A		
P22/SCK1	8-A		
P23/STB	5-A		
P24/BUSY	8-A		
P25/SI0/SB0	10-A		
P26/S00/SB1			
P27/SCK0			
P30/TO0	5-A		
P31/TO1			
P32/TO2			
P33/TI1	8-A		
P34/TI2			
P35/PCL	5-A		
P36/BUZ			
P37			
P40/AD0 to P47/AD7	5-E		Independently connect to VDD via a resistor.
P50/A8 to P57/A15	5-A		Independently connect to VDD or Vss via a resistor.
P60 to P63	13-D		Independently connect to VDD via a resistor.
P64/RD	5-A		Independently connect to VDD or VSS via a resistor.
P65/WR			
P66/WAIT			
P67/ASTB			
RESET	2	Input	_
XT2	16	_	Leave open.
AVREF			Connect to Vss .
AVDD			Connect to V _{DD} .
AVss			Connect to Vss .
V _{PP}			Connect directly to Vss.

Figure 2-1. Pin Input/Output Circuits

3. INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)

This register is used to disable the use of part of the internal memory by software. By setting this register (IMS), it is possible to get the same memory map as that of the mask ROM versions with a different internal memory (ROM, RAM).

IMS is set with an 8-bit memory manipulate instruction.

RESET input sets IMS to CFH.

Symbol 6 5 3 2 1 0 Address After reset R/W ROM3 ROM2 ROM1 ROM0 IMS RAM2 RAM1 RAM0 0 FFF0H CFH W Selection of Internal ROM ROM3 ROM2 ROM1 ROM0 Capacity 0 0 1 0 8 Kbytes 0 1 0 0 16 Kbytes 0 24 Kbytes 1 1 0 32 Kbytes 1 0 0 0 1 0 40 Kbytes 1 1 0 48 Kbytes 56 Kbytes Note 1 1 1 0 1 60 Kbytes Other than above Setting prohibited Selection of Internal High-Speed RAM RAM2 RAM1 RAM0 Capacity 0 0 512 bytes 1 1 0 1024 bytes Other than above Setting prohibited

Figure 3-1. Internal Memory Size Switching Register Format

Note When the external device expansion function is used, the internal ROM capacity should be set to 56 Kbytes or less.

Table 3-1 shows the setting values of IMS which make the memory map the same as that of the mask ROM versions.

Target Mask ROM Versions	IMS Setting Values
μPD78011F	42H
μPD78012F	44H
μPD78013F	C6H
μPD78014F	C8H
μPD78015F	CAH
μPD78016F	ССН
μPD78018F	CFH

Table 3-1. Internal Memory Size Switching Register Setting Values

4. INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)

This register is used to disable the use of part of the internal expansion RAM capacity by software. By setting this register (IXS), it is possible to get the same memory map as that of the mask ROM versions with a different internal expansion RAM.

IXS is set with an 8-bit memory manipulate instruction.

RESET input sets IXS to 0AH.

Figure 4-1. Internal Expansion RAM Size Switching Register Format

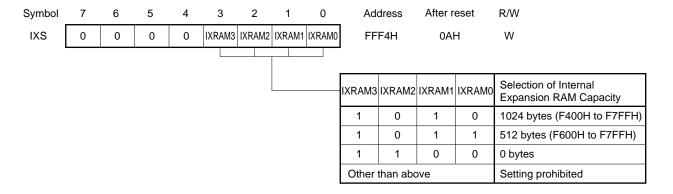


Table 4-1 shows the setting values of IXS which make the memory map the same as that of the mask ROM versions.

Table 4-1. Internal Expansion RAM Size Switching Register Setting Values

Target Mask ROM Versions	IXS Setting Values
μPD78011F	0CH ^{Note}
μPD78012F	
μPD78013F	
μPD78014F	
μPD78015F	0BH
μPD78016F	
μPD78018F	0AH

Note Even if a program for the μ PD78P018F in which "MOV IXS, #0CH" is written is executed in the μ PD78011F, 78012F, 78013F, and 78014F, the operations are not affected.

5. PROM PROGRAMMING

The μ PD78P018F has an internal 60-Kbyte PROM as a program memory. For programming, set the PROM programming mode by setting the VPP and \overline{RESET} pins. For the handling of unused pins, refer to **PIN CONFIGURATION (Top View) (2) PROM programming mode**.

Caution When writing in a program, use locations 0000H-EFFFH (Specify the last address as EFFFH). You cannot write in using a PROM programmer that cannot specify the addresses to write.

5.1 Operating Modes

When +5 V or +12.5 V is applied to the V_{PP} pin and the low-level signal is applied to the $\overline{\text{RESET}}$ pin, the PROM programming mode is set. This mode will become the operating mode as shown in Table 5-1 when the $\overline{\text{CE}}$, $\overline{\text{OE}}$, and $\overline{\text{PGM}}$ pins are set.

Further, when the read mode is set, it is possible to read the contents of the PROM.

Table 5-1. Operating Modes of PROM Programming

Pin Operating Mode	RESET	VPP	Vdd	CE	ŌĒ	PGM	D0 to D7
Page data latch	L	+12.5 V	+6.5 V	Н	L	Н	Data input
Page write				Н	Н	L	High-impedance
Byte write				L	Н	L	Data input
Program verify				L	L	Н	Data output
Program inhibit				×	Н	Н	High-impedance
				×	L	L	
Read		+5 V	+5 V	L	L	Н	Data output
Output disable				L	Н	×	High-impedance
Standby				Н	×	×	High-impedance

 \times : L or H

(1) Read mode

Read mode is set if $\overline{CE} = L$, $\overline{OE} = L$ is set.

(2) Output disable mode

Data output becomes high-impedance and is in the output disable mode if $\overline{OE} = H$ is set.

Therefore, it allows data to be read from any device by controlling the \overline{OE} pin, if multiple μ PD78P018Fs are connected to the data bus.

(3) Standby mode

Standby mode is set if $\overline{CE} = H$ is set.

In this mode, data outputs become high-impedance irrespective of the \overline{OE} status.

(4) Page data latch mode

Page data latch mode is set if $\overline{CE} = H$, $\overline{PGM} = H$, $\overline{OE} = L$ are set at the beginning of page write mode. In this mode, 1 page 4-byte data is latched in an internal address/data latch circuit.

(5) Page write mode

After 1 page 4 bytes of addresses and data are latched in the page data latch mode, a page write is executed by applying a 0.1-ms program pulse (active low) to the \overline{PGM} pin with $\overline{CE} = H$, $\overline{OE} = H$. Then, program verification can be performed, if $\overline{CE} = L$, $\overline{OE} = L$ are set.

If programming is not performed by a one-time program pulse, X ($X \le 10$) write and verification operations should be executed repeatedly.

(6) Byte write mode

Byte write is executed when a 0.1-ms program pulse (active low) is applied to the \overline{PGM} pin with $\overline{CE} = L$, $\overline{OE} = H$. Then, program verification can be performed if $\overline{OE} = L$ is set.

If programming is not performed by a one-time program pulse, X ($X \le 10$) write and verification operations should be executed repeatedly.

(7) Program verify mode

Program verify mode is set if $\overline{CE} = L$, $\overline{PGM} = H$, $\overline{OE} = L$ are set. In this mode, check if a write operation is performed correctly, after the write.

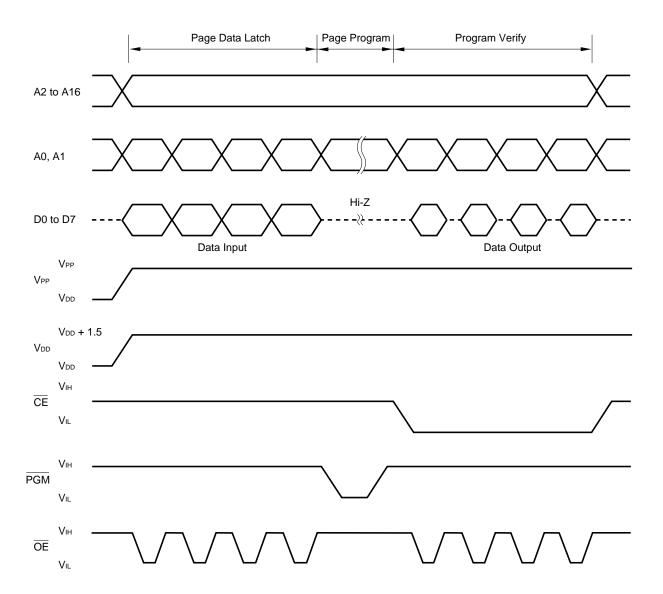
(8) Program inhibit mode

Program inhibit mode is used when the \overline{OE} pin, VPP pin, and D0 to D7 pins of multiple μ PD78P018Fs are connected in parallel and a write is performed to one of those devices.

When a write operation is performed, the page write mode or byte write mode described above is used. At this time, a write is not performed to a device which has the $\overline{\text{PGM}}$ pin driven high.

5.2 PROM Write Procedure

Figure 5-1. Page Program Mode Flow Chart



G = Start address

N = Program last address

Figure 5-2. Page Program Mode Timing

 μ PD78P018F

Start Address = G $V_{DD} = 6.5 \text{ V}, V_{PP} = 12.5 \text{ V}$ X = 0X = X + 1No Yes X = 10 ? 0.1-ms program pulse Address = Address + 1 Fail Verify Pass No Address = N? Yes $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, V_{PP} = V_{DD}$ Pass Fail Verify all bytes All Pass Write end Defective product

Figure 5-3. Byte Program Mode Flow Chart

G = Start address

N = Program last address

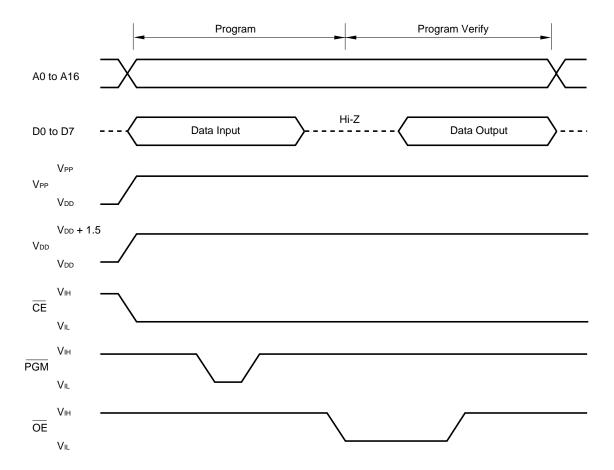


Figure 5-4. Byte Program Mode Timing

- Cautions 1. VDD should be applied before VPP and cut after VPP.
 - 2. VPP must not exceed +13.5 V including overshoot.
 - 3. Removing and reinserting while +12.5 V is applied to VPP may adversely affect reliability.

 μ PD78P018F

5.3 PROM Read Procedure

The contents of PROM are readable to the external data bus (D0 to D7) according to the read procedure shown below.

- (1) Fix the RESET pin at low level, supply +5 V to the VPP pin, and handle all other unused pins as shown in PIN CONFIGURATION (Top View) (2) PROM programming mode.
- (2) Supply +5 V to the VDD and VPP pins.
- (3) Input address of read data into the A0 to A16 pins.
- (4) Read mode

NEC

(5) Output data to D0 to D7 pins.

The timings of the above steps (2) to (5) are shown in Figure 5-5.

A0 to A16

Address Input

OE (Input)

Do to D7

Address Input

Address Input

Address Input

Address Input

Address Input

Address Input

Data Output

Hi-Z

Data Output

Figure 5-5. PROM Read Timings

6. PROGRAM ERASURE (FOR μ PD78P018FDW, 78P018FKK-S)

The μ PD78P018FDW, 78P018FKK-S are capable of erasing (FFH) the contents of data written in a program memory and rewriting.

When erasing the contents of data, irradiate light having a wavelength of less than about 400 nm to the erasure window. Normally, irradiate ultraviolet rays of 254 nm wavelength. Volume of irradiation required to completely erase the contents of data is as follows:

- UV intensity × erasing time: 30 W•s/cm² or more
- Erasing time: 40 min. or longer (When a UV lamp of 12mW/cm² is used. However, a longer time may be needed because of deterioration in performance of the UV lamp, contamination of the erasure window, etc.)

When erasing the contents of data, set up the UV lamp within 2.5 cm from the erasing window. Further, if a filter is provided for a UV lamp, irradiate the ultraviolet rays after removing the filter.

7. OPAQUE FILM ON ERASURE WINDOW (FOR μPD78P018FDW, 78P018FKK-S)

To protect from miserasure by rays other than that of the lamp for erasing EPROM contents, or to protect internal circuit other than EPROM from malfunction by rays, stick an opaque film on the erasure window when EPROM contents erasure is not performed.

8. ONE-TIME PROM VERSION SCREENING

The one-time PROM versions (μ PD78P018FCW, 78P018FGC-AB8, 78P018FGK-8A8) cannot be tested completely by NEC before it is shipped, because of its structure. It is recommended to perform screening to verify PROM after writing necessary data and performing high-temperature storage under the conditions below.

Storage Temperature	Storage Time
125°C	24 hours

NEC provides for a fee one-time PROM writing, marking, screening, and verify service for products designated as "QTOP Microcontrollers." For details, contact an NEC sales representative.

9. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

Parameter	Symbol	Test Conditio	ns	Ratings	Unit
Supply voltage	V _{DD}			-0.3 to +7.0	V
	V _{PP}			-0.3 to +13.5	V
	AV _{DD}			-0.3 to V _{DD} + 0.3	V
	AVREF			-0.3 to V _{DD} + 0.3	V
	AVss			-0.3 to +0.3	V
Input voltage	VI1	P00 to P04, P10 to P17, P20 to F P40 to P47, P50 to P57, P64 to F RESET	,	-0.3 to V _{DD} + 0.3	V
	V _{I2}	P60 to P63	Open-drain	-0.3 to +16	V
	Vıз	A9	PROM programming mode	-0.3 to +13.5	V
Output voltage	Vo			-0.3 to V _{DD} + 0.3	V
Analog input voltage	Van	P10 to P17	Analog input pin	AVss - 0.3 to AVREF + 0.3	V
Output current, high	Іон	Per pin	-10	mA	
		Total for P10 to P17, P20 to P27, P3	30 to P37	-15	mA
		Total for P01 to P03, P40 to P47, P5	50 to P57, P60 to P67	-15	mA
Output current, low	loLNote	Per pin	Peak value	30	mA
			rms value	15	mA
		Total for P40 to P47, P50 to P55	Peak value	100	mA
			rms value	70	mA
		Total for P01 to P03, P56, P57,	Peak value	100	mA
		P60 to P67	rms value	70	mA
		Total for P01 to P03, P64 to P67	Peak value	50	mA
			rms value	20	mA
		Total for P10 to P17, P20 to P27,	Peak value	50	mA
		P30 to P37	rms value.	20	mA
Operating ambient temperature	Та			-40 to +85	°C
Storage temperature	T _{stg}			-65 to +150	°C

Note The rms value should be calculated as follows: [rms value] = [peak value] $\times \sqrt{\text{duty}}$

Caution Product quality may suffer if the absolute maximum ratings is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Capacitance (TA = 25° C, V_{DD} = Vss = 0 V)

Parameter	Symbol		MIN.	TYP.	MAX.	Unit	
Input capacitance	CIN	f = 1 MHz Unmea			15	pF	
I/O capacitance	Сю	f = 1 MHz	P01 to P03, P10 to P17, P20 to P27,			15	pF
		Unmeasured pins	P30 to P37, P40 to P47, P50 to P57,				
		returned to 0 V	P64 to P67				
			P60 to P63			20	pF

Remark Unless specified othewise, the characteristics of alternate-function pins are the same as those of port pins.

Main System Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	X2 X1 V _{PP}	Oscillation frequency (fx) Note 1	2.7 V ≤ V _{DD} ≤ 5.5 V	1		10	MHz
resonator	R1	mequency (ix)	1.8 V ≤ V _{DD} < 2.7 V	1		5	
		Oscillation stabilization time Note 2	After V _{DD} reaches oscillator voltage range MIN.			4	ms
Crystal resonator	X2 X1 V _{PP}	Oscillation frequency (fx) Note 1	2.7 V ≤ V _{DD} ≤ 5.5 V	1		10	MHz
resonator		mequency (ix)	1.8 V ≤ V _{DD} < 2.7 V	1		5	
	+ C2	Oscillation	V _{DD} = 4.5 to 5.5 V			10	ms
	<i>m</i>	stabilization time Note 2				30	
External clock	X2 X1	X1 input frequency (fx) Note 1		1.0		10.0	MHz
	μPD74HCU04	X1 input high-/low-level width (txH, txL)		45		500	ns

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2. Time required to stabilize oscillation after reset or STOP mode release.

Cautions 1. When using the main system clock oscillator, wire the area enclosed by the broken line in the above figures as follows to avoid an adverse effect from wiring capacitance.

- · Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- . Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always keep the ground point of the oscillator capacitor to the same potential as Vss.
- . Do not ground the capacitor to a ground pattern in which a high current flows.
- Do not fetch signals from the oscillator.
- 2. When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched again to the main system clock after the oscillation stabilization time is secured by the program.

Subsystem Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	V _{PP} XT2 XT1	Oscillation frequency (fxt) Note 1		32	32.768	35	kHz
	C4 + C3+	Oscillation	V _{DD} = 4.5 to 5.5 V		1.2	2	s
	///	stabilization time Note 2				10	
External clock	XT2 XT1	XT1 input frequency (fxt) Note 1		32		100	kHz
	μPD74HCU04	XT1 input high-/low-level width (txth, txtl)		5		15	μs

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2. Time required to stabilize oscillation after VDD reaches oscillation voltage range MIN.

Cautions 1. When using the subsystem clock oscillator, wire the area enclosed by the broken line in the above figures as follows to avoid an adverse effect from wiring capacitance.

- · Keep the wiring length as short as possible.
- · Do not cross the wiring with the other signal lines.
- . Do not route the wiring near a signal line through which a high fluctuating current flows.
- · Always keep the ground point of the oscillator capacitor to the same potential as Vss.
- Do not ground the capacitor to a ground pattern in which a high current flows.
- · Do not fetch signals from the oscillator.
- The subsystem clock oscillator is a low-amplitude circuit in order to achive a low consumption current, and is more prone to malfunction due to noise than the main system clock oscillator.
 Particular care is therefore required with the wiring method when the subsystem clock is used.

RECOMMENDED OSCILLATOR CONSTANTS

Main system clock: Ceramic resonator ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

Manufacturer	Name	Frequency	Recommended Oscillator Constants			lation Range	Remarks	
TDK		(MHz)	C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)		
TDK	CCR4.0MC3	4.00	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, surface mounting type	
	FCR4.0MC5	4.00	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, insertion type	
	CCR4.19MC3	4.19	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, surface mounting type	
	FCR4.19MC5	4.19	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, insertion type	
	CCR5.00MC3	5.00	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, surface mounting type	
	FCR5.00MC5	5.00	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, insertion type	
	CCR8.00MC	8.00	On-Chip	On-Chip	2.7	5.5	On-chip capacitor, surface mounting type	
	FCR8.00MC5	8.00	On-Chip	On-Chip	2.7	5.5	On-chip capacitor, insertion type	
	CCR8.38MC	8.38	On-Chip	On-Chip	2.7	5.5	On-chip capacitor, surface mounting type	
	FCR8.38MC5	8.38	On-Chip	On-Chip	2.7	5.5	On-chip capacitor, insertion type	
	CCR10.00MC	10.00	On-Chip	On-Chip	2.7	5.5	On-chip capacitor, surface mounting type	
	FCR10.00MC5	10.00	On-Chip	On-Chip	2.7	5.5	On-chip capacitor, insertion type	
Murata Mfg.	CSA4.00MG	4.00	30	30	1.8	5.5	Insertion type	
Co., Ltd.	CST4.00MGW	4.00	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, insertion type	
	CSA4.19MG	4.19	30	30	1.8	5.5	Insertion type	
	CST4.19MGW	4.19	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, insertion type	
	CSA5.00MG	5.00	30	30	1.8	5.5	Insertion type	
	CST5.00MGW	5.00	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, insertion type	
	CSA8.00MTZ	8.00	30	30	2.7	5.5	Insertion type	
	CST8.00MTW	8.00	On-Chip	On-Chip	2.7	5.5	On-chip capacitor, insertion type	
	CSA8.38MTZ	8.38	30	30	2.7	5.5	Insertion type	
	CST8.38MTW	8.38	On-Chip	On-Chip	2.7	5.5	On-chip capacitor, insertion type	
	CSA10.00MTZ	10.00	30	30	2.7	5.5	Insertion type	
	CST10.00MTW	10.00	On-Chip	On-Chip	2.7	5.5	On-chip capacitor, insertion type	

Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation. The oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit. For details, please contact directly the manufacturer of the resonator you will use.

Main system clock: Ceramic resonator ($T_A = -20 \text{ to } +80^{\circ}\text{C}$)

Manufacturar	Nama	Frequency		mended		lation	Domorko
Manufacturer	Name	(MHz)	Oscillator Constants		Voltage Range		Remarks
			C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)	
Kyocera	PBRC4.00A	4.00	33	33	1.8	5.5	Surface mounting type
Corporation	PBRC4.00B	4.00	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, surface mounting type
	KBR-4.00MSA	4.00	33	33	1.8	5.5	Insertion type
	KBR-4.00MKS	4.00	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, insertion type
	PBRC5.00A	5.00	33	33	1.8	5.5	Surface mounting type
	PBRC5.00B	5.00	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, surface mounting type
	KBR-5.00MSA	5.00	33	33	1.8	5.5	Insertion type
	KBR-5.00MKS	5.00	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, insertion type
	KBR-8M	8.00	33	33	2.7	5.5	Insertion type
	KBR-10M	10.00	33	33	2.7	5.5	Insertion type

Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation. The oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit. For details, please contact directly the manufacturer of the resonator you will use.

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Test Conditi	ions	MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	P10 to P17, P21, P23, P30 to P32, P35 to P37, P40 to P47,	V _{DD} = 2.7 to 5.5 V	0.7 V _{DD}		V _{DD}	V
riigii		P50 to P57, P64 to P67		0.8 V _{DD}		V _{DD}	V
	V _{IH2}	P00 to P03, P20, P22, P24 to P27,	V _{DD} = 2.7 to 5.5 V	0.8 VDD		V _{DD}	V
		P33, P34, RESET		0.85 Vdd		V _{DD}	V
	VIH3	P60 to P63	V _{DD} = 2.7 to 5.5 V	0.7 Vdd		15	V
		(N-ch open-drain)		0.8 Vdd		15	V
	V _{IH4}	X1, X2	V _{DD} = 2.7 to 5.5 V	V _{DD} - 0.5		V _{DD}	V
				V _{DD} - 0.2		V _{DD}	V
	V _{IH5}	XT1/P04, XT2	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0.8 Vdd		V _{DD}	V
			2.7 V ≤ V _{DD} < 4.5 V	0.9 Vdd		V _{DD}	V
			$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}^{\text{Note}}$	0.9 V _{DD}		V _{DD}	V
Input voltage, low	V _{IL1}	P10 to P17, P21, P23, P30 to P32,	V _{DD} = 2.7 to 5.5 V	0		0.3 V _{DD}	V
		P35 to P37, P40 to P47, P50 to P57, P64 to P67		0		0.2 V _{DD}	V
	V _{IL2}	P00 to P03, P20, P22, P24 to P27,	V _{DD} = 2.7 to 5.5 V	0		0.2 V _{DD}	V
		P33, P34, RESET		0		0.15 V _{DD}	V
	VIL3	P60 to P63	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0		0.3 V _{DD}	V
			2.7 V ≤ V _{DD} < 4.5 V	0		0.2 V _{DD}	V
				0		0.1 V _{DD}	V
	VIL4	X1, X2	V _{DD} = 2.7 to 5.5 V	0		0.4	V
				0		0.2	V
	VIL5	XT1/P04, XT2	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0		0.2 V _{DD}	V
			2.7 V ≤ V _{DD} < 4.5 V	0		0.1 V _{DD}	V
			$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}^{\text{Note}}$	0		0.1 V _{DD}	V
Output	V _{OH1}	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V, IoH} = -1 \text{ mA}$		V _{DD} - 1.0			V
voltage, high		$I_{OH} = -100 \ \mu A$		V _{DD} - 0.5			V
Output voltage, low	V _{OL1}	P50 to P57, P60 to P63	V _{DD} = 4.5 to 5.5 V, I _{OL} = 15 mA		0.4	2.0	V
		P01 to P03, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P64 to P67	V _{DD} = 4.5 to 5.5 V, I _{OL} = 1.6 mA			0.4	V
	Vol2	SB0, SB1, SCK0	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V},$ open-drain pulled-up $(R = 1 \text{ k}\Omega)$			0.2 VDD	V
	Vol3	IoL = 400 μA				0.5	V

Note When using XT1/P04 as P04, input the inverse of P04 to XT2.

Remark Unless specified othewise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol		Test Conditions	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішн1	V _{IN} = V _{DD}	P00 to P03, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, RESET			3	μΑ
	I _{LIH2}		X1, X2, XT1/P04, XT2			20	μΑ
	Ішнз	V _{IN} = 15 V	P60 to P63			80	μΑ
Input leakage current, low	ILIL1	V _{IN} = 0 V	P00 to P03, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, RESET			-3	μΑ
	I _{LIL2}		X1, X2, XT1/P04, XT2			-20	μΑ
	Ішз		P60 to P63			_3Note	μΑ
Output leakage current, high	Ісон	Vout = Vdd				3	μΑ
Output leakage current, low	ILOL	Vout = 0 V				-3	μΑ
Software pull-up resistor	R	V _{IN} = 0 V, P01 to P03, F P40 to P47, P50 to P57	P10 to P17, P20 to P27, P30 to P37, , P64 to P67	15	40	90	kΩ

Note For P60 to P63, a low-level input leak current of $-200~\mu$ A (MAX.) flows only during the 3 clocks (no-wait time) after an instruction has been executed to read out port 6 (P6) or port mode register 6 (PM6). Outside the period of 3 clocks following execution a read-out instruction, the current is $-3~\mu$ A (MAX.).

Remark Unless specified othewise, the characteristics of alternate-function pins are the same as those of port pins.

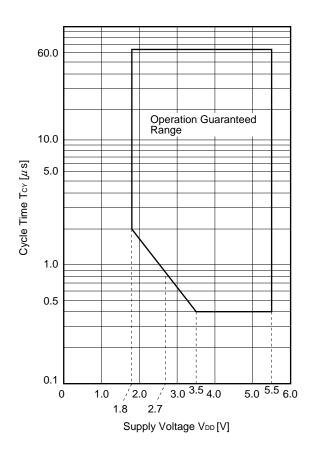
DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Supply currentNote 1	I _{DD1}	10.00-MHz crystal oscillation operation mode	V _{DD} = 5.0 V ±10 % Note 2		12.0	24.0	mA
			V _{DD} = 3.0 V ±10 % Note 3		1.4	2.8	mA
	I _{DD2}	10.00-MHz crystal oscillation HALT mode	V _{DD} = 5.0 V ±10 % Note 2		4.0	8.0	mA
			V _{DD} = 3.0 V ±10 % Note 3		1.4	2.8	mA
	Іррз	32.768-kHz crystal oscillation operation mode ^{Note 4}	V _{DD} = 5.0 V ±10 %		150	300	μΑ
			VDD = 3.0 V ±10 %		100	200	μΑ
			V _{DD} = 2.0 V ±10 %		60	120	μΑ
	IDD4	32.768-kHz crystal oscillation HALT mode ^{Note 4}	V _{DD} = 5.0 V ±10 %		25	50	μΑ
			V _{DD} = 3.0 V ±10 %		5	15	μΑ
			V _{DD} = 2.0 V ±10 %		2.5	10	μΑ
	I _{DD5}	XT1 = V _{DD} STOP mode, when using feedback resistor	V _{DD} = 5.0 V ±10 %		2.0	30	μΑ
			VDD = 3.0 V ±10 %		1.0	10	μΑ
			V _{DD} = 2.0 V ±10 %		0.5	10	μΑ
	IDD6	XT1 = V _{DD} STOP mode, when not using feedback resistor	V _{DD} = 5.0 V ±10 %		0.1	30	μΑ
			V _{DD} = 3.0 V ±10 %		0.05	10	μΑ
			V _{DD} = 2.0 V ±10 %		0.05	10	μΑ

Notes 1. Refers to the current flowing to the V_{DD} pin. The current flowing to the on-chip pull-up resistors, ports, and A/D converter is not included.

- 2. High-speed mode operation (when processor clock control register (PCC) is set to 00H)
- **3.** Low-speed mode operation (when PCC is set to 04H)
- **4.** When main system clock operation is stopped.

AC Characteristics


(1) Basic Operation (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Test Con	ditions	MIN.	TYP.	MAX.	Unit
Cycle time	Тсч	Operating on	$3.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0.4		64	μs
(Min. instruction		main system clock	2.7 V ≤ V _{DD} < 3.5 V	0.8		64	μs
execution time)			1.8 V ≤ V _{DD} < 2.7 V	2.0		64	μs
		Operating on subsystem	clock	40Note 1	122	125	μs
TI0 input	t тіно,	$3.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		2/f _{sam} + 0.1 Note 2			μs
high-/low-level width	t TILO	2.7 V ≤ V _{DD} < 3.5 V	2.7 V ≤ V _{DD} < 3.5 V				μs
		1.8 V ≤ V _{DD} < 2.7 V	2/f _{sam} + 0.5 ^{Note 2}			μs	
TI1, TI2 input	f _{Tl1}	V _{DD} = 4.5 to 5.5 V		0		4	MHz
frequency			0		275	kHz	
TI1, TI2 input	t тін1,	V _{DD} = 4.5 to 5.5 V		100			ns
high-/low-level width	ttil1			1.8			μs
Interrupt input request	tınth,	INTP0	3.5 V ≤ V _{DD} ≤ 5.5 V	2/f _{sam} + 0.1 Note 2			μs
high-/low-level width	tintl		2.7 V ≤ V _{DD} < 3.5 V	2/f _{sam} + 0.2Note 2			μs
			1.8 V ≤ V _{DD} < 2.7 V	2/f _{sam} + 0.5 ^{Note 2}			μs
		INTP1 to INTP3,	V _{DD} = 2.7 to 5.5 V	10			μs
		KR0 to KR7		20			μs
RESET low-level width	trsl	V _{DD} = 2.7 to 5.5 V		10			μs
				20			μs

Notes 1. Value when using an external clock. When a crystal resonator is used, the value becomes 114 μ s (MIN.).

2. In combination with bits 0 (SCS0) and 1 (SCS1) of sampling clock select register (SCS), selection of f_{sam} is possible between $f_x/2^{N+1}$, $f_x/64$, and $f_x/128$ (when N= 0 to 4).

Tcy vs. Vdd (At main system clock operation)

(2) Read/Write Operation (T_A = -40 to +85°C, V_{DD} = 2.7 to 5.5 V)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.5 tcy		ns
Address setup time	tads		0.5 tcy - 30		ns
Address hold time	tadh		50		ns
Data input time from address	tADD1			(2.5 + 2n)tcy - 50	ns
	tADD2			(3 + 2n)tcy - 100	ns
Data input time from $\overline{RD} \downarrow$	tRDD1			(1 + 2n)tcy - 25	ns
	tRDD2			(2.5 + 2n)tcy - 100	ns
Read data hold time	trdh		0		ns
RD low-level width	tRDL1		(1.5 + 2n)tcy - 20		ns
	tRDL2		(2.5 + 2n)tcy - 20		ns
$\overline{WAIT} \downarrow input time from \ \overline{RD} \downarrow$	trdwT1			0.5 tcy	ns
	tRDWT2			1.5 tcy	ns
$\overline{\mathrm{WAIT}} \!\!\downarrow \mathrm{input\ time\ from\ } \overline{\mathrm{WR}} \!\!\downarrow$	twrwt			0.5 tcy	ns
WAIT low-level width	twtl		(0.5 + 2n)tcy + 10	(2 + 2n)tcy	ns
Write data setup time	twos		100		ns
Write data hold time	twoh	Load resistance $\geq 5 \text{ k}\Omega$	20		ns
WR low-level width	twrL		(2.5 + 2n)tcy - 20		ns
$\overline{\text{RD}} \!\downarrow \text{delay time from ASTB} \!\downarrow$	tastrd		0.5 tcy - 30		ns
$\overline{\mathrm{WR}} \!\!\downarrow \mathrm{delay}$ time from ASTB $\!\!\downarrow$	tastwr		1.5 tcy - 30		ns
ASTB↑ delay time from RD↑ in external fetch	trdast		tcy - 10	tcy + 40	ns
Address hold time from RD↑ in external fetch	trdadh		tcy	tcy + 50	ns
Write data output time from RD↑	trowd	V _{DD} = 4.5 to 5.5 V	0.5 tcy + 5	0.5 tcy + 30	ns
			0.5 tcy + 15	0.5 tcy + 90	ns
Write data output time from $\overline{\mathrm{WR}} \!\downarrow$	twrwd	V _{DD} = 4.5 to 5.5 V	5	30	ns
			15	90	ns
Address hold time from WR↑	twradh	V _{DD} = 4.5 to 5.5 V	tcy	tcy + 60	ns
			tcy	tcy + 100	ns
RD↑ delay time from WAIT↑	twtrd		0.5 tcy	2.5 tcy + 80	ns
WR↑ delay time from WAIT↑	twrwr		0.5 tcy	2.5 tcy + 80	ns

Remarks 1. tcy = Tcy/4

2. n indicates the number of waits.

(3) Serial Interface ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

(a) Serial Interface Channel 0

(i) 3-wire serial I/O mode (SCK0... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy1	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7 V	3200			ns
			4800			ns
SCK0 high-/low-level	t кн1,	V _{DD} = 4.5 to 5.5 V	tксү1/2 - 50			ns
width	t _{KL1}		tксү1/2 - 100			ns
SI0 setup time	tsik1	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
(to SCK0↑)		2.7 V ≤ V _{DD} < 4.5 V	150			ns
		2.0 V ≤ V _{DD} < 2.7 V	300			ns
			400			ns
SI0 hold time (from SCK0↑)	tksi1		400			ns
SO0 output delay time from SCK0↓	tkso1	C = 100 pFNote			300	ns

Note C is the load capacitance of the $\overline{\text{SCK0}}$ and SO0 output lines.

(ii) 3-wire serial I/O mode (SCK0... External clock input)

Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy2	4.5 V ≤ V _{DD} ≤ 5.5 V		800			ns
		2.7 V ≤ V _{DD} < 4.5 V		1600			ns
		2.0 V ≤ V _{DD} < 2.7 V		3200			ns
				4800			ns
SCK0 high-/low-level	t кн2,	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		400			ns
width	t _{KL2}	2.7 V ≤ V _{DD} < 4.5 V		800			ns
		2.0 V ≤ V _{DD} < 2.7 V		1600			ns
				2400			ns
SI0 setup time	tsık2	V _{DD} = 2.0 to 5.5 V		100			ns
(to SCK0↑)				150			ns
SI0 hold time (from SCK0↑)	tks12			400			ns
SO0 output delay time	tkso2	so2 C = 100 pFNote	V _{DD} = 2.0 to 5.5 V			300	ns
from SCK0↓						500	ns
SCK0 rise, fall time	t _{R2} ,	When external device expansion function is				160	ns
		When external device expansion function is not used	When 16-bit timer output function is used			700	ns
			When 16-bit timer output function is not used			1000	ns

Note C is the load capacitance of the SO0 output line.

(iii) SBI mode (SCK0... Internal clock output)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксүз	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		800			ns
		2.0 V ≤ V _{DD} < 4.5 V		3200			ns
				4800			ns
SCK0 high-/low-level	t кнз,	V _{DD} = 4.5 to 5.5 V		tксүз/2 - 50			ns
width	tкLз		1				ns
SB0, SB1 setup time	tsıкз	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		100			ns
(to SCK0↑)		2.0 V ≤ V _{DD} < 4.5 V		300			ns
				400			ns
SB0, SB1 hold time (from SCK0↑)	tksi3			tксүз/2			ns
SB0, SB1 output delay	tkso3	$R = 1 k\Omega$,	V _{DD} = 4.5 to 5.5 V	0		250	ns
time from SCK0↓		C = 100 pF ^{Note}		0		1000	ns
SB0, SB1↓ from SCK0↑	tĸsв			tксүз			ns
SCK0↓ from SB0, SB1↓	tsвк			tксүз			ns
SB0, SB1 high-level width	tsвн			tксүз			ns
SB0, SB1 low-level width	tsbl			tксүз			ns

Note R and C are the load resistance and load capacitance of the SB0, SB1 and SCK0 output lines.

(iv) SBI mode (SCK0... External clock input)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy4	4.5 V ≤ V _{DD} ≤ 5.5 V		800			ns
		2.0 V ≤ V _{DD} < 4.5 V		3200			ns
				4800			ns
SCK0 high-/low-level	tĸн4,	4.5 V ≤ V _{DD} ≤ 5.5 V		400			ns
width	t _{KL4}	2.0 V ≤ V _{DD} < 4.5 V		1600			ns
				2400			ns
SB0, SB1 setup time	tsik4	4.5 V ≤ V _{DD} ≤ 5.5 V	4.5 V ≤ V _{DD} ≤ 5.5 V				ns
(to SCK0 ↑)		2.0 V ≤ V _{DD} < 4.5 V		300			ns
				400			ns
SB0, SB1 hold time (from SCK0↑)	tksi4			tксү4/2			ns
SB0, SB1 output delay	tkso4	$R = 1 k\Omega$,	V _{DD} = 4.5 to 5.5 V	0		300	ns
time from SCK0↓		C = 100 pF ^{Note}		0		1000	ns
SB0, SB1↓ from SCK0↑	tкsв			tkcy4			ns
SCK0↓ from SB0, SB1↓	tsвк			tkcy4			ns
SB0, SB1 high-level width	tsвн			tkcy4			ns
SB0, SB1 low-level width	tsbl			tkcy4			ns
SCK0 rise, fall time	tr4, tr4	When external devic expansion function is				160	ns
		When external device expansion function is not used	When 16-bit timer output function is used			700	ns
			When 16-bit timer output function is not used			1000	ns

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output lines.

(v) 2-wire serial I/O mode (SCK0... Internal clock output)

Parameter	Symbol	Cond	ditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy5	$R = 1 k\Omega$,	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	1600			ns
		C = 100 pFNote	2.0 V ≤ V _{DD} < 2.7 V	3200			ns
				4800			ns
SCK0 high-level width	t кн5		V _{DD} = 2.7 to 5.5 V	tkcy5/2 - 160			ns
				tксү5/2 – 190			ns
SCK0 low-level width	t _{KL5}		V _{DD} = 4.5 to 5.5 V	tксү5/2 - 50			ns
				tксү5/2 - 100			ns
SB0, SB1 setup time	tsik5		4.5 V ≤ V _{DD} ≤ 5.5 V	300			ns
(to SCK0↑)			2.7 V ≤ V _{DD} < 4.5 V	350			ns
			2.0 V ≤ V _{DD} < 2.7 V	400			ns
				500			ns
SB0, SB1 hold time (from SCK0↑)	tksi5			600			ns
SB0, SB1 output delay time from SCK0↓	tksos			0		300	ns

Note R and C are the load resistance and load capacitance of the SCKO, SBO and SB1 output lines.

(vi) 2-wire serial I/O mode (SCK0... External clock input)

Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy6	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		1600			ns
		2.0 V ≤ V _{DD} < 2.7 V		3200			ns
				4800			ns
SCK0 high-level width	t кн6	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		650			ns
		2.0 V ≤ V _{DD} < 2.7 V		1300			ns
				2100			ns
SCK0 low-level width	t _{KL6}	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		800			ns
		2.0 V ≤ V _{DD} < 2.7 V		1600			ns
				2400			ns
SB0, SB1 setup time tsik (to SCK0↑)		V _{DD} = 2.0 to 5.5 V		100			ns
				150			ns
SB0, SB1 hold time (from SCK0↑)	tksi6			tксүб/2			ns
SB0, SB1 output delay	tkso6	- Loo FNoto	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0		300	ns
time from $\overline{\text{SCK0}} \downarrow$			2.0 V ≤ V _{DD} < 4.5 V	0		500	ns
				0		800	ns
SCK0 rise, fall time	t _{R6} ,	When external device expansion function is				160	ns
		When external device expansion function is not used	When 16-bit timer output function is used			700	ns
			When 16-bit timer output function is not used			1000	ns

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output lines.

(b) Serial Interface Channel 1

(i) 3-wire serial I/O mode (SCK1... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkcy7	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7 V	3200			ns
			4800			ns
SCK1 high-/low-level	t кн7,	V _{DD} = 4.5 to 5.5 V	tксүл/2 - 50			ns
width	t _{KL7}		tксүт/2 - 100			ns
SI1 setup time	tsık7	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
(to SCK1↑)		2.7 V ≤ V _{DD} < 4.5 V	150			ns
		2.0 V ≤ V _{DD} < 2.7 V	300			ns
			400			ns
SI1 hold time (from SCK1↑)	tksı7		400			ns
SO1 output delay time from SCK1↓	tkso7	C = 100 pFNote			300	ns

Note C is the load capacitance of the SCK1 and SO1 output lines.

(ii) 3-wire serial I/O mode (SCK1... External clock input)

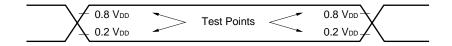
Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	t ксу8	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		800			ns
		2.7 V ≤ V _{DD} < 4.5 V		1600			ns
		2.0 V ≤ V _{DD} < 2.7 V		3200			ns
				4800			ns
SCK1 high-/low-level	tкнв,	4.5 V ≤ V _{DD} ≤ 5.5 V		400			ns
width	t _{KL8}	2.7 V ≤ V _{DD} < 4.5 V		800			ns
		2.0 V ≤ V _{DD} < 2.7 V		1600			ns
				2400			ns
SI1 setup time	tsik8	V _{DD} = 2.0 to 5.5 V		100			ns
(to SCK1 ↑)				150			ns
SI1 hold time (from SCK1↑)	tksi8			400			ns
SO1 output delay time	tkso8	C = 100 pFNote	V _{DD} = 2.0 to 5.5 V			300	ns
from SCK1↓						500	ns
SCK1 rise, fall time	t _{R8} ,	When external device expansion function is				160	ns
		When external device expansion function is not used	When 16-bit timer output function is used			700	ns
			When 16-bit timer output function is not used			1000	ns

Note C is the load capacitance of the SO1 output line.

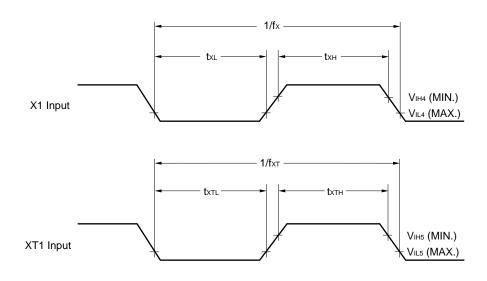
(iii) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... Internal clock output)

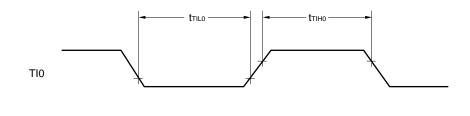
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkcy9	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7 V	3200			ns
			4800			ns
SCK1 high-/low-level	t кн9,	V _{DD} = 4.5 to 5.5 V	tксүу/2 — 50			ns
width	t _{KL9}		tксү9/2 - 100			ns
SI1 setup time (to SCK1↑)	tsik9	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
		2.7 V ≤ V _{DD} < 4.5 V	150			ns
		2.0 V ≤ V _{DD} < 2.7 V	300			ns
			400			ns
SI1 hold time (from SCK1↑)	tksi9		400			ns
SO1 output delay time from SCK1↓	tkso9	C = 100 pFNote			300	ns
STB↑ from SCK1↑	tsbd		tксүу/2 – 100		tксү9/2 + 100	ns
Strobe signal	tssw	2.7 V ≤ V _{DD} ≤ 5.5 V	tксү9 — 30		tксүэ + 30	ns
high-level width		2.0 V ≤ V _{DD} < 2.7 V	tксү9 — 60		tксүэ + 60	ns
			tксү9 — 90		tксүэ + 90	ns
Busy signal setup time (to busy signal detection timing)	t _{BYS}		100			ns
Busy signal hold time	tвүн	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
(from busy signal		2.7 V ≤ V _{DD} < 4.5 V	150			ns
detection timing)		2.0 V ≤ V _{DD} < 2.7 V	200			ns
			300			ns
SCK1↓ from busy inactive	tsps				2tксү9	ns

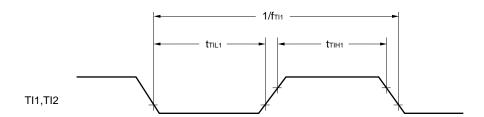
Note C is the load capacitance of the $\overline{\text{SCK1}}$ and SO1 output lines.


(iv) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... External clock input)

Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkCY10	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		800			ns
		2.7 V ≤ V _{DD} < 4.5 V		1600			ns
		2.0 V ≤ V _{DD} < 2.7 V		3200			ns
				4800			ns
SCK1 high-/low-level	tкн10,	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		400			ns
width	t _{KL10}	2.7 V ≤ V _{DD} < 4.5 V		800			ns
		2.0 V ≤ V _{DD} < 2.7 V		1600			ns
				2400			ns
SI1 setup time	tsik10	V _{DD} = 2.0 to 5.5 V		100			ns
(to SCK1↑)				150			ns
SI1 hold time (from SCK1↑)	tksi10			400			ns
SO1 output delay time	t KSO10	C = 100 pFNote	V _{DD} = 2.0 to 5.5 V			300	ns
from SCK1↓						500	ns
SCK1 rise, fall time	t _{R10} ,	When external device expansion function is used				160	ns
		When external device function is not used	When external device expansion			1000	ns

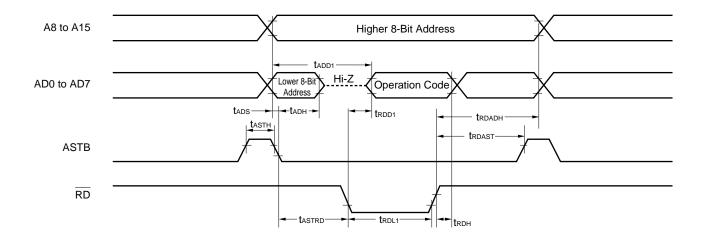

Note C is the load capacitance of the SO1 output line.


AC Timing Test Point (Excluding X1, XT1 Input)



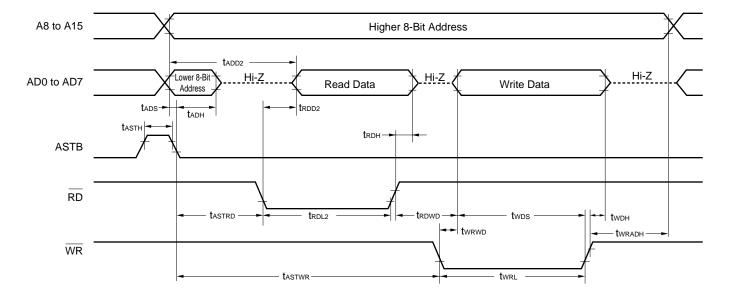
Clock Timing

TI Timing

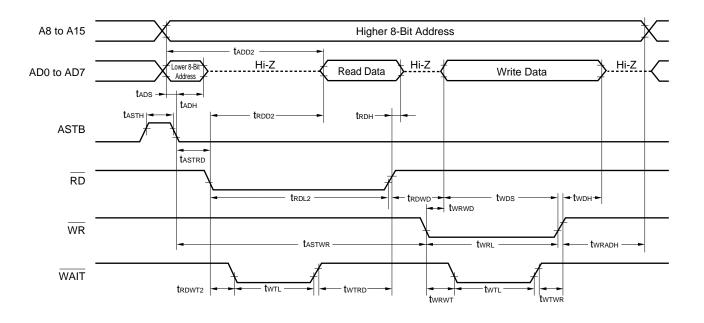


Read/Write Operation

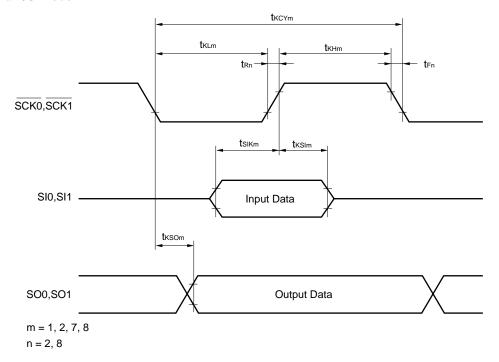
External fetch (No wait):

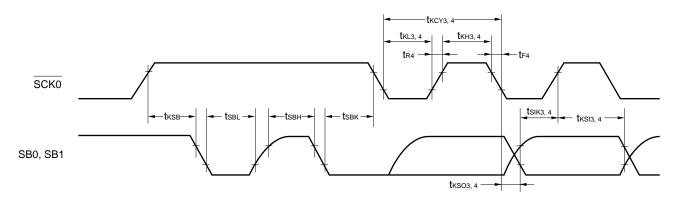


External fetch (Wait insertion):

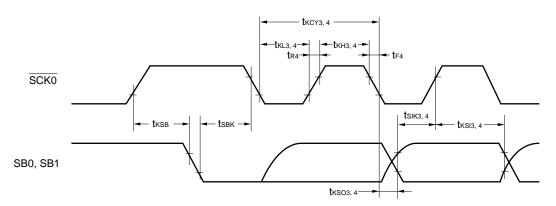


External data access (No wait):

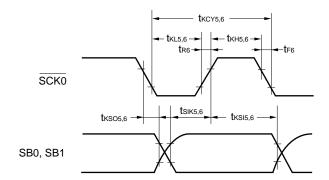

External data access (Wait insertion):



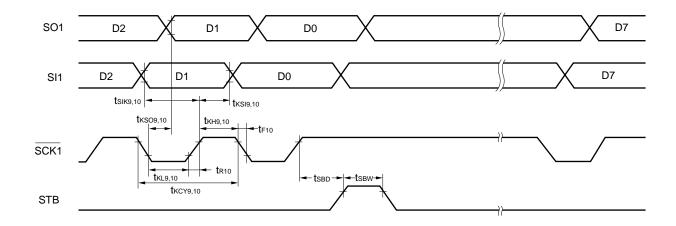
Serial Transfer Timing

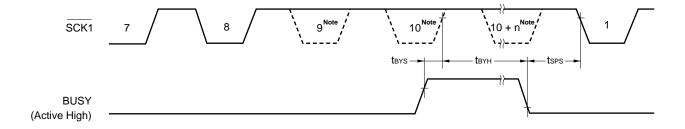

3-wire serial I/O mode:

SBI mode (Bus release signal transfer):



SBI Mode (Command signal transfer):




2-wire serial I/O mode:

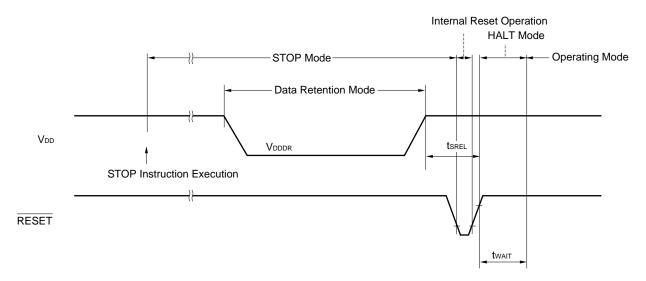
3-wire serial I/O mode with automatic transmit/receive function:

3-wire serial I/O mode with automatic transmit/receive function (Busy processing):

Note The signal is not actually driven low here; it is shown as such to indicate the timing.

A/D Converter Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $AV_{DD} = V_{DD} = 2.2 \text{ to } 5.5 \text{ V}$, $AV_{SS} = V_{SS} = 0 \text{ V}$)

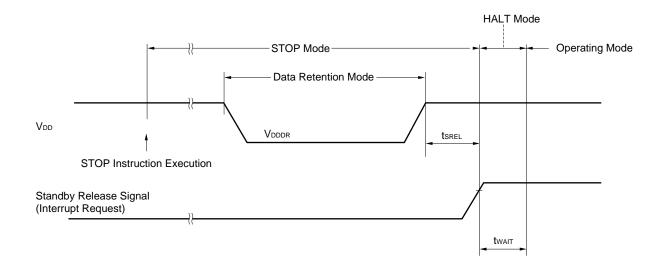
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error Note		2.7 V ≤ AV _{REF} ≤ AV _{DD}			0.6	%
		2.2 V ≤ AV _{REF} < 2.7 V			1.4	%
Conversion time	tconv	2.7 V ≤ AV _{REF} ≤ AV _{DD}	19.1		200	μs
		2.2 V ≤ AV _{REF} < 2.7 V	38.2		200	μs
Sampling time	tsamp		24/fx			μs
Analog input voltage	VIAN		AVss		AVREF	V
Reference voltage	AVREF		2.2		AVDD	V
AVREF resistance	Rairef		4	14		kΩ

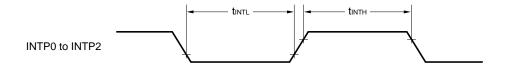

Note Overall error excluding quantization error (±1/2 LSB). It is indicated as a ratio to the full-scale value.

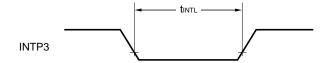
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = -40 to +85°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.8		5.5	V
Data retention supply current	IDDDR	VDDDR = 1.8 V Subsystem clock stops and feedback resistor disconnected		0.1	10	μΑ
Release signal set time	tsrel		0			μs
Oscillation stabilization	twait	Release by RESET		2 ¹⁸ /fx		ms
wait time		Release by interrupt request		Note		ms

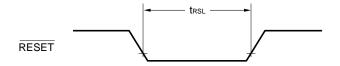
Note In combination with bits 0 to 2 (OSTS0 to OSTS2) of oscillation stabilization time select register (OSTS), selection of 2^{13} /fx and 2^{15} /fx to 2^{18} /fx is possible.


Data Retention Timing (STOP Mode Release by RESET)


.



Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Request Signal)



Interrupt Request Input Timing

RESET Input Timing

PROM PROGRAMMING CHARACTERISTICS

DC Characteristics

(1) PROM Write Mode (TA = 25 \pm 5°C, VDD = 6.5 \pm 0.25 V, VPP = 12.5 \pm 0.3 V)

Parameter	Symbol	Symbol ^{Note}	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	ViH	ViH		0.7 V _{DD}		V _{DD}	V
Input voltage, low	VIL	VIL		0		0.3 VDD	V
Output voltage, high	Vон	Vон	Iон = −1 mA	V _{DD} - 1.0			V
Output voltage, low	Vol	Vol	IoL = 1.6 mA			0.4	V
Input leakage current	lu	lu	$0 \le V_{IN} \le V_{DD}$	-10		+10	μΑ
VPP supply voltage	V _{PP}	V _{PP}		12.2	12.5	12.8	V
V _{DD} supply voltage	V _{DD}	Vcc		6.25	6.5	6.75	V
VPP supply current	I PP	IPP	PGM = VIL			50	mA
V _{DD} supply current	IDD	Icc				50	mA

Note Corresponding μ PD27C1001A symbol

(2) PROM Read Mode (TA = 25 $\pm 5^{\circ}$ C, VDD = 5.0 ± 0.5 V, VPP = VDD ± 0.6 V)

Parameter	Symbol	Symbol ^{Note}	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH	ViH		0.7 Vdd		V _{DD}	٧
Input voltage, low	VIL	VIL		0		0.3 V _{DD}	V
Output voltage, high	Voн1	V _{OH1}	Iон = −1 mA	V _{DD} - 1.0			V
	V _{OH2}	V _{OH2}	I он = $-100 \mu A$	V _{DD} - 0.5			٧
Output voltage, low	Vol	Vol	IoL = 1.6 mA			0.4	V
Input leakage current	lu	lu	$0 \le V_{IN} \le V_{DD}$	-10		+10	μΑ
Output leakage current	ILO	ILO	$0 \le V_{OUT} \le V_{DD}, \overline{OE} = V_{IH}$	-10		+10	μΑ
V _{PP} supply voltage	V _{PP}	V _{PP}		V _{DD} - 0.6	V_{DD}	V _{DD} + 0.6	٧
V _{DD} supply voltage	V _{DD}	Vcc		4.5	5.0	5.5	V
VPP supply current	IPP	IPP	VPP = VDD			100	μΑ
V _{DD} supply current	Idd	ICCA1	CE = VIL, VIN = VIH			50	mA

Note Corresponding μ PD27C1001A symbol

AC Characteristics

(1) PROM Write Mode

(a) Page program mode (TA = 25 $\pm 5^{\circ}$ C, V_{DD} = 6.5 ± 0.25 V, V_{PP} = 12.5 ± 0.3 V)

Parameter	Symbol	Symbol ^{Note}	Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to $\overline{\sf OE} \downarrow$)	tas	tas		2			μs
OE setup time	toes	toes		2			μs
CE setup time (to OE↓)	tces	tces		2			μs
Input data setup time (to OE↓)	tos	tos		2			μs
Address hold time (from OE↑)	t AH	tан		2			μs
	tahl	tahl		2			μs
	tahv	tahv		0			μs
Input data hold time (from OE↑)	tон	tон		2			μs
Data output float delay time from OE↑	tof	tor		0		250	ns
V _{PP} setup time (to $\overline{OE} \downarrow$)	tvps	tvps		1.0			ms
V _{DD} setup time (to $\overline{OE} \downarrow$)	tvps	tvcs		1.0			ms
Program pulse width	tpw	tpw		0.095	0.1	0.105	ms
Valid data delay time from OE↓	toe	toe				1	μs
OE pulse width during data latching	t∟w	tьw		1			μs
PGM setting time	t PGMS	t PGMS		2			μs
CE hold time	t CEH	t CEH		2			μs
OE hold time	tоен	tоен		2			μs

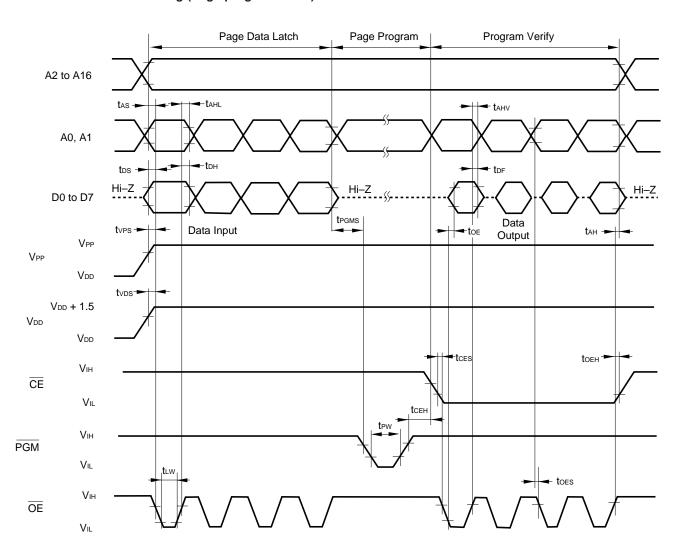
Note Corresponding μ PD27C1001A symbol

(b) Byte program mode (TA = 25 ± 5 °C, VDD = 6.5 ± 0.25 V, VPP = 12.5 ± 0.3 V)

Parameter	Symbol	Symbol ^{Note}	Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to $\overline{\text{PGM}} \downarrow$)	tas	tas		2			μs
OE setup time	toes	toes		2			μs
CE setup time (to PGM↓)	tces	tces		2			μs
Input data setup time (to PGM ↓)	tos	tos		2			μs
Address hold time (from OE↑)	t AH	tан		2			μs
Input data hold time (from PGM↑)	tон	tон		2			μs
Data output float delay time from OE↑	tof	t DF		0		250	ns
V _{PP} setup time (to $\overline{\text{PGM}} \downarrow$)	tvps	tvps		1.0			ms
V _{DD} setup time (to $\overline{\text{PGM}} \downarrow$)	tvps	tvcs		1.0			ms
Program pulse width	tpw	tpw		0.095	0.1	0.105	ms
Valid data delay time from $\overline{\text{OE}}$ ↓	toe	toe				1	μs
OE hold time	tоен	_		2			μs

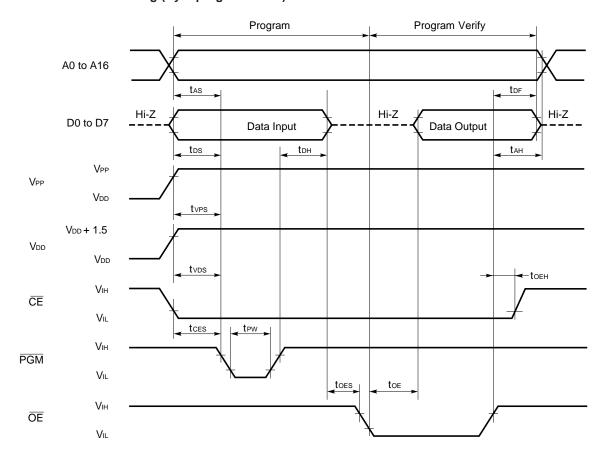
Note Corresponding μ PD27C1001A symbol

(2) PROM Read Mode (T_A = 25 \pm 5°C, V_{DD} = 5.0 \pm 0.5 V, V_{PP} = V_{DD} \pm 0.6 V)

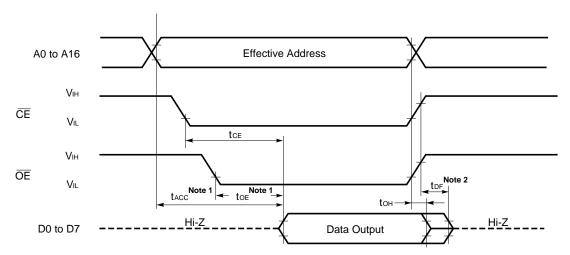

Parameter	Symbol	Symbol ^{Note}	Conditions	MIN.	TYP.	MAX.	Unit
Data output time from address	tacc	tacc	CE = OE = VIL			800	ns
Data output delay time from $\overline{CE} \!\downarrow$	tce	tce	OE = VIL			800	ns
Data output delay time from OE ↓	toe	toe	CE = VIL			200	ns
Data output float delay time from OE↑	t DF	tor	CE = VIL	0		60	ns
Data hold time from address	tон	tон	$\overline{CE} = \overline{OE} = V_{IL}$	0			ns

Note Corresponding μ PD27C1001A symbol

(3) PROM Programming Mode Setting (TA = 25°C, Vss = 0 V)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
PROM programming mode setup time	tsма		10			μs

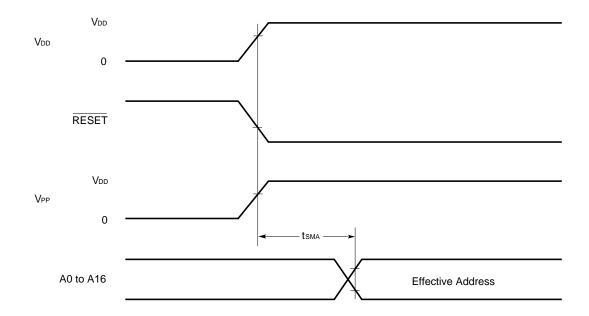
PROM Write Mode Timing (Page program mode)


PROM Write Mode Timing (Byte program mode)

Cautions 1. VDD must be applied before VPP and cut off after VPP.

- 2. VPP must not exceed +13.5 V including overshoot.
- 3. Removing and reinserting while +12.5 V is applied to VPP may adversely affect reliability.

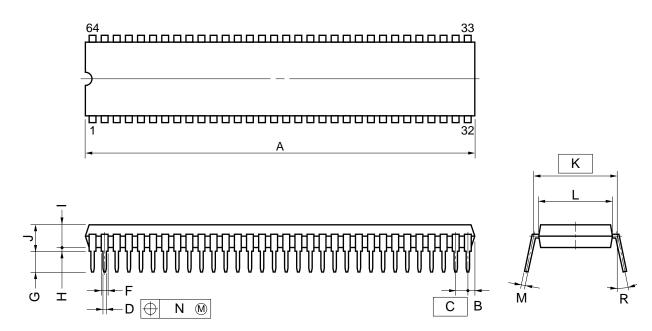
PROM Read Mode Timing



Notes 1. When reading within the tacc range, the \overline{OE} input delay time from the \overline{CE} fall time must be maximum of tacc – toe.

2. tof is the time from the point at which either \overline{OE} or \overline{CE} (whichever is first) reaches V_{IH} .


PROM Programming Mode Setting Timing

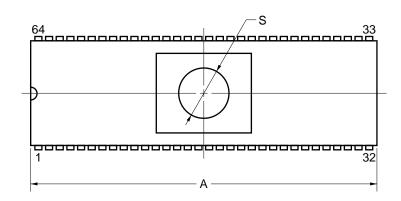

★10. CHARACTERISTIC CURVE (REFERENCE VALUE)

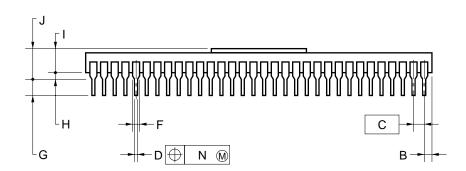
IDD vs. VDD (Main System Clock: 10.0 MHz)

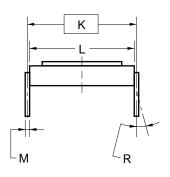
11. PACKAGE DRAWINGS

64 PIN PLASTIC SHRINK DIP (750 mils)

NOTE

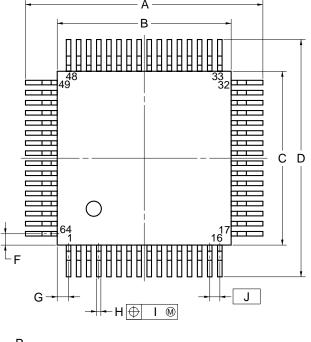

- 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.


ITEM	MILLIMETERS	INCHES
Α	58.68 MAX.	2.311 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
- 1	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
М	0.25 ^{+0.10} _{-0.05}	0.010+0.004
N	0.17	0.007
R	0~15°	0~15°

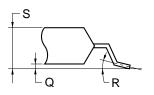

P64C-70-750A,C-1

Remark The dimensions and materials of ES versions are the same as those of mass-produced versions.

64 PIN CERAMIC SHRINK DIP (750 mils)


NOTES

- 1) Each lead centerline is located within 0.25 mm (0.010 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.


ITEM	MILLIMETERS	INCHES
Α	58.68 MAX.	2.310 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.46±0.05	0.018±0.002
F	0.8 MIN.	0.031 MIN.
G	3.5±0.3	0.138±0.012
Н	1.0 MIN.	0.039 MIN.
- 1	3.0	0.118
J	5.08 MAX.	0.200 MAX.
K	19.05 (T.P.)	0.750 (T.P.)
L	18.8	0.740
М	0.25±0.05	$0.010^{+0.002}_{-0.003}$
N	0.25	0.010
R	0~15°	0~15°
S	ϕ 8.89	ϕ 0.350

P64DW-70-750A-1

64 PIN PLASTIC QFP (14 \times 14)

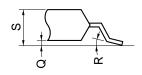
detail of lead end

P K S N S L M

NOTE

- 1. Controlling dimension millimeter.
- 2. Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	17.6±0.4	0.693±0.016
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
Н	$0.37^{+0.08}_{-0.07}$	0.015+0.003
I	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
K	1.8±0.2	0.071±0.008
L	0.8±0.2	0.031+0.009
М	$0.17^{+0.08}_{-0.07}$	$0.007^{+0.003}_{-0.004}$
N	0.10	0.004
Р	2.55±0.1	0.100±0.004
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	2.85 MAX.	0.113 MAX.


P64GC-80-AB8-4

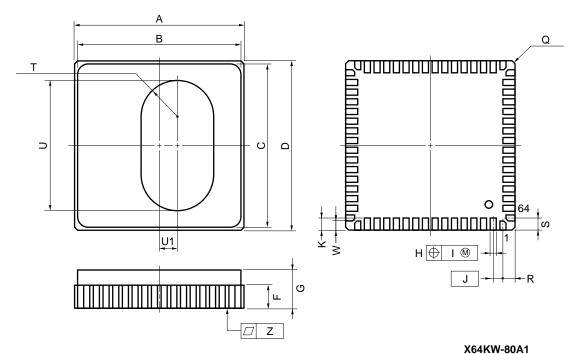
Remark The dimensions and materials of ES versions are the same as those of mass-produced versions.

64 PIN PLASTIC LQFP (12 \times 12)

detail of lead end

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS	INCHES
Α	14.8±0.4	0.583±0.016
В	12.0±0.2	$0.472^{+0.009}_{-0.008}$
С	12.0±0.2	$0.472^{+0.009}_{-0.008}$
D	14.8±0.4	0.583±0.016
F	1.125	0.044
G	1.125	0.044
Н	0.30±0.10	$0.012^{+0.004}_{-0.005}$
1	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
K	1.4±0.2	0.055±0.008
L	0.6±0.2	$0.024^{+0.008}_{-0.009}$
М	0.15+0.10	0.006+0.004
N	0.10	0.004
Р	1.4	0.055
Q	0.125±0.075	0.005±0.003
R	5°±5°	5°±5°
S	1.7 MAX.	0.067 MAX.

P64GK-65-8A8-1

Remark The dimensions and materials of ES versions are the same as those of mass-produced versions.

64 PIN CERAMIC WQFN

NOTE

Each lead centerline is located within 0.08 mm (0.003 inch) of its true position (T.P.) at maximum material condition.

		A04KW-0UA1
ITEM	MILLIMETERS	INCHES
Α	14.0±0.18	0.551±0.007
В	13.4	0.528
О	13.4	0.528
D	14.0±0.18	0.551±0.007
F	1.84	0.072
G	3.56 MAX.	0.141 MAX.
Н	0.51±0.1	0.02±0.004
-	0.08	0.003
J	0.8 (T.P.)	0.031 (T.P.)
K	1.0±0.15	$0.039^{+0.007}_{-0.006}$
Q	C 0.3	C 0.012
R	1.0	0.039
S	1.0	0.039
Т	R 3.0	R 0.118
U	10.8	0.425
U1	1.4	0.055
W	0.75±0.15	0.03+0.006
Z	0.10	0.004

12. RECOMMENDED SOLDERING CONDITIONS

The μ PD78P018F should be soldered and mounted under the following recommended conditions.

For the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Table 12-1. Surface Mounting Type Soldering Conditions

(1) μ PD78P018FGC-AB8: 64-pin Plastic QFP (14 \times 14 mm)

Soldering Method	Soldering Conditions	Symbol
Infrared rays reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Three times or less	IR35-00-3
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Three times or less	VP15-00-3
Wave soldering	Solder temperature: 260°C, Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C or below, Time: 3 seconds max. (per pin row)	_

(2) μ PD78P018FGK-8A8: 64-pin Plastic LQFP (12 × 12 mm)

Soldering Method	Soldering Conditions	Symbol
Infrared rays reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Twice or less, Exposure limit: 7 days Note (after 7 days, prebake 125°C for 10 hours)	IR35-107-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Twice or less, Exposure limit: 7 days Note (after 7 days, prebake 125°C for 10 hours)	VP15-107-2
Wave soldering	Solder temperature: 260°C, Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature), Exposure limit: 7 days Note (after 7 days, prebake 125°C for 10 hours)	WS60-107-1
Partial heating	Pin temperature: 300°C or below, Time: 3 seconds max. (per pin row)	_

Note Maximum allowable time from taking the soldering packages out of dry pack to soldering.

Storage conditions: 25°C and relative humidity of 65% or less.

Caution Do not use different soldering methods together (except for partial heating).

Table 12-2. Insertion Type Soldering Conditions

 μ PD78P018FCW: 64-pin Plastic Shrink DIP (750 mils)

 μ PD78P018FDW: 64-pin Ceramic Shrink DIP (with window) (750 mils)

Soldering Method	Soldering Conditions
Wave soldering (pin only)	Solder temperature: 260°C or below, Time: 10 seconds max.
Partial heating	Pin temperature: 300°C or below, Time: 3 seconds max. (per pin row)

Caution Apply wave soldering only to the pins and be careful not to bring solder into direct contact with the package.

* APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78P018F. Also refer to **(5) Cautions on using development tools**.

(1) Language Processing Software

RA78K/0	78K/0 Series common assembler package	
CC78K/0	78K/0 Series common C compiler package	
DF78014	Device file for μPD78018F Subseries	
CC78K/0-L	78K/0 Series common C compiler library source file	

(2) PROM Writing Tools

PG-1500	PROM programmer
PA-78P018CW	Programmer adapter connected to PG-1500
PA-78P018GC	
PA-78P018GK	
PA-78P018KK-S	
PG-1500 controller	PG-1500 control program

(3) Debugging Tool

• When using in-circuit emulator IE-78K0-NS

In-circuit emulator common to 78K/0 Series
Power supply unit for IE-78K0-NS
Interface adapter when using PC-9800 series as host machine (excluding notebook PCs, C bus supported)
PC card and interface cable when using notebook PC of PC-9800 series as host machine (PCMCIA socket supported)
Interface adapter when using IBM PC/AT TM compatible as host machine (ISA bus supported)
Adapter when using PC that incorporates PCI bus as host machine
Emulation board for μ PD78018F Subseries
Emulation probe for 64-pin plastic shrink DIP (CW type)
Emulation probe for 64-pin plastic QFP (GC-AB8 type)
Emulation probe for 64-pin plastic LQFP (GC-8A8 type)
Conversion adapter for connecting target system board designed to mount a 64-pin plastic LQFP (GK-8A8 type) and NP-64GK.
Socket to be mounted on target system board manufactured for 64-pin plastic QFP (GC-AB8 type)
Integrated debugger for IE-78K0-NS
System simulator common to 78K/0 Series
Device file for μ PD78018F Subseries

• When using in-circuit emulator IE-78001-R-A

IE-78001-R-A	In-circuit emulator common to 78K/0 Series	
IE-70000-98-IF-C	Interface adapter when using PC-9800 series as host machine (excluding notebook PCs, C bus supported)	
IE-70000-PC-IF-C	Interface adapter when using IBM PC/AT compatible as host machine (ISA bus supported)	
IE-78000-R-SV3	Interface adapter and cable when using EWS as host machine	
IE-70000-PCI-IF	Adapter when using PC that incorporates PCI bus as host machine	
IE-78018-NS-EM1	Emulation board for μPD78018F Subseries	
IE-78K0-R-EX1	Emulation probe conversion board to use IE-78018-NS-EM1 on IE-78001-R-A	
EP-78240CW-R	Emulation probe for 64-pin plastic shrink DIP (CW type)	
EP-78240GC-R	Emulation probe for 64-pin plastic QFP (GC-AB8 type)	
EP-78012GK-R	Emulation probe for 64-pin plastic LQFP (GK-8A8 type)	
TGK-064SBW	Conversion adapter for connecting target system board designed to mount a 64-pin plastic LQFP (GK-8A8) and NP-64GK.	
EV-9200GC-64	Socket to be mounted on target system board manufactured for 64-pin plastic QFP (GC-AB8 type)	
ID78K0	Integrated debugger for IE-78001-R-A	
SM78K0	System simulator common to 78K/0 Series	
DF78014	Device file for μPD78018F Subseries	

(4) Real-time OS

RX78K/0	Real-time OS for 78K/0 Series
MX78K0	OS for 78K/0 Series

(5) Cautions on using development tools

- The ID-78K0-NS, ID78K0, and SM78K0 are used in combination with the DF78014.
- The CC78K/0 and RX78K/0 are used in combination with the RA78K/0 and the DF78014.
- The NP-64CW, NP64GC, and NP-64GK are products made by Naitou Densei Machidaseisakusho (+81-44-822-3813).

Contact an NEC dealer regarding the purchase of these products.

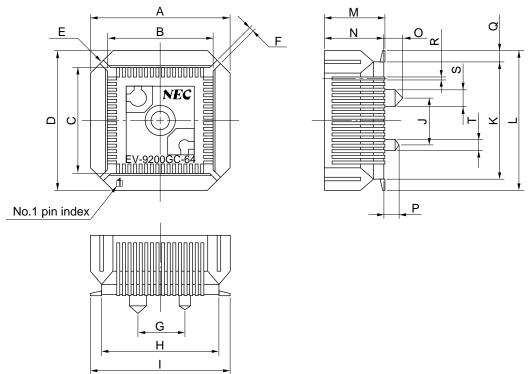
• The TGK-064SBW is a product made by TOKYO ELETECH CORPORATION.

For further information, connect to: Daimaru Kogyo, Ltd.

Tokyo Electronics Dept. (+81-3-3820-7112)

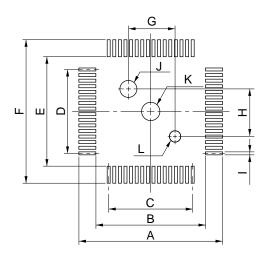
Osaka Electronics Dept. (+81-6-244-6672)

- For third party development tools, see the 78K/0 Series Selection Guide (U11126E).
- The host machines and OSs supporting each software are as follows.


Host Machine	PC	EWS
[OS]	PC-9800 series [Windows TM] IBM PC/AT compatible	HP9000 series 700 TM [HP-UX TM] SPARCstation TM [SunOS TM , Solaris TM]
Software	[Japanese/English Windows]	NEWS TM (RISC) [NEWS-OS TM]
RA78K/0	√Note	√
CC78K/0	√Note	√
PG-1500 controller	\sqrt{Note}	_
ID78K0-NS	√	_
ID78K0	√	V
SM78K0	√	_
RX78K/0	√Note	$\sqrt{}$
MX78K0	√Note	V

Note DOS-based software

Drawing of Conversion Socket (EV-9200GC-64) and Recommended Footprint


Figure A-1. Drawing of EV-9200GC-64 (for reference only)

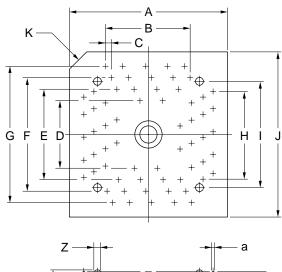
EV-9200GC-64-G0

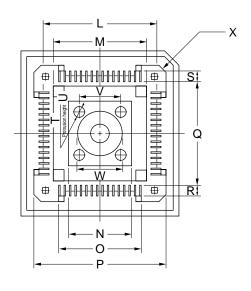
ITEM	MILLIMETERS	INCHES
Α	18.8	0.74
В	14.1	0.555
С	14.1	0.555
D	18.8	0.74
Е	4-C 3.0	4-C 0.118
F	0.8	0.031
G	6.0	0.236
Н	15.8	0.622
I	18.5	0.728
J	6.0	0.236
K	15.8	0.622
L	18.5	0.728
М	8.0	0.315
N	7.8	0.307
0	2.5	0.098
Р	2.0	0.079
Q	1.35	0.053
R	0.35±0.1	$0.014^{+0.004}_{-0.005}$
S	φ2.3	φ0.091
Т	φ1.5	φ0.059

Figure A-2. Recommended Footprint of EV-9200GC-64 (for reference only)

EV-9200GC-64-P1E

ITEM	MILLIMETERS	INCHES
Α	19.5	0.768
В	14.8	0.583
С	$0.8\pm0.02 \times 15=12.0\pm0.05$	$0.031^{+0.002}_{-0.001} \times 0.591 = 0.472^{+0.003}_{-0.002}$
D	$0.8\pm0.02 \times 15=12.0\pm0.05$	$0.031^{+0.002}_{-0.001} \times 0.591 = 0.472^{+0.003}_{-0.002}$
Е	14.8	0.583
F	19.5	0.768
G	6.00±0.08	$0.236^{+0.004}_{-0.003}$
Н	6.00±0.08	$0.236^{+0.004}_{-0.003}$
I	0.5±0.02	$0.197^{+0.001}_{-0.002}$
J	φ2.36±0.03	$\phi_{0.093^{+0.001}_{-0.002}}$
K	φ2.2±0.1	$\phi_{0.087^{+0.004}_{-0.005}}$
L	φ1.57±0.03	ϕ 0.062 $^{+0.001}_{-0.002}$


Caution Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).



Drawing of Conversion Adapter (TGK-064SBW)

Figure A-3. Drawing of TGK-064SBW (for reference only)

TGK-064SBW (TQPACK064SB + TQSOCKET064SBW) Package dimension (unit: mm)

Z ———	→ - a
e Y	k\$ \$
	j t n
d <u></u>	i †
¢ "	
b	Ţ
→ f →	- g

ITEM	MILLIMETERS	INCHES
A	18.4	0.724
В	0.65x15=9.75	0.026x0.591=0.384
С	0.65	0.026
D	7.75	0.305
Е	10.15	0.400
F	12.55	0.494
G	14.95	0.589
Н	0.65x15=9.75	0.026x0.591=0.384
I	11.85	0.467
J	18.4	0.724
K	C 2.0	C 0.079
L	12.45	0.490
М	10.25	0.404
N	7.7	0.303
0	10.02	0.394
P	14.92	0.587
Q	11.1	0.437
R	1.45	0.057
S	1.45	0.057
T	$4-\phi 1.3$	$4-\phi 0.051$
U	1.8	0.071
V	5.0	0.197
W	ϕ 5.3	φ0.209
X	4-C 1.0	4-C 0.039
Υ	ϕ 3.55	φ0.140
Z	φ0.9	φ0.035

ITEM	MILLIMETERS	INCHES
а	φ0.3	φ0.012
b	1.85	0.073
С	3.5	0.138
d	2.0	0.079
е	3.9	0.154
f	1.325	0.052
g	1.325	0.052
h	5.9	0.232
i	0.8	0.031
j	2.4	0.094
k	2.7	0.106

TGK-064SBW-G1E

note: Product of TOKYO ELETECH CORPORATION.

APPENDIX B. RELATED DOCUMENTS

Device Related Documents

Document Name		Document No.	
		English	Japanese
μPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F Data Sheet		U10280E	U10280J
μPD78P018F Data Sheet		This document	U10955J
μPD78018F, 78018FY Subseries User's Manual		U10659E	U10659J
78K/0 Series User's Manual - Instructions		U12326E	U12326J
78K/0 Series Instruction List		_	U10903J
78K/0 Series Instruction Set		_	U10904J
μ PD78018F Subseries Special Function Register Table		_	IEM-5594
78K/0 Series Application Note	Basics (I)	U12704E	U12704J
	Floating-Point Arithmetic Programs	IEA-1289	U13482J

Development Tool Documents (User's Manual)

Document Name		Document No.	
		English	Japanese
RA78K0 Assembler Package	Operation	U11802E	U11802J
	Assembly Language	U11801E	U11801J
	Structured Assembly Language	U11789E	U11789J
RA78K Series Structured Assembler Preprocessor		EEU-1402	U12323J
CC78K0 C Compiler	Operation	U11517E	U11517J
	Language	U11518E	U11518J
CC78K/0 C Compiler Application Note	Programming Know-How	U13034E	U13034J
PG-1500 PROM Programmer		U11940E	U11940J
PG-1500 Controller PC-9800 Series (MS-DOS™) Based		EEU-1291	EEU-704
PG-1500 Controller IBM PC Series (PC DOS™) Based		U10540E	EEU-5008
IE-78K0-NS		To be prepared	To be prepared
IE-78001-R-A		To be prepared	To be prepared
IE-78K0-R-EX1		To be prepared	To be prepared
IE-78018-NS-EM1		To be prepared	U13289J
EP-78240		U10332E	EEU-986
EP-78012GK-R		EEU-1538	EEU-5012
SM78K0 System Simulator Windows Based	Reference	U10181E	U10181J
SM78K Series System Simulator	External Part User Open	U10092E	U10092J
	Interface Specification		
ID78K/0-NS Integrated Debugger Windows Based	Reference	U12900E	U12900J
ID78K/0 Integrated Debugger EWS Based	Reference	_	U11151J
ID78K/0 Integrated Debugger PC Based	Reference	U11539E	U11539J
ID78K/0 Integrated Debugger Windows Based	Guide	U11649E	U11649J

Caution The contents of the above related documents are subject to change without notice. The latest documents should be used for design.

Embedded Software Documents (User's Manual)

Document Name		Document No.	
		English	Japanese
78K/0 Series Real-Time OS	Basics	U11537E	U11537J
	Installation	U11536E	U11536J
78K/0 Series OS MX78K0	Basics	U12257E	U12257J

Other Documents

Document Name	Document No.	
Document Name	English	Japanese
NEC IC Package Manual (CD-ROM)	C13388E	_
Semiconductor Device Mounting Technology Manual	C10535E	C10535J
Quality Grades on NEC Semiconductor Devices	C11531E	C11531J
NEC Semiconductor Device Reliability/Quality Control System	C10983E	C10983J
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E	C11892J
Guide to Quality Assurance for Semiconductor Devices	MEI-1202	_
Microcomputer Product Series Guide	_	U11416J

Caution The contents of the above related documents are subject to change without notice. The latest documents should be used for design.

NEC μ PD78P018F

[MEMO]

NOTES FOR CMOS DEVICES—

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- · Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130 Tel: 65-253-8311

Fax: 65-250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Rodovia Presidente Dutra, Km 214 07210-902-Guarulhos-SP Brasil

Tel: 55-11-6465-6810 Fax: 55-11-6465-6829

.198. 8

FIP, IEBus, and QTOP are trademarks of NEC Corporation.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT and PC DOS are trademarks of International Business Machines Corporation.

HP9000 Series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

License not needed: μ PD78P018FDW, 78P018FKK-S

The customer must judge the need for license: μPD78P018FCW, 78P018FGC-AB8, 78P018FGK-8A8

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.