

MOS INTEGRATED CIRCUIT

μPD78F9436, 78F9456

8-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The μ PD78F9436 and 78F9456 belong to the μ PD789436, 789456 Subseries (for LCD drivers) in the 78K/0S Series.

The μ PD78F9436 has flash memory in place of the internal ROM of the μ PD789435 and 789436, and the μ PD78F9456 has flash memory in place of the internal ROM of the μ PD789455 and 789456.

Because flash memory allows the program to be written and erased electrically with the device mounted on the board, this product is ideal for the evaluation stages of system development, small-scale production, and rapid development of new products.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

μPD789426, 789436, 789446, 789456 Subseries User's Manual: U15075E 78K/0S Series User's Manual Instructions: U11047E

FEATURES

• Pin compatible with mask ROM version (except VPP pin)

• Flash memory and RAM capacities

	Item	Flash Memory	Data Memory		
Part Number			Internal High-Speed RAM	LCD Display RAM	
μPD78F9436		16 KB	512 bytes	5 × 4 bits	
μPD78F9456				15 × 4 bits	

- Minimum instruction execution time can be changed from high-speed (0.4 μ s at 5.0 MHz operation with main system clock) to ultra-low-speed (122 μ s at 32.768 kHz operation with subsystem clock).
- I/O ports: 40 (μPD78F9436)

: 30 (μPD78F9456)

• Timer: 5 channels

A/D converter

10-bit resolution: 6 channelsSerial interface: 1 channel

• LCD controller/driver

Segment signals: 5, common signals: 4 (μ PD78F9436) Segment signals: 15, common signals: 4 (μ PD78F9456)

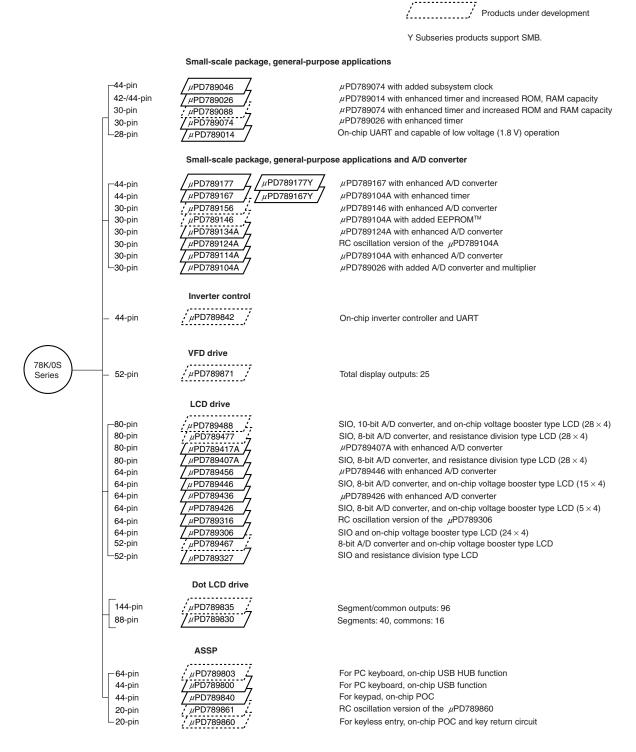
Power supply voltage: VDD = 1.8 to 5.5 V

APPLICATIONS

Portable audio systems, cameras, healthcare equipment, etc.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

ORDERING INFORMATION


Part Number	Package
μPD78F9436GK-9ET	64-pin plastic TQFP (12 \times 12)
μ PD78F9456GK-9ET	64-pin plastic TQFP (12 \times 12)

Products in mass production

78K/0S SERIES LINEUP

The products in the 78K/0S Series are listed below. The names enclosed in boxes are subseries names.

Remark VFD (Vacuum Fluorescent Display) is referred to as "FIP™ (fluorescent Indicator panel) in some documents, but the functions of the two are the same.

The major functional differences among the subseries are listed below.

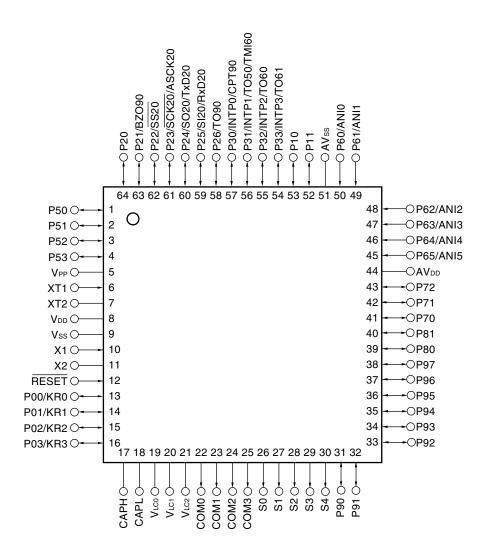
	Function	ROM		Tir	mer		8-Bit	10-Bit	Serial	I/O	V _{DD}	Remarks
		Capacity	8-Bit	16-Bit	Watch	WDT	A/D	A/D	Interface		MIN.	
Subseries Na	ame	(Bytes)									Value	
Small-scale	μPD789046	16 K	1 ch	1 ch	1 ch	1 ch	_	_	1 ch (UART:	34	1.8 V	-
package,	μPD789026	4 K to 16 K			-				1 ch)			
general-	μPD789088	16 K to 32 K	3 ch							24		
purpose applications	μPD789074	2 K to 8 K	1 ch									
арріюшіогіз	μPD789014	2 K to 4 K	2 ch	_						22		
Small-scale	μPD789177	16 K to 24 K	3 ch	1 ch	1 ch	1 ch	_	8 ch	1 ch (UART:	31	1.8 V	
package, general-	μPD789167						8 ch	=	1 ch)			
purpose	μPD789156	8 K to 16 K	1 ch		_		_	4 ch		20		On-chip
applications	μPD789146						4 ch	=				EEPROM
and A/D converter	μPD789134A	2 K to 8 K					_	4 ch				RC-
Conventor	μPD789124A						4 ch	_				oscillation version
	μPD789114A						_	4 ch				-
	μPD789104A						4 ch	_				
Inverter control	μPD789842	8 K to 16 K	3 ch	Note	1 ch	1 ch	8 ch	_	1 ch (UART: 1 ch)	30	4.0 V	_
VFD drive	μPD789871	4 K to 8 K	3 ch	_	1 ch	1 ch	-	-	1 ch	33	2.7 V	-
LCD drive	μPD789488	32 K	3 ch	1 ch	1 ch	1 ch	_	8 ch	2 ch (UART:	45	1.8 V	-
	μPD789477	24 K					8 ch	_	1 ch)			
	μPD789417A						=	7 ch	1 ch (UART:	43		
	μPD789407A	24 K					7 ch	-	1 ch)			
	μPD789456	12 K to	2 ch				_	6 ch		30		
	μPD789446	16 K					6 ch	_				
	μPD789436						_	6 ch		40		
	μPD789426						6 ch	_				
	μPD789316	8 K to 16 K					-		2 ch (UART: 1 ch)	23		RC- oscillation version
	μPD789306											-
	μPD789427	4 K to 24 K		_			1 ch		_	18		
	μPD789327						-		1 ch	21		
Dot LCD drive	μPD789835	24 K to 60 K	6 ch	_	1 ch	1 ch	3 ch	_	1 ch (UART: 1 ch)	28	1.8 V	_
	μPD789830	24 K	1 ch	1 ch			_			30	2.7 V	
ASSP	μPD789803	8 K to 16 K	2 ch	-	-	1 ch	-	-	2 ch	41	3.6 V	
	μPD789800	8 K							(USB: 1 ch)	31	4.0 V	
	μPD789840						4 ch		1 ch	29	2.8 V	
	μPD789861	4 K					_		_	14	1.8 V	RC- oscillation version, on-chip EEPROM
	μPD789860											On-chip EEPROM

Note 10-bit timer: 1 channel

OVERVIEW OF FUNCTIONS

Item		μPD78F9436	μPD78F9456				
Internal Flash memory		16 KB					
memory	High-speed RAM	512 bytes					
	LCD display RAM	5 × 4 bits	15 × 4 bits				
Minimum instru	action execution time	0.4 μ s/1.6 μ s (@ 5.0 MHz operation with m. 122 μ s (@ 32.768 kHz operation with subsy	,				
General-purpo	se registers	8 bits × 8 registers					
Instruction set		16-bit operation Bit manipulation (set, reset, test)					
I/O ports		Total: 40	Total: 30				
		• CMOS I/O: 30	• CMOS I/O: 20				
		CMOS input: 6	• CMOS input: 6				
		N-ch open drain: 4	• N-ch open drain: 4				
Timers		 16-bit timer: 1 channel 8-bit timer: 2 channels Watch timer: 1 channel Watchdog timer: 1 channel 					
A/D converter		10-bit resolution × 6 channels					
Serial interface		Switchable between 3-wire serial I/O mode and UART mode: 1 channel					
LCD controller/driver		Segment signal outputs: 5 (max.)Common signal outputs: 4 (max.)	Segment signal outputs: 15 (max.)Common signal outputs: 4 (max.)				
Vectored interrupt Maskable		Internal: 9, external: 5					
sources Non-maskable		Internal: 1					
Power supply voltage		V _{DD} = 1.8 to 5.5 V					
Operating ambient temperature		T _A = -40 to +85°C					
Package		64-pin plastic TQFP (12 × 12)					

CONTENTS

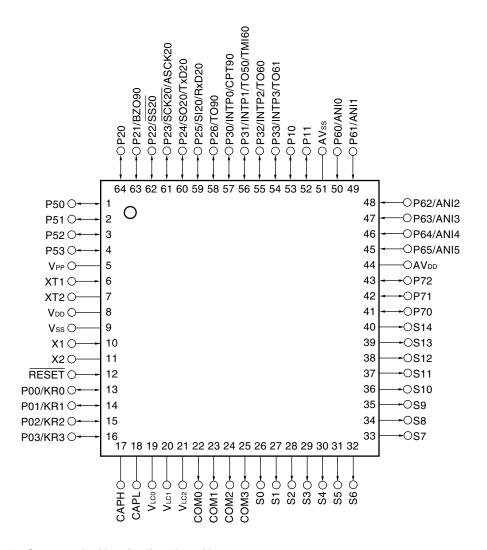

1.	PIN (CONFIGURATION (Top View)	7
	1.1	Pin Configuration of the μPD78F9436 (Top View)	7
	1.2	Pin Configuration of the μ PD78F9456 (Top View)	8
2.	BLO	CK DIAGRAM	10
3.	PIN F	UNCTIONS	11
	3.1	Port Pins	11
	3.2	Non-Port Pins	12
	3.3	Pin I/O Circuits and Recommended Connection of Unused Pins	13
4.	MEM	ORY SPACE	15
5.	FLAS	SH MEMORY PROGRAMMING	16
	5.1	Selecting Communication Mode	16
	5.2	Function of Flash Memory Programming	17
	5.3	Connecting Flashpro III	17
	5.4	Example of Settings for Flashpro III (PG-FP3)	19
6.	OVE	RVIEW OF INSTRUCTION SET	20
	6.1	Conventions	20
	6.2	List of Operations	22
7.	ELEC	CTRICAL SPECIFICATIONS	27
8.	СНА	RACTERISTICS CURVES OF LCD CONTROLLER/DRIVER (REFRENCE VALUES)	42
9.	PAC	KAGE DRAWINGS	44
10.	REC	OMMENDED SOLDERING CONDITIONS	45
APF	PENDI	K A. DIFFERENCES BETWEEN μ PD78F9436, 78F9456 AND MASK ROM VERSIONS	46
APF	PENDI	(B. DEVELOPMENT TOOLS	47
APF	PENDI	(C. RELATED DOCUMENTS	49

1. PIN CONFIGURATION (TOP VIEW)

1.1 Pin Configuration of the μ PD78F9436 (Top View)

64-pin plastic TQFP (12 × 12)

 μ PD78F9436GK-9ET



- Cautions 1. Connect the $\mbox{\em V}_{\mbox{\scriptsize PP}}$ pin directly to $\mbox{\em V}_{\mbox{\scriptsize SS}}.$
 - 2. Connect the AVDD pin to VDD.
 - 3. Connect the AVss pin to Vss.

1.2 Pin Configuration of the μ PD78F9456 (Top View)

64-pin plastic TQFP (12 × 12)

 μ PD78F9456-9ET

Cautions 1. Connect the VPP pin directly to Vss.

- 2. Connect the AVDD pin to VDD.
- 3. Connect the AVss pin to Vss.

ANI0 to ANI5: Analog input

ASCK20: Asynchronous serial input

AV_{DD}: Analog power supply AV_{SS}: Analog ground BZO90: Buzzer output

CAPH, CAPL: LCD power supply capacitance control

COM0 to COM3: Common output
CPT90: Capture trigger input
INTP0 to INTP3: External interrupt input

KR0 to KR3: Key return P00 to P03: Port 0

P10, P11: Port 1
P20 to P26: Port 2
P30 to P33: Port 3
P50 to P53: Port 5

P60 to P63: Port 6
P70 to P72: Port 7
P80 to P81 Note: Port 8

Note μ PD78F9436 only

P90 to P97^{Note}: Port 9 RESET: Reset

RxD20:Receive dataSS20:Serial chip selectS0 to S14:Segment outputSCK20:Serial clockSI20:Serial inputSO20:Serial output

TO90, TO50, TO60,

TMI60:

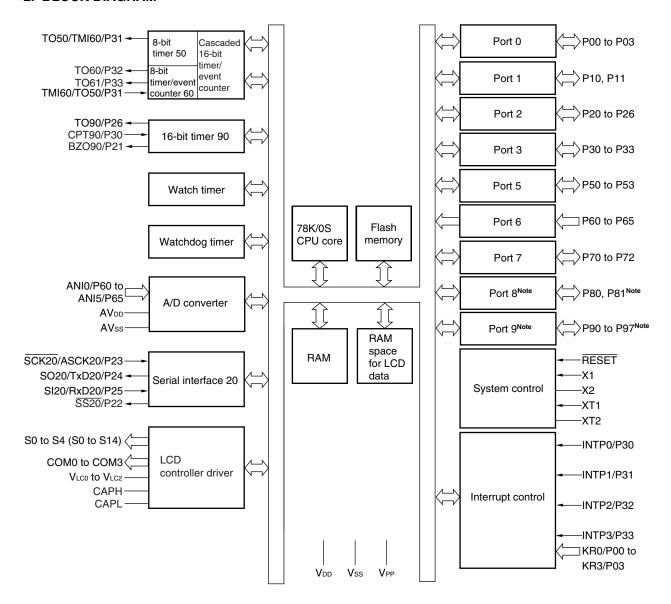
TO61: Timer output

TxD20: Transmit data

VDD: Power supply

VLC0 to VLC2: LCD power supply

VPP: Programming power supply


Timer input

Vss: Ground

X1, X2: Crystal (Main system clock)XT1, XT2: Crystal (Subsystem clock)

2. BLOCK DIAGRAM

Note μ PD78F9436 only

Remark Descriptions in parentheses are for the μ PD78F9456.

3. PIN FUNCTIONS

3.1 Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
P00 to P03	I/O	Port 0. 4-bit I/O port. Input/output can be specified in 1-bit units. When used as an input port, use of an on-chip pull-up resistor can be specified by a software setting.	Input	KR0 to KR3
P10, P11	I/O	Port 1. 2-bit I/O port. Input/output can be specified in 1-bit units. When used as an input port, use of an on-chip pull-up resistor can be specified by a software setting.	Input	_
P20	I/O	Port 2.	Input	_
P21	1	7-bit I/O port.		BZO90
P22		Input/output can be specified in 1-bit units. When used as an input port, use of an on-chip pull-up resistor		SS20
P23	Ī	can be specified by a software setting.		SCK20/ASCK20
P24				SO20/TxD20
P25	1			SI20/RxD20
P26	1			TO90
P30	I/O	Port 3.	Input	INTP0/CPT90
P31	1	4-bit I/O port. Input/output can be specified in 1-bit units. When used as an input port, use of an on-chip pull-up resistor		INTP1/TO50/TMI60
P32	1			INTP2/TO60
P33	1	can be specified by a software setting.		INTP3/TO61
P50 to P53	I/O	Port 5. 4-bit I/O port. Input/output can be specified in 1-bit units.	Input	_
P60 to P65	Input	Port 6. 6-bit input port.	Input	ANI0 to ANI5
P70 to P72	I/O	Port 7. 3-bit I/O port. Input/output can be specified in 1-bit units. When used as an input port, use of an on-chip pull-up resistor can be specified by a software setting.	Input	_
P80, P81 ^{Note}	I/O	Port 8. 2-bit I/O port. Input/output can be specified in 1-bit units. When used as an input port, use of an on-chip pull-up resistor can be specified by a software setting.	Input	_
P90 to P97 ^{Note}	I/O	Port 9. 8-bit I/O port. Input/output can be specified in 1-bit units. When used as an input port, use of an on-chip pull-up resistor can be specified by a software setting.	Input	_

Note μ PD78F9436 only

3.2 Non-Port Pins

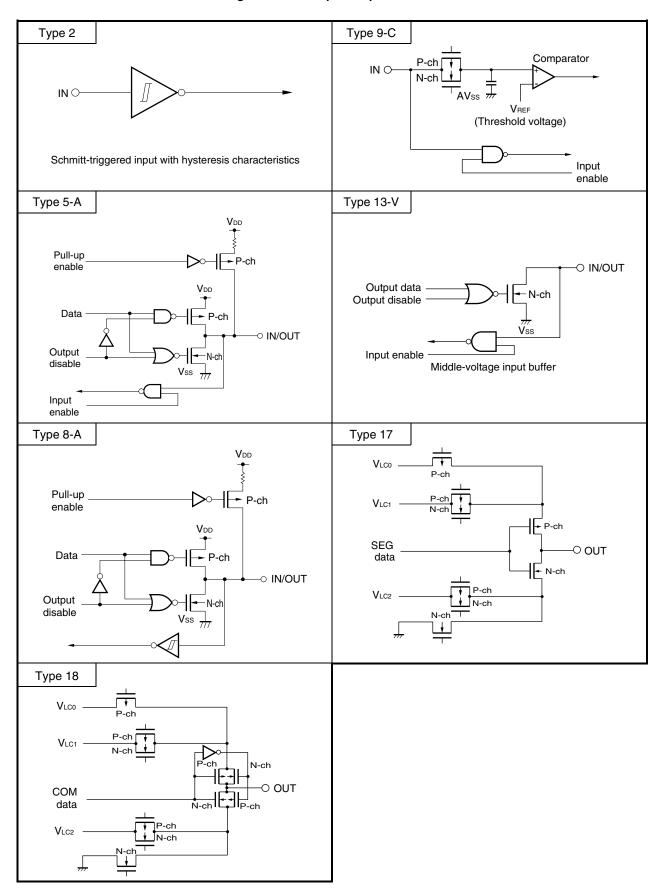
Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	External interrupt input for which the valid edge (rising edge,	Input	P30/CPT90
INTP1		falling edge, or both rising and falling edges) can be specified		P31/TO50/TMI60
INTP2				P32/TO60
INTP3				P33/TO61
KR0 to KR3	Input	Key return signal detection	Input	P00 to P03
SS20	Input	Serial interface (SIO20) chip select	Input	P22
SCK20	I/O	Serial interface (SIO20) serial clock input/output	Input	P23/ASCK20
SI20	Input	SIO20 serial interface serial data input	Input	P25/RxD20
SO20	Output	SIO20 serial interface serial data output	Input	P24/TxD20
ASCK20	I/O	Asynchronous serial interface serial clock input	Input	P23/SCK20
RxD20	Input	Asynchronous serial interface serial data input	Input	P25/SI20
TxD20	Output	Asynchronous serial interface serial data output	Input	P24/SO20
TO90	Output	16-bit timer (TM90) output	Input	P26
CPT90	Input	Capture edge input	Input	P30/INTP0
TO50	Output	8-bit timer (TM50) output	Input	P31/INTP1/TMI60
TO60	Output	8-bit timer (TM60) output	Input	P32/INTP2
TO61	Output	8-bit timer (TM60) output	Input	P33/INTP3
TMI60	Input	External count clock input to 8-bit timer (TM60)	Input	P31/INTP1/TO50
ANI0 to ANI5	Input	A/D converter analog inputs	Input	P60 to P65
S0 to S4	Output	Segment signal outputs for LCD controller/driver	Output	_
S5 to S14 ^{Note}	Output	Segment signal outputs for LCD controller/driver	Output	_
COM0 to COM3	Output	Common signal outputs for LCD controller/driver	Output	_
VLC0 to VLC2	_	LCD drive voltage	_	_
CAPH	_	Connection pin for LCD driver's capacitor	_	_
CAPL	_		_	_
X1	Input	Connecting crystal resonator for main system clock oscillation	_	_
X2	_		_	_
XT1	Input	Connecting crystal resonator for subsystem clock oscillation	_	_
XT2			_	
RESET	Input	System reset input	Input	_
V _{DD}	_	Positive power supply for ports	_	_
Vss	_	Ground potential	_	
AV _{DD}	_	A/D converter analog potential	_	_
AVss		A/D converter ground potential	_	
VPP	_	Flash memory programming mode setting. High-voltage application for program write/verify. In normal operation mode, connect directly to Vss.	_	_

Note μ PD78F9456 only

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the input/output circuit configuration of each type, refer to **Figure 3-1**.

Table 3-1. Types of Pin Input/Output Circuits and Recommended Connection of Unused Pins


Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00 to P03	8-A	I/O	Input: Independently connect to V _{DD} or V _{SS} via a resistor.
P10, P11	5-A		Output: Leave open.
P20	8-A		
P21/BZO90			
P22/SS20			
P23/SCK20/ASCK20			
P24/SO20/TxD20			
P25/SI20/RxD20			
P26/TO90			
P30/INTP0/CPT90			Input: Independently connect to Vss via a resistor.
P31/INTP1/TO50/ TMI60			Output: Leave open.
P32/INTP2/TO60			
P33/INTP3/TO61			
P50 to P53	13-V		Input: Independently connect to VDD via a resistor. Output: Leave open.
P60/ANI0 to P65/ANI5	9-C	Input	Connect directly to VDD or Vss.
P70 to P72	5-A	I/O	Input: Independently connect to V _{DD} or V _{SS} via a resistor.
P80, P81 ^{Note 1}			Output: Leave open.
P90 and P97 ^{Note 1}			
S0 to S4	17	Output	Leave open.
S5 to S14 ^{Note 2}			
COM0 to COM3	18	_	
VLC0 to VLC2	_		
CAPH, CAPL			
XT1		Input	Connect to Vss.
XT2		_	Leave open.
AVss			Connect to Vss.
AV _{DD}			Connect to V _{DD} .
RESET	2	Input	_
VPP	_	_	Connect directly to Vss.

Notes 1. μ PD78F9436 only

2. μ PD78F9456 only

Figure 3-1. Pin Input/Output Circuits

4. MEMORY SPACE

Figure 4-1 shows the memory map.

FFFFH Special function registers (SFRs) 256×8 bits FF00H **FEFFH** Internal high-speed RAM 512×8 bits FD00H FCFFH Reserved mmmm + 1H mmmmH LCD display RAM^{Note} Data memory FA00H F9FFH space 3FFFH Reserved 4000H 3FFFH Program area H0800 Program memory Flash memory 007FH space 16384 × 8 bits CALLT table area 0040H 003FH Program area 0022H 0021H Vector table area 0000H 0000H

Figure 4-1. Memory Map

Note The capacity of the LCD display RAM varies depending on the product (see following table).

Part Number	Last Address of LCD display RAM mmmmH
μPD78F9436	FA04H
μPD78F9456	FA0EH

5. FLASH MEMORY PROGRAMMING

The program memory that is incorporated in the μ PD78F9436 and 78F9456 is flash memory.

With flash memory, it is possible to write programs on-board. Writing is performed by connecting a dedicated flash programmer (Flashpro III (Part No. FL-PR3, PG-FP3)) to the host machine and the target system.

Remark FL-PR3 is a product of Naito Densei Machida Mfg. Co., Ltd.

5.1 Selecting Communication Mode

Writing to flash memory is performed using the Flashpro III in a serial communication mode. Select one of the communication modes in Table 5-1. The selection of the communication mode is made by using the format shown in Figure 5-1. Each communication mode is selected using the number of V_{PP} pulses shown in Table 5-1.

 Communication Mode
 Pins^{Note}
 V_{PP} Pulses

 3-wire serial I/O
 SCK20/P23 SO20/P24 SI20/P25
 0

 P00/KR0 (serial clock input) P01/KR1 (serial data output) P02/KR2 (serial data input)
 1

 UART
 TxD20/P24 RxD20/P25
 8

Table 5-1. List of Communication Mode

Note Shifting to the flash memory programming mode sets all pins not used for flash memory programming to the same state as immediately after reset. If the external device connected to the port does not acknowledge the port state immediately after reset, handling such as connecting to VDD or Vss via a resistor or connecting to is required.

Caution Be sure to select a communication mode using the number of VPP pulses shown in Table 5-1.

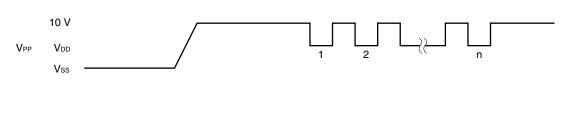
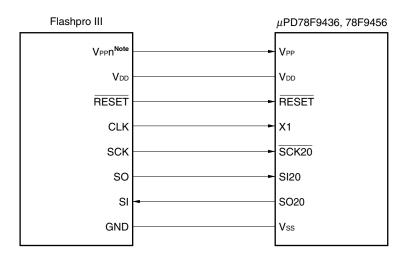


Figure 5-1. Format of Communication Mode Selection

5.2 Function of Flash Memory Programming

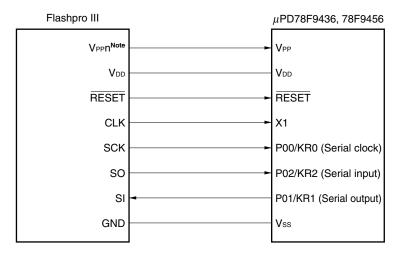
Operations such as writing to flash memory are performed by various command/data transmission and reception operations according to the selected communication mode. Table 5-2 shows the major functions of flash memory programming.


Table 5-2. Major Function of Flash Memory Programming

Function	Description
Batch erase	Deletes the entire memory contents.
Batch blank check	Checks the deletion status of the entire memory.
Data write	Performs a write operation to the flash memory based on the write start address and the number of data to be written (number of bytes).
Batch verify	Compares the entire memory contents with the input data.

5.3 Connecting Flashpro III

The connection of the Flashpro III and the μ PD78F9436 and 78F9456 differs according to the communication mode (3-wire serial I/O or UART). The connections for each communication mode are shown in Figures 5-2 and 5-3, respectively.


Figure 5-2. Connection Example of Flashpro III When Using 3-Wire Serial I/O Mode (1/2)

Note n = 1, 2

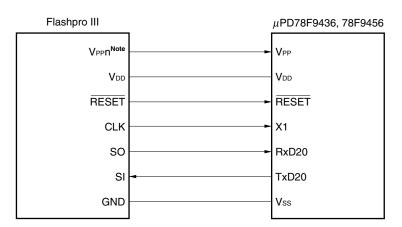

17

Figure 5-2. Connection Example of Flashpro III When Using 3-Wire Serial I/O Mode (2/2)

Note n = 1, 2

Figure 5-3. Connection Example of Flashpro III When Using UART Mode

Note n = 1, 2

5.4 Example of Settings for Flashpro III (PG-FP3)

When writing to flash memory using Flashpro III (PG-FP3), make the following settings.

- <1> Load a parameter file.
- <2> Select the mode of serial communication and serial clock with a type command.
- <3> Make the settings according to the example of settings for PG-FP3 shown below.

Table 5-3. Example of Settings for PG-FP3

Communication Mode	Example of Settings for PG-	FP3	VPP Pulse NumberNote 1
3-wire serial I/O	COMM PORT	SIO-ch0	0
	CPU CLK	On Target Board	
		In Flashpro	
	On Target Board	4.1943 MHz	
	SIO CLK	1.0 MHz	
	In Flashpro	4.0 MHz	
	SIO CLK	1.0 MHz	
	COMM PORT	SIO-ch1	1
	CPU CLK	On Target Board	
		In Flashpro	
	On Target Board	4.1943 MHz	
	SIO CLK	1.0 MHz	
	In Flashpro	4.0 MHz	
	SIO CLK	1.0 MHz	
UART	COMM PORT	UART-ch0	8
	CPU CLK	On Target Board	
	On Target Board	4.1943 MHz	
	UART BPS	9600 bps ^{Note 2}	

Notes 1. This is the number of V_{PP} pulses that are supplied by the Flashpro III at serial communication initialization. The pins that will be used for communication are determined according to this number.

2. Select one of 9600 bps, 19200 bps, 38400 bps, or 76800 bps.

Remark COMM PORT: Serial port selection

SIO CLK: Serial clock frequency selection CPU CLK: Input CPU clock source selection

6. OVERVIEW OF INSTRUCTION SET

This section lists the instruction set for the μ PD78F9436 and 78F9456.

6.1 Conventions

6.1.1 Operand expressions and description methods

Operands are described in the "Operand" column of each instruction in accordance with the description method of the instruction operand expression (see the assembler specifications for details). When there are two or more description methods, select one of them. Uppercase letters and symbols, #, !, \$, and [] are key words and are described as they are. The meaning of each symbol is described below.

- #: Immediate data specification
- \$: Relative address specification
- !: Absolute address specification
- []: Indirect address specification

For immediate data, enter an appropriate numeric value or a label. When using a label, be sure to enter the #, !, \$ and [] symbols.

For operand register expressions, r and rp, either function names (X, A, C, etc.) or absolute names (names in parenthesis in the table below, R0, R1, R2, etc.) can be used for the description.

Table 6-1. Operand Expressions and Description Methods

Expression	Description Method
r	X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7)
rp sfr	AX (RP0), BC (RP1), DE (RP2), HL (RP3) Special function register symbol
saddr saddrp	FE20H to FF1FH: immediate data or label FE20H to FF1FH: immediate data or label (even addresses only)
addr16	0000H to FFFFH: immediate data or label (even addresses only for 16-bit data transfer instruction)
word	0040H to 007FH: immediate data or label (even addresses only) 16-bit immediate data or label
byte bit	8-bit immediate data or label 3-bit immediate data or label

6.1.2 Description of "Operation" column

A: A register; 8-bit accumulator

X: X register

B: B register

C: C register

D: D register

E: E register
H: H register

L: L register

AX: AX register pair; 16-bit accumulator

BC: BC register pair

DE: DE register pair

HL: HL register pair

PC: Program counter

SP: Stack pointer

PSW: Program status word

CY: Carry flag

AC: Auxiliary carry flag

Z: Zero flag

IE: Interrupt request enable flag

NMIS: Flag indicating non-maskable interrupt servicing in progress

(): Memory contents indicated by address or register contents in parenthesis

XH, XL: Higher 8 bits and lower 8 bits of 16-bit register

A: Logical product (AND)

v: Logical sum (OR)

: Inverted data

addr16: 16-bit immediate data or label

jdisp8: Signed 8-bit data (displacement value)

6.1.3 Description of "Flag" column

(Blank): Unchanged 0: Cleared to 0

1: Set to 1

X: Set/cleared according to the resultR: Previously saved value is restored

6.2 List of Operations

Mnemonic	Operand		Bytes	Clocks	Operation	Flag
						Z AC CY
MOV	r, #byte		3	6	$r \leftarrow \text{byte}$	
	saddr, #byte		3	6	(saddr) ← byte	
	sfr, #byte		3	6	sfr ← byte	
	A, r	Note 1	2	4	$A \leftarrow r$	
	r, A	Note 1	2	4	$r \leftarrow A$	
	A, saddr		2	4	$A \leftarrow (saddr)$	
	saddr, A		2	4	(saddr) ← A	
	A, sfr		2	4	A ← sfr	
	sfr, A		2	4	sfr ← A	
	A, !addr16		3	8	A ← (addr16)	
	!addr16, A		3	8	(addr16) ← A	
	PSW, #byte		3	6	PSW ← byte	× × ×
	A, PSW		2	4	$A \leftarrow PSW$	
	PSW, A		2	4	PSW ← A	× × ×
	A, [DE]		1	6	$A \leftarrow (DE)$	
	[DE], A		1	6	(DE) ← A	
	A, [HL]		1	6	$A \leftarrow (HL)$	
	[HL], A		1	6	$(HL) \leftarrow A$	
	A, [HL + byte]		2	6	$A \leftarrow (HL + byte)$	
	[HL + byte], A		2	6	(HL + byte) ← A	
XCH	A, X		1	4	$A \leftrightarrow X$	
	A, r	Note 2	2	6	$A \leftrightarrow r$	
	A, saddr		2	6	$A \leftrightarrow (saddr)$	
	A, sfr		2	6	$A \leftrightarrow (sfr)$	
	A, [DE]		1	8	$A \leftrightarrow (DE)$	
	A, [HL]		1	8	$A \leftrightarrow (HL)$	
	A, [HL + byte]		2	8	$A \leftrightarrow (HL + byte)$	
MOVW	rp, #word		3	6	$rp \leftarrow word$	
	AX, saddrp		2	6	$AX \leftarrow (saddrp)$	
	saddrp, AX		2	8	(saddrp) ← AX	
	AX, rp	Note 3	1	4	AX ← rp	
	rp, AX	Note 3	1	4	$rp \leftarrow AX$	
XCHW	AX, rp	Note 3	1	8	$AX \leftrightarrow rp$	

Notes 1. Except r = A

2. Except r = A, X

3. Only when rp = BC, DE, HL

Remark One instruction clock cycle is one CPU clock cycle (fcPu) selected via the processor clock control register (PCC).

Mnemonic	Operand	Bytes	Clocks	Operation		Flag
					Z	AC CY
ADD	A, #byte	2	4	A, CY ← A + byte	×	××
	saddr, #byte	3	6	(saddr), $CY \leftarrow$ (saddr) + byte	×	××
	A, r	2	4	$A, CY \leftarrow A + r$	×	××
	A, saddr	2	4	$A, CY \leftarrow A + (saddr)$	×	××
	A, !addr16	3	8	$A, CY \leftarrow A + (addr16)$	×	××
	A, [HL]	1	6	$A, CY \leftarrow A + (HL)$	×	××
	A, [HL + byte]	2	6	$A, CY \leftarrow A + (HL + byte)$	×	××
ADDC	A, #byte	2	4	$A, CY \leftarrow A + byte + CY$	×	××
	saddr, #byte	3	6	(saddr), $CY \leftarrow (saddr) + byte + CY$	×	××
	A, r	2	4	$A, CY \leftarrow A + r + CY$	×	××
	A, saddr	2	4	$A, CY \leftarrow A + (saddr) + CY$	×	××
	A, !addr16	3	8	$A, CY \leftarrow A + (addr16) + CY$	×	××
	A, [HL]	1	6	$A, CY \leftarrow A + (HL) + CY$	×	××
	A, [HL + byte]	2	6	$A, CY \leftarrow A + (HL + byte) + CY$	×	××
SUB	A, #byte	2	4	A, CY \leftarrow A – byte	×	××
	saddr, #byte	3	6	(saddr), CY ← (saddr) – byte	×	××
	A, r	2	4	$A, CY \leftarrow A - r$	×	××
	A, saddr	2	4	$A, CY \leftarrow A - (saddr)$	×	××
	A, !addr16	3	8	$A, CY \leftarrow A - (addr16)$	×	××
	A, [HL]	1	6	$A, CY \leftarrow A - (HL)$	×	××
	A, [HL + byte]	2	6	$A, CY \leftarrow A - (HL + byte)$	×	××
SUBC	A, #byte	2	4	$A,CY \leftarrow A - byte - CY$	×	××
	saddr, #byte	3	6	(saddr), CY ← (saddr) – byte – CY	×	××
	A, r	2	4	$A, CY \leftarrow A - r - CY$	×	××
	A, saddr	2	4	$A, CY \leftarrow A - (saddr) - CY$	×	××
	A, !addr16	3	8	$A, CY \leftarrow A - (addr16) - CY$	×	××
	A, [HL]	1	6	$A, CY \leftarrow A - (HL) - CY$	×	××
	A, [HL + byte]	2	6	$A, CY \leftarrow A - (HL + byte) - CY$	×	××
AND	A, #byte	2	4	$A \leftarrow A \wedge byte$	×	
	saddr, #byte	3	6	(saddr) ← (saddr) ∧ byte	×	
	A, r	2	4	$A \leftarrow A \wedge r$	×	
	A, saddr	2	4	$A \leftarrow A \wedge (saddr)$	×	
	A, !addr16	3	8	$A \leftarrow A \land (addr16)$	×	
	A, [HL]	1	6	$A \leftarrow A \wedge (HL)$	×	
	A, [HL + byte]	2	6	A ← A ∧ (HL + byte)	×	

Remark One instruction clock cycle is one CPU clock cycle (fcPu) selected via the processor clock control register (PCC).

Mnemonic	Operand	Bytes	Clocks	Operation		Flag
					Z	AC CY
OR	A, #byte	2	4	A ← A ∨ byte	×	
	saddr, #byte	3	6	$(saddr) \leftarrow (saddr) \lor byte$	×	
	A, r	2	4	$A \leftarrow A \lor r$	×	
	A, saddr	2	4	$A \leftarrow A \lor (saddr)$	×	
	A, !addr16	3	8	$A \leftarrow A \lor (addr16)$	×	
	A, [HL]	1	6	$A \leftarrow A \lor (HL)$	×	
	A, [HL + byte]	2	6	$A \leftarrow A \lor (HL + byte)$	×	
XOR	A, #byte	2	4	A ← A → byte	×	
	saddr, #byte	3	6	(saddr) ← (saddr) → byte	×	
	A, r	2	4	$A \leftarrow A \forall r$	×	
	A, saddr	2	4	$A \leftarrow A \forall (saddr)$	×	
	A, !addr16	3	8	A ← A → (addr16)	×	
	A, [HL]	1	6	$A \leftarrow A \neq (HL)$	×	
	A, [HL + byte]	2	6	$A \leftarrow A \lor (HL + byte)$	×	
CMP	A, #byte	2	4	A – byte	×	××
	saddr, #byte	3	6	(saddr) – byte	×	××
	A, r	2	4	A – r	×	××
	A, saddr	2	4	A – (saddr)	×	××
	A, !addr16	3	8	A – (addr16)	×	××
	A, [HL]	1	6	A – (HL)	×	××
	A, [HL + byte]	2	6	A – (HL + byte)	×	××
ADDW	AX, #word	3	6	$AX, CY \leftarrow AX + word$	×	××
SUBW	AX, #word	3	6	$AX, CY \leftarrow AX - word$	×	××
CMPW	AX, #word	3	6	AX – word	×	××
INC	r	2	4	r ← r + 1	×	×
	saddr	2	4	(saddr) ← (saddr) + 1	×	×
DEC	r	2	4	r ← r − 1	×	×
	saddr	2	4	(saddr) ← (saddr) − 1	×	×
INCW	rp	1	4	rp ← rp + 1		
DECW	rp	1	4	rp ← rp − 1		
ROR	A, 1	1	2	(CY, $A_7 \leftarrow A_0$, $A_{m-1} \leftarrow A_m$) × 1 time		×
ROL	A, 1	1	2	(CY, $A_0 \leftarrow A_7$, $A_{m+1} \leftarrow A_m$) × 1 time		×
RORC	A, 1	1	2	$(CY \leftarrow A_0, A_7 \leftarrow CY, A_{m-1} \leftarrow A_m) \times 1 \text{ time}$		×
ROLC	A, 1	1	2	$(CY \leftarrow A_7, A_0 \leftarrow CY, A_{m+1} \leftarrow A_m) \times 1 \text{ time}$		×

Remark One instruction clock cycle is one CPU clock cycle (fcpu) selected via the processor clock control register (PCC).

Mnemonic	Operand	Bytes	Clocks	Operation		Flag
					Z	AC C
SET1	saddr. bit	3	6	(saddr. bit) ← 1		
	sfr. bit	3	6	sfr. bit ← 1		
	A. bit	2	4	A. bit ← 1		
	PSW. bit	3	6	PSW. bit ← 1	×	× >
	[HL]. bit	2	10	(HL). bit ← 1		
CLR1	saddr. bit	3	6	(saddr. bit) \leftarrow 0		
	sfr. bit	3	6	sfr. bit ← 0		
	A. bit	2	4	A. bit ← 0		
	PSW. bit	3	6	PSW. bit ← 0	×	× >
	[HL]. bit	2	10	(HL). bit ← 0		
SET1	CY	1	2	CY ← 1		1
CLR1	CY	1	2	CY ← 0		(
NOT1	CY	1	2	$CY \leftarrow \overline{CY}$		>
CALL	!addr16	3	6	$(SP-1) \leftarrow (PC+3)$ H, $(SP-2) \leftarrow (PC+3)$ L, $PC \leftarrow addr16$, $SP \leftarrow SP-2$		
CALLT	[addr5]	1	8	$(SP - 1) \leftarrow (PC + 1)_H, (SP - 2) \leftarrow (PC + 1)_L,$ $PC_H \leftarrow (00000000, addr5 + 1),$ $PC_L \leftarrow (00000000, addr5),$ $SP \leftarrow SP - 2$		
RET		1	6	$PCH \leftarrow (SP + 1), PCL \leftarrow (SP),$ $SP \leftarrow SP + 2$		
RETI		1	8	$\begin{aligned} & PCH \leftarrow (SP+1), PCL \leftarrow (SP), \\ & PSW \leftarrow (SP+2), SP \leftarrow SP+3, \\ & NMIS \leftarrow 0 \end{aligned}$	R	R F
PUSH	PSW	1	2	$(SP-1) \leftarrow PSW, SP \leftarrow SP-1$		
	rp	1	4	$(SP-1) \leftarrow rpH, (SP-2) \leftarrow rpL,$ $SP \leftarrow SP-2$		
POP	PSW	1	4	$PSW \leftarrow (SP),SP \leftarrow SP + 1$	R	R F
	rp	1	6	$rp_H \leftarrow (SP + 1), rp_L \leftarrow (SP),$ $SP \leftarrow SP + 2$		
MOVW	SP, AX	2	8	$SP \leftarrow AX$		
	AX, SP	2	6	$AX \leftarrow SP$		
BR	!addr16	3	6	PC ← addr16		
	\$addr16	2	6	PC ← PC + 2 + jdisp8		
	AX	1	6	$PCH \leftarrow A, PCL \leftarrow X$		

Remark One instruction clock cycle is one CPU clock cycle (fcpu) selected via the processor clock control register (PCC).

Mnemonic	Operand	Bytes	Clocks	Operation	F	-lag
					Z	AC CY
вс	\$addr16	2	6	PC ← PC + 2 + jdisp8 if CY = 1		
BNC	\$addr16	2	6	PC ← PC + 2 + jdisp8 if CY = 0		
BZ	\$addr16	2	6	PC ← PC + 2 + jdisp8 if Z = 1		
BNZ	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 0$		
ВТ	saddr. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if (saddr. bit) = 1		
	sfr. bit, \$addr16	4	10	PC ← PC + 4 + jdisp8 if sfr. bit = 1		
	A. bit, \$addr16	3	8	PC ← PC + 3 + jdisp8 if A. bit = 1		
	PSW. bit, \$addr16	4	10	PC ← PC + 4 + jdisp8 if PSW. bit = 1		
BF	saddr. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if (saddr. bit) = 0		
	sfr. bit, \$addr16	4	10	PC ← PC + 4 + jdisp8 if sfr. bit = 0		
	A. bit, \$addr16	3	8	PC ← PC + 3 + jdisp8 if A. bit = 0		
	PSW. bit, \$addr16	4	10	PC ← PC + 4 + jdisp8 if PSW. bit = 0		
DBNZ	B, \$addr16	2	6	$B \leftarrow B - 1$, then PC \leftarrow PC + 2 + jdisp8 if B \neq 0		
	C, \$addr16	2	6	$C \leftarrow C - 1$, then $PC \leftarrow PC + 2 + jdisp8$ if $C \neq 0$		
	saddr, \$addr16	3	8	$(saddr) \leftarrow (saddr) - 1$, then PC \leftarrow PC + 3 + jdisp8 if $(saddr) \neq 0$		
NOP		1	2	No Operation		
EI		3	6	IE ← 1 (Enable Interrupt)		
DI		3	6	IE ← 0 (Disable Interrupt)		
HALT		1	2	Set HALT Mode		
STOP		1	2	Set STOP Mode		

Remark One instruction clock cycle is one CPU clock cycle (fcPu) selected via the processor clock control register (PCC).

7. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol		Conditions	Ratings	Unit
Power supply voltage	V _{DD}	$V_{DD} = AV_{DD}$		-0.3 to +6.5	٧
	AV _{DD}				
	VPP			-0.3 to +10.5	٧
Input voltage	VII	P33, P60 to P65,	P11, P20 to P26, P30 to P70 to P72, P80 ^{Note 1} , P97 ^{Note 1} , X1, X2, XT1, XT2,	-0.3 to V _{DD} + 0.3 ^{Note 2}	V
	Vı2	P50 to P53 N-ch open drain		-0.3 to +13	٧
Output voltage	Vo			-0.3 to V _{DD} + 0.3 ^{Note 2}	٧
Output current, high	Іон	Per pin		-10	mA
		Total for all pins		-30	mA
Output current, low	loL	Per pin		30	mA
		Total for all pins		160	mA
Operating ambient temperature	Та	In normal operati	In normal operation mode		°C
		During flash men	nory programming	10 to 40	°C
Storage temperature	Tstg			-40 to +125	°C

Notes 1. For μ PD78F9436

2. 6.5 V or less

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Main System Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic	V _{PP} X1 X2	Oscillation frequency (fx) ^{Note 1}		1.0		5.0	MHz
resonator	C1+ C2+	Oscillation stabilization time ^{Note 2}	After V _{DD} reaches oscillation voltage range MIN.			4	ms
Crystal	VPP X1 X2	Oscillation frequency(fx) ^{Note 1}		1.0		5.0	MHz
resonator	│ ┊│ ├ ┤□ ├ ┤	Oscillation stabilization	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$			10	ms
	C1‡ C2‡	time ^{Note 2}				30	ms
External	X1 X2	X1 input frequency (fx) ^{Note 1}		1.0		5.0	MHz
clock		X1 input high-/low-level width (txH, txL)		85		500	ns
	X1 X2	X1 input frequency (fx) ^{Note 1}	V _{DD} = 2.7 to 5.5 V	1.0		5.0	MHz
	OPEN	X1 input high-/low-level width (txH, txL)	V _{DD} = 2.7 to 5.5 V	85		500	ns

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

- 2. Time required to stabilize oscillation after reset or STOP mode release.
- Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - . Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Remark For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Subsystem Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	V _{PP} XT1 XT2	Oscillation frequency (fxT) ^{Note 1}		32	32.768	35	kHz
		Oscillation stabilization	V _{DD} = 4.5 to 5.5 V		1.2	2	s
	7///	time ^{Note 2}				10	
External clock	XT1 XT2	XT1 input frequency (fxr) ^{Note 1}		32		35	kHz
		XT1 input high-/low-level width (txth, txtl)		14.3		15.6	μs

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2. Time required to stabilize oscillation after VDD reaches oscillation voltage range MIN.

Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance.

- · Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- . Always make the ground point of the oscillator capacitor the same potential as Vss.
- . Do not ground the capacitor to a ground pattern through which a high current flows.
- . Do not fetch signals from the oscillator.
- The subsystem clock oscillator is designed as a low-amplitude circuit for reducing current consumption, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.

Remark For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

DC Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol		Conditio	ns	MIN.	TYP.	MAX.	Unit
Output current, low	loL	Per pin					10	mA
		All pins					80	mA
Output current, high	Іон	Per pin					-1	mA
		All pins				-15	mA	
Input voltage, high	V _{IH1}	P10, P11, P70 to P72	P60 to P65, 2, P80 ^{Note} ,	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0.7V _{DD}		V _{DD}	V
		P81 ^{Note} , P9			0.9V _{DD}		V _{DD}	V
	V _{IH2}	P50 to	N-ch open	V _{DD} = 2.7 to 5.5 V	0.7V _{DD}		12	V
		P53	drain		0.9V _{DD}		12	V
	V _{IH3}	RESET, PO	00 to P03,	V _{DD} = 2.7 to 5.5 V	0.8V _{DD}		V _{DD}	V
		P20 to P26	6, P30 to P33		0.9V _{DD}		V _{DD}	V
	V _{IH4}	X1, X2, XT	1, XT2	V _{DD} = 4.5 to 5.5 V	V _{DD} - 0.5		V _{DD}	٧
					V _{DD} - 0.1		V _{DD}	V
Input voltage, low	V _{IL1}	V _{IL1} P10, P11, I		V _{DD} = 2.7 to 5.5 V	0		0.3V _{DD}	V
		P81 ^{Note} , P96			0		0.1V _{DD}	V
	V _{IL2}	P50 to P53	3	V _{DD} = 2.7 to 5.5 V	0		0.3V _{DD}	V
					0		0.1V _{DD}	V
	V _{IL3}	RESET, P00 to P03, P20 to P26, P30 to P33		V _{DD} = 2.7 to 5.5 V	0		0.2V _{DD}	V
					0		0.1V _{DD}	٧
	V _{IL4}	X1, X2, XT	1, XT2	V _{DD} = 4.5 to 5.5 V	0		0.4	٧
					0		0.1	٧
Output voltage, high	Vон	V _{DD} = 4.5 to	о 5.5 V, Іон = –1	l mA	V _{DD} - 1.0			٧
		V _{DD} = 1.8 to	о 5.5 V, Іон = –1	100 μΑ	V _{DD} - 0.5			٧
Output voltage, low	V _{OL1}		3, P10, P11, 6, P30 to P33,	$4.5 \le V_{DD} \le 5.5 \text{ V},$ $I_{OL} = 10 \text{ mA}$			1.0	V
		P80 ^{Note} , P8	5, P70 to P72, 1 ^{Note} , P90 to , X2, XT1, XT2	$1.8 \le V_{DD} < 4.5 \text{ V},$ $I_{OL} = 400 \ \mu\text{A}$			0.5	٧
	V _{OL2}	P50 to P53	3	$4.5 \le V_{DD} < 5.5 V$, $I_{OL} = 10 \text{ mA}$			1.0	V
				$1.8 \le V_{DD} < 4.5 \text{ V},$ $I_{OL} = 1.6 \text{ mA}$			0.4	V

Note μ PD78F9436 only

DC Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	(Conditions	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Іин	V _I = V _{DD}	P00 to P03, P10, P11, P20 to P26, P30 to P33, P60 to P65, P70 to P72, P80 ^{Note 1} , P81 ^{Note 1} , P90 to P97 ^{Note 1} , RESET			3	μΑ
	Ішн2		X1, X2, XT1, XT2			20	μΑ
	Ішнз	Vı = 12 V	P50 to P53 (N-ch open drain)			20	μΑ
Input leakage current, low	Iul1	V1 = 0 V	P00 to P03, P10, P11, P20 to P26, P30 to P33, P60 to P65, P70 to P72, P80 ^{Note 1} , P81 ^{Note 1} , P90 to P97 ^{Note 1} , RESET			-3	μΑ
	ILIL2]	X1, X2, XT1, XT2			-20	μΑ
	Ішз		P50 to P53 (N-ch open drain)			-3 ^{Note 2}	μΑ
Output leakage current, high	Ісон	Vo = V _{DD}				3	μΑ
Output leakage current, low	ILOL	Vo = 0 V				-3	μΑ
Software pull-up resistor	R ₁	V _I = 0 V	P00 to P03, P10, P11, P20 to P26, P30 to P33, P70 to P72, P80 ^{Note 1} , P81 ^{Note 1} , P90 to P97 ^{Note 1}	50	100	200	kΩ

Notes 1. μ PD78F9436 only

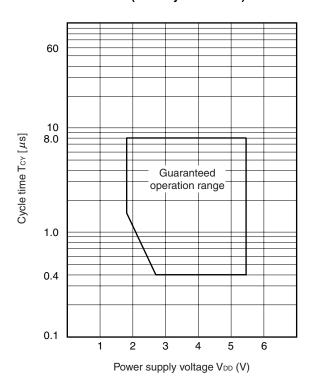
2. If P50 to P53 have been set to input mode when a read instruction is executed to read from P50 to P53, a low-level input leakage current of up to $-30~\mu\text{A}$ flows during only one cycle. At all other times, the maximum leakage current is $-3~\mu\text{A}$.

DC Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol		Conditi	ons	MIN.	TYP.	MAX.	Unit
Power supply	I _{DD1}	5.0 MHz cr	ystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$		4.5	9	mA
current ^{Note 1}		operation mode (C1 = C2 = 22 pF)		$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$		1	2	mA
				$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 3}}$		0.65	1.5	mA
	I _{DD2}	5.0 MHz cr	ystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$		1.4	2	mA
		HALT mod (C1 = C2 =		$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$		0.4	0.8	mA
		(01 = 02 =	: 22 pr)	$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 3}}$		0.19	0.42	mA
	Іррз	32.768 kHz	z crystal	V _{DD} = 5.0 V ±10%		100	230	μΑ
		oscillation mode ^{Note 4}	operation	V _{DD} = 3.0 V ±10%		70	160	μΑ
		(C3 = C4 = 22 pF, R1 = $220k\Omega$)		$V_{DD} = 2.0 \text{ V} \pm 10\%$		58	120	μΑ
	I _{DD4}	32.768 kHz crystal oscillation HALT	LCD not operating	V _{DD} = 5.0 V ±10%		25	65	μΑ
				V _{DD} = 3.0 V ±10%		7	29	μΑ
				V _{DD} = 2.0 V ±10%		4	20	μΑ
			LCD operating Note 5	V _{DD} = 5.0 V ±10%		28	70	μΑ
		mode ^{Note 4}		V _{DD} = 3.0 V ±10%		9.6	34	μΑ
				V _{DD} = 2.0 V ±10%		6	25	μΑ
	I _{DD5}	STOP mod	le ^{Note 6}	V _{DD} = 5.0 V ±10%		0.1	17	μΑ
				$V_{DD} = 3.0 \text{ V} \pm 10\%$		0.05	5.5	μΑ
				V _{DD} = 2.0 V ±10%		0.05	3.5	μΑ
	IDD6		ystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$		5.2	10.8	mA
		A/D operat (C1 = C2 =	ing mode ^{Note 7}	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$		1.4	3.8	mA
		(01 = 02 =	. 22 pr)	$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 3}}$		1.0	2.9	mA

Notes 1. The port current (including the current that flows to the on-chip pull-up resistor) is not included.

- 2. High-speed mode operation (when the processor clock control register (PCC) is set to 00H)
- 3. Low-speed mode operation (when PCC is set to 02H)
- 4. When the main system clock is stopped
- 5. This is the current when the LCD controller/driver is operating (LCDON0 = 1, VAON0 = 1, LIPS0 = 1). The power supply current when the LCD is not operating (LCDON0 = 0, VAON0 = 1, LIPS0 = 0) is included in IDD2 (HALT mode).
- **6.** When the LCD voltage amplifier is stopped (LCDON0 = 0, VAON0 = 0)
- 7. This is the total current that flows to V_{DD} and AV_{DD} .



AC Characteristics

(1) Basic operation ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Condition	ons	MIN.	TYP.	MAX.	Unit
Cycle time (minimum	Тсч	Operating with main system clock	V _{DD} = 2.7 to 5.5 V	0.4		8.0	μs
instruction execution				1.6		8.0	μs
time)		Operating with subsystem	clock	114	122	125	μs
Capture input high-/low-level width	tсртн, tсртL	CPT90		10			μs
TMI60 input frequency	fтмі	V _{DD} = 2.7 to 5.5 V		0		4	MHz
				0		275	kHz
TMI60 input high-/low-	tтімн,	V _{DD} = 2.7 to 5.5 V	0.1			μs	
level width	t TIML		1.8			μs	
Interrupt input high- /low-level width	tinth,	INTP0 to INTP3	INTP0 to INTP3				μs
Key return input low- level width	tkrl	KR0 to KR3		10			μs
RESET low-level width	trsL			10			μs

Tcy vs. VDD (main system clock)

(2) Serial interface 20 (SIO20) ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

(a) 3-wire serial I/O mode (internal clock output)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCK20 cycle time	tkcy1	V _{DD} = 2.7 to 5.5 V		800			ns
				3200			ns
SCK20 high-/low-level width	t кн1,	V _{DD} = 2.7 to 5.5 V		tkcy1/2-50			ns
	t _{KL1}			txcy1/2-150			ns
SI20 setup time (to SCK20↑)	tsik1	V _{DD} = 2.7 to 5.5 V		150			ns
				500			ns
SI20 hold time (from SCK201)	tsı1	V _{DD} = 2.7 to 5.5 V	D = 2.7 to 5.5 V				ns
				600			ns
Delay time from SCK20↓ to SO20 output	tso1	$R = 1 \text{ k}\Omega, C = 100 \text{ pF}^{\text{Note}}$	V _{DD} = 2.7 to 5.5 V	0		250	ns
				0		1000	ns

Note R and C are the load resistance and load capacitance of the SO20 output line.

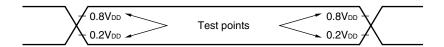
(b) 3-wire serial I/O mode (external clock input)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit	
SCK20 cycle time	tkcy2	V _{DD} = 2.7 to 5.5 V		800			ns
				3200			ns
SCK20 high-/low-level width	tкн2,	V _{DD} = 2.7 to 5.5 V		400			ns
	t _{KL2}			1600			ns
SI20 setup time (to SCK201)	tsık2	V _{DD} = 2.7 to 5.5 V		100			ns
				150			ns
SI20 hold time (from SCK20↑)	tsı2	V _{DD} = 2.7 to 5.5 V		400			ns
				600			ns
Delay time from SCK20↓ to SO20 output	tso2	$R=1~k\Omega,~C=100~pF^{Note}$	V _{DD} = 2.7 to 5.5 V	0		300	ns
				0		1000	ns
SO20 setup time (with SS20, to SCK20↓)	tkas2	V _{DD} = 2.7 to 5.5 V				120	ns
						400	ns
SO20 disable time (with SS20, from SCK20↑)	tkDS2	V _{DD} = 2.7 to 5.5 V				240	ns
						800	ns

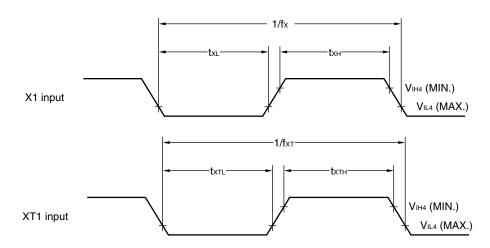
 $\textbf{Note} \quad \text{R and C are the load resistance and load capacitance of the SO20 output line}.$

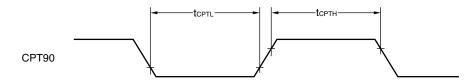
(c) UART mode (dedicated baud rate generator output)

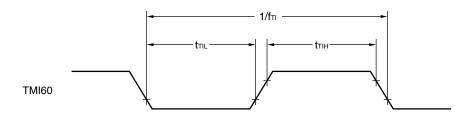
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		V _{DD} = 2.7 to 5.5 V			78125	bps
					19531	bps

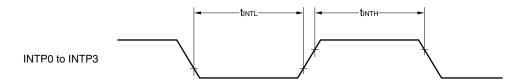


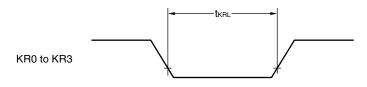
(d) UART mode (external clock input)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK20 cycle time	tксүз	V _{DD} = 2.7 to 5.5 V	800			ns
			3200			ns
ASCK20 high-/low- level width	tкнз, tкLз	V _{DD} = 2.7 to 5.5 V	400			ns
			1600			ns
Transfer rate		V _{DD} = 2.7 to 5.5 V			39063	bps
					9766	bps
ASCK20 rise/fall time	t _R ,				1	μs
	tF					

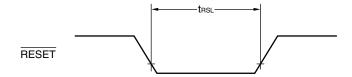

AC Timing Test Points (excluding X1 and XT1 inputs)


Clock Timing

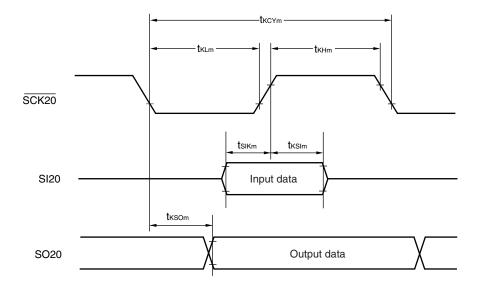

Capture Input Timing


TMI Timing

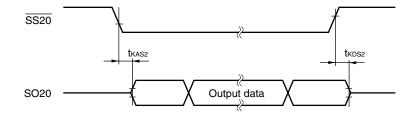
Interrupt Input Timing



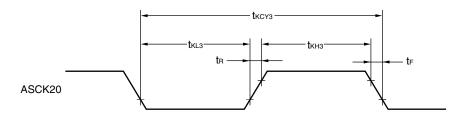
Key Return Input Timing



RESET Input Timing


Serial Transfer Timing

3-wire serial I/O mode:



Remark m = 1, 2

3-wire serial I/O mode (when using $\overline{\text{SS20}}$):

UART mode (external clock input):

10-Bit A/D Converter Characteristics (TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 5.5 V, AVss = Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			10	10	10	bit
Overall error ^{Note}		$4.5 \text{ V} \leq \text{AV}_{DD} \leq 5.5 \text{ V}$		±0.2	±0.4	%FSR
		2.7 V ≤ AV _{DD} < 4.5 V		±0.4	±0.6	%FSR
		1.8 V ≤ AVDD < 2.7 V		±0.8	±1.2	%FSR
Conversion time	tconv	$4.5 \text{ V} \leq \text{AV}_{DD} \leq 5.5 \text{ V}$	14		100	μs
		2.7 V ≤ AV _{DD} < 4.5 V	19		100	μs
		1.8 V ≤ AVDD < 2.7 V	28		100	μs
Zero-scale error ^{Note}	AINL	4.5 V ≤ AV _{DD} ≤ 5.5 V			±0.4	%FSR
		2.7 V ≤ AV _{DD} < 4.5 V			±0.6	%FSR
		1.8 V ≤ AVDD < 2.7 V			±1.2	%FSR
Full-scale error ^{Note}	AINL	$4.5 \text{ V} \leq \text{AV}_{DD} \leq 5.5 \text{ V}$			±0.4	%FSR
		2.7 V ≤ AV _{DD} < 4.5 V			±0.6	%FSR
		1.8 V ≤ AV _{DD} < 2.7 V			±1.2	%FSR
Non-integral linearity ^{Note}	INL	$4.5 \text{ V} \leq \text{AV}_{DD} \leq 5.5 \text{ V}$			±2.5	LSB
		2.7 V ≤ AV _{DD} < 4.5 V			±4.5	LSB
		1.8 V ≤ AVDD < 2.7 V			±8.5	LSB
Non-differential	DNL	4.5 V ≤ AV _{DD} ≤ 5.5 V			±1.5	LSB
linearity ^{Note}	earity ^{Note}	2.7 V ≤ AV _{DD} < 4.5 V			±2.0	LSB
		1.8 V ≤ AVDD < 2.7 V			±3.5	LSB
Analog input voltage	VIAN		0		AV _{DD}	V

Note Excludes quantization error (±0.05%)

Remark FSR: Full scale range

LCD Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit					
LCD output voltage	V _{LCD2}	C1 to C4 ^{Note 1} = 0.47 μ F	GAIN = 1	0.84	1.0	1.165	V					
variation range			GAIN = 0	1.26	1.5	1.74	٧					
Doubler output	V _{LCD1}	C1 to C4 ^{Note 1} = 0.47 μ F		2VLCD2 -0.1	2.0V _{LCD2}	2.0V _{LCD2}	٧					
Tripler output	V _{LCD0}	C1 to C4 ^{Note 1} = 0.47 μ F		3VLCD2 -0.15	3.0VLCD2	3.0VLCD2	٧					
Voltage amplification wait	tvawait	GAIN = 0		0.5			s					
time ^{Note 2}							GAIN = 1	$5.0 \leq V_{\text{DD}} \leq 5.5 \text{ V}$	2.0			s
			$4.5 \leq V_{\text{DD}} < 5.0 \text{ V}$	1.0			s					
			$1.8 \leq V_{\text{DD}} < 4.5 \text{ V}$	0.5			s					
LCD output voltage differential Note 3 (common)	Vodc	$lo = \pm 5 \mu A$		0		±0.2	V					
LCD output voltage differential Note 3 (segment)	Vods	$lo = \pm 1 \mu A$		0		±0.2	٧					

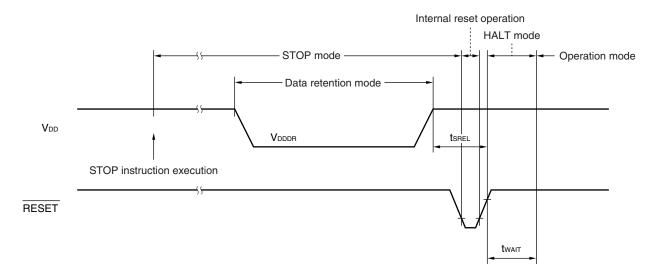
Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

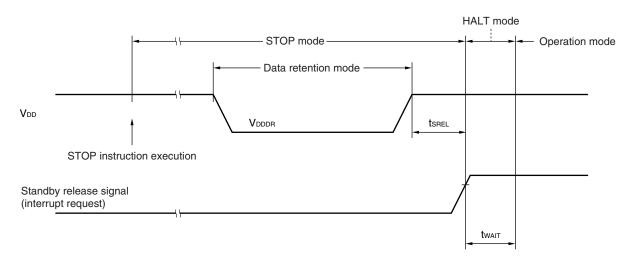
C2: A capacitor connected between VLC0 and Vss

C3: A capacitor connected between VLC1 and Vss

C4: A capacitor connected between VLC2 and Vss


- 2. This is the wait time from when voltage amplification is started (VAON0 = 1) until display is enabled (LCDON0 = 0).
- **3.** The voltage differential is the difference between the segment and common signal output's actual and ideal output voltages.

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = -40 to +85°C)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	VDDDR		1.8		5.5	V
Release signal set time	tsrel		0			μs

Data Retention Timing (STOP Mode Release by RESET)

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Request Signal)

Oscillation Stabilization Wait Time (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Oscillation stabilization wait	twait	Release by RESET		2 ¹⁵ /fx		s
time ^{Note 1}		Release by interrupt		Note 2		S

Notes 1. Use a resonator whose oscillation stabilizes within the oscillation stabilization wait time.

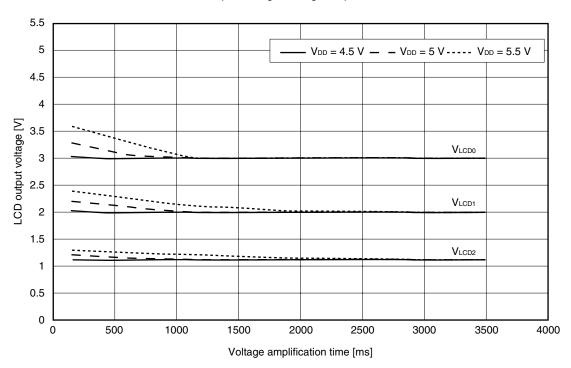
2. Selection of $2^{12}/fx$, $2^{15}/fx$, or $2^{17}/fx$ is possible with bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time selection register (OSTS).

Remark fx: Main system clock oscillation frequency

Flash Memory Write/Erase Characteristics (T_A = 10 to 40°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Cond	ditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fx	V _{DD} = 2.7 to 5.5 V		1.0		5	MHz
				1.0		1.25	MHz
Write current ^{Note} (VDD pin)	lddw	When V _{PP} supply voltage = V _{PP1}	During fx = 5.0 MHz operation			7	mA
Write current ^{Note} (VPP pin)	IPPW	When VPP supply volta	ge = V _{PP1}			12	mA
Erase current ^{Note} (VDD pin)	IDDE	When V _{PP} supply voltage = V _{PP1}	During fx = 5.0 MHz operation			7	mA
Erase current ^{Note} (VPP pin)	Ірре	When VPP supply volta	ge = V _{PP1}			100	mA
Unit erase time	ter			0.5	1	1	s
Total erase time	tera					20	s
Write count		Erase/write are regarded as 1 cycle				20	Times
VPP supply voltage	V _{PP0}	In normal operation	·	0		0.2V _{DD}	V
	V _{PP1}	During flash memory p	programming	9.7	10.0	10.3	>

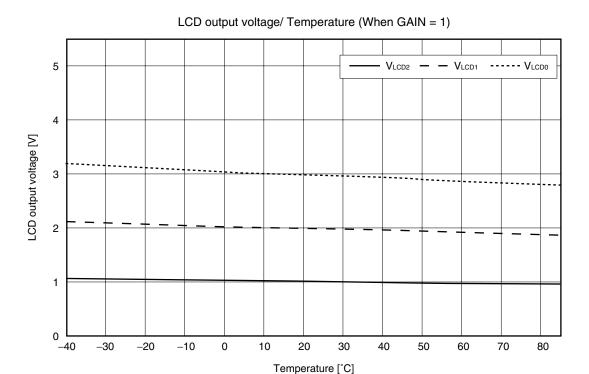
Note The port current (including the current that flows to the on-chip pull-up resistors) is not included.

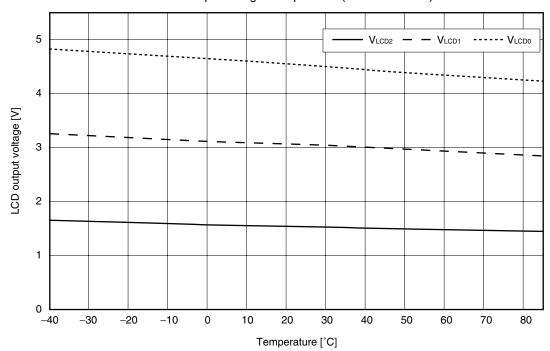


8. CHARACTERISTICS CURVES OF LCD CONTROLLER/DRIVER (REFRENCE VALUES)

(1) Characteristics curves of voltage amplification stabilization time

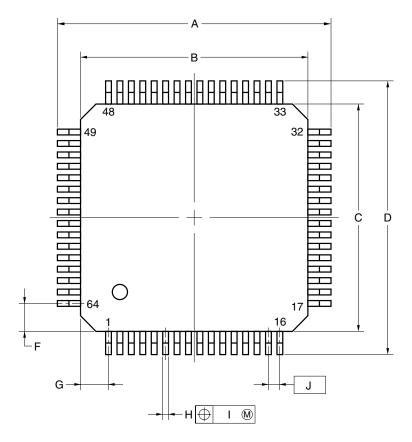
The following shows the characteristics curves of the time from the start of voltage amplification (VAON0 = 1) and the changes in the LCD output voltage (when GAIN is set as 1 (using the 3 V display panel)).


LCD output voltage/Voltage amplification time

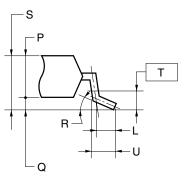


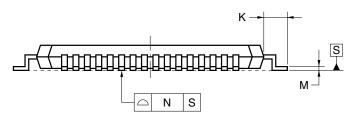
(2) Temperature characteristics of LCD output voltage

The following shows the temperature characteristics curves of LCD output voltage.



LCD output voltage/ Temperature (When GAIN = 0)




9. PACKAGE DRAWINGS

64-PIN PLASTIC TQFP (12x12)

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	14.0±0.2
В	12.0±0.2
С	12.0±0.2
D	14.0±0.2
F	1.125
G	1.125
Н	0.32 ^{+0.06} _{-0.10}
I	0.13
J	0.65 (T.P.)
K	1.0±0.2
L	0.5
М	$0.17^{+0.03}_{-0.07}$
N	0.10
P	1.0
Q	0.1±0.05
R	3°+4° -3°
S	1.1±0.1
Т	0.25
U	0.6±0.15

10. RECOMMENDED SOLDERING CONDITIONS

The μ PD78F9436 and 78F9456 should be soldered and mounted under the following recommended conditions.

For details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Table 10-1. Surface Mounting Type Soldering Conditions

 μ PD78F9436-9ET: 64-pin plastic TQFP (12 × 12) μ PD78F9456-9ET: 64-pin plastic TQFP (12 × 12)

Soldering Method	Soldering Conditions	Recommended
		Condition Symbol
Interface reflow	Package peak temperature: 235°C, Time:30 seconds max. (at 210°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	IR35-107-2
VPS	Package peak temperature: 215°C, Time:40 seconds max. (at 200°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	VP15-107-2
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry peak, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

APPENDIX A. DIFFERENCES BETWEEN μ PD78F9436, 78F9456 AND MASK ROM VERSIONS

The μ PD78F9436 and 78F9456 have flash memory in place of the internal ROM of the mask ROM versions. Differences between the μ PD78F9436 and 78F9456 and the mask ROM versions are shown in Table A-1.

Table A-1. Differences Between μ PD78F9436, 78F9456 and Mask ROM Versions

	Part Number	Flash Memo	ry Versions		Mask ROM	1 Versions	
Item		μPD78F9436	μPD78F9456	μPD789435	μPD789436	μPD789455	μPD789456
Internal	ROM	16 KB		12 KB	16 KB	12 KB	16 KB
memory	High-speed RAM	512 bytes					
	LCD display RAM	5 × 4 bits	15 × 4 bits	5 × 4 bits		15 × 4 bits	
IC pin		Not available		Available			
V _{PP} pin		Available		Not available			
Pull-up re	esistors	30 (software control: 30)	20 (software control: 20)			ontrol: 20, mask	
Electrical specifications Refer to the relevant data sheet.							

Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations for the commercial samples (not engineering samples) of the mask ROM version.

APPENDIX B. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78F9436 and 78F9456.

Language Processing Software

RA78K0S ^{Notes 1, 2, 3}	Assembler package common to 78K/0S Series
CC78K0S ^{Notes 1, 2, 3}	C compiler package common to 78K/0S Series
DF789456 ^{Notes 1, 2, 3,}	Device file for μPD789426, 789436, 789446, 789456 Subseries
CC78K0S-L ^{Notes 1, 2, 3}	C compiler library source file common to 78K/0S Series

Flash Memory Writing Tools

Flashpro III (Part No. FL-PR3 ^{Note 4} , PG-FP3)	Flash programmer dedicated to on-chip flash memory microcontroller
FA-64GK-9ET ^{Note 4}	Flash memory writing adapter for 64-pin plastic TQFP (GK-9ET type)

Debugging Tools

IE-78K0S-NS In-circuit emulator	This is an in-circuit emulator for debugging the hardware and software of an application system using the 78K/0S Series. It supports the integrated debugger (ID78K0S-NS). It is used with an AC adapter, emulation probe, and interface adapter for connecting the host machine.
IE-78K0S-NS-A In-circuit emulator	This is a board to expand the functions of the IE-78K0S-NS. The addition of this board enhances debugging functions such as the coverage, tracer, and timer functions.
IE-70000-MC-PS-B AC adapter	This is the adapter for supplying power from an AC-100 to 240 V outlet.
IE-70000-98-IF-C Interface adapter	This adapter is needed when a PC-9800 series PC (except notebook type) is used as the host machine for an IE-78K0S-NS (supports C bus).
IE-70000-CD-IF-A PC card interface	This PC card and interface cable are needed when a PC-9800 series notebook-type PC is used as the host machine for an IE-78K0S-NS (supports PCMCIA socket).
IE-70000-PC-IF-C Interface adapter	This adapter is needed when an IBM PC/AT™ or compatible PC is used as the host machine for an IE-78K0S-NS (supports ISA bus).
IE-70000-PCI-IF-A Interface adapter	This adapter is needed when a PC that includes a PCI bus is used as the host machine for an IE-78KOS-NS.
IE-789436-NS-EM1 Emulation board	This is an emulation board for emulating the peripheral hardware inherent to μ PD789426, 789436 Subseries devices. It is used with an in-circuit emulator.
IE-789456-NS-EM1 Emulation board	This is an emulation board for emulating the peripheral hardware inherent to μ PD789446, 789456 Subseries devices. It is used with an in-circuit emulator.
NP-64GK ^{Note 4} Emulator probe	This is a cable that is used to connect an in-circuit emulator to the target system. It is for a 64-pin plastic TQFP (GK-9ET type).
SM78K0S ^{Notes 1, 2}	System simulator common to 78K/0S Series
ID78K0S-NS ^{Notes 1, 2}	Integrated debugger common to 78K/0S Series
DF789456 ^{Notes 1, 2}	Device file for μPD789426, 789436, 789446, 789456 Subseries

Real-Time OS

MX78K0S ^{Notes 1, 2}	OS for 78K/0S Series

- Notes 1. Based on PC-9800 Series (Japanese Windows™)
 - 2. Based on IBM PC/AT compatibles (Japanese/English Windows)
 - 3. Based on HP9000 Series 700™ (HP-UX™), or SPARCstation™ (SunOS™, Solaris™)
 - 4. This product is manufactured by Naito Densei Machida Mfg. Co., Ltd. (TEL +81-45-475-4191).

Remark The RA78K0S, CC78K0S, and SM78K0S are used in combination with the DF789456.

APPENDIX C. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents related to devices

Document Name	Document No.
μPD789425, 789426, 789435, 789436, 789445, 789446, 789455, 789456 Data Sheet	U14493E
μPD78F9436, 78F9456 Data Sheet	This document
μPD789426, 789436, 789446, 789456 Subseries User's Manual	U15075E
78K/0S Series User's Manual Instructions	U11047E
78K/0, 78K/0S Series Application Note Flash Memory Write	U14458E

Documents related to development tools (user's manuals)

Document Name		Document No.
RA78K0S Assembler Package	Operation	U11622E
	Language	U11599E
	Structured Assembly Language	U11623E
CC78K0S C Compiler	Operation	U11816E
	Language	U11817E
SM78K0S, SM78K0, System Simulator Ver.2.10 or later Windows Based	Operation	U14611E
SM78K Series System Simulator Ver 2.10 or Later	External Part User Open Interface Specifications	U15006E
ID78K0-NS, ID78K0S-NS Integrated Debugger Ver.2.20 or later Windows Based	Operation	U14910E
IE-78K0S-NS In-circuit Emulator		U13549E
IE-789436-NS-EM1 Emulation Board		To be prepared
IE-789456-NS-EM1 Emulation Board		To be prepared
PG-FP3 Flash Memory Programmer		U13502E

Documents related to embedded software (user's manuals)

Document Name		Document No.
78K/0S Series OS MX78K0S	Fundamental	U12938E

Other documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE - Products & Packages - (CD-ROM)	X13769E
Semiconductor Device Mounting Technology Manual	C10535E
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

NOTES FOR CMOS DEVICES —

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

EEPROM and FIP are trademarks of NEC Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- · Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- · Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-3067-5800 Fax: 01-3067-5899

NEC Electronics (France) S.A.

Madrid Office Madrid, Spain Tel: 091-504-2787 Fax: 091-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore

Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Guarulhos-SP, Brasil Tel: 11-6462-6810 Fax: 11-6462-6829

J01.2

- The information in this document is current as of April, 2001. The information is subject to change
 without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
 books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
 and/or types are available in every country. Please check with an NEC sales representative for
 availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).