

MOS INTEGRATED CIRCUIT $\mu PD78F9478$

8-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD78F9478, which is a product of the 78K/0S Series, is suitable for remote controllers with an on-chip LCD. The μ PD78F9478 has flash memory in place of the internal ROM of the μ PD789478.

Because flash memory allows the program to be written and erased with the device mounted on the target board, this product is ideal for development trials, small-scale production, or for applications that require frequent upgrades.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

μPD789477 Subseries User's Manual: U15400E 78K/0S Series User's Manual Instructions: U11047E

FEATURES

- Pin-compatible with mask ROM version (except VPP pin)
- On-chip multiplier: 8 bits × 8 bits = 16 bits
- Flash memory and RAM capacity

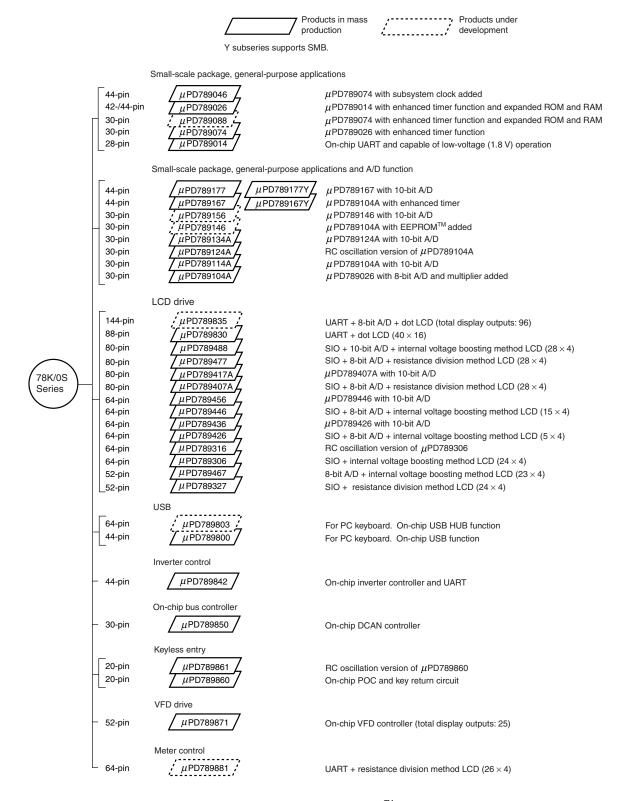
Item	Program Memory	Data Memory			
Part Number	(Flash Memory)	Internal High-Speed RAM	LCD Display RAM		
μPD78F9478	32 KB	1024 bytes	28 × 4 bits		

- Minimum instruction execution time can be selected from high speed (0.4 μ s: @5.0 MHz operation with main system clock), low speed (1.6 μ s: @5.0 MHz operation with main system clock), and ultra-low speed (122 μ s: @32.768 kHz operation with subsystem clock)
- A circuit to multiply the subsystem clock by 4 is selectable by mask option (15.26 μ s @ 131 kHz operation: 32.768 kHz subsystem clock \times 4)
- I/O ports: 45 (N-ch open-drain: 4)
- Serial interface: 2 channels
- 8-bit resolution A/D converter: 8 channels
- LCD controller/driver
 - Segment signals: 28, common signals: 4
- Timer: 6 channels
- On-chip infrared remote controller receiver
- · On-chip key return signal detector
- Supply voltage: VDD = 1.8 to 5.5 V

APPLICATIONS

CD players, portable audio devices, compact cameras, healthcare equipment, etc.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.



*** ORDERING INFORMATION**

Part Number	Package
μPD78F9478GC-8BT	80-pin plastic QFP (14 × 14)

* 78K/0S SERIES LINEUP

The products in the 78K/0S Series are listed below. The names enclosed in boxes are subseries names.

Remark VFD (Vacuum Fluorescent Display) is referred to as FIP[™] (Fluorescent Indicator Panel) in some documents, but the functions of the two are the same.

The major differences between subseries are shown below.

Series for General-Purpose and LCD Drive

	Function	ROM		Tir	mer		8-Bit	10-Bit	Serial Interface	I/O	V _{DD}	Remarks
Subseries		Capacity (Bytes)	8-Bit	16-Bit	Watch	WDT	A/D	A/D			MIN.Value	
Small-	μPD789046	16 K	1 ch	1 ch	1 ch	1 ch	-	_	1 ch (UART: 1ch)	34	1.8 V	_
scale package,	μPD789026	4 K to 16 K			-							
general-	μPD789088	16 K to 32 K	3 ch							24		
purpose	μPD789074	2Kto8K	1 ch									
applica- tions	μPD789014	2Kto4K	2 ch	ı						22		
Small-	μPD789177	16 K to 24 K	3 ch	1 ch	1 ch	1ch	_	8 ch	1 ch (UART: 1ch)	31	1.8 V	_
scale	μPD789167						8 ch	-				
package, general-	μPD789156	8 K to 16 K	1 ch		-		-	4 ch		20		On-chip
purpose	μPD789146						4 ch	ı				EEPROM
applica- tions +	μPD789134A	2 K to 8 K					-	4 ch				RC-oscillation
A/D	μPD789124A						4 ch	ı				version
converter	μPD789114A						-	4 ch				_
	μPD789104A						4 ch	ı				
LCD	μPD789835	24 K to 60 K	6 ch	-	1 ch	1 ch	3 ch	-	1 ch (UART: 1ch)	37	1.8 V ^{Note}	Dot LCD
drive	μPD789830	24 K	1 ch	1 ch			-			30	2.7 V	supported
	μPD789488	32 K	3 ch					8 ch	2 ch (UART: 1ch)	45	1.8 V	_
	μPD789478	24 K to 32 K					8 ch	ı				
	μPD789417A	12 K to 24 K					-	7 ch	1 ch (UART: 1ch)	43		
	μPD789407A						7 ch	ı				
	μPD789456	12 K to 16 K	2 ch				-	6 ch		30		
	μPD789446						6 ch	ı				
	μPD789436						_	6 ch		40		
	μPD789426						6 ch	-				
	μPD789316	8 K to 16 K					-		2 ch (UART: 1ch)	23		RC-oscillation version
	μPD789306											-
	μPD789467	4 K to 24 K		-			1 ch		-	18	1	
	μPD789327						_		1 ch	21	1	

Note Flash memory version: 3.0 V

Series for ASSP

	Function	ROM		Tir	mer		8-Bit	10-Bit	Serial Interface	I/O	V _{DD}	Remarks
Subseries		Capacity (Bytes)	8-Bit	16-Bit	Watch	WDT	A/D	A/D			MIN.Value	
USB	μPD789803	8 K to 16 K	2 ch	_	_	1 ch	_	_	2 ch (USB: 1ch)	41	3.6 V	_
	μ PD789800	8 K								31	4.0 V	
Inverter control	μPD789842	8 K to 16 K	3 ch	Note 1	1 ch	1 ch	8 ch	ı	1 ch (UART: 1ch)	30	4.0 V	_
On-chip bus controller	μPD789850	16 K	1 ch	1 ch	_	1 ch	4 ch	_	2 ch (UART: 1ch)	18	4.0 V	_
Keyless entry	μPD789861	4 K	2 ch	_	-	1 ch	-	-	-	14	1.8 V	RC-oscillation version, on-chip EEPROM
	μPD789860											On-chip EEPROM
VFD drive	μPD789871	4 K to 8 K	3 ch	_	1 ch	1 ch	-	ı	1 ch	33	2.7 V	_
Meter control	μPD789881	16 K	2 ch	1 ch	-	1 ch	_	-	1 ch (UART: 1 ch)	28	2.7 V ^{Note 2}	_

Notes 1. 10-bit timer: 1 channel

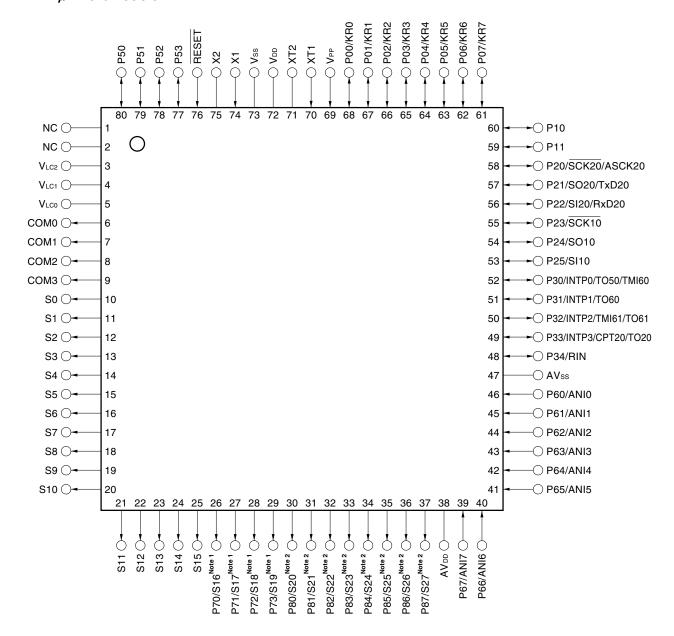
2. Flash memory version: 3.0 V

OVERVIEW OF FUNCTIONS

Ite	em	μPD78F9478				
Internal memory	Flash memory	32 KB				
	High-speed RAM	1024 bytes				
	LCD display RAM	28 × 4 bits				
Main system clock (oscillation frequence	······································	Ceramic/crystal oscillation (1.0 to 5.0 MHz)				
Subsystem clock (oscillation frequence	·y)	Crystal oscillation (32.768 kHz)				
Minimum instruction	execution time	0.4 μ s/1.6 μ s (@5.0 MHz operation with main system clock)				
		122 μs (@32.768 kHz operation with subsystem clock)				
		15.26 μs (@131 kHz operation with ×4 subsystem clock)				
Subsystem clock m	ultiplication function	×4 multiplication circuit (operating supply voltage: V _{DD} = 2.7 to 5.5 V, selected by subclock selection register)				
General-purpose re	gisters	8 bits × 8 registers				
Instruction set		16-bit operationsBit manipulation (set, reset, test) etc.				
Multiplier		8 bits \times 8 bits = 16 bits				
I/O ports		Total: 45 ^{Note} CMOS I/O: 29 CMOS input: 12 N-ch open-drain I/O: 4				
Timers		 16-bit timer: 1 channel 8-bit timer: 3 channels Watch timer: 1 channel Watchdog timer: 1 channel 				
Timer outputs		4				
Serial interface		UART/3-wire serial I/O mode: 1 channel 3-wire serial I/O mode (with automatic transmit/receive function): 1 channel				
A/D converter		8-bit resolution × 8 channels				
LCD controller/drive	r	Segment signal outputs: 28 ^{Note} Common signal outputs: 4				
Power supply metho	od for LCD drive	External resistance division method				
Infrared remote confunction	troller reception	On-chip				
Key return detection function		8 pins				
Vectored interrupt	Maskable	Internal: 16, External: 5				
sources Non-maskable		Internal: 1				
Reset		Reset by RESET signal input Internal reset by watchdog timer				
Supply voltage		V _{DD} = 1.8 to 5.5 V				
Operating ambient t	emperature	T _A = -40 to +85°C				
Package		80-pin plastic QFP (14 \times 14)				

Note 12 pins are used either as a port function or LCD segment output selected by a port function register.

CONTENTS


1.	PIN CONFIGURATION (TOP VIEW)	9
2.	BLOCK DIAGRAM	11
3.	PIN FUNCTIONS	12
	3.1 Port Pins	12
	3.2 Non-Port Pins	13
	3.3 Pin I/O Circuits and Recommended Connection of Unused Pins	14
4.	MEMORY SPACE	17
5.	PERIPHERAL HARDWARE FUNCTIONS	18
	5.1 Ports	18
	5.2 Clock Generator	20
	5.3 16-Bit Timer	21
	5.4 8-Bit Timer/Event Counter	22
	5.5 Watch Timer	28
	5.6 Watchdog Timer	29
	5.7 Remote Controller Receiver	30
	5.8 Serial Interface 20	31
	5.9 Serial Interface 1A0	34
	5.10 8-Bit A/D Converter	36
	5.11 LCD Controller/Driver	37
	5.12 Multiplier	39
	5.13 Key Return Detector	40
6.	INTERRUPT FUNCTION	41
	6.1 Interrupt Types	41
	6.2 Interrupt Sources and Configuration	41
7.	STANDBY FUNCTION	4 4
8.	RESET FUNCTION	47
9.	FLASH MEMORY PROGRAMMING	48
	9.1 Selecting Communication Mode	48
	9.2 Function of Flash Memory Programming	49
	9.3 Flashpro III Connection	
	9.4 Example of Settings for Flashpro III (PG-FP3)	51
10.	INSTRUCTION SET OVERVIEW	
	10.1 Conventions	
	10.2 Operations	54
11.	ELECTRICAL SPECIFICATIONS	59

12.	PACKAGE DRAWING7	' 4
* 13.	RECOMMENDED SOLDERING CONDITIONS7	'5
* A P	ENDIX A. DIFFERENCES BETWEEN μ PD78F9478 AND MASK ROM VERSIONS7	'6
ΑP	ENDIX B. DEVELOPMENT TOOLS7	7
ΔP	ENDIX C. RELATED DOCUMENTS	78

1. PIN CONFIGURATION (TOP VIEW)

80-pin plastic QFP (14 \times 14) μ PD78F9478GC-8BT

- **Notes 1.** Whether to use these pins as input ports (P70 to P73) or segment outputs (S16 to S19) can be selected in 1-bit units using port function register 7 (PF7).
 - 2. Whether to use these pins as I/O ports (P80 to P87) or segment outputs (S20 to S27) can be selected in 1-bit units using port function register 8 (PF8).
- * Caution Connect the VPP pin independently to Vss via a 10 k Ω resistor.

Pin Name

ANI0 to ANI7:

P70 to P73:

P80 to P87:

Analog input

Port 7

Port 8

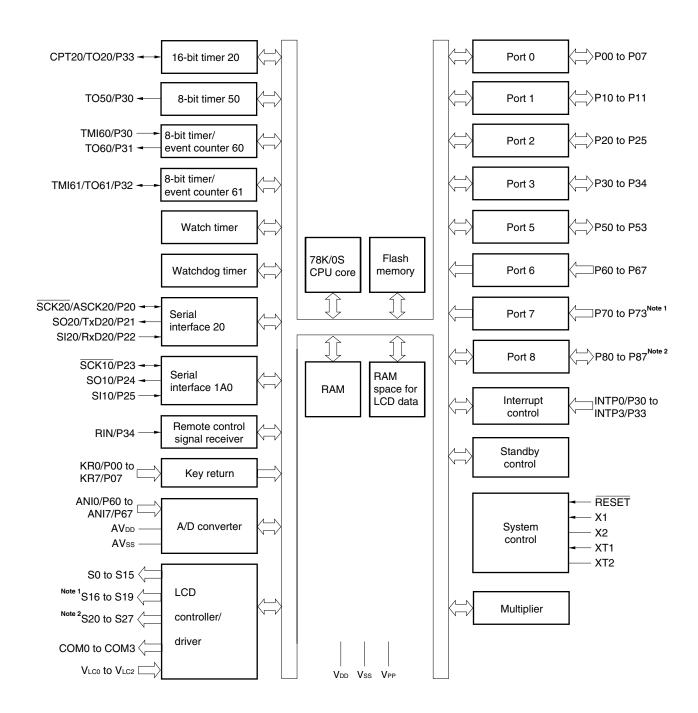
ASCK20: Asynchronous serial input RIN: Remote control input AV_{DD}: RxD0: Receive data Analog power supply AVss: S0 to S27: Analog ground Segment output SCK10: CPT20: Capture trigger input Serial clock input/output COM0 to COM3: SI10: Common output Serial data input INTP0 to INTP3: External interrupt input SO10: Serial data output SCK20: NC: No connection Serial clock input/output KR0 to KR7: Key return SI20: Serial data input P00 to P07: Port 0 SO20: Serial data output P10, P11: Port 1 TO20, 50, 60, 61: Timer output P20 to P25: Port 2 TMI60,61: Timer input P30 to P34: TxD0: Port 3 Transmit data P50 to P53: Port 5 V_{DD}: Power supply P60 to P67: VLC0 to VLC2: Port 6 Power supply for LCD

RESET:

V_{PP}:

Vss:

X1, X2: Crystal (main system clock)
XT1, XT2: Crystal (subsystem clock)


Ground

Programming power supply

Reset

2. BLOCK DIAGRAM

Notes 1. Whether to use these pins as input ports (P70 to P73) or segment outputs (S16 to S19) can be selected in 1-bit units using port function register 7 (PF7).

2. Whether to use these pins as I/O ports (P80 to P87) or segment outputs (S20 to S27) can be selected in 1-bit units using port function register 8 (PF8).

Data Sheet U14977EJ1V0DS 11

3. PIN FUNCTIONS

3.1 Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
P00 to P07	I/O	Port 0. 8-bit I/O port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified in 1-bit units using pull-up resistor option register B0 (PUB0) or key return mode register 00 (KRM00).	Input	KR0 to KR7
P10, P11	I/O	Port 1. 2-bit I/O port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified in 1-bit units using pull-up resistor option register B1 (PUB1).	Input	-
P20	I/O	Port 2.	Input	SCK20/ASCK20
P21		6-bit I/O port. Input/output can be specified in 1-bit units.		SO20/TxD20
P22		When used as an input port, an on-chip pull-up resistor can be specified in 1-bit units using pull-up resistor option register B2 (PUB2).		SI20/RxD20
P23				SCK10
P24				SO10
P25				SI10
P30	I/O	Port 3.	Input	INTP0/TO50/TMI60
P31		5-bit I/O port. Input/output can be specified in 1-bit units. When used as an input port, on-chip pull-up resistors can be specified in 1-bit units using pull-up resistor option register B3		INTP1/TO60
P32				INTP2/TMI61/TO61
P33				INTP3/CPT20/TO20
P34		(PUB3).		RIN
P50 to P53	I/O	Port 5. 4-bit N-ch open-drain I/O port. Input/output can be specified in 1-bit units.	Input	_
P60 to P67	Input	Port 6. 8-bit input port.	Input	ANI0 to ANI7
P70 to P73 ^{Note 1}	Input	Port 7. 4-bit input port. (Only when input port is selected by port function register 7)	Input	-
P80 to P87 ^{Note 2}	I/O	Port 8. 8-bit I/O port. (Only when I/O port is selected by port function register 8)	Input	-

Notes 1. Whether to use these pins as input ports (P70 to P73) or segment outputs (S16 to S19) can be selected in 1-bit units using port function register 7 (PF7).

2. Whether to use these pins as I/O ports (P80 to P87) or segment outputs (S20 to S27) can be selected in 1-bit units using port function register 8 (PF8).

3.2 Non-Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0 to INTP3	Input	External interrupt input for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.	Input	P30 to P33
KR0 to KR7	Input	Key return signal detection	Input	P00 to P07
TO20	Output	16-bit timer 20 output	Input	P33/INTP3/CPT20
CPT20	Output	Capture edge input of 16-bit timer 20	Input	P33/INTP3/TO20
TO50	Output	8-bit timer 50 output	Input	P30/INTP0/TMI60
TO60	Output	8-bit timer 60 output	Input	P31/INTP1
TO61	Output	8-bit timer 61 output	Input	P32/INTP2/TMI61
TMI60	Input	External count clock input to 8-bit timer 60	Input	P30/INTP0/TO50
TMI61	Input	External count clock input to 8-bit timer 61	Input	P32/INTP2/TO61
SCK20	I/O	Serial clock input/output of serial interface	Input	P20/ASCK20
SCK10				P23
SO20	Output	Serial data output of serial interface	Input	P21/TxD20
SO10				P24
SI20	Input	Serial data input of serial interface	Input	P22/RxD20
SI10				P25
ASCK20	Input	Serial clock input of asynchronous serial interface	Input	P20/SCK20
TxD20	Output	Serial data output of asynchronous serial interface	Input	P21/SO20
RxD20	Input	Serial data input of asynchronous serial interface	Input	P22/SI20
RIN	Input	Remote controller receive data input	Input	P34
S0 to S15	Output	LCD controller/driver segment signal outputs	Low-level output	-
S16 to S19 ^{Note 1}		Only when segment output is selected		_
S20 to S27 ^{Note 2}		Only when segment output is selected		_
COM0 to COM3	Output	LCD controller/driver common signal outputs	Low-level output	-
VLC0 to VLC2	-	LCD drive voltage	_	_
ANI0 to ANI7	-	A/D converter analog input	_	P60 to P67
AVss	-	A/D converter ground potential	_	_
AV _{DD}	-	A/D converter analog power supply	_	_
X1	Input	Connecting crystal resonator for main system clock oscillation	-	-
X2	_		-	-
XT1	Input	Connecting crystal resonator for subsystem clock oscillation	-	-
XT2	_		_	-
RESET	Input	System reset input	Input	-
V _{DD}	_	Positive power supply	-	-
Vss	-	Ground potential	-	_
V _{PP}	-	Flash memory programming mode setting. High-voltage application for program write/verify. Connect independently to Vss via a 10 $k\Omega$ resistor.	-	_
NC	_	No connection. Leave open.	_	_

- **Notes 1.** Whether to use these pins as input ports (P70 to P73) or segment outputs (S16 to S19) can be selected in 1-bit units using port function register 7 (PF7)
 - 2. Whether to use these pins as I/O ports (P80 to P87) or segment outputs (S20 to S27) can be selected in 1-bit units using port function register 8 (PF8)

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The I/O circuit type of each pin and recommended connection of unused pins is shown in Table 3-1. For the I/O circuit configuration of each type, refer to Figure 3-1.

Table 3-1. Types of Pin I/O Circuits and Recommended Connection of Unused Pins

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/KR0 to P07/KR7	8-A	I/O	Input: Independently connect to VDD or VSS via a resistor.
P10, P11	5-A		Output: Leave open.
P20/SCK20/ASCK20	8-A		
P21/SO20/TxD20	5-A		
P22/SI20/RxD20	8-A		
P23/SCK10			
P24/SO10	5-A		
P25/SI10	8-A		
P30/INTP0/TO50/ TMI60			Input: Independently connect to Vss via a resistor. Output: Leave open.
P31/INTP1/TO60			
P32/INTP2/TO61/ TMI61			
P33/INTP3/CPT20/ TO20			
P34/RIN			
P50 to P53	13-V		Input: Independently connect to VDD via a resistor. Output: Leave open.
P60/ANI0 to P67/ANI7	9-C	Input	Connect to V _{DD} or V _{SS} .
P70 to P73 ^{Note 1}	2-H		
P80 to P87 ^{Note 1}	5-K	I/O	Input: Independently connect to VDD or Vss via a resistor. Output: Leave open.
COM0 to COM3	18	Output	Leave open.
S0 to S15	17		
S16 to S19 ^{Note 2}			
S20 to S27 ^{Note 2}			
VLC0 to VLC2	_	_	
XT1		Input	Connect to Vss.
XT2		-	Leave open.
RESET	2	Input	_
V _{PP}	-	_	Independently connect to Vss via a 10 k Ω resistor.
NC			Leave open.

Notes 1. Only when selected as a port pin by a port function register.

 ${\bf 2.}\;\;$ Only when selected as a segment output pin by a port function register.

Figure 3-1. I/O Circuit Types (1/2)

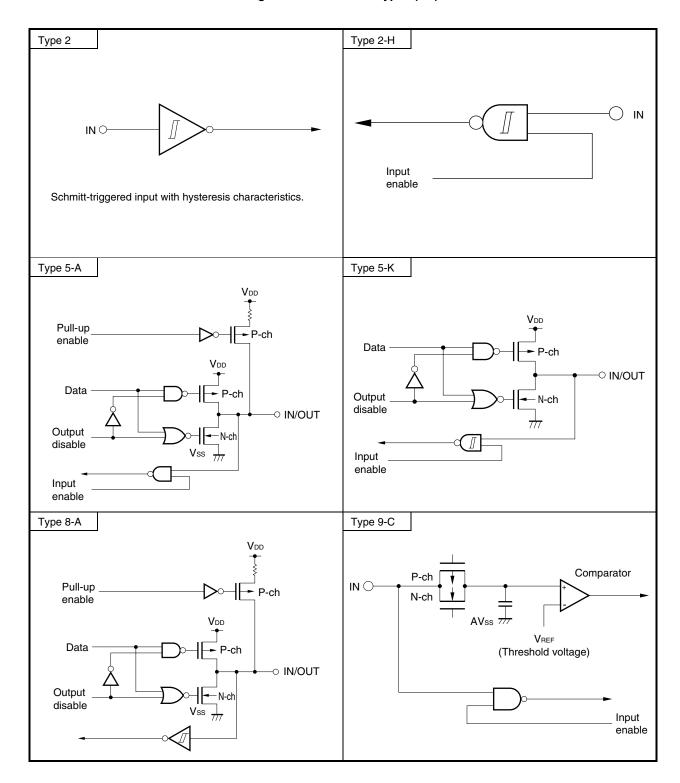
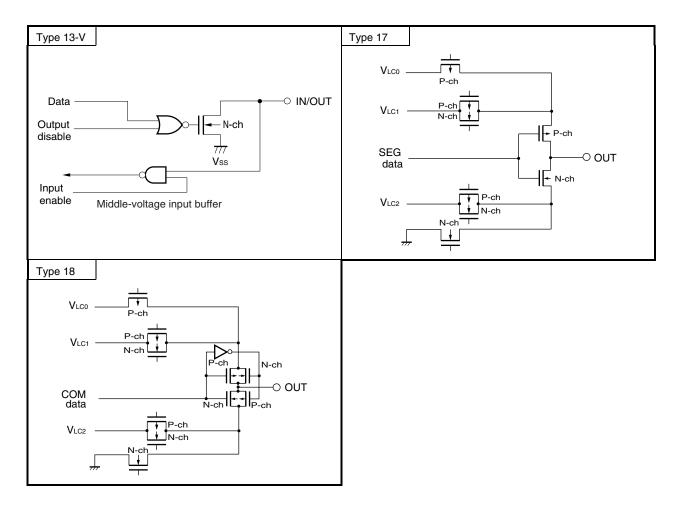



Figure 3-1. I/O Circuit Types (2/2)

4. MEMORY SPACE

The μ PD78F9478 is provided with 64 KB of accessible memory space. Figure 4-1 shows the memory map.

FFFFH Special function registers 256 × 8 bits FF00H FEFFH Internal high-speed RAM 1024×8 bits FB00H FAFFH Reserved F A 1 C H F A 1 B H LCD display RAM 28×4 bits Data memory F A 0 0 H F 9 F F H space 7FFFH Reserved 8000H 7 F F F H Program area H 0 8 0 0 Program memory Flash memory 007FH space $32768 \times 8 \text{ bits}$ CALLT table area 0040H 003FH Program area 002EH 002DH Vector table area 0000H 0000H

Figure 4-1. Memory Map

5. PERIPHERAL HARDWARE FUNCTIONS

5.1 Ports

Various kinds of control operations are possible using the ports provided in the μ PD78F9478. These ports are illustrated in Figure 5-1 and their functions are listed in Table 5-1.

A number of alternate functions are also provided, except for those ports functioning as digital I/O ports. Refer to **3. PIN FUNCTIONS** for details of the alternate function pins.

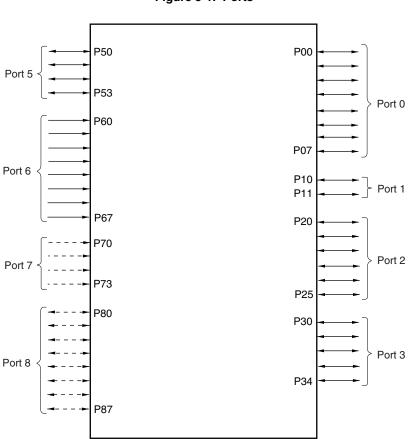


Figure 5-1. Ports

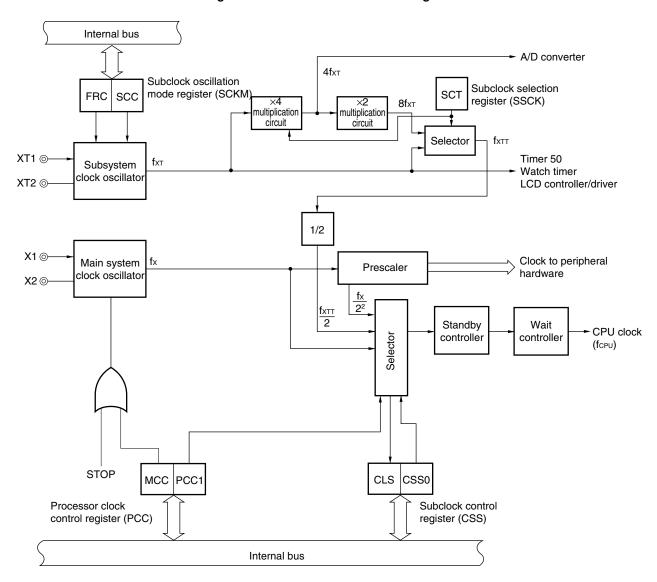
Remark Ports 7 and 8 are used when the port function is selected by a port function register.

Table 5-1. Port Functions

Port Name	Pin Name	Function
Port 0	P00 to P07	I/O port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified in 1-bit units using pull-up resistor option register B0 (PUB0) or key return mode register 00 (KRM00).
Port 1	P10, P11	I/O port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified in 1-bit units using pull-up resistor option register B1 (PUB1).
Port 2	P20 to P25	I/O port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified in 1-bit units using pull-up resistor option register B2 (PUB2).
Port 3	P30 to P34	I/O port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified in 1-bit units using pull-up resistor option register B3 (PUB3).
Port 5	P50 to P53	N-ch open-drain I/O port. Input/output can be specified in 1-bit units.
Port 6	P60 to P67	Input port
Port 7 ^{Note 1}	P70 to P73	Input port (only when input port is selected by a port function register)
Port 8 ^{Note 2}	P80 to P87	I/O port (only when I/O port is selected by a port function register)

- **Notes 1.** Whether to use these pins as input ports (P70 to P73) or segment outputs (S16 to S19) can be selected in 1-bit units using a port function register.
 - 2. Whether to use these pins as I/O ports (P80 to P87) or segment outputs (S20 to S27) can be selected in 1-bit units using a port function register.

Data Sheet U14977EJ1V0DS 19



5.2 Clock Generator

The clock generator generates the clock pulse to be supplied to the CPU and peripheral hardware. There are two types of system clock oscillators:

- Main system clock oscillator (ceramic/crystal resonator)
 This circuit oscillates a frequency of 1.0 to 5.0 MHz. Oscillation can be stopped by executing the STOP instruction or by a processor clock control register (PCC) setting.
- Subsystem clock oscillator
 This circuit oscillates a frequency of 32.768 kHz. Oscillation can be stopped using the subclock oscillation mode register (SCKM). A circuit to multiply the subclock by 4 can also be used by a subclock selection register (SSCK).

Figure 5-2 Clock Generator Block Diagram

5.3 16-Bit Timer

16-bit timer 20 (TM20) has the following functions.

- · Timer interrupt
- Timer output
- · Count value capture

(1) Timer interrupt

An interrupt occurs when the count value and compare value match.

(2) Timer output

Timer output control is enabled when the count value and compare value match.

(3) Count value capture

The TM20 count value is captured and held in the capture register in synchronization with the capture trigger.

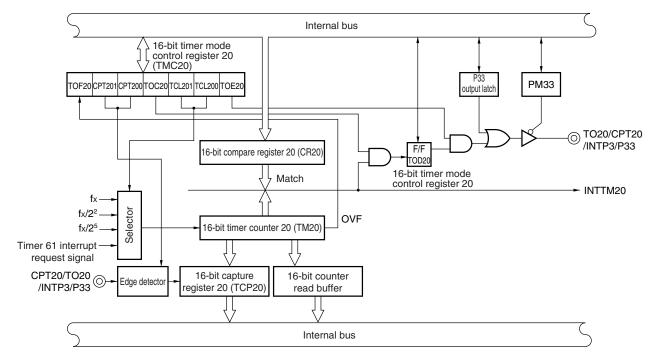


Figure 5-3. Block Diagram of 16-Bit Timer

5.4 8-Bit Timer/Event Counter

One 8-bit timer channel (timer 50) and two 8-bit timer/event counter channels (timers 60 and 61) are incorporated in the μ PD78F9478. The operation modes listed in the following table can be set via mode register settings.

Table 5-2. Operation Modes

Channel	Timer 50	Timer 60	Timer 61
Mode			
8-bit timer counter mode (stand-alone mode)	Available	Available	Available
16-bit timer counter mode (cascade connection mode)	Ava	ilable	Not available
Carrier generator mode	Ava	ilable	Not available
PWM output mode	Available	Not available	Not available
PPG output mode	Not available	Available	Available
24-bit event counter mode (connect with 16-bit timer 20)	Not available	Not available	Available

(1) Mode to use 8-bit timer/event counter as discrete unit (stand-alone mode)

The following functions can be used in this mode.

- <Timer 50>
- Interval timer with 8-bit resolution
- Square-wave output with 8-bit resolution
- <Timer 60 and 61>
- · Interval timer with 8-bit resolution
- External event counter with 8-bit resolution
- Square-wave output with 8-bit resolution

(2) Mode to use timer 50 and timer 60 connected in cascade (16-bit resolution: cascade connection)

Operation as a 16-bit timer/event counter is enabled in cascade connection mode.

The following functions can be used in this mode.

- Interval timer with 16-bit resolution
- External event counter with 16-bit resolution
- Square-wave output with 16-bit resolution

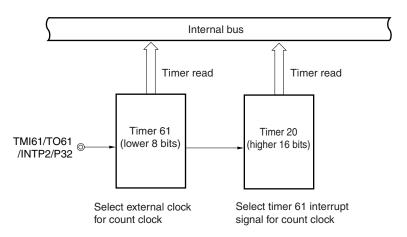
(3) Carrier generator mode

The carrier clock generated by timer 60 is output in the cycle set by timer 50.

(4) PWM output mode (PWM: Pulse Width Modulation)

Pulses are output using any duty ratio (pulse width). The cycle (overflow cycle of the timer) becomes constant (free running).

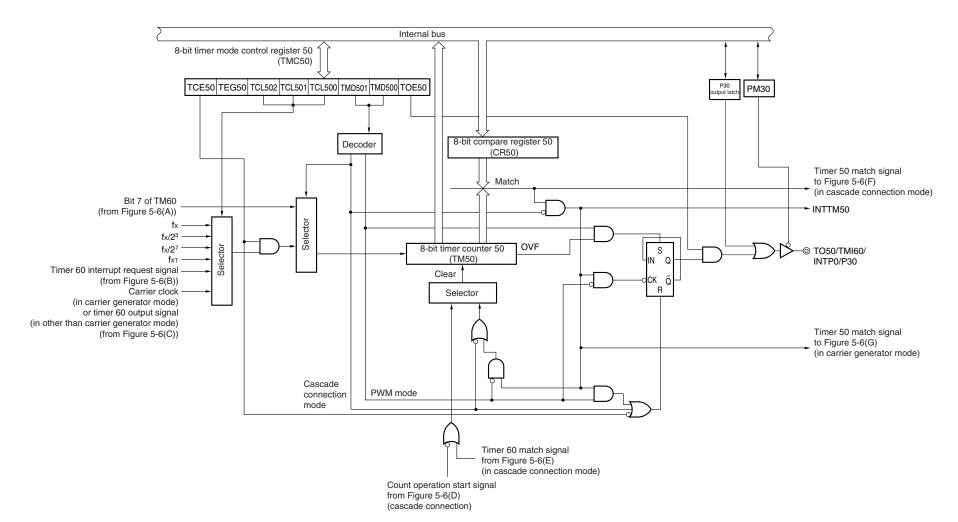
(5) PPG output mode (PPG: Programmable Pulse Generator)


Pulses are output using any set cycle or duty ratio (pulse width) (both the cycle and pulse width are programmable).

(6) 24-bit event counter mode

Operation as external event counter with 24-bit resolution is enabled using 16-bit timer 20 and timer 61. However, this mode operates only as a counter read function.

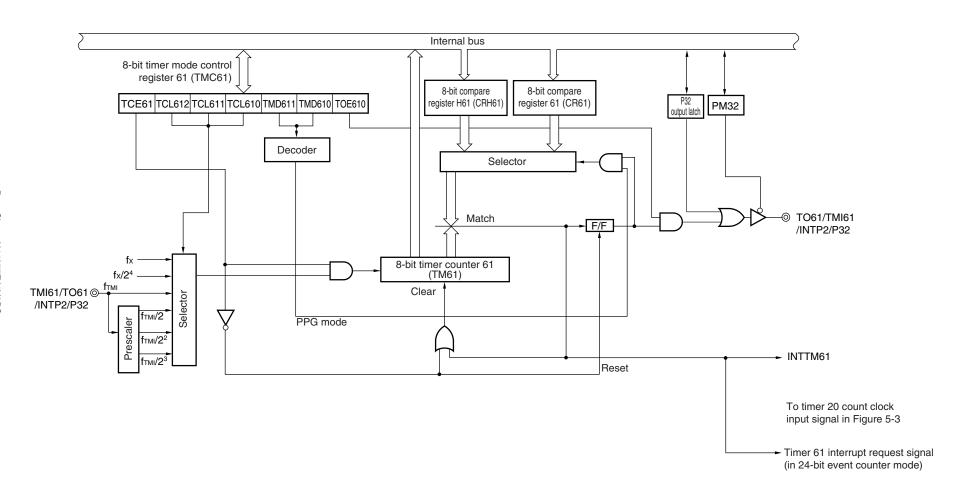
There is no compare, match, or clear function.


Figure 5-4. Block Diagram of 24-Bit Event Counter

Data Sheet U14977EJ1V0DS

 μ PD78F9478

Figure 5-5. Block Diagram of Timer 50


Internal bus 8-bit timer mode control Carrier generator output register 60 (TMC60) control register 60 (TCA60) 8-bit compare 8-bit compare register H60 register 60 (CR60) TCE60 TCL602 TCL601 TCL600 TMD601 TMD600 TOE600 RMC60 NRZB60 NRZ60 (CRH60) Decoder Timer counter match signal Selector from timer 50 in Figure 5-5(G) (in carrier generator mode) Output - F/F Match - TO60/INTP1/P31 controllerNote To Figure 5-5(C) carrier clock 8-bit timer counter 60 (in carrier generator mode) or (TM60) OVF timer 60 output signal TMI60/TO50/ \bigcirc Selector Clear (in other than carrier generator mode) INTP0/P30 fтмі/2 Prescaler PPG mode To Figure 5-5(A) fтмі/2² Reset Bit 7 of TM60 Cascade connection mode (in cascade connection mode) INTTM60 To Figure 5-5(D) Count operation start To Figure 5-5(B) To Figure 5-5(E) signal to timer 50 Timer 60 interrupt request signal (in cascade connection mode) Timer counter match count clock signal signal for TM60 input to TM50 (in cascade connection mode) From Figure 5-5(F)

TM50 match signal (in cascade connection mode)

Figure 5-6. Block Diagram of Timer 60

Note For details, see Figure 5-8.

Figure 5-7. Block Diagram of Timer 61

TOE60 RMC60 NRZ60

P31 output latch PM31

© TO60/INTP1/P31

Carrier clock (in carrier generator mode) or timer 60 output signal (in other than carrier generator mode)

Carrier generator mode)

Figure 5-8. Output Controller Block Diagram

5.5 Watch Timer

The watch timer has the following functions.

- · Watch timer
- Interval timer

This timer can be used as a watch timer and interval timer at the same time.

(1) Watch timer

An interrupt request (INTWT) occurs at an interval of 0.5 second when using either the 4.19 MHz main system clock or the 32.768 kHz subsystem clock.

Also, an interrupt request (INTWT) occurs at an interval of 1.0 seconds when using the 32.768 kHz subsystem clock via a setting in the watch timer interrupt time selection register (WTIM).

Caution An interval of 0.5 second cannot be created when using the 5.0 MHz main system clock. Instead, switch to the 32.768 kHz subsystem clock, and then create the 0.5-second interval.

(2) Interval timer

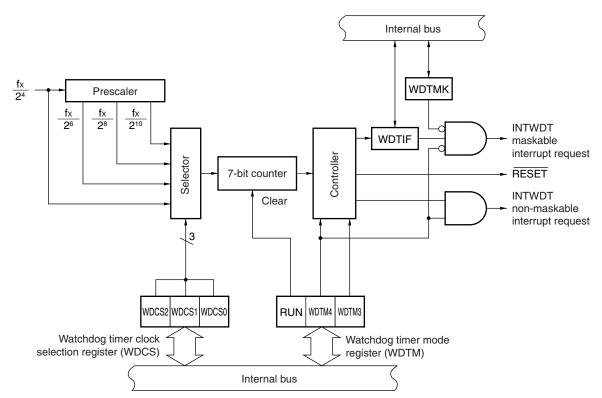
An interrupt request (INTWTI) occurs at preset intervals.

Clear 5-bit counter -INTWT 9-bit prescaler $\frac{\text{fw}}{2^5}$ fw Clear 24 **2**⁶ 27 28 Selector ► INTWTI Selector 1/2 WTS WTM7 WTM6 WTM5 WTM4 WTM1 WTM0 Watch timer interrupt Watch timer mode time selection control register (WTM) register (WTIM) Internal bus

Figure 5-9. Watch Timer Block Diagram

5.6 Watchdog Timer

The watchdog timer has the following functions.


(1) Watchdog timer

The watchdog timer detects an inadvertent program loop. When a loop is detected, a non-maskable interrupt or the $\overline{\text{RESET}}$ signal can be issued.

(2) Interval timer

An interrupt is issued at preset intervals (any interval time can be set).

Figure 5-10. Watchdog Timer Block Diagram

* 5.7 Remote Controller Receiver

The remote controller receiver uses the following remote controller reception mode.

• A-type reception mode ... with guide pulse (half clock)

It also has a function to supply signals externally input to the RIN pin to the circuit, after eliminating noise.

Noise Edge RIN/P34 ► INTRIN canceler detection Remote controller receive data register (RMDR) NCW **RMEN RMIN** Clock Remote controller receive shift register (RMSR) counter Data detection Remote Compare register Comparator controller shift **RMGPLS RMGPLL** selection ► INTDFULL register receive fx/2⁶ counter register **RMDLL RMDLS** Selector (RMSCR) RMDH0S RMDH0L Register ■ INTGP RMDH1S RMDH1L **INTRERR** End-width select register (RMER) INTREND Selection control signal **RMEN** NCW PRSEN RMIN RMCK1 RMCK0 Remote controller receive control register (RMCN) Internal bus

Figure 5-11. Block Diagram of Remote Controller Receiver

5.8 Serial Interface 20

Serial interface 20 has the following three modes.

- · Operation stop mode
- Asynchronous serial interface (UART) mode
- 3-wire serial I/O mode

(1) Operation stop mode

This mode is used when serial transfers will not be performed. It enables a reduction in power consumption.

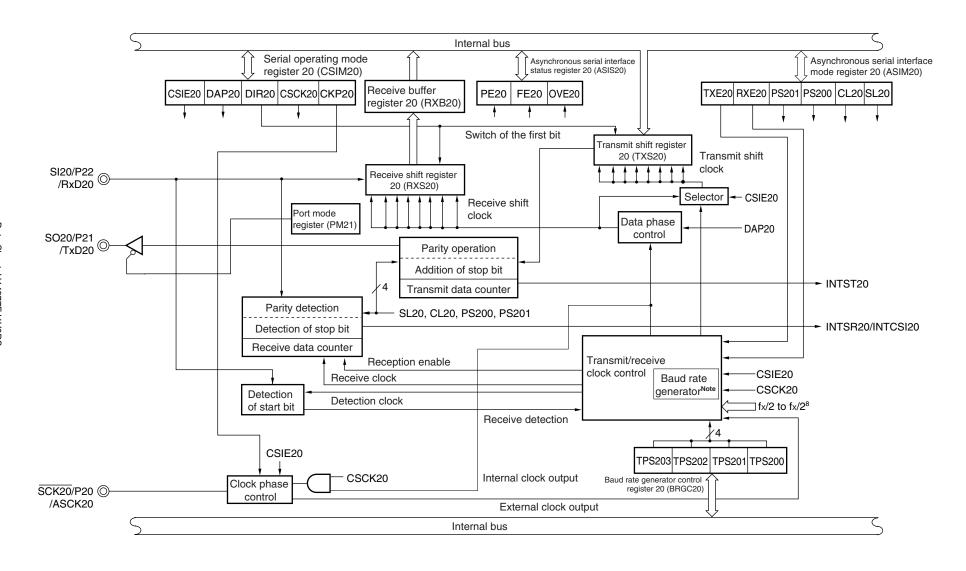
(2) Asynchronous serial interface (UART) mode

This mode, which is used to transmit and receive the one byte of data that follows a start bit, enables full-duplex communication.

Serial interface 20 contains a dedicated UART baud rate generator, enabling communication over a wide range of baud rates. It is also possible to define baud rates by dividing the frequency of the input clock pulse at the ASCK20 pin.

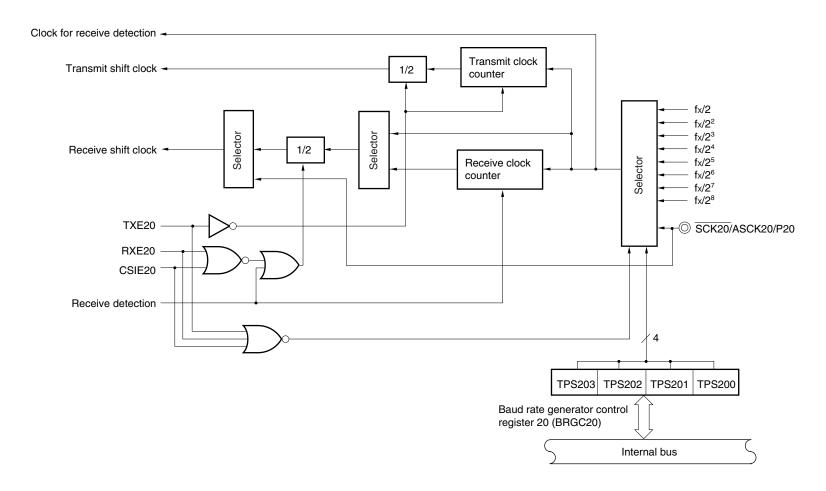
(3) 3-wire serial I/O mode (MSB/LSB-first switching possible)

This mode is used to transfer 8-bit data using three lines: a serial clock line (SCK20) and two serial data lines (SI20 and SO20).


Because this mode supports simultaneous transmission and reception, 3-wire serial I/O mode requires less processing time for data transfer.

Also, when using 3-wire serial I/O mode, it is possible to select whether 8-bit data transfer will start with the MSB or LSB, so any device can be connected regardless of whether that device is designed for MSB-first or LSB-first transfers.

3-wire serial I/O mode is useful for connecting peripheral I/O circuits and display controllers with conventional clocked serial interfaces, such as those found in the 75XL Series, 78K Series, and 17K Series.


Data Sheet U14977EJ1V0DS 31

* Figure 5-12. Block Diagram of Serial Interface

Note See **Figure 5-13** for the configuration of the baud rate generator.

Figure 5-13. Block Diagram of Baud Rate Generator 20

5.9 Serial Interface 1A0

Serial interface 1A0 has the following three modes.

- · Operation stop mode
- 3-wire serial I/O mode
- 3-wire serial I/O mode with automatic transmit/receive function

(1) Operation stop mode

This mode is used when serial transfer will not be performed. It enables a reduction in power consumption.

(2) 3-wire serial I/O mode (MSB/LSB-first switchable)

This mode is used to transfer 8-bit data using three lines: a serial clock (SCK10) line and two serial data lines (SI10 and SO10).

Because this mode supports simultaneous transmission and reception, 3-wire serial I/O mode requires less processing time for data transfer.

Also, when using 3-wire serial I/O mode, it is possible to select whether 8-bit data transfer will start with the MSB or LSB, so any device can be connected regardless of whether that device is designed for MSB-first or LSB-first transfers.

3-wire serial I/O mode is useful for connecting peripheral I/O circuits and display controllers with conventional clocked serial interfaces, such as those found in the 75XL Series, 78K Series, and 17K Series.

(3) 3-wire serial mode with automatic transmit/receive function

This mode has an automatic transmit/receive function in addition to the functions in (2) above.

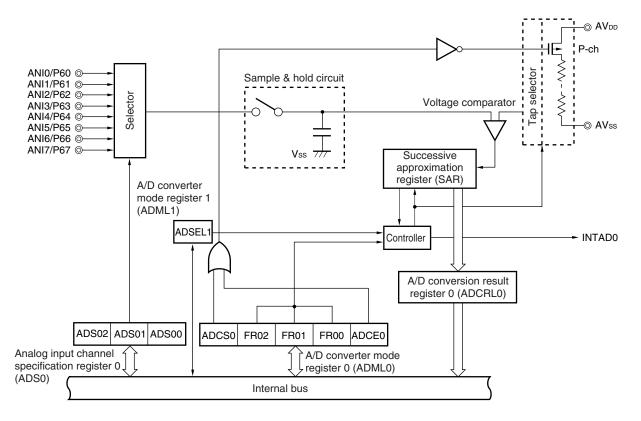
The automatic transmit/receive function is used to transmit/receive data with a maximum of 16 bytes. This function enables the hardware to transmit/receive data to/from the OSD (On Screen Display) device and a device with an on-chip display controller/driver independently of the CPU, thus alleviating the software load.

Automatic data transmission/reception Buffer RAM address pointer 0 (ADTP0) Internal bus Automatic data Automatic data transmission/reception ATE0 transmission/reception Serial operation interval specification control register 0 mode register 1A0 register 0 (ADTI0) (ADTC0) (CSIM1Ã0) DIR 10 CSIE DIR ATEO LSCK SCL SCL ADTI ADTI ADTI ADTI ADTI ADTI RE0 ARLD TRF0 10 101 100 04 03 02 01 10 10 Serial I/O shift SI10/ P25 ©register 1A0 ADTI00-ADTI04 Match (SIO1A0) PM24 TRF0 SO10/ P24 P24 output 5-bit counter Selector latch Hand shake - ARLD0 Serial clock ► INTCSI10 counter SIO1A0 write Clear CSIE10 PM23 Selector P23 output of participation of participa Q S $fx/2^2$ $fx/2^3$ $fx/2^4$ SCK10/ ©-P23 latch

Figure 5-14. Block Diagram of Serial Interface 1A0

5.10 8-Bit A/D Converter

The A/D converter converts analog inputs into digital values with 8-bit resolution and is configured so as to enable control of 8 channels of analog inputs (ANI0 to ANI7).

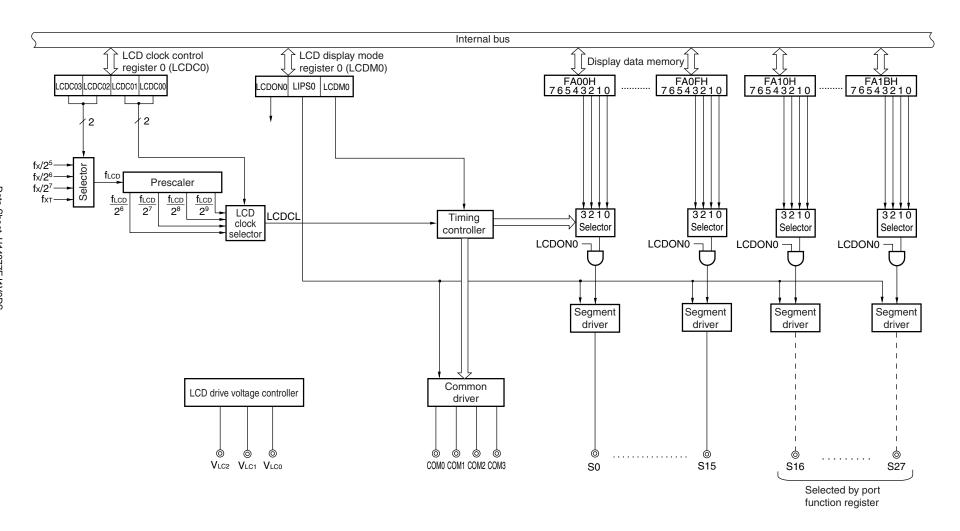

An A/D conversion operation can only be started via software.

A/D conversion is repeated, with an interrupt request (INTAD0) generated at the completion of each A/D conversion operation.

A conversion operation is also possible using the subsystem clock multiplied by 4 (131 kHz).

Caution A/D conversion is stopped in the STOP mode.

Figure 5-15. 8-Bit A/D Converter Block Diagram



5.11 LCD Controller/Driver

The LCD controller/driver incorporated in the μ PD78F9478 has the following features.

- (1) Segment and common signals based on the automatic reading of the display data memory can be automatically output
- (2) Two types of display modes are selectable
 - 1/3 duty (1/3 bias)
 - 1/4 duty (1/3 bias)
- (3) Four types of frame frequencies are selectable in each display mode
- (4) 16 to 28 segment signal outputs (S0 to S15, S16 to S27 (usable by a port function register)), 4 common signal outputs (COM0 to COM3)
- (5) Operation with a subsystem clock is possible

Figure 5-16. LCD Controller/Driver Block Diagram

5.12 Multiplier

The calculation of 8 bits \times 8 bits = 16 bits can be made by the multiplier.

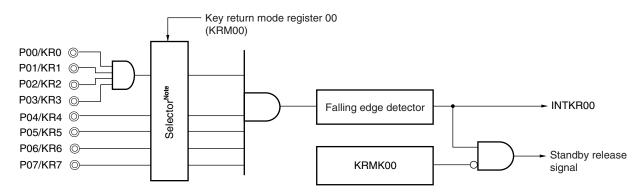

Internal bus Multiplication data register A (MRA0) Multiplication data register B (MRB0) Counter value -CPU clock Selector 3-bit counter 3 Start Clear Counter output 16-bit adder 16-bit multiplication result storage register 0 (Master) (MUL0) 16-bit multiplication result storage register 0 (Slave) MULST0 Reset Multiplier control register 0 (MULC0) Internal bus

Figure 5-17. Multiplier Block Diagram

5.13 Key Return Detector

This circuit detects the key return signal (rising edge of port 0).

Figure 5-18. Block Diagram of Falling Edge Detector

Note For selecting the pin to be used as the falling edge input.

6. INTERRUPT FUNCTION

6.1 Interrupt Types

Two types of interrupts are supported.

(1) Non-maskable interrupts

Non-maskable interrupt requests are acknowledged unconditionally, i.e. even when interrupts are disabled.

These interrupts take precedence over all other interrupts and are not subject to interrupt priority control.

A non-maskable interrupt causes the generation of the standby release signal.

An interrupt from the watchdog timer is the only non-maskable interrupt source supported in the μ PD78F9478.

(2) Maskable interrupts

Maskable interrupts are subject to mask control. If two or more maskable interrupts occur simultaneously, the default priority listed in Table 6-1 applies.

A maskable interrupt causes the generation of the standby release signal.

Maskable interrupts from 5 external and 16 internal sources are supported in the μ PD78F9478.

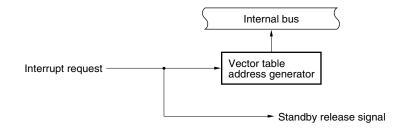
6.2 Interrupt Sources and Configuration

The μ PD78F9478 supports a total of 22 maskable and non-maskable interrupt sources (see **Table 6-1**).

Data Sheet U14977EJ1V0DS 41

Table 6-1. Interrupt Sources

Interrupt Type	Default		Interrupt Source	Internal/	Vector Table	Basic
	Priority ^{Note 1}	Name	Trigger	External	Address	Configuration Type ^{Note 2}
Non-maskable	_	INTWDT	Watchdog timer overflow (with watchdog timer mode 1 selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Watchdog timer overflow (with interval timer mode selected)			(B)
	1	INTP0	Pin (INTP0) input edge detection	External	0006H	(C)
	2	INTP1	Pin (INTP1) input edge detection		0008H	
	3	INTP2	Pin (INTP2) input edge detection		000AH	
	4	INTP3	Pin (INTP3) input edge detection		000CH	
	5	INTRIN	Remote controller edge detection	Internal	000EH	(B)
	6	INTSR20	UART reception completion		0010H	
		INTCSI20	End of 3-wire SIO transfer for serial interface 20			
	7	INTCSI10	End of 3-wire SIO transfer for serial interface 1A0		0012H	
	8	INTST20	End of UART transmission for serial interface 20		0014H	
	9	INTWTI	Standard time interval signal of watch timer (WT)		0016H	
	10	INTTM20	Match between TM20 and CR20		0018H	
	11	INTTM50	Match between TM50 and CR50		001AH	
	12	INTTM60	Match between TM60 and CR60 (in 8-bit counter mode), and between TM50, TM60 and CR50, CR60 (in 16-bit timer mode)		001CH	
	13	INTTM61	Match between TM61 and CR61		001EH	
	14	INTAD0	End of A/D conversion	1	0020H	
	15	INTWT	Watch timer (WT) overflow	1	0022H	
	16	INTKR00	Key return signal detection	External	0024H	(C)
	17	INTRERR	Generation of reception error for remote controller	Internal	0026H	(B)
	18	INTGP	Guide pulse detection for remote controller		0028H	
	19	INTREND	Data reception completion for remote controller		002AH	
	20	INTDFULL	Read request of 8-bit shift data for remote controller		002CH	


Notes 1. The default priority is the priority order when more than one maskable interrupt request is generated at the same time. 0 is the highest priority and 20 is the lowest.

2. Basic configuration types (A), (B), and (C) correspond to (A), (B), and (C) in Figure 6-1.

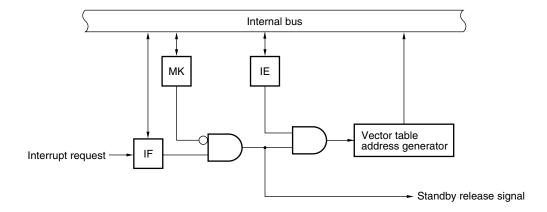
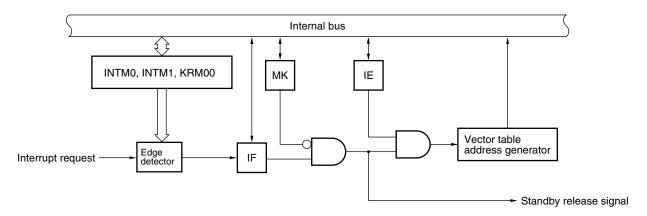

Remark Only one of the two watchdog timer interrupt (INTWDT) sources, non-maskable or maskable (internal), can be selected.

Figure 6-1. Basic Configuration of Interrupt Function


(A) Internal non-maskable interrupt

(B) Internal maskable interrupt

(C) External maskable interrupt

INTM0: External interrupt mode register 0
INTM1: External interrupt mode register 1
KRM00: Key return mode register 00

IF: Interrupt request flagIE: Interrupt enable flagMK: Interrupt mask flag

Data Sheet U14977EJ1V0DS

7. STANDBY FUNCTION

A standby function is incorporated to minimize the system's power consumption. There are two standby modes: HALT and STOP.

The HALT and STOP modes are selected using the HALT and STOP instructions.

(1) HALT mode

In this mode, the CPU operating clock is stopped. The average current consumption can be reduced by intermittent operation combining this mode with the normal operation mode.

(2) STOP mode

In this mode, main system clock oscillation is stopped. All operations performed with the main system clock are suspended, thus minimizing power consumption.

Cautions 1. When shifting to STOP mode, execute the STOP instruction after the peripheral hardware the operation has been stopped.

- 2. Observe the following two constraints when using the μ PD78F9478 in the HALT mode with the subclock multiplied by 4 as the CPU clock.
 - Be sure to insert the following number of NOP instructions immediately after the HALT instruction.

Operating Temperature	Number of NOP Instructions
T _A = -40 to +45°C	2
$T_A = -40 \text{ to } +80^{\circ}\text{C}$	3
T _A = -40 to +85°C	4

 Save the value of the A register to the internal high-speed RAM area before the HALT instruction is executed (because the value of the A register may be changed when the HALT mode is released).

Table 7-1. Operation Statuses in HALT Mode

Item		n Status During Main ck Operation	•	Status During Subsystem Operation			
	Subsystem Clock Operating	Subsystem Clock Stopped	Main System Clock Operating	Main System Clock Stopped			
Clock generator	Oscillation enabled for bo	oth main system clock and	subsystem clock, howeve	r, clock supply to CPU is			
Subsystem clock ×4 multiplication circuit	Operation stopped	Operation stopped					
CPU	Operation stopped						
Ports (output latches)	Status before HALT mod	e setting retained					
16-bit timer 20	Operable			Operable ^{Note 1}			
8-bit timer 50	Operable			Operable ^{Note 2}			
8-bit timer 60	Operable			Operable ^{Note 3}			
8-bit timer 61	Operable			Operable ^{Note 3}			
Watch timer	Operable	Operable ^{Note 4}	Operable	Operable ^{Note 5}			
Watchdog timer	Operable		Operation stopped				
Key return circuit	Operable						
Serial interface 20	Operable			Operable ^{Note 6}			
Serial interface 1A0	Operable			Operable ^{Note 6}			
Remote controller reception circuit	Operable	Operable ^{Note 4}	Operable	Operable ^{Note 5}			
LCD controller/driver	Operable ^{Note 7}	Operable ^{Notes 4, 7}	Operable ^{Note 7}	Operable ^{Notes 5, 7}			
A/D converter	Operation stopped						
Multiplier	Operation stopped						
External interrupts	Operable ^{Note 8}						

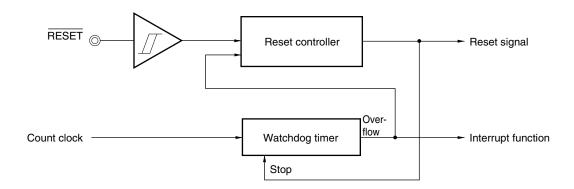
- Notes 1. Operation is enabled when the 24-bit counter mode is selected.
 - 2. Operation is enabled when either the subsystem clock or input signal from timer 60 (when timer 60 is operable) is selected as the count clock.
 - 3. Operation is enabled only when the external input clock is selected as the count clock.
 - 4. Operation is enabled when the main system clock is selected.
 - 5. Operation is enabled when the subsystem clock is selected.
 - 6. Operation is enabled only when an external clock is selected.
 - **7.** The HALT instruction can be set after display instruction execution.
 - 8. Operation is enabled only for a maskable interrupt that is not masked.

*

Table 7-2. Operation Statuses in STOP Mode

Item	STOP Mode Operation Status Du	ring Main System Clock Operation
	Subsystem Clock Operating	Subsystem Clock Stopped
Main system clock	Oscillation stopped	
Subsystem clock ×4 multiplication circuit	Operation stopped	
CPU	Operation stopped	
Ports (output latches)	Status before STOP mode setting retained	
16-bit timer 20	Operation stopped	
8-bit timer 50	Operable ^{Note 1}	Operable ^{Note 2}
8-bit timer 60	Operable ^{Note 3}	
8-bit timer 61	Operable ^{Note 3}	
Watch timer	Operable ^{Note 4}	Operation stopped
Watchdog timer	Operation stopped	
Key return circuit	Operable	
Serial interface 20	Operable ^{Note 5}	
Serial interface 1A0	Operable ^{Note 5}	
Remote controller reception circuit	Operable ^{Note 4}	Operation stopped
LCD controller/driver	Operable ^{Note 4}	Operation stopped
A/D converter	Operation stopped	
Multiplier	Operation stopped	
External interrupts	Operable ^{Note 6}	

- **Notes 1.** Operation is enabled when either the subsystem clock or input signal from timer 60 (when timer 60 is operable) is selected as the count clock.
 - 2. Operation is enabled when input signal from timer 60 (when timer 60 is operable) is selected as the count clock.
 - 3. Operation is enabled when the external input clock is selected as the count clock.
 - 4. Operation is enabled when the subsystem clock is selected.
 - 5. Operation is enabled only when an external clock is selected.
 - 6. Operation is enabled only for a maskable interrupt that is not masked



8. RESET FUNCTION

The μ PD78F9478 can be reset using the following two methods.

- (1) External reset signal input via RESET pin
- (2) Internal reset by watchdog timer program loop time detection
- Cautions 1. To use an external reset sequence, input a low-level signal to the \overline{RESET} pin for at least 10 μ s.
 - 2. When a reset is used to release STOP mode, the data of when STOP mode was entered is retained during the reset sequence, except for the port pins, which are in the high-impedance state.

Figure 8-1. Reset Function Block Diagram

Data Sheet U14977EJ1V0DS

9. FLASH MEMORY PROGRAMMING

The on-chip program memory in the μ PD78F9478 is a flash memory.

The flash memory can be written with the μ PD78F9478 mounted on the target system (on-board). Connect the dedicated flash programmer (Flashpro III (model number: FL-PR3, PG-FP3)) to the host machine and target system to write the flash memory.

Remark FL-PR3 is made by Naito Densei Machida Mfg. Co., Ltd.

9.1 Selecting Communication Mode

The flash memory is written by using Flashpro III and by means of serial communication. Select a communication mode from those listed in Table 9-1. To select a communication mode, the format shown in Figure 9-1 is used. Each communication mode is selected by the number of V_{PP} pulses shown in Table 9-1.

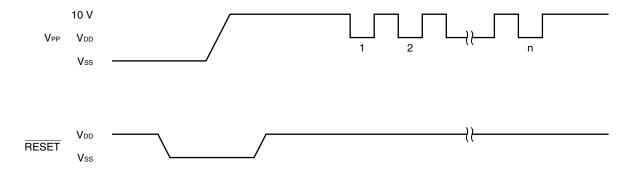

Communication Mode	Pins Used ^{Note}	Number of VPP Pulses
3-wire serial I/O	SCK20/ASCK20/P20 SO20/TxD20/P21 SI20/RxD20/P22	0
UART	TxD20/SO20/P21 RxD20/SI20/P22	8

Table 9-1. Communication Mode List

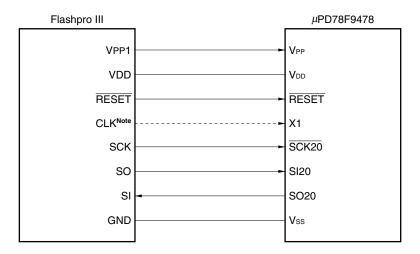
Note When flash memory programming mode is set, all pins not used for flash memory programming enter the same state as that immediately after a reset. Therefore, when the external device connected to a port cannot recognize that state of the port immediately after a reset, the pins must be connected to the VDD pin, or via a resistor to the Vss pin.

Caution Be sure to select a communication mode depending on the VPP pulse number shown in Table 9-1.

Figure 9-1. Communication Mode Selection Format

9.2 Function of Flash Memory Programming

By transmitting/receiving commands and data in the selected communication mode, operations such as writing to the flash memory are performed. Table 9-2 shows the major functions of flash memory programming.


Table 9-2. Functions of Flash Memory Programming

Function	Description
Batch erase	Erases all contents of memory
Batch blank check	Checks erased state of entire memory
Data write	Write to flash memory based on write start address and number of data written (number of bytes)
Batch verify	Compares all contents of memory with input data

9.3 Flashpro III Connection

How the Flashpro III is connected to the μ PD78F9478 differs depending on the communication mode (3-wire serial I/O or UART). Figures 9-2 and 9-3 show the connection in the respective mode.

Figure 9-2. Flashpro III Connection in 3-Wire Serial I/O Mode

Note Connect the CLK pin when the system clock is input from the Flashpro III. When the resonator has already been connected to the X1 pin, there is no need to connect the CLK pin to the X1 pin.

Caution Be sure to connect the V_{DD} pin to the VDD pin of the Flashpro III even if the power supply has already been connected. When using the power supply, be sure to supply voltage before starting programming.

Data Sheet U14977EJ1V0DS

μPD78F9478

Flashpro III μPD78F9478 VPP1 V_{PP} VDD V_{DD} RESET RESET CLK^{Note} X1 SO RxD20 SI TxD20 GND Vss

Figure 9-3. Flashpro III Connection in UART Mode

Note Connect the CLK pin when the system clock is input from the Flashpro III. When the resonator has already been connected to the X1 pin, there is no need to connect the CLK pin to the X1 pin.

Caution Be sure to connect the V_{DD} pin to the VDD pin of the Flashpro III even if the power supply has already been connected. When using the power supply, be sure to supply voltage before starting programming.

9.4 Example of Settings for Flashpro III (PG-FP3)

Set as follows when writing to flash memory using the Flashpro III (PG-FP3).

- <1> Download the parameter file.
- <2> Select the serial mode and the serial clock using the type command.
- <3> The following is a setting example using the PG-FP3.

Table 9-3. Example Using PG-FP3

Communication Mode	Setting Exam	ple Using PG-FP3	Number of VPP PulsesNote1
3-wire serial I/O mode	COMM PORT	SIO-ch 0	0
	CPU CLK	On target board	
		In Flashpro	
	On target board	4.1943 MHz	
	SIO CLK	1.0 MHz	
	In Flashpro	4.0 MHz	
	SIO CLK	1.0 MHz	
UART	COMM PORT	UART-ch0	8
	CPU CLK	On target board	
		In Flashpro	
	On target board	4.91 MHz	
	UART BPS	9600 bps Note2	

Notes 1. The number of VPP pulses supplied from the Flashpro III during serial communication initialization. The pins to be used in communication are determined by this number of pulses.

2. Select one of 9600 bps, 19200 bps, 38400 bps, or 76800 bps.

Remark COMM PORT: Selection of serial port

SIO CLK: Selection of serial clock frequency

CPU CLK: Selection of CPU clock source to be input

10. INSTRUCTION SET OVERVIEW

The instruction set for the μ PD78F9478 is listed in this section.

10.1 Conventions

10.1.1 Operand formats and descriptions

The description made in the operand field of each instruction conforms to the operand format for the instructions listed below (for details, see the assembler specifications). If more than one operand format is listed for an instruction, one is selected. Uppercase letters, #, !, \$, and brackets [] are used to specify keywords, which must be written exactly as they appear. The meanings of these special characters are as follows.

- #: Immediate data specification
- \$: Relative address specification
- !: Absolute address specification
- []: Indirect address specification

Immediate data should be described using appropriate values or labels. The specification of values and labels must be accompanied by #, !, \$, or [].

Operand registers, expressed as r or rp in the formats, can be described using both functional names (X, A, C, etc.) and absolute names (R0, R1, R2, and other names listed in Table 5-1 below).

Format	Description
r rp	X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7) AX (RP0), BC (RP1), DE (RP2), HL (RP3)
sfr	Special function register symbol
saddr saddrp	FE20H to FF1FH Immediate data or label FE20H to FF1FH Immediate data or label (even addresses only)
addr16	0000H to FFFFH Immediate data or label
addi 10	(only even addresses for 16-bit data transfer instructions)
addr5	0040H to 007FH Immediate data or label (even addresses only)
word	16-bit immediate data or label
byte	8-bit immediate data or label
bit	3-bit immediate data or label

Table 10-1. Operand Formats and Descriptions

10.1.2 Operation field definitions

A: A register (8-bit accumulator)

X: X register

B: B register

C: C register

D: D register

E: E register

H: H register

L: L register

AX: AX register pair (16-bit accumulator)

BC: BC register pair

DE: DE register pair

HL: HL register pair

PC: Program counter

SP: Stack pointer

PSW: Program status word

CY: Carry flag

AC: Auxiliary carry flag

Z: Zero flag

IE: Interrupt request enable flag

NMIS: Flag to indicate that a non-maskable interrupt is being processed

(): Contents of a memory location indicated by a parenthesized address or register name

XH, XL: Higher and lower 8 bits of a 16-bit register

∴: Logical product (AND)

v: Logical sum (OR)

→: Exclusive OR

: Inverted data

addr16: 16-bit immediate data or label

jdisp8: Signed 8-bit data (displacement value)

10.1.3 Flag operation field definitions

(Blank): No change 0: Clear to 0 1: Set to 1

×: Set or clear according to the result

R: Restore to the previous value

Data Sheet U14977EJ1V0DS

10.2 Operations

Mnemonic	Operand		Byte	Clock	Operation		Flag	
						Z	AC	CY
MOV	r, #byte		3	6	$r \leftarrow \text{byte}$			
	saddr , #byte		3	6	(saddr) ← byte			
	sfr, #byte		3	6	sfr ← byte			
	A, r	Note 1	2	4	$A \leftarrow r$			
	r, A	Note 1	2	4	$r \leftarrow A$			
	A, saddr		2	4	$A \leftarrow (saddr)$			
	saddr, A		2	4	(saddr) ← A			
	A, sfr		2	4	A ← sfr			
	sfr, A		2	4	sfr ← A			
	A, !addr16		3	8	A ← (addr16)			
	!addr16, A		3	8	(addr16) ← A			
	PSW, #byte		3	6	PSW ← byte	×	×	×
	A, PSW		2	4	$A \leftarrow PSW$			
	PSW, A		2	4	PSW ← A	×	×	×
	A, [DE]		1	6	$A \leftarrow (DE)$			
	[DE], A		1	6	(DE) ← A			
	A, [HL]		1	6	$A \leftarrow (HL)$			
	[HL], A		1	6	(HL) ← A			
	A, [HL + byte]		2	6	A ← (HL + byte)			
	[HL + byte], A		2	6	(HL + byte) ← A			
XCH	A, X		1	4	$A \leftrightarrow X$			
	A, r	Note 2	2	6	$A \leftrightarrow r$			
	A, saddr		2	6	$A \leftrightarrow (saddr)$			
	A, sfr		2	6	$A \leftrightarrow (sfr)$			
	A, [DE]		1	8	$A \leftrightarrow (DE)$			
	A, [HL]		1	8	$A \leftrightarrow (HL)$			
	A, [HL + byte]		2	8	$A \leftrightarrow (HL + byte)$			
MOVW	rp, #word		3	6	$rp \leftarrow word$			
	AX, saddrp		2	6	$AX \leftarrow (saddrp)$			
	saddrp, AX		2	8	$(saddrp) \leftarrow AX$			
	AX, rp	Note 3	1	4	$AX \leftarrow rp$			
	rp, AX	Note 3	1	4	rp ← AX			
XCHW	AX, rp	Note 3	1	8	$AX \leftrightarrow rp$			

Notes 1. Except when r = A.

- **2.** Except when r = A or X.
- 3. Only when rp = BC, DE, or HL.

Mnemonic	Operand	Byte	Clock	Operation	Flag
					Z AC CY
ADD	A, #byte	2	4	A, CY ← A + byte	× × ×
	saddr, #byte	3	6	(saddr), CY ← (saddr) + byte	× × ×
	A, r	2	4	$A, CY \leftarrow A + r$	× × ×
	A, saddr	2	4	$A, CY \leftarrow A + (saddr)$	× × ×
	A, !addr16	3	8	A, CY ← A + (addr16)	× × ×
	A, [HL]	1	6	$A, CY \leftarrow A + (HL)$	× × ×
	A, [HL + byte]	2	6	$A, CY \leftarrow A + (HL + byte)$	× × ×
ADDC	A, #byte	2	4	$A, CY \leftarrow A + byte + CY$	× × ×
	saddr, #byte	3	6	(saddr), CY ← (saddr) + byte + CY	× × ×
	A, r	2	4	$A, CY \leftarrow A + r + CY$	× × ×
	A, saddr	2	4	A, CY ← A + (saddr) + CY	× × ×
	A, !addr16	3	8	A, CY ← A + (addr16) + CY	× × ×
	A, [HL]	1	6	$A, CY \leftarrow A + (HL) + CY$	× × ×
	A, [HL + byte]	2	6	A, CY ← A + (HL + byte) + CY	× × ×
SUB	A, #byte	2	4	A, CY ← A – byte	× × ×
	saddr, #byte	3	6	(saddr), CY ← (saddr) – byte	× × ×
	A, r	2	4	$A, CY \leftarrow A - r$	× × ×
	A, saddr	2	4	$A, CY \leftarrow A - (saddr)$	× × ×
	A, !addr16	3	8	A, CY \leftarrow A – (addr16)	× × ×
	A, [HL]	1	6	$A, CY \leftarrow A - (HL)$	× × ×
	A, [HL + byte]	2	6	A, CY \leftarrow A – (HL + byte)	\times \times \times
SUBC	A, #byte	2	4	$A, CY \leftarrow A - byte - CY$	\times \times \times
	saddr, #byte	3	6	(saddr), CY ← (saddr) – byte – CY	\times \times \times
	A, r	2	4	$A,CY\leftarrow A-r-CY$	\times \times \times
	A, saddr	2	4	$A,CY \leftarrow A - (saddr) - CY$	\times \times \times
	A, !addr16	3	8	$A, CY \leftarrow A - (addr16) - CY$	\times \times \times
	A, [HL]	1	6	$A, CY \leftarrow A - (HL) - CY$	× × ×
	A, [HL + byte]	2	6	$A, CY \leftarrow A - (HL + byte) - CY$	\times \times \times
AND	A, #byte	2	4	$A \leftarrow A \wedge \text{byte}$	×
	saddr, #byte	3	6	$(saddr) \leftarrow (saddr) \land byte$	×
	A, r	2	4	$A \leftarrow A \wedge r$	×
	A, saddr	2	4	$A \leftarrow A \wedge (saddr)$	×
	A, !addr16	3	8	$A \leftarrow A \wedge (addr16)$	×
	A, [HL]	1	6	$A \leftarrow A \wedge (HL)$	×
	A, [HL + byte]	2	6	$A \leftarrow A \land (HL + byte)$	×

Mnemonic	Operand	Byte	Clock	Operation	Flag
					Z AC CY
OR	A, #byte	2	4	$A \leftarrow A \lor byte$	×
	saddr, #byte	3	6	(saddr) ← (saddr) ∨ byte	×
	A, r	2	4	$A \leftarrow A \lor r$	×
	A, saddr	2	4	$A \leftarrow A \lor (saddr)$	×
	A, !addr16	3	8	$A \leftarrow A \lor (addr16)$	×
	A, [HL]	1	6	$A \leftarrow A \lor (HL)$	×
	A, [HL + byte]	2	6	$A \leftarrow A \lor (HL + byte)$	×
XOR	A, #byte	2	4	$A \leftarrow A \ \forall $ byte	×
	saddr, #byte	3	6	(saddr) ← (saddr) ∀ byte	×
	A, r	2	4	$A \leftarrow A \ \forall \ r$	×
	A, saddr	2	4	$A \leftarrow A \ \forall \ (saddr)$	×
	A, !addr16	3	8	$A \leftarrow A \ \forall \ (addr16)$	×
	A, [HL]	1	6	$A \leftarrow A \ \forall \ (HL)$	×
	A, [HL + byte]	2	6	$A \leftarrow A \ \forall \ (HL + byte)$	×
СМР	A, #byte	2	4	A – byte	× × ×
	saddr, #byte	3	6	(saddr) - byte	× × ×
	A, r	2	4	A – r	× × ×
	A, saddr	2	4	A – (saddr)	× × ×
	A, !addr16	3	8	A – (addr16)	× × ×
	A, [HL]	1	6	A – (HL)	× × ×
	A, [HL + byte]	2	6	A – (HL + byte)	× × ×
ADDW	AX, #word	3	6	$AX, CY \leftarrow AX + word$	× × ×
SUBW	AX, #word	3	6	$AX, CY \leftarrow AX - word$	× × ×
CMPW	AX, #word	3	6	AX – word	× × ×
INC	r	2	4	r ← r + 1	× ×
	saddr	2	4	(saddr) ← (saddr) + 1	× ×
DEC	r	2	4	r ← r − 1	× ×
	saddr	2	4	(saddr) ← (saddr) – 1	× ×
INCW	rp	1	4	rp ← rp + 1	
DECW	rp	1	4	rp ← rp − 1	
ROR	A, 1	1	2	$(CY,A_7 \leftarrow A_0,A_{m-1} \leftarrow A_m) \times 1$	×
ROL	A, 1	1	2	$(CY,A_0\leftarrow A_7,A_{m+1}\leftarrow A_m)\times 1$	×
RORC	A, 1	1	2	$(CY \leftarrow A_0,A_7 \leftarrow CY,A_{m-1} \leftarrow A_m) \times 1$	×
ROLC	A, 1	1	2	$(CY \leftarrow A_7, A_0 \leftarrow CY, A_{m+1} \leftarrow A_m) \times 1$	×

Mnemonic	Operand	Byte	Clock	Operation	Flag
					Z AC C
SET1	saddr.bit	3	6	(saddr.bit) ← 1	
	sfr.bit	3	6	sfr.bit ← 1	
	A.bit	2	4	A.bit ← 1	
	PSW.bit	3	6	PSW bit ← 1	× × ×
	[HL].bit	2	10	(HL).bit ← 1	
CLR1	saddr.bit	3	6	(saddr.bit) ← 0	
	sfr.bit	3	6	sfr.bit ← 0	
	A.bit	2	4	A.bit ← 0	
	PSW.bit	3	6	PSW.bit ← 0	× × ×
	[HL].bit	2	10	(HL).bit ← 0	
SET1	CY	1	2	CY ← 1	1
CLR1	CY	1	2	CY ← 0	0
NOT1	CY	1	2	$CY \leftarrow \overline{CY}$	×
CALL	!addr16	3	6	$(SP-1) \leftarrow (PC+3)H$, $(SP-2) \leftarrow (PC+3)L$, $PC \leftarrow addr16$, $SP \leftarrow SP-2$	
CALLT	[addr5]	1	8	$(SP - 1) \leftarrow (PC + 1)H, (SP - 2) \leftarrow (PC + 1)L,$ $PCH \leftarrow (00000000, addr5 + 1),$ $PCL \leftarrow (00000000, addr5),$ $SP \leftarrow SP - 2$	
RET		1	6	$PCH \leftarrow (SP + 1), PCL \leftarrow (SP),$ $SP \leftarrow SP + 2$	
RETI		1	8	$\begin{aligned} & PCH \leftarrow (SP+1), PCL \leftarrow (SP), \\ & PSW \leftarrow (SP+2), SP \leftarrow SP+3, \\ & NMIS \leftarrow 0 \end{aligned}$	RRF
PUSH	PSW	1	2	$(SP - 1) \leftarrow PSW, SP \leftarrow SP - 1$	
	rp	1	4	$(SP - 1) \leftarrow rp_H, (SP - 2) \leftarrow rp_L,$ $SP \leftarrow SP - 2$	
POP	PSW	1	4	$PSW \leftarrow (SP),SP \leftarrow SP + 1$	RRF
	rp	1	6	$rpH \leftarrow (SP + 1), rpL \leftarrow (SP),$ $SP \leftarrow SP + 2$	
MOVW	SP, AX	2	8	$SP \leftarrow AX$	
	AX, SP	2	6	$AX \leftarrow SP$	
BR	!addr16	3	6	PC ← addr16	
	\$addr16	2	6	PC ← PC + 2 + jdisp8	
	AX	1	6	$PCH \leftarrow A, PCL \leftarrow X$	

Mnemonic	Operand	Byte	Clock	Operation	Flag
					Z AC CY
ВС	\$addr16	2	6	PC ← PC + 2 + jdisp8 if CY = 1	
BNC	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8 \text{ if } CY = 0$	
BZ	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 1$	
BNZ	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 0$	
ВТ	saddr.bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if (saddr.bit) = 1	
	sfr.bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8 \text{ if sfr.bit} = 1$	
	A.bit, \$addr16	3	8	$PC \leftarrow PC + 3 + jdisp8 \text{ if A.bit} = 1$	
	PSW.bit, \$addr16	4	10	PC ← PC + 4 + jdisp8 if PSW.bit = 1	
BF	saddr.bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if (saddr.bit) = 0	
	sfr.bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8 \text{ if sfr.bit} = 0$	
	A.bit, \$addr16	3	8	$PC \leftarrow PC + 3 + jdisp8 \text{ if A.bit} = 0$	
	PSW.bit, \$addr16	4	10	PC ← PC + 4 + disp8 if PSW.bit = 0	
DBNZ	B, \$addr16	2	6	$B \leftarrow B - 1$, then PC \leftarrow PC + 2 + jdisp8 if B \neq 0	
	C, \$addr16	2	6	$C \leftarrow C - 1$, then $PC \leftarrow PC + 2 + jdisp8 \text{ if } C \neq 0$	
	saddr, \$addr16	3	8	$(saddr) \leftarrow (saddr) - 1$, then PC \leftarrow PC + 3 + jdisp8 if $(saddr) \neq 0$	
NOP		1	2	No Operation	
EI		3	6	IE ← 1 (Enable Interrupt)	
DI		3	6	IE ← 0 (Disable Interrupt)	
HALT		1	2	Set HALT Mode	
STOP		1	2	Set STOP Mode	

11. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol		Conditions	Ratings	Unit		
Power supply voltage	V _{DD}	$V_{DD} = AV_{DD}$		-0.3 to +6.5	٧		
	AV _{DD}						
	V _{PP}			-0.3 to +10.5	٧		
Input voltage	VII	P34, P60 to P67,	, P11, P20 to P25, P30 to , P70 to P73 ^{Note 1} , (1, X2, XT1, XT2, RESET	-0.3 to V _{DD} + 0.3 ^{Note 2}	V		
	V _{I2}	P50 to P53	N-ch open drain	-0.3 to +13	٧		
Output voltage	Vo	P00 to P07, P10, P11, P20 to P25, P30 to P34, P50 to P53, P80 to P87 Note 1				-0.3 to V _{DD} + 0.3 ^{Note 2}	٧
		S0 to S15, S16 to	o S27 ^{Note 1} , COM0 to COM3	-0.3 to V _{LC0} + 0.3	٧		
Output current, high	Іон	Per pin		-10	mA		
		Total for all pins		-30	mA		
Output current, low	loL	Per pin		30	mA		
		Total for all pins		160	mA		
Operating ambient temperature	Та	In normal operati	on mode	-40 to +85	°C		
		In flash memory	programming mode	10 to 40	°C		
Storage temperature	Tstg			-40 to +125	°C		

Notes 1. Only when selected by a port function register

2. 6.5 V or less

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

Data Sheet U14977EJ1V0DS

Main System Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic	Vss X1 X2	Oscillation frequency (fx) ^{Note 1}		1.0		5.0	MHz
resonator C1= C2=	Oscillation stabilization time ^{Note 2}	After V _{DD} reaches oscillation voltage range MIN.			4	ms	
Crystal	Vss X1 X2	Oscillation frequency(fx) ^{Note 1}		1.0		5.0	MHz
resonator	sonator C1= C2=	Oscillation stabilization	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$			10	ms
		time ^{Note 2}	V _{DD} = 1.8 to 5.5 V			30	ms
External	X1 X2	X1 input frequency (fx) ^{Note 1}		1.0		5.0	MHz
clock	· · · · · · · · · · · · · · · · · · ·	X1 input high-/low-level width (txH, txL)		85		500	ns
	X1 X2	X1 input frequency (fx) ^{Note 1}	V _{DD} = 2.7 to 5.5 V	1.0		5.0	MHz
	OPEN	X1 input high-/low-level width (txH, txL)	V _{DD} = 2.7 to 5.5 V	85		500	ns

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

- 2. Time required to stabilize oscillation after reset or STOP mode release.
- Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Remark For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Subsystem Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	Vss XT1 XT2	Oscillation frequency (fxT) ^{Note 1}		32	32.768	35	kHz
	C3 C4 -	Oscillation stabilization	V _{DD} = 4.5 to 5.5 V		1.2	2	s
		time ^{Note 2}	V _{DD} = 1.8 to 5.5 V			10	
External clock	XT1 XT2	XT1 input frequency (fxr) ^{Note 1}		32		35	kHz
		XT1 input high-/low-level width (txth, txtl)		14.3		15.6	μs

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2. Time required to stabilize oscillation after VDD reaches oscillation voltage range MIN.

Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance.

- · Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- The subsystem clock oscillator is designed as a low-amplitude circuit for reducing current consumption, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.

Remark For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Data Sheet U14977EJ1V0DS

DC Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol		Condition	ons	MIN.	TYP.	MAX.	Unit
Output current, low	loL	Per pin					10	mA
		All pins					80	mA
Output current, high	Іон	Per pin					-1	mA
		All pins					-15	mA
Input voltage, high	V _{IH1}	P10, P11,	P60 to P67	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0.7V _{DD}		V _{DD}	V
				$V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$	0.9V _{DD}		V _{DD}	V
	V _{IH2}	P50 to	N-ch open	V _{DD} = 2.7 to 5.5 V	0.7V _{DD}		12	V
		P53	drain	V _{DD} = 1.8 to 5.5 V	0.9V _{DD}		12	V
	V _{IH3}	RESET, PO	00 to P07,	V _{DD} = 2.7 to 5.5 V	0.8V _{DD}		V _{DD}	V
			5, P30 to P34, 8 ^{Note} , P80 to	V _{DD} = 1.8 to 5.5 V	0.9V _{DD}		V _{DD}	V
	V _{IH4}	X1, X2, XT1, XT2		V _{DD} = 4.5 to 5.5 V	V _{DD} - 0.5		V _{DD}	V
				V _{DD} = 1.8 to 5.5 V	V _{DD} - 0.1		V _{DD}	V
Input voltage, low	VIL1	P10, P11, P60 to P67		V _{DD} = 2.7 to 5.5 V	0		0.3V _{DD}	V
				V _{DD} = 1.8 to 5.5 V	0		0.1V _{DD}	V
	V _{IL2}	P50 to P53	3	V _{DD} = 2.7 to 5.5 V	0		0.3V _{DD}	V
				V _{DD} = 1.8 to 5.5 V	0		0.1V _{DD}	V
	V _{IL3}	RESET, P00 to P07,		V _{DD} = 2.7 to 5.5 V	0		0.2V _{DD}	V
			5, P30 to P34, 8 ^{Note} , P80 to	V _{DD} = 1.8 to 5.5 V	0		0.1V _{DD}	V
	V _{IL4}	X1, X2, XT1, XT2		V _{DD} = 4.5 to 5.5 V	0		0.4	V
				V _{DD} = 1.8 to 5.5 V	0		0.1	V
Output voltage, high	Vон			$V_{DD} = 4.5 \text{ to } 5.5 \text{ V},$ $I_{OH} = -1 \text{ mA}$	V _{DD} - 1.0			V
				$V_{DD} = 1.8 \text{ to } 5.5 \text{ V},$ $I_{OH} = -100 \ \mu\text{A}$	V _{DD} - 0.5			V
Output voltage, low	V _{OL1}	P20 to P25	7, P10, P11, 5, P30 to P34,	$4.5 \le V_{DD} \le 5.5 \text{ V},$ $I_{OL} = 10 \text{ mA}$			1.0	V
		P80 to P87	7Note	$1.8 \le V_{DD} < 4.5 V$, $I_{OL} = 400 \ \mu A$			0.5	V
	V _{OL2}	P50 to P53	3	$4.5 \le V_{DD} < 5.5 V$, $I_{OL} = 10 \text{ mA}$			1.0	V
				$1.8 \le V_{DD} < 4.5 \text{ V},$ $I_{OL} = 1.6 \text{ mA}$			0.4	V

Note Only when selected by a port function register

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішн1	VI = VDD	P00 to P07, P10, P11, P20 to P25, P30 to P34, P60 to P67, P70 to P73 ^{Note 1} , P80 to P87 ^{Note 1} , RESET			3	μΑ
	ILIH2		X1, X2, XT1, XT2			20	μΑ
	Ішнз	Vı = 12 V	P50 to P53 (N-ch open drain)			20	μΑ
Input leakage current, low	Luc1	V1 = 0 V	P00 to P07, P10, P11, P20 to P25, P30 to P34, P60 to P67, P70 to P73 Note 1, P80 to P87 Note 1, RESET			η	μΑ
	ILIL2		X1, X2, XT1, XT2			-20	μΑ
	Ішз		P50 to P53 (N-ch open drain)			-3 ^{Note 2}	μΑ
Output leakage current, high	Ісон	Vo = VDD				3	μΑ
Output leakage current, low	ILOL	Vo = 0 V				-3	μΑ
Software pull-up resistor	R ₁	V1 = 0 V	P00 to P07, P10, P11, P20 to P25, P30 to P34	50	100	200	kΩ

Notes 1. Only when selected by a port function register

2. If P50 to P53 have been set to input mode when a read instruction is executed to read from P50 to P53, a low-level input leakage current of up to $-60~\mu$ A flows during only one cycle. At all other times, the maximum leakage current is $-3~\mu$ A.

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

Data Sheet U14977EJ1V0DS

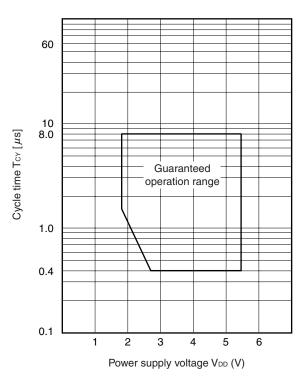
DC Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol		Conditio	ns	MIN.	TYP.	MAX.	Unit
Power supply	I _{DD1}	5.0 MHz crys	stal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$		5.5	9.0	mA
current ^{Note 1}		operation mo		$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$		1.3	2.3	mA
		(C1 = C2 = 2)	2 pr)	$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 3}}$		0.8	1.6	mA
	I _{DD2}	,	stal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$		1.5	2.1	mA
		HALT mode		V _{DD} = 3.0 V ±10% ^{Note 3}		0.41	0.85	mA
		(C1 = C2 = 2)	2 pr)	$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 3}}$		0.2	0.43	mA
	I _{DD3}	32.768 kHz ($V_{DD} = 5.0 \text{ V} \pm 10\%$		115	200	μΑ
		oscillation op mode ^{Note 4}	eration	$V_{DD} = 3.0 \text{ V} \pm 10\%$		85	140	μΑ
			2 pF, R1 = 220	V _{DD} = 2.0 V ±10%		70	110	μΑ
	oscillation o multiplicatio mode ^{Note 4}	32.768 kHz (crystal	V _{DD} = 5.0 V ±10%		315	480	μΑ
			operation	V _{DD} = 3.0 V ±10%		200	300	μΑ
las	(C3 = C4 = 22 pF, R1 = 220 $k\Omega$) 32.768 kHz LCD not		V 5.0 V 100/		25	GE.		
		crystal	operating ^{Note 5}	$V_{DD} = 5.0 \text{ V} \pm 10\%$ $V_{DD} = 3.0 \text{ V} \pm 10\%$		7	65	μΑ
		oscillation HALT mode ^{Note 4}				4	29	μΑ
				$V_{DD} = 2.0 \text{ V} \pm 10\%$		27	20 71	μΑ
		(C3 = C4 =		$V_{DD} = 5.0 \text{ V} \pm 10\%$			-	μΑ
		22 pF, R1 =		$V_{DD} = 3.0 \text{ V} \pm 10\%$ $V_{DD} = 2.0 \text{ V} \pm 10\%$		8.8	34	μΑ
		220 kΩ)				5.6	24	μΑ
		32.768 kHz crystal	LCD not operatingNote 5	$V_{DD} = 5.0 \text{ V} \pm 10\%$		25	65	μΑ
		oscillation × 4		$V_{DD} = 3.0 \text{ V} \pm 10\%$		7	29	μΑ
		multiplication	LCD	$V_{DD} = 5.0 \text{ V} \pm 10\%$		27	71	μΑ
	$\begin{array}{l} \text{HALT} \\ \text{mode}^{\text{Note 4}} \\ \text{(C3 = C4 =} \\ \text{22 pF, R1 =} \\ \text{220 k}\Omega) \end{array}$	operating ^{Note 6}	V _{DD} = 3.0 V ±10%		8.8	34	μΑ	
	I _{DD5}	STOP mode	Note 5	$V_{DD} = 5.0 \text{ V} \pm 10\%$		0.1	10	μΑ
				V _{DD} = 3.0 V ±10%		0.05	5	μΑ
				V _{DD} = 2.0 V ±10%		0.05	3	μΑ
	I _{DD6}		stal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$		6.5	10.2	mA
		A/D operatin (C1 = C2 = 2		$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$		2.0	3.3	mA
		(01 = 02 = 2	.∠ μr)	$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 3}}$		1.3	2.6	mA

Notes 1. The port current (including the current that flows to on-chip pull-up resistors) is not included.

- 2. High-speed mode operation (when the processor clock control register (PCC) is set to 00H)
- 3. Low-speed mode operation (when PCC is set to 02H)
- 4. When the main system clock is stopped
- **5.** When the LCD is not operating (LCDON0 = 0, LIPS0 = 0)
- **6.** Then the LCD is operating (LCDON0 = 1, LIPS0 = 1)
- 7. This is the total current that flows to V_{DD} and AV_{DD} .

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.



AC Characteristics

(1) Basic operation ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol		Conditions			TYP.	MAX.	Unit
Cycle time (minimum	Tcy	Operating w	ith main system	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0.4		8.0	μs
instruction execution time)	with	clock		V _{DD} = 1.8 to 5.5 V	1.6		8.0	μs
unie)		Operating with subsystem	Original oscillation operation	V _{DD} = 1.8 to 5.5 V	114	122	125	μs
		clock	× 4 multiplication operation	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	14.3	15.3	15.6	μs
Capture input high-/low-level width	tсртн, tсртL	CPT20	CPT20					μs
TMI60, TM61 input	fτι	V _{DD} = 2.7 to 5.5 V			0		4	MHz
frequency		V _{DD} = 1.8 to 5.5 V			0		275	kHz
TMI60, TM61 input	tтін,	$V_{DD} = 2.7 \text{ to}$	5.5 V		0.125			μs
high-/low-level width	t⊤ı∟	$V_{DD} = 1.8 \text{ to}$	V _{DD} = 1.8 to 5.5 V					μs
Interrupt input high- /low-level width	tinth,	INTP0 to IN	TP3		10			μs
Key return input low- level width	tkrl	KR0 to KR7			10			μs
RESET low-level width	trsl				10			μs

Tcy vs. VDD (main system clock)

(2) Serial interface 20 (SIO20) ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

(a) 3-wire serial I/O mode (internal clock output)

Parameter	Symbol	Condition	Conditions		TYP.	MAX.	Unit
SCK20 cycle time	tkcy1	V _{DD} = 2.7 to 5.5 V	V _{DD} = 2.7 to 5.5 V				ns
		V _{DD} = 1.8 to 5.5 V		3200			ns
SCK20 high-/low-level	tкн1,	V _{DD} = 2.7 to 5.5 V		tkcy1/2-50			ns
width	t _{KL1}	V _{DD} = 1.8 to 5.5 V		txcy1/2-150			ns
SI20 setup time	tsıkı	V _{DD} = 2.7 to 5.5 V		150			ns
(to SCK20 [↑])		V _{DD} = 1.8 to 5.5 V		500			ns
SI20 hold time	t _{KSI1}	V _{DD} = 2.7 to 5.5 V		400			ns
(from SCK20↑)		V _{DD} = 1.8 to 5.5 V	600			ns	
SO20 output delay	tkso1	$R = 1 \text{ k}\Omega$, $C = 100 \text{ pF}^{\text{Note}}$	V _{DD} = 2.7 to 5.5 V	0		250	ns
time from SCK20↓			V _{DD} = 1.8 to 5.5 V	0		1000	ns

 $\textbf{Note} \quad \textbf{R} \text{ and C are the load resistance and load capacitance of the SO20 output line}.$

(b) 3-wire serial I/O mode (external clock input)

Parameter	Symbol	Condition	Conditions		TYP.	MAX.	Unit
SCK20 cycle time	tkcy2	V _{DD} = 2.7 to 5.5 V		800			ns
		V _{DD} = 1.8 to 5.5 V		3200			ns
SCK20 high-/low-level	tкн2,	V _{DD} = 2.7 to 5.5 V		400			ns
width	t _{KL2}	V _{DD} = 1.8 to 5.5 V	1600			ns	
SI20 setup time	tsik2 V _{DD} = 2.7 to 5.5 V			100			ns
(to SCK20↑)		V _{DD} = 1.8 to 5.5 V		150			ns
SI20 hold time	tksi2	V _{DD} = 2.7 to 5.5 V		400			ns
(from SCK20↑)		V _{DD} = 1.8 to 5.5 V	V _{DD} = 1.8 to 5.5 V				ns
SO20 output delay	tks02	$R = 1 \text{ k}\Omega$, $C = 100 \text{ pF}^{\text{Note}}$	V _{DD} = 2.7 to 5.5 V	0		300	ns
time from SCK20↓			V _{DD} = 1.8 to 5.5 V	0		1000	ns

 $\textbf{Note} \quad \textbf{R} \text{ and C are the load resistance and load capacitance of the SO20 output line}.$

(c) UART mode (dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		V _{DD} = 2.7 to 5.5 V			78125	bps
		V _{DD} = 1.8 to 5.5 V			19531	bps

(d) UART mode (external clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK20 cycle time	tксүз	V _{DD} = 2.7 to 5.5 V	800			ns
		V _{DD} = 1.8 to 5.5 V	3200			ns
ASCK20 high-/low-	t кнз,	V _{DD} = 2.7 to 5.5 V	400			ns
level width tki	tкLз	V _{DD} = 1.8 to 5.5 V	1600			ns
Transfer rate		V _{DD} = 2.7 to 5.5 V			39063	bps
		V _{DD} = 1.8 to 5.5 V			9766	bps
ASCK20 rise/fall time	tĸ,				1	μs
	tF					

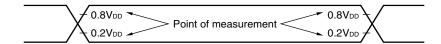
Data Sheet U14977EJ1V0DS 67

(3) Serial interface 1A0 (SIO1A0) ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

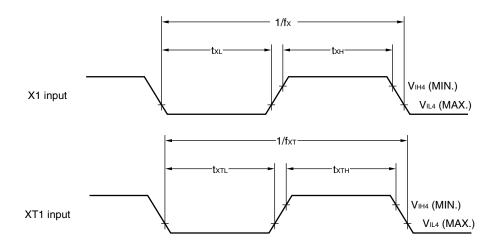
(a) 3-wire serial I/O mode, 3-wire serial I/O mode with automatic transmit/receive function (internal clock output)

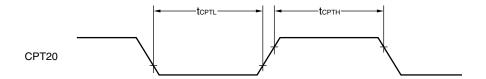
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCK10 cycle time	Тксү4	V _{DD} = 2.7 to 5.5 V		800			ns
		V _{DD} = 1.8 to 5.5 V		3200			ns
SCK10 high-/low-level	Ткн4,	V _{DD} = 2.7 to 5.5 V		Тксу4/2-50			ns
width	t _{KL4}	V _{DD} = 1.8 to 5.5 V		Тксу4/2-150			ns
SI10 setup time	Tsik4	V _{DD} = 2.7 to 5.5 V		150			ns
(to SCK10 [↑])		V _{DD} = 1.8 to 5.5 V		500			ns
SI10 hold time	T _{KSI4}	V _{DD} = 2.7 to 5.5 V		400			ns
(from SCK10↑)		V _{DD} = 1.8 to 5.5 V		600			ns
SO10 output delay	TKSO4	$R = 1 \text{ k}\Omega$, $C = 100 \text{ pF}^{\text{Note}}$	V _{DD} = 2.7 to 5.5 V	0		250	ns
time from SCK10↓			V _{DD} = 1.8 to 5.5 V	0		1000	ns

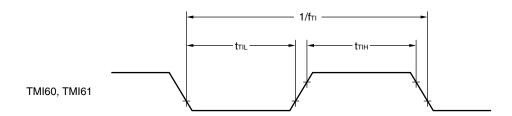
Note R and C are the load resistance and load capacitance of the SO10 output line.

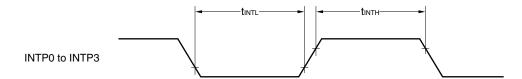

(b) 3-wire serial I/O mode, 3-wire serial I/O mode with automatic transmit/receive function (external clock input)

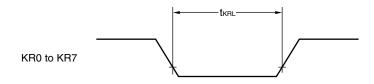
Parameter	Symbol	Condition	ons	MIN.	TYP.	MAX.	Unit
SCK10 cycle time	Тксү5	V _{DD} = 2.7 to 5.5 V		800			ns
		V _{DD} = 1.8 to 5.5 V		3200			ns
SCK10 high-/low-level	Ткн5,	V _{DD} = 2.7 to 5.5 V		400			ns
width	tkl5	V _{DD} = 1.8 to 5.5 V		1600			ns
SI10 setup time	T _{SIK5}	V _{DD} = 2.7 to 5.5 V		100			ns
(to SCK10↑)		V _{DD} = 1.8 to 5.5 V		150			ns
SI10 hold time	T _{KSI5}	V _{DD} = 2.7 to 5.5 V	V _{DD} = 2.7 to 5.5 V				ns
(from SCK10↑)		V _{DD} = 1.8 to 5.5 V		600			ns
SO10 output delay	TKSO5	$R = 1 \text{ k}\Omega, C = 100 \text{ pF}^{\text{Note}}$	V _{DD} = 2.7 to 5.5 V	0		300	ns
time from SCK10↓			V _{DD} = 1.8 to 5.5 V	0		1000	ns


Note R and C are the load resistance and load capacitance of the SO10 output line.

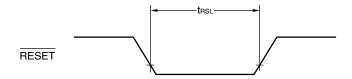

AC Timing Measurement Points (Excluding X1 and XT1 Inputs)


Clock Timing

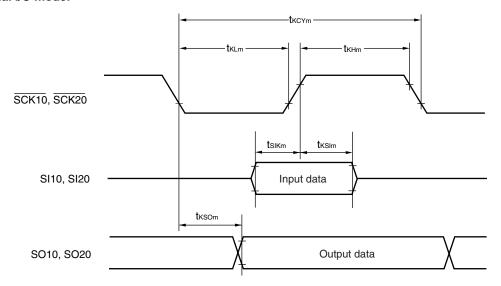

Capture Input Timing


TMI Timing

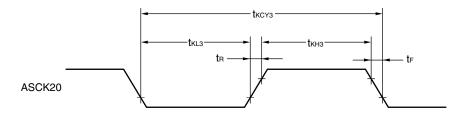
Interrupt Input Timing



Key Return Input Timing



RESET Input Timing


Serial Transfer Timing

3-wire serial I/O mode:

Remark m = 1, 2, 4, 5

UART mode (external clock input):

8-Bit A/D Converter Characteristics

(Ta = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 5.5 V, AVss = Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error ^{Note 1}		AV _{DD} = 2.7 to 5.5 V			±0.6	%FSR
		AV _{DD} = 1.8 to 5.5 V			±1.2	%FSR
Conversion time	tconv	AV _{DD} = 2.7 to 5.5 V	14		100	μs
		AV _{DD} = 1.8 to 5.5 V	28		100	μs
		When × 4 subsystem clock is used		132 ^{Note 2}		Clock
		(ADSEL1 = 1), AVDD = 2.7 to 5.5 V				
Analog input voltage	VIAN		0		AV _{DD}	V

Notes 1. Excludes quantization error $(\pm 0.2\%)$

2. Number of clocks of \times 4 subsystem clock

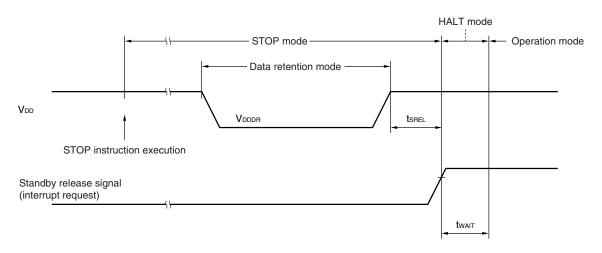
Remark FSR: Full scale range

LCD Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VLCD		2.7		V _{DD}	٧
LCD output voltage differential Note (common)	Vodc	$Io = \pm 5 \mu A$	0		±0.2	V
LCD output voltage differential Note (segment)	Vods	$lo = \pm 1 \mu A$	0		±0.2	V

Note The voltage differential is the difference between the segment and common signal output's actual and ideal output voltages.

Data Sheet U14977EJ1V0DS


Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = -40 to +85°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	VDDDR		1.8		5.5	٧
Release signal set time	tsrel		0			μs

Data Retention Timing (STOP Mode Release by RESET)

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Request Signal)

Oscillation Stabilization Wait Time ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

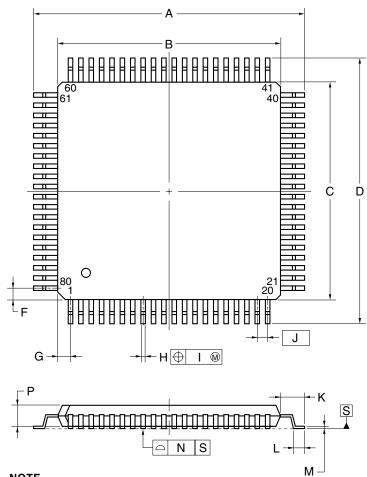
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Oscillation stabilization wait	twait	Release by RESET		2 ¹⁵ /fx		s
time ^{Note 1}		Release by interrupt		Note 2		s

Notes 1. Use a resonator whose oscillation stabilizes within the oscillation stabilization wait time.

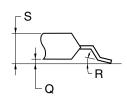
2. Selection of 2¹²/fx, 2¹⁵/fx, or 2¹⁷/fx is possible using bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time selection register (OSTS).

Remark fx: Main system clock oscillation frequency

Writing and Erasing Characteristics (TA = 10 to 40°C, VDD = 1.8 to 5.5 V)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Write operation frequency	fx	V _{DD} = 2.7 to 5.5 V	1.0		5	MHz
		V _{DD} = 1.8 to 5.5 V	1.0		1.25	MHz
Write current (VDD pin)Note	IDDW	When V _{PP} supply voltage = V _{PP1} (at 5.0 MHz operation)			7	mA
Write current (VPP pin)Note	IPPW	When VPP supply voltage = VPP1			13	mA
Erase current (V _{DD} pin) ^{Note}	IDDE	When V _{PP} supply voltage = V _{PP1} (at 5.0 MHz operation)			7	mA
Erase current (VPP pin)Note	IPPE	When VPP supply voltage = VPP1			100	mA
Unit erase time	ter		0.5	1	1	s
Total erase time	tera				20	s
Number of rewrites		Erase and write is considered as 1 cycle			20	Times
VPP supply voltage	V _{PP0}	Normal operation	0		0.2V _{DD}	٧
	V _{PP1}	Flash memory programming	9.7	10.0	10.3	٧

Note Excludes current flowing through ports (including on-chip pull-up resistors)


Data Sheet U14977EJ1V0DS

★ 12. PACKAGE DRAWING

80-PIN PLASTIC QFP (14x14)

detail of lead end

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	17.20±0.20
В	14.00±0.20
С	14.00±0.20
D	17.20±0.20
F	0.825
G	0.825
Н	0.32±0.06
I	0.13
J	0.65 (T.P.)
K	1.60±0.20
L	0.80±0.20
М	$0.17^{+0.03}_{-0.07}$
N	0.10
Р	1.40±0.10
Q	0.125±0.075
R	3°+7°
S	1.70 MAX.
	DOUCC-65-ORT

P80GC-65-8BT-1

13. RECOMMENDED SOLDERING CONDITIONS

The μ PD78F9478 should be soldered and mounted under the following recommended conditions.

For details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**. For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 13-1. Surface Mounting Type Soldering Conditions

 μ PD78F9478GC-8BT: 80-pin plastic QFP (14 \times 14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Twice or less	IR35-00-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Twice or less	VP15-00-2
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Caution Do not use different soldering methods together (except for partial heating).

Data Sheet U14977EJ1V0DS 75

\star APPENDIX A. DIFFERENCES BETWEEN μ PD78F9478 AND MASK ROM VERSIONS

The μ PD78F9478 is available as the flash memory version of the μ PD789478 Subseries. The differences between the μ PD78F9478 and the mask ROM version are shown in Table A-1.

Table A-1. Differences Between μ PD78F9478 and Mask ROM Version

Item		Flash Memory Version	Mask Ro	OM Version	
		μPD78F9478 μPD789478		μPD789477	
Internal memory	ROM	32 KB (flash memory)	32 KB	24 KB	
	High-speed RAM	1,024 bytes		768 bytes	
	LCD display RAM	28 × 4 bits			
Pin function selection S16 to S27 (LCD segment output) or P70 to P73 and P80 to P87 (general- purpose port)		Selectable by a port function register (PF7 and PF8) in bit units	Selectable by a mask option in bit units		
On-chip pull-up resi	stor of port 5	Not provided	Selectable by a mask option in bit unit		
Availability of a circl subsystem clock by		Selectable by the subclock selection register (SSCK)	Selectable by a mask option		
IC0 pin		Not provided	Provided		
V _{PP} pin		Provided	Not provided		
HALT mode when using subsystem clock multiplied by 4		Restricted. Refer to 7. STANDBY FUNCTION.	No restriction		
Electrical specificati	on	Refer to the data sheet of each product.			

Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations for the commercial samples (not engineering samples) of the mask ROM version.

APPENDIX B. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78F9478.

Software Package

SP78K0S ^{Notes 1, 2}	CD-ROM in which the development tools (software) common to the 78K/0S Series are
	included as a package

Language Processing Software

RA78K0S ^{Notes 1, 2, 3}	Assembler package common to 78K/0S Series
CC78K0S ^{Notes 1, 2,3}	C compiler package common to 78K/0S Series
DF789488 ^{Notes 1, 2, 3}	Device file for μ PD78F9478
CC78K/0S-L ^{Notes 1, 2, 3}	C compiler library source file common to 78K/0S Series

Flash Memory Writing Tools

Flashpro III	Dedicated flash memory programmer
(Part number: FL-PR3Note 4, PG-FP3)	
FA-80GC-8BT ^{Note 4}	Adapter for writing to flash memory designed for 80-pin plastic QFP (GC-8BT type)

Debugging Tools

In circuit amulator to debug hardware or coftware when application evetems using the
In-circuit emulator to debug hardware or software when application systems using the 78K/0S Series are developed. The IE-78K0S-NS-A supports an integrated debugger (ID78K0S-NS). The IE-78K0S-NS-A is used in combination with an interface adapter for connection to an AC adapter, emulation probe, or host machine. The IE-78K0S-NS-A provides a coverage function in addition to the IE-78K0S-NS functions, thus enhancing the debug functions, including the tracer and timer functions.
AC adapter to supply power from a 100 to 240 V AC outlet.
Interface adapter required when using a PC-9800 Series computer (except notebook type) as the host machine (C bus supported).
PC card and interface cable required when a notebook PC is used as the host machine (PCMCIA socket supported).
Interface adapter required when using an IBM PC/AT™ or compatible as the host machine (ISA bus supported).
Interface adapter required when using a PC incorporating a PCI bus as the host machine.
Emulation board to emulate the peripheral hardware specific to the device. The IE-789488-NS-EM1 is used in combination with the in-circuit emulator.
Board to connect an in-circuit emulator to the target system. This board is dedicated for a 80-pin plastic QFP (GC-8BT type).
System simulator common to 78K/0S Series
Integrated debugger common to 78K/0S Series
Device file for μPD78F9478

- Notes 1. Based on the PC-9800 series (Japanese Windows™)
 - 2. Based on IBM PC/AT or compatibles (Japanese/English Windows)
 - 3. Based on the HP9000 series 700™ (HP-UX™), and SPARCstation™ (SunOS™, Solaris™)
 - 4. Manufactured by Naito Densei Machida Mfg. Co, Ltd. (+81-45-475-4191).

Remark The RA78K0S, CC78K0S, SM78K0S, and ID78K0S-NS are used in combination with the DF789488 device file.

* APPENDIX C. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Document No.
μPD789477, 789478 Data Sheet	U14699E
μPD78F9478 Data Sheet	This document
μPD789477 Subseries User's Manual	U15400E
78K/0S Series Instructions User's Manual	U11047E

Documents Related to Development Tools (Software) (User's Manuals)

Document Name		Document No.
RA78K0S Assembler Package	Operation	U14876E
	Language	U14877E
	Structured Assembly Language	U11623E
CC78K0S C Compiler	Operation	U14871E
	Language	U14872E
SM78K0S, SM78K0 System Simulator Ver. 2.10 or later	Operation (Windows Based)	U14611E
SM78K Series System Simulator Ver. 2.10 or Later	External Part User Open Interface Specifications	U15006E
ID78K0-NS, ID78K0S-NS Integrated Debugger Ver. 2.20 or Later	Operation (Windows Based)	U14910E
Project Manager Ver. 3.12 or Later (Windows Based)		U14610E

Documents Related to Development Tools (Hardware) (User's Manuals)

Document Name	Document No.
IE-78K0S-NS-A In-Circuit Emulator	U15207E
IE-789488-NS-EM1 Emulation Board	To be prepared

Documents Related to Flash Memory Writing

Document Name	Document No.
PG-FP3 Flash Memory Programmer User's Manual	

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

Other Documents

Document Name	Document No.
SEMICONDUCTORS SELECTION GUIDE Products and Packages (CD-ROM)	X13769E
Semiconductor Device Mounting Technology Manual	C10535E
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

Data Sheet U14977EJ1V0DS

NOTES FOR CMOS DEVICES -

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

FIP and EEPROM are trademarks of NEC Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Europe) GmbH

Duesseldorf, Germany Tel: 0211-65 03 01 Fax: 0211-65 03 327

• Branch The Netherlands Eindhoven, The Netherlands

Tel: 040-244 58 45 Fax: 040-244 45 80

 Branch Sweden Taeby, Sweden Tel: 08-63 80 820
 Fax: 08-63 80 388

NEC Electronics (France) S.A.

Vélizy-Villacoublay, France Tel: 01-3067-58-00 Fax: 01-3067-58-99

NEC Electronics (France) S.A. Representación en España

Madrid, Spain Tel: 091-504-27-87 Fax: 091-504-28-60

NEC Electronics Italiana S.R.L.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore

Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Guarulhos-SP, Brasil Tel: 11-6462-6810 Fax: 11-6462-6829

J01.12

- The information in this document is current as of November, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).