DATA SHEET

μ**PD78F4225, 78F4225Y**

16/8-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The μ PD78F4225 and 78F4225Y are products in the μ PD784225, 784225Y Subseries in the 78K/IV Series. The μ PD78F4225 and 78F4225Y have flash memory in the place of the internal ROM of the μ PD784225 and 78F4225Y. Data can be written to or erased from the flash memory of the μ PD78F4225 and 78F4225Y with the microcontroller mounted on a printed wiring board.

The μ PD78F4225Y is based on the μ PD78F4225 with an I²C bus interface added supporting multi masters.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

 μ PD784225, 784225Y Subseries User's Manual Hardware: U12697E 78K/IV Series User's Manual Instruction: U10905E

FEATURES

- Pin-compatible with mask ROM version (except VPP pin)
- Flash memory: 128 KB
- Serial interface: 3 channels
 - UART/IOE (3-wire serial I/O): 2 channels
 - CSI (I²C bus supporting 3-wire serial I/O multi mastersNote): 1 channel
- Internal RAM: 4,352 bytes
- Supply voltage: VDD = 1.9 to 5.5 V

Note μ PD78F4225Y only

ORDERING INFORMATION

Part Number	Package
μPD78F4225GC-8BT	80-pin plastic QFP (14 $ imes$ 14)
μ PD78F4225GK-9EU	80-pin plastic TQFP (fine pitch) (12 $ imes$ 12)
μ PD78F4225YGC-8BT	80-pin plastic QFP (14 $ imes$ 14)
μ PD78F4225YGK-9EU	80-pin plastic TQFP (fine pitch) (12 $ imes$ 12)

APPLICATIONS

Car audios, portable audios, telephones, etc.

Unless otherwise specified, descriptions in this document are made using the μ PD78F4225Y as the typical product.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

★ 78K/IV SERIES LINEUP

μΡΟ/049/0

On-chip VFD controller/driver

OVERVIEW OF FUNCTIONS

Item		Function				
Number of basi (mnemonics)	c instructions	113				
General-purpose registers		8 bits \times 16 registers \times	8 bits \times 16 registers \times 8 banks, or 16 bits \times 8 registers \times 8 banks (memory mapping)			
Minimum instruction execution		• 160 ns/320 ns/640 r	ns/1280 ns/2560 ns (main syster	n clock: fxx = 12.5 MHz)		
time		 61 μs (subsystem cl 	lock: fxt = 32.768 kHz)			
Internal	Flash memory	128 KB				
memory	RAM	4,352 bytes				
Memory space		1 MB with program an	d data spaces combined			
I/O ports	Total	67				
	CMOS input	8				
	CMOS I/O	59				
Pins with	Pins with pull-up resistor	57				
functions ^{Note 1}	LEDs direct drive output	16				
Real-time outpu	ıt port	4 bits \times 2, or 8 bits \times 1	1			
Timer/counter		Timer/event counter:	timer counter \times 1	Pulse output		
		(16 bits)	Capture/compare register \times 2	PWM/PPG output		
				Square wave output		
		Timer/accent accenter 4		One-shot pulse output		
		(8 bits)	: timer counter \times 1 Compare register \times 1	Pulse output PWM output		
		(0 013)		Square wave output		
		Timer/event counter 2	: timer counter × 1	Pulse output		
		(8 bits)	Compare register \times 1	PWM output		
				 Square wave output 		
		Timer 5:	timer counter \times 1			
		(8 bits)	Compare register × 1			
		Timer 6:	timer counter × 1			
		• LIART/IOF (3-wire serial I/O): 2 channels (on-chin baud rate generator)				
Serial interface		 OART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator) CSI (3-wire serial I/O, I²C bus supporting multi masters^{Note 2}): 1 channel 				
A/D converter		8-bit resolution × 8 channels				
D/A converter		8-bit resolution × 2 ch	annels			
Clock output		Selectable from fxx, fxx/2, fxx/2 ² , fxx/2 ³ , fxx/2 ⁴ , fxx/2 ⁵ , fxx/2 ⁶ , fxx/2 ⁷ , fxt				
Buzzer output		Selectable from fxx/2 ¹⁰ , fxx/2 ¹¹ , fxx/2 ¹² , fxx/2 ¹³				
Watch timer		1 channel				
Watchdog time		1 channel				
Standby		HALT/STOP/IDLE mode				
		In power-saving mode (CPU operation with subsystem clock): HALT/IDLE mode				
Interrupts Hardware		25 (internal: 18, external: 7)				
	Software	BRK instruction, BRK	CS instruction, operand error			
Non-maskable Maskable		Internal: 1, external:	1			
		Internal: 17, external:	6			
		4 programmable priority levels				
Supply voltogo			vectoreu interrupt/macro service.			
Supply voltage		$V_{DD} = 1.9$ to 5.5 V				
Раскауе		• 80-pin plastic GFP (14 \times 14) • 80-pin plastic TQFP (fine pitch) (12 \times 12)				

Notes 1. The pins with ancillary functions are included in the I/O pins.

2. μPD78F4225Y only

 \star

3

CONTENTS

1.	. DIFFERENCES AMONG PRODUCTS IN μ PD784225, 784225Y SUBSERIES	5
2.	. PIN CONFIGURATION (TOP VIEW)	6
3.	BLOCK DIAGRAM	8
4.	. PIN FUNCTION	9
	4.1 Port Pins	9
	4.2 Non-Port Pins	11
	4.3 Pin I/O Circuits and Recommended Connection of Unused Pins	13
5.	. INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)	17
6.	. PROGRAMMING FLASH MEMORY	18
	6.1 Selecting Communication Mode	18
	6.2 Flash Memory Programming Function	19
	6.3 Connecting Flashpro III	19
* 7.	ELECTRICAL SPECIFICATIONS	21
8.	PACKAGE DRAWINGS	45
* 9.	RECOMMENDED SOLDERING CONDITIONS	47
A	PPENDIX A. DEVELOPMENT TOOLS	48
A	PPENDIX B. RELATED DOCUMENTS	51

1. DIFFERENCES AMONG PRODUCTS IN μ PD784225, 784225Y SUBSERIES

The difference between the μ PD784224, 784225, 784224Y, and 784225Y lies in the internal memory capacity. The μ PD784224Y and 784225Y are the versions with I²C bus control added.

The μ PD78F4225 and 78F4225Y are provided with a 128 KB flash memory instead of the mask ROM of the above versions. These differences are summarized in Table 1-1.

Part Number	μPD784224,	μPD784225,	μPD78F4225,
Item	μPD784224Y	μPD784225Y	μPD78F4225Y
Internal ROM	96 KB	128 KB	128 KB
	(mask ROM)	(mask ROM)	(flash memory)
Internal RAM	3,584 bytes	4,352 bytes	
Internal memory size switching register (IMS) ^{Note}	None		Provided
Supply voltage	VDD = 1.8 to 4.5 V	V _{DD} = 1.9 to 4.5 V	
Electrical specifications	Refer to the relevant data sheet.		
Recommended soldering conditions			
TEST pins	Provided None		
VPP pin	None Provided		

Table 1-1. Differences Among Products in μ PD784225, 784225Y Subseries

- **Note** Internal flash memory capacity and internal RAM capacity can be changed with the internal memory size switching register (IMS).
- Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations for the commercial samples (not engineering samples) of the mask ROM version.

2. PIN CONFIGURATION (TOP VIEW)

- 80-pin plastic QFP (14 \times 14) $\mu\text{PD78F4225GC-8BT, 78F4225YGC-8BT}$
- 80-pin plastic TQFP (fine pitch) (12 \times 12) μ PD78F4225GK-9EU, 78F4225YGK-9EU

Notes 1. μPD78F4225Y only

 In normal operation mode, connect VPP pin directly to the Vss pin, or pull it down. In a system where the internal flash memory is rewritten while mounted on board, pull the VPP pin down. When pulling down, connection via a 470 kΩ or higher and 10 kΩ or lower resistor is recommended.

Cautions 1. Connect the AVDD pin to VDD pin.

2. Connect the AVss pin to Vss pin.

Remark When using in applications where noise from inside the microcontroller has to be reduced, it is recommended to take countermeasures against noise such as supplying power to VDD0 and VDD1 independently, and connecting Vss0 and Vss1 to different ground lines.

A8 to A19:	Address bus
AD0 to AD7:	Address/data bus
ANI0 to ANI7:	Analog input
ANO0, ANO1:	Analog output
ASCK1, ASCK2:	Asynchronous serial clock
ASTB:	Address strobe
AVDD:	Analog power supply
AVREF1:	Analog reference voltage
AVss:	Analog ground
BUZ:	Buzzer clock
EXA:	External access status output
INTP0 to INTP5:	Interrupt from peripherals
INTP0 to INTP5: NMI:	Interrupt from peripherals Non-maskable interrupt
INTP0 to INTP5: NMI: P00 to P05:	Interrupt from peripherals Non-maskable interrupt Port 0
INTP0 to INTP5: NMI: P00 to P05: P10 to P17:	Interrupt from peripherals Non-maskable interrupt Port 0 Port 1
INTP0 to INTP5: NMI: P00 to P05: P10 to P17: P20 to P27:	Interrupt from peripherals Non-maskable interrupt Port 0 Port 1 Port 2
INTP0 to INTP5: NMI: P00 to P05: P10 to P17: P20 to P27: P30 to P37:	Interrupt from peripherals Non-maskable interrupt Port 0 Port 1 Port 2 Port 3
INTP0 to INTP5: NMI: P00 to P05: P10 to P17: P20 to P27: P30 to P37: P40 to P47:	Interrupt from peripherals Non-maskable interrupt Port 0 Port 1 Port 2 Port 3 Port 4
INTP0 to INTP5: NMI: P00 to P05: P10 to P17: P20 to P27: P30 to P37: P40 to P47: P50 to P57:	Interrupt from peripherals Non-maskable interrupt Port 0 Port 1 Port 2 Port 3 Port 4 Port 5
INTP0 to INTP5: NMI: P00 to P05: P10 to P17: P20 to P27: P30 to P37: P40 to P47: P50 to P57: P60 to P67:	Interrupt from peripherals Non-maskable interrupt Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 Port 6
INTP0 to INTP5: NMI: P00 to P05: P10 to P17: P20 to P27: P30 to P37: P40 to P47: P50 to P57: P60 to P67: P70 to P72:	Interrupt from peripherals Non-maskable interrupt Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7

P130, P131:	Port 13
PCL:	Programmable clock
RD:	Read strobe
RESET:	Reset
RTP0 to RTP7:	Real-time output port
RxD1, RxD2:	Receive data
SCK0 to SCK2:	Serial clock
SCL0 ^{Note} :	Serial clock
SDA0 ^{Note} :	Serial data
SI0 to SI2:	Serial input
SO0 to SO2:	Serial output
TI00, TI01, TI1, TI2:	Timer input
TO0 to TO2:	Timer output
TxD1, TxD2:	Transmit data
VDD0, VDD1:	Power supply
VPP:	Programming power supply
Vsso, Vss1:	Ground
WAIT:	Wait
WR:	Write strobe
X1, X2:	Crystal (main system clock)
XT1, XT2:	Crystal (subsystem clock)

Note μ PD78F4225Y only

3. BLOCK DIAGRAM

Note μ PD78F4225Y only. Supports I²C bus interface.

4. PIN FUNCTION

4.1 Port Pins (1/2)

Pin Name	I/O	Alternate Function	Function	
P00	I/O	INTP0	Port 0 (P0):	
P01		INTP1	• 6-bit I/O port	
P02		INTP2/NMI	 Pins set in input mode can be connected to internal pull-up 	
P03	-	INTP3	resistors by software in 1-bit units.	
P04		INTP4		
P05		INTP5		
P10 to P17	Input	ANI0 to ANI7	Port 1 (P1): • 8-bit input port	
P20	I/O	RxD1/SI1	Port 2 (P2):	
P21		TxD1/SO1	8-bit I/O port	
P22		ASCK1/SCK1	 Prins set in input mode can be connected to internal pull-up 	
P23		PCL	resistors by software in 1-bit units.	
P24		BUZ	1	
P25	-	SI0/SDA0 ^{Note}	-	
P26		SO0		
P27		SCK0/SCL0 ^{Note}		
P30	I/O	ТОО	Port 3 (P3):	
P31		TO1	 8-bit I/O port Input/output can be specified in 1-bit units. Pins set in input mode can be connected to internal pull-up 	
P32		TO2		
P33		TI1	resistors by software in 1-bit units.	
P34		TI2		
P35		TI00		
P36		TI01		
P37		EXA		
P40 to P47	I/O	AD0 to AD7	 Port 4 (P4): 8-bit I/O port Input/output can be specified in 1-bit units. All pins set in input mode can be connected to internal pull-up resistors by software. Can drive LEDs. 	
P50 to P57	I/O	A8 to A15	 Port 5 (P5): 8-bit I/O port Input/output can be specified in 1-bit units. All pins set in input mode can be connected to internal pull-up resistors by software. Can drive LEDs. 	

Note µPD78F4225Y only

4.1 Port Pins (2/2)

Pin Name	I/O	Alternate Function	Function
P60	I/O	A16	Port 6 (P6):
P61		A17	8-bit I/O port
P62		A18	All pins set in input mode can be connected to internal pull-up
P63		A19	resistors by software.
P64		RD	
P65		WR	
P66		WAIT	
P67		ASTB	*
P70	I/O	RxD2/SI2	Port 7 (P7): • 3-bit I/O port
P71		TxD2/SO2	 Input/output can be specified in 1-bit units. Pins set in input mode can be connected to internal pull-up resistor by software in 1 bit units.
P72		ASCK2/SCK2	
P120 to P127	I/O	RTP0 to RTP7	 Port 12 (P12): 8-bit I/O port Input/output can be specified in 1-bit units. Pins set in input mode can be connected to internal pull-up resistor by software in 1-bit units.
P130, P131	I/O	ANO0, ANO1	Port 13 (P13): • 2-bit I/O port • Input/output can be specified in 1-bit units.

4.2 Non-Port Pins (1/2)

Pin Name	I/O	Alternate Function	Function
TI00	Input	P35	External count clock input to 16-bit timer register
TI01		P36	Capture trigger signal input to capture/compare register 00
TI1		P33	External count clock input to 8-bit timer register 1
TI2		P34	External count clock input to 8-bit timer register 2
TO0	Output	P30	16-bit timer output (shared by 14-bit PWM output)
TO1		P31	8-bit timer output (shared by 8-bit PWM output)
TO2		P32	
RxD1	Input	P20/SI1	Serial data input (UART1)
RxD2		P70/SI2	Serial data input (UART2)
TxD1	Output	P21/SO1	Serial data output (UART1)
TxD2		P71/SO2	Serial data output (UART2)
ASCK1	Input	P22/SCK1	Baud rate clock input (UART1)
ASCK2		P72/SCK2	Baud rate clock input (UART2)
SI0	Input	P25/SDA0 ^{Note}	Serial data input (3-wire serial clock I/O0)
SI1		P20/RxD1	Serial data input (3-wire serial clock I/O1)
SI2		P70/RxD2	Serial data input (3-wire serial clock I/O2)
SO0	Output	P26	Serial data output (3-wire serial I/O0)
SO1		P21/TxD1	Serial data output (3-wire serial I/O1)
SO2		P71/TxD2	Serial data output (3-wire serial I/O2)
SDA0	I/O	P25/SI0	Serial data input/output (I ² C bus)
SCK0	I/O	P27/SCL0 ^{Note}	Serial clock input/output (3-wire serial I/O0)
SCK1		P22/ASCK1	Serial clock input/output (3-wire serial I/O1)
SCK2		P72/ASCK2	Serial clock input/output (3-wire serial I/O2)
SCL0		P27/SCK0	Serial clock input/output (I ² C bus)
NMI	Input	P02/INTP2	Non-maskable interrupt request input
INTP0		P00	External interrupt request input
INTP1		P01	
INTP2		P02/NMI	
INTP3		P03	
INTP4		P04	
INTP5		P05	
PCL	Output	P23	Clock output (for trimming main system clock and subsystem clock)
BUZ	Output	P24	Buzzer output
RTP0 to RTP7	Output	P120 to P127	Real-time output port that outputs data in synchronization with trigger
AD0 to AD7	I/O	P40 to P47	Low-order address/data bus when external memory is connected
A8 to A15	Output	P50 to P57	Middle-order address bus when external memory is connected
A16 to A19		P60 to P63	High-order address bus when external memory is connected
RD	Output	P64	Strobe signal output for read operation of external memory
WR		P65	Strobe signal output for write operation of external memory

4.2 Non-Port Pins (2/2)

	Pin Name	I/O	Alternate Function	Function
	WAIT	Input	P66	To insert wait state(s) when external memory is accessed
	ASTB	Output	P67	Strobe output to externally latch address information output to ports 4 through 6 to access external memory
	EXA	Output	P37	External access status output
	RESET	Input	—	System reset input
	X1	Input	_	Connecting crystal resonator for main system clock oscillation
	X2	—		
	XT1	Input	—	Connecting crystal resonator for subsystem clock oscillation
	XT2	_		
	ANI0 to ANI7	Input	P10 to P17	Analog voltage input for A/D converter
	ANO0, ANO1	Output	P130, P131	Analog voltage output for D/A converter
	AV _{REF1}	—	—	To apply reference voltage for D/A converter
	AVDD			Positive power supply for A/D converter. Connected to VDD0.
	AVss			GND for A/D converter and D/A converter. Connected to Vsso.
	Vddo			Positive power supply for port block
	Vsso			GND potential for port block
	VDD1			Positive power supply (except port block)
	V _{SS1}			GND potential (except port block)
*	Vpp			Sets flash memory programming mode. For high voltage application when program is written or verified. In normal operation mode, connect VPP pin directly to the Vss pin, or pull it down. In a system where the internal flash memory is rewritten while mounted on board, pull the VPP pin down. When pulling down, connection via a 470 k Ω or higher and 10 k Ω or lower resistor is recommended.

★

4.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The I/O circuit types of each pin and the recommended connection of unused pins are shown in Table 4-1. For the I/O circuit configuration of each type, refer to **Figure 4-1**.

Table 4-1. Pin I/O Circuits and Recommended Connection of Unused Pins (1/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/INTP0	8-K	I/O	Input : Independently connect to V _{SS0} via a resistor
P01/INTP1			Output: Leave open
P02/INTP2/NMI			
P03/INTP3 to P05/INTP5			
P10/ANI0 to P17/ANI7	9	Input	Connect to V _{SS0} or V _{DD0}
P20/RxD1/SI1	10-I	I/O	Input : Independently connect to V _{SS0} via a resistor
P21/TxD1/SO1	10-J		Output: Leave open
P22/ASCK1/SCK1	10-I		
P23/PCL	10-J		
P24/BUZ			
P25/SDA0 ^{Note} /SI0	10-I		
P26/SO0	10-J		
P27/SCL0 ^{Note} /SCK0	10-I		
P30/TO0 to P32/TO2	8-M		
P33/TI1, P34/TI2	8-K		
P35/TI00, P36/TI01	8-L		
P37/EXA	8-M		
P40/AD0 to P47/AD7	5-H		
P50/A8 to P57/A15			
P60/A16 to P63/A19			
P64/RD			
P65/WR			
P66/WAIT			
P67/ASTB			
P70/RxD2/SI2	8-K		
P71/TxD2/SO2	8-L		
P72/ASCK2/SCK2	8-K		
P120/RTP0 to P127/RTP7			
P130/ANO0, P131/ANO1	12-D		

Note µPD78F4225Y only

Table 4-1. Pin I/O Circuits and Recommended Connection of Unused Pins (2/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
RESET	2-G	Input	_
XT1	16		Connect to Vsso
XT2		_	Leave open
AV _{REF1}	_		Connect to VDD0
AVDD			
AVss			Connect to Vsso
Vpp			Directly connect to Vsso

Remark Because the circuit type numbers are standardized among the 78K Series products, they are not sequential in some models (i.e., some circuits are not provided).

Figure 4-1. Types of Pin I/O Circuits (1/2)

Figure 4-1. Types of Pin I/O Circuits (2/2)

5. INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)

IMS is a register that prevents by software a part of the internal memory from being used. By using this register, the memory of the μ PD78F4225Y can be mapped in the same manner as a mask ROM version with a different internal memory (ROM and RAM) capacity.

This register is set by using an 8-bit memory manipulation instruction.

RESET input sets IMS to FFH.

NEC

Figure 5-1. Format of Internal Memory	Size Switching Register (IMS
---------------------------------------	------------------------------

Addres	dress: 0FFFCH After reset: FFH		W					
	7	6	5	4	3	2	1	0
IMS	1	1	ROM1	ROM0	1	1	RAM1	RAM0

ROM1	ROM0	Internal ROM capacity selection
0	0	48 KB
0	1	64 KB
1	0	96 KB
1	1	128 KB

RAM1	RAM0	Peripheral RAM capacity selection
0	0	1,536 bytes
0	1	2,304 bytes
1	0	3,072 bytes
1	1	3,840 bytes

Caution IMS is not provided in the mask ROM versions (µPD784224, 784225, 784224Y, and 784225Y).

The value to be set to IMS to map the memory of the μ PD78F4225Y in the same manner as the mask ROM version is shown in Table 5-1.

Table 5-1. Setting value of internal memory Size Switching Register (in	able 5-1.	Setting Value	of Internal Mem	nory Size Switchin	g Register ((IMS)
---	-----------	---------------	-----------------	--------------------	--------------	-------

Mask ROM Version	Setting Value of IMS
μPD784224, 784224Υ	EEH
μPD784225, 784225Υ	FFH

★ 6. PROGRAMMING FLASH MEMORY

The flash memory can be written with the μ PD78F4225Y mounted on the target board (on-board). To do so, connect a dedicated flash programmer (Flashpro III (Part No.: FL-PR3, PG-FR3)) to the host machine and target system.

Writing to the flash memory can be performed on the flash memory writing adapter connected to Flashpro III.

Remark FL-PR3 is a product of Naito Densei Machida Mfg. Co., Ltd.

6.1 Selecting Communication Mode

To write the flash memory, use Flashpro III and serial communication. Select a serial communication mode from those listed in Table 6-1 in the format shown in Figure 6-1. Each communication mode is selected by the number of V_{PP} pulses shown in Table 6-1.

Communication Mode	Number of Channels	Pins Used ^{Note 1}	Number of VPP Pulses
3-wire serial I/O	3	SCK0/P27/SCL0 ^{Note 2} SO0/P26 SI0/P25/SDA0 ^{Note 2}	0
		SCK1/ASCK1/P22 SO1/TxD1/P21 SI1/RxD1/P20	1
		SCK2/ASCK2/P72 SO2/TxD2/P71 SI2/RxD2/P70	2
3-wire serial I/O (handshake ^{Note 3})	1	SCK0/P27/SCL0Note 2 SO0/P26 SI0/P25/SDA0Note 2 P24/BUZ	3
UART	2	TxD1/SO1/P21 RxD1/SI1/P20	8
		TxD2/SO2/P71 RxD2/SI2/P70	9

Table 6-1. Communication Modes

- Notes 1. Shifting to the flash memory programming mode sets all pins not used for flash memory programming to the same state as immediately after reset. Therefore, if the external devices do not acknowledge the port state immediately after reset, handling such as connecting to V_{DD} via a resistor or connecting to V_{SS} via a resistor is required.
 - 2. μPD78F4225Y only
 - 3. Other than I, K standards

Caution Be sure to select a communication mode with the number of VPP pulses shown in Table 6-1.

Figure 6-1. Communication Mode Selection Format

6.2 Flash Memory Programming Function

The flash memory is written by transferring or receiving commands and data in the selected communication mode. The major functions of flash memory programming are listed in Table 6-2.

Function	Description
Area erasure	Erases contents of specified memory area.
Area blank check	Checks erased status of specified area.
Data write	Writes flash memory based on write start address and number of data to be written (in bytes).
Area verify	Compares contents of specified memory area with input data.

Table 6-2. Major Functions of Flash Memory Programming

6.3 Connecting Flashpro III

The Flashpro III and μ PD78F4225Y are connected differently depending on the selected communication mode. Figures 6-2 to 6-5 show the connections in the respective communication modes.

Figure 6-2. Connection of Flashpro III in 3-Wire Serial I/O Mode (When Using 3-Wire Serial I/O 0)

Figure 6-3. Connection of Flashpro III in 3-Wire Serial I/O Mode (When Using Handshake)

Figure 6-4. Connection of Flashpro III in UART Mode (When Using UART1)

7. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VDD0		-0.3 to +6.5	V
	V _{DD1}		-0.3 to +6.5	V
	VPP		-0.3 to +10.5	V
	AVDD		-0.3 to VDD0 + 0.3	V
	AVss		-0.3 to Vsso + 0.3	V
	AV _{REF1}	D/A converter reference voltage input	-0.3 to VDD0 + 0.3	V
Input voltage	VI1		-0.3 to VDD0 + 0.3	V
	Vı2	VPP pin during programming	-0.3 to +10.5	V
Analog input voltage	Van	Analog input pin	AVss - 0.3 to AVREF1 + 0.3	V
Output voltage	Vo		-0.3 to V _{DD} + 0.3	V
Output current, low	lo∟	Per pin	15	mA
		Total for all pins	100	mA
Output current, high	Іон	Per pin	-10	mA
		Total for all pins	-40	mA
Operating ambient	TA	During normal operation	-40 to +85	°C
temperature		During flash memory programming	+10 to +40	°C
Storage temperature	Tstg		-65 to +125	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Operating Conditions

- Operating ambient temperature (T_A): -40 to $+85^{\circ}C$
- Power supply voltage and clock cycle time: See Figure 7-1
- Operating voltage during the subsystem clock operation: $V_{DD} = 1.9$ to 5.5 V

Capacitance (T_A = 25° C, V_{DD} = V_{DD0} = V_{DD1} = V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cı	f = 1 MHz			15	pF
Output capacitance	Co	Unmeasured pins returned to 0 V.			15	pF
I/O capacitance	Сю				15	pF

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic		Oscillation frequency (fx)	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	2		12.5	MHz
resonator	X2 X1 Vss		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	2		6.25	
or crystal			$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	2		3.125	
resonator			$1.9 \text{ V} \leq \text{V}_{\text{DD}} < 2.0 \text{ V}$	2		2	
External		X1 input frequency (fx)	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	2		12.5	MHz
clock	ck	Y2 Y1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	2		6.25	
			$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	2		3.125	
			$1.9 \text{ V} \leq \text{V}_{\text{DD}} < 2.0 \text{ V}$	2		2	
	X1 input high-/low- level width (twxн, twx∟)		15		250	ns	
	μPD74HCU04	X1 input rise/fall time	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	0		5	ns
		(txr, txf)	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	0		10	
			$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0		20	
			$1.9 \text{ V} \leq \text{V}_{\text{DD}} < 2.0 \text{ V}$	0		30	

Main System Clock Oscillator Characteristics (TA = -40 to $+85^{\circ}C$, VDD = VDD0 = VDD1)

- Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.
- **Remark** For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal		Oscillation frequency (fxr)		32	32.768	35	kHz
resonator	Vss XT2 XT1	Oscillation stabilization	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$		1.2	2	s
		time ^{Note}	$1.9 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$			10	
External	XT2 XT1	XT1 input frequency (fxT)		32		35	kHz
clock		XT1 input high-/low-level width (tхтн, tхт∟)		14.3		15.6	μs

Subsystem Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = VDD0 = VDD1)

Note Time required to stabilize oscillation after applying supply voltage (VDD).

- Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.
- **Remark** For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Recommended Oscillator Constant

Main system clock resonator (T_A = -40 to $+85^{\circ}$ C)

Manufacturer	Part Number	Oscillation	Recom	mended	Oscil	lation	Oscillation
		Frequency	Circuit C	Constant	Voltage	Range	Stabilization Time
		fxx (MHz)	C1 (pf)	C2 (pf)	MIN. (V)	MAX. (V)	(MAX.) Tost (ms)
Murata Mfg.	CSTLS2M00G56-B0	2.0	On-chip	On-chip	1.9	5.5	0.44
Co., Ltd.	CSTCC2.00MG0H6	2.0	On-chip	On-chip	1.9	5.5	0.40
	CSTCR4M00G55-R0	4.0	On-chip	On-chip	2.7	5.5	0.38
	CSTS0400MG06	4.0	On-chip	On-chip	2.7	5.5	0.40
	CSTCC4.00MG0H6	4.0	On-chip	On-chip	2.7	5.5	0.38
	CSTCR6M00G53-R0	6.0	On-chip	On-chip	2.7	5.5	0.28
	CSTS0600MG03	6.0	On-chip	On-chip	2.7	5.5	0.24
	CSTCC6.00MG	6.0	On-chip	On-chip	2.7	5.5	0.23
	CSTS0800MG03	8.0	On-chip	On-chip	4.5	5.5	0.22
	CSTCC8.00MG	8.0	On-chip	On-chip	4.5	5.5	0.22
	CSTS1000MG03	10.0	On-chip	On-chip	4.5	5.5	0.23
	CSTCC10.0MG	10.0	On-chip	On-chip	4.5	5.5	0.22
	CSA12.5MTZ	12.5	30	30	4.5	5.5	0.24
	CST12.5MTW	12.5	On-chip	On-chip	4.5	5.5	0.24
	CSTCV12.5MTJ0C4	12.5	On-chip	On-chip	4.5	5.5	0.22
Kyocera	PBRC4.00HR	4.0	On-chip	On-chip	2.7	5.5	0.3
Corporation	PBRC4.00GR	4.0	33	33	2.7	5.5	0.3
	KBR-4.0MKC	4.0	On-chip	On-chip	2.7	5.5	0.3
	KBR-4.0MSB	4.0	33	33	2.7	5.5	0.3
	PBRC8.00HR	8.0	On-chip	On-chip	4.5	5.5	0.3
	PBRC8.00GR	8.0	33	33	4.5	5.5	0.3
	KBR-8.0MKC	8.0	On-chip	On-chip	4.5	5.5	0.3
	KBR-8.0MSB	8.0	33	33	4.5	5.5	0.3
	PBRC10.00BR-A	10.0	On-chip	On-chip	4.5	5.5	0.2
	PBRC12.50BR-A	12.5	On-chip	On-chip	4.5	5.5	0.1
TDK	FCR4.0MC5	4.0	On-chip	On-chip	2.7	5.5	0.15
	FCR6.0MC5	6.0	On-chip	On-chip	2.7	5.5	0.15
	FCR8.0MC5	8.0	On-chip	On-chip	4.5	5.5	0.12
	FCR10.0MC5	10.0	On-chip	On-chip	4.5	5.5	0.12

Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation. Oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit. For details, please contact directly the manufacturer of the resonator you will use.

DC Characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, V_{DD} = V_{DD0} = V_{DD1} = AV_{DD} = 1.9 \text{ to } 5.5 \text{ V}, V_{SS} = V_{SS0} = V_{SS1} = AV_{SS} = 0 \text{ V})$ (1/2)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
VPP supply voltage	V _{PP1}	In normal operation		0		0.2Vdd	V
Input voltage, low	VIL1	Note 1	$2.2~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.3Vdd	V
			$1.9~V \leq V_{\text{DD}} < 2.2~V$	0		0.2VDD	
	VIL2	P00 to P05, P20, P22, P33,	$2.2~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.2VDD	V
		P34, P70, P72, RESET	$1.9~V \leq V_{\text{DD}} < 2.2~V$	0		0.15Vdd	
	VIL4	P10 to P17, P130, P131	$2.2~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.3Vdd	V
			$1.9~V \leq V_{\text{DD}} < 2.2~V$	0		0.2VDD	
	VIL5	X1, X2, XT1, XT2	$2.2~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.2Vdd	V
			$1.9~V \leq V_{\text{DD}} < 2.2~V$	0		0.1Vdd	
	VIL6	P25, P27	$2.2~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.3Vdd	V
			$1.9~V \leq V_{\text{DD}} < 2.2~V$	0		0.2Vdd	
Input voltage, high	VIH1	Note 1	$2.2~V \leq V_{\text{DD}} \leq 5.5~V$	0.7VDD		Vdd	V
			$1.9~V \leq V_{\text{DD}} < 2.2~V$	0.8VDD		Vdd	
	VIH2	P00 to P05, P20, P22, P33,	$2.2~V \leq V_{\text{DD}} \leq 5.5~V$	0.8VDD		Vdd	V
		P34, P70, P72, RESET	$1.9~V \leq V_{\text{DD}} < 2.2~V$	0.85VDD		Vdd	
	VIH4	P10 to P17, P130, P131	$2.2~V \leq V_{\text{DD}} \leq 5.5~V$	0.7VDD		VDD	V
			$1.9~V \leq V_{\text{DD}} < 2.2~V$	0.8VDD		Vdd	
	VIH5	X1, X2, XT1, XT2	$2.2~V \leq V_{\text{DD}} \leq 5.5~V$	0.8VDD		Vdd	V
			$1.9~V \leq V_{\text{DD}} < 2.2~V$	0.85Vdd		Vdd	
	VIH6	P25, P27	$2.2~V \leq V_{\text{DD}} \leq 5.5~V$	0.7VDD		Vdd	V
			$1.9~V \leq V_{\text{DD}} < 2.2~V$	0.8VDD		Vdd	
Output voltage, low	V _{OL1}	For pins other than	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$			0.4	V
		P40 to P47, P50 to P57,					
		R40 to R47, R50 to R57				1.0	V
		$I_{OL} = 8 \text{ mA}^{Note 2}$	$4.5 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			1.0	v
	Vol2	lo _L = 400 μA ^{Note 2}				0.5	V
Output voltage, high	V _{OH1}	Iон = -1 mA ^{Note 2}	$4.5~V \le V_{\text{DD}} \le 5.5~V$	Vdd - 1.0			V
		Іон = −100 µА ^{Note 2}		Vdd - 0.5			V
Input leakage current,		V _{IN} = 0 V	Except X1, X2,			-3	μA
low			XT1, XT2				
	ILIL2		X1, X2, XT1, XT2			-20	μA
Input leakage current, high	Ішні	VIN = VDD0	Except X1, X2, XT1, XT2			3	μA
	Ілна		X1, X2, XT1, XT2			20	μA

Notes 1. P21, P23, P24, P26, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P60 to P67, P71, P80 to P87, P120 to P127

2. Per pin

DC Characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, V_{DD} = V_{DD0} = V_{DD1} = AV_{DD} = 1.9 \text{ to } 5.5 \text{ V}, \text{ Vss} = \text{Vss} = \text{Vss} = A\text{Vss} = 0 \text{ V})$ (2/2)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Output leakage current, low	ILOL1	Vout = 0 V				-3	μA
Output leakage current, high	Iloh1	Vout = Vdd				3	μA
Supply voltage	IDD1	Operating	$f_{XX} = 12.5 \text{ MHz}, V_{DD} = 5.0 \text{ V} \pm 10\%$		24	40	mA
		mode	$f_{XX} = 6 \text{ MHz}, \text{ V}_{DD} = 3.0 \text{ V} \pm 10\%$		8	17	mA
			fxx = 2 MHz, Vdd = 2.0 V $\pm 5\%$		2	10	mA
	DD2	HALT mode	fxx = 12.5 MHz, Vdd = 5.0 V \pm 10%		8	20	mA
			$f_{XX} = 6 \text{ MHz}, \text{ Vdd} = 3.0 \text{ V} \pm 10\%$		2	10	mA
			$f_{XX} = 2 \text{ MHz}, \text{ V}_{DD} = 2.0 \text{ V} \pm 5\%$		0.7	7	mA
	IDD3	IDLE mode	fxx = 12.5 MHz, Vdd = 5.0 V \pm 10%		1	3	mA
			$f_{XX} = 6 \text{ MHz}, \text{ V}_{DD} = 3.0 \text{ V} \pm 10\%$		0.5	1.3	mA
			$f_{XX} = 2 \text{ MHz}, \text{ V}_{DD} = 2.0 \text{ V} \pm 5\%$		0.3	0.9	mA
	IDD4	Operating	$f_{XX} = 32 \text{ kHz}, V_{DD} = 5.0 \text{ V} \pm 10\%$		130	500	μA
	loos H	mode ^{Note}	fxx = 32 kHz, V _{DD} = 3.0 V ±10%		90	350	μA
			fxx = 32 kHz, 2.0 V \leq VDD < 2.7 V		80	300	μA
			fxx = 32 kHz, 1.9 V \leq VDD < 2.0 V		70	250	μA
		HALT	fxx = 32 kHz, V_{DD} = 5.0 V ±10%		60	200	μA
		mode ^{Note}	fxx = 32 kHz, V_{DD} = 3.0 V ±10%		20	160	μA
			fxx = 32 kHz, 2.0 V \leq VDD < 2.7 V		15	120	μA
			fxx = 32 kHz, 1.9 V \leq VDD < 2.0 V		10	100	μA
	IDD6	IDLE	$f_{XX} = 32 \text{ kHz}, \text{ V}_{DD} = 5.0 \text{ V} \pm 10\%$		50	190	μA
		mode ^{Note}	fxx = 32 kHz, V _{DD} = 3.0 V ±10%		15	150	μA
			fxx = 32 kHz, 2.0 V \leq VDD < 2.7 V		12	110	μA
			$f_{XX} = 32 \text{ kHz}, \ 1.9 \text{ V} \le \text{V}_{\text{DD}} < 2.0 \text{ V}$		7	90	μA
Data retention voltage	Vdddr	HALT, IDLE m	odes	1.9		5.5	V
Data retention current	Idddr	STOP mode	VDD = 2.0 V ±10%		2	10	μA
			V _{DD} = 5.0 V ±10%		10	50	μA
Pull-up resistor	R∟	$V_{IN} = 0 V$		10	30	100	kΩ

Note When main system clock is stopped.

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

AC Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}C, V_{DD} = V_{DD0} = V_{DD1} = AV_{DD} = 1.9 \text{ to } 5.5 \text{ V}, V_{SS} = V_{SS0} = V_{SS1} = AV_{SS} = 0 \text{ V})$

(1) Read/write operation (1/3)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time	tсүк	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	80			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	160			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	320			ns
		$1.9 \text{ V} \leq \text{V}_{\text{DD}} < 2.0 \text{ V}$	500			ns
Address setup time	t sast	$V_{DD} = 5.0 \text{ V} \pm 10\%$	(0.5 + a) T – 20			ns
(to ASTB↓)		VDD = 3.0 V ±10%	(0.5 + a) T – 40			ns
		$V_{DD} = 2.0 \text{ V} \pm 5\%$	(0.5 + a) T – 80			ns
Address hold time	t HSTLA	$V_{DD} = 5.0 \text{ V} \pm 10\%$	0.5T – 19			ns
(from ASTB↓)		$V_{DD} = 3.0 \text{ V} \pm 10\%$	0.5T – 24			ns
		V _{DD} = 2.0 V ±5%	0.5T – 34			ns
ASTB high-level width	twsтн	$V_{DD} = 5.0 \text{ V} \pm 10\%$	(0.5 + a) T – 17			ns
		$V_{DD} = 3.0 \text{ V} \pm 10\%$	(0.5 + a) T – 40			ns
		V _{DD} = 2.0 V ±5%	(0.5 + a) T – 110			ns
Address hold time (from \overline{RD})	thra	$V_{DD} = 5.0 \text{ V} \pm 10\%$	0.5T – 14			ns
		Vdd = 3.0 V ±10%	0.5T – 14			ns
		V _{DD} = 2.0 V ±5%	0.5T – 14			ns
Delay time from address to	tdar	$V_{DD} = 5.0 \text{ V} \pm 10\%$	(1 + a) T – 24			ns
RD↓		$V_{DD} = 3.0 \text{ V} \pm 10\%$	(1 + a) T – 35			ns
		$V_{DD} = 2.0 V \pm 5\%$	(1 + a) T – 80			ns
Address float time	t FAR	$V_{DD} = 5.0 \text{ V} \pm 10\%$			0	ns
(from RD↓)		$V_{DD} = 3.0 \text{ V} \pm 10\%$			0	ns
		$V_{\text{DD}} = 2.0 \text{ V} \pm 5\%$			0	ns
Data input time from		$V_{DD} = 5.0 \text{ V} \pm 10\%$			(2.5 + a + n) T - 37	ns
address		$V_{DD} = 3.0 \text{ V} \pm 10\%$			(2.5 + a + n) T - 52	ns
		$V_{DD} = 2.0 \text{ V} \pm 5\%$			(2.5 + a + n) T – 120	ns
Data input time from ASTB \downarrow	tostid	$V_{DD} = 5.0 \text{ V} \pm 10\%$			(2 + n) T – 35	ns
		$V_{DD} = 3.0 \text{ V} \pm 10\%$			(2 + n) T – 50	ns
		$V_{DD} = 2.0 V \pm 5\%$			(2 + n) T – 80	ns
Data input time from $\overline{RD}\downarrow$	torid	Vdd = 5.0 V ±10%			(1.5 + n) T – 40	ns
		$V_{DD} = 3.0 V \pm 10\%$			(1.5 + n) T – 50	ns
		$V_{DD} = 2.0 V \pm 5\%$			(1.5 + n) T – 90	ns

Remark T: tcyk = 1/fxx (fxx: Main system clock frequency)

- a: 1 (during address wait), otherwise, 0
- n: Number of wait states (n \ge 0)

AC Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}C, V_{DD} = V_{DD0} = V_{DD1} = AV_{DD} = 1.9 \text{ to } 5.5 \text{ V}, V_{SS} = V_{SS0} = V_{SS1} = AV_{SS} = 0 \text{ V})$

(1) Read/write operation (2/3)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Delay time from ASTB↓	t DSTR	$V_{DD} = 5.0 \text{ V} \pm 10\%$	0.5T – 9			ns
to RD↓		$V_{DD} = 3.0 \text{ V} \pm 10\%$	0.5T – 9			ns
		$V_{DD} = 2.0 V \pm 5\%$	0.5T – 20			ns
Data hold time (from \overline{RD})	thrid	$V_{DD} = 5.0 \text{ V} \pm 10\%$	0			ns
		$V_{DD} = 3.0 \text{ V} \pm 10\%$	0			ns
		$V_{DD} = 2.0 V \pm 5\%$	0			ns
Address active time from	t dra	$V_{DD} = 5.0 \text{ V} \pm 10\%$	0.5T – 2			ns
RD↑		$V_{DD} = 3.0 \text{ V} \pm 10\%$	0.5T – 12			ns
		Vdd = 2.0 V ±5%	0.5T – 35			ns
Delay time from RD↑ to ASTB↑	t DRST	$V_{DD} = 5.0 \text{ V} \pm 10\%$	0.5T – 9			ns
		$V_{DD} = 3.0 \text{ V} \pm 10\%$	0.5T – 9			ns
		$V_{DD} = 2.0 V \pm 5\%$	0.5T – 40			ns
RD low-level width	twRL	$V_{DD} = 5.0 \text{ V} \pm 10\%$	(1.5 + n) T – 25			ns
		$V_{DD} = 3.0 \text{ V} \pm 10\%$	(1.5 + n) T – 30			ns
		$V_{DD} = 2.0 V \pm 5\%$	(1.5 + n) T – 25			ns
Delay time from address to	tdaw	$V_{DD} = 5.0 \text{ V} \pm 10\%$	(1 + a) T – 24			ns
WR↓		$V_{DD} = 3.0 \text{ V} \pm 10\%$	(1 + a) T – 34			ns
		$V_{DD} = 2.0 V \pm 5\%$	(1 + a) T – 70			ns
Address hold time	thrd	$V_{DD} = 5.0 \text{ V} \pm 10\%$	0.5T – 14			ns
(from WR↑)		$V_{DD} = 3.0 \text{ V} \pm 10\%$	0.5T – 14			ns
		$V_{DD} = 2.0 V \pm 5\%$	0.5T - 14			ns
Delay time from ASTB↓ to	tdstod	$V_{DD} = 5.0 \text{ V} \pm 10\%$			0.5T + 15	ns
data output		$V_{DD} = 3.0 \text{ V} \pm 10\%$			0.5T + 30	ns
		$V_{DD} = 2.0 V \pm 5\%$			0.5T + 240	ns
Delay time from $\overline{WR} \downarrow$ to	towod	$V_{DD} = 5.0 \text{ V} \pm 10\%$			0.5T – 30	ns
data output		$V_{DD} = 3.0 \text{ V} \pm 10\%$			0.5T – 30	ns
		$V_{DD} = 2.0 V \pm 5\%$			0.5T – 30	ns
Delay time from ASTB↓ to	tostw	$V_{DD} = 5.0 \text{ V} \pm 10\%$	0.5T – 9			ns
WR↓		$V_{DD} = 3.0 \text{ V} \pm 10\%$	0.5T – 9			ns
		VDD = 2.0 V ±5%	0.5T – 20			ns
Data setup time (to WR↑)	tsodwr	V _{DD} = 5.0 V ±10%	(1.5 + n) T – 20			ns
		V _{DD} = 3.0 V ±10%	(1.5 + n) T – 25			ns
		V _{DD} = 2.0 V ±5%	(1.5 + n) T – 70			ns

Remark T: tcyk = 1/fxx (fxx: Main system clock frequency)

- a: 1 (during address wait), otherwise, 0
- n: Number of wait states $(n \ge 0)$

AC Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}C, V_{DD} = V_{DD0} = V_{DD1} = AV_{DD} = 1.9 \text{ to } 5.5 \text{ V}, V_{SS} = V_{SS0} = V_{SS1} = AV_{SS} = 0 \text{ V})$

(1) Read/write operation (3/3)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	Data hold time (from $\overline{\text{WR}}^\uparrow$)	tнwod	$V_{DD} = 5.0 \text{ V} \pm 10\%$	0.5T – 14			ns
			VDD = 3.0 V ±10%	0.5T – 14			ns
			V _{DD} = 2.0 V ±5%	0.5T – 50			ns
	Delay time from $\overline{\rm WR} \uparrow$ to	t dwst	$V_{DD} = 5.0 \text{ V} \pm 10\%$	0.5T – 9			ns
	ASTB↑		$V_{DD} = 3.0 \text{ V} \pm 10\%$	0.5T – 9			ns
			$V_{DD} = 2.0 V \pm 5\%$	0.5T – 30			ns
	WR low-level width	tww∟	$V_{DD} = 5.0 \text{ V} \pm 10\%$	(1.5 + n) T – 25			ns
			$V_{\text{DD}}=3.0~V~\pm10\%$	(1.5 + n) T – 30			ns
			$V_{DD} = 2.0 \text{ V} \pm 5\%$	(1.5 + n) T – 30			ns
*	Delay time from address to	tadexd	$V_{DD} = 5.0 \text{ V} \pm 10\%$	0			ns
	EXA↓		$V_{DD} = 3.0 \text{ V} \pm 10\%$	0			ns
			$V_{DD} = 2.0 \text{ V} \pm 5\%$	0			ns
*	Delay time from $EXA{\downarrow}$ to	tехтан	$V_{DD} = 5.0 \text{ V} \pm 10\%$	0.5T – 20			ns
	ASTB↓		$V_{DD} = 3.0 \text{ V} \pm 10\%$	0.5T – 30			ns
			$V_{DD} = 2.0 \text{ V} \pm 5\%$	0.5T – 40			ns
*	Delay time from $\overline{\mathrm{RD}} \uparrow$ to	texrds	$V_{DD} = 5.0 \text{ V} \pm 10\%$	0			ns
	EXA↑		$V_{DD} = 3.0 \text{ V} \pm 10\%$	0			ns
			$V_{\text{DD}} = 2.0 \text{ V} \pm 5\%$	0			ns
*	Delay time from $\overline{\mathrm{WR}}\uparrow$ to	texwos	$V_{DD} = 5.0 \text{ V} \pm 10\%$	Т			ns
	EXA↑		$V_{DD} = 3.0 \text{ V} \pm 10\%$	Т			ns
			$V_{DD} = 2.0 \text{ V} \pm 5\%$	Т			ns
*	Delay time from EXA [↑] to	t exadr	$V_{DD} = 5.0 \text{ V} \pm 10\%$	0.5T			ns
	ASTB↑		$V_{DD} = 3.0 \text{ V} \pm 10\%$	0.5T			ns
			$V_{DD} = 2.0 \text{ V} \pm 5\%$	0.5T			ns

Remark T: tcyk = 1/fxx (fxx: Main system clock frequency)

n: Number of wait states (n \ge 0)

AC Characteristics (TA = -40 to +85°C, VDD = VDD0 = VDD1 = AVDD = 1.9 to 5.5 V, Vss = Vss0 = Vss1 = AVss = 0 V)

(2) External wait timing (1/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input time from address to	tdawt	$V_{DD} = 5.0 \text{ V} \pm 10\%$			(2 + a) T – 40	ns
WAIT↓		Vdd = 3.0 V ±10%			(2 + a) T – 60	ns
		V _{DD} = 2.0 V ±5%			(2 + a) T – 300	ns
Input time from ASTB↓ to	t DSTWT	Vdd = 5.0 V ±10%			1.5T – 40	ns
WAIT↓		Vdd = 3.0 V ±10%			1.5T – 60	ns
		Vdd = 2.0 V ±5%			1.5T – 260	ns
Hold time from ASTB \downarrow to	tнsтwт	$V_{DD} = 5.0 \text{ V} \pm 10\%$	(0.5 + n) T + 5			ns
WAIT		$V_{DD} = 3.0 \text{ V} \pm 10\%$	(0.5 + n) T + 10			ns
		V _{DD} = 2.0 V ±5%	(0.5 + n) T + 30			ns
Delay time from ASTB↓ to	t DSTWTH	Vdd = 5.0 V ±10%			(1.5 + n) T – 40	ns
WAIT ↑		Vdd = 3.0 V ±10%			(1.5 + n) T – 60	ns
		Vdd = 2.0 V ±5%			(1.5 + n) T – 90	ns
Input time from $\overline{RD}\downarrow$ to	t drwtl	$V_{DD} = 5.0 \text{ V} \pm 10\%$			T – 40	ns
WAIT↓		Vdd = 3.0 V ±10%			T – 60	ns
		Vdd = 2.0 V ±5%			T – 70	ns
Hold time from $\overline{RD}\downarrow$ to	tняwт	Vdd = 5.0 V ±10%	nT + 5			ns
WAIT↓		Vdd = 3.0 V ±10%	nT + 10			ns
		VDD = 2.0 V ±5%	nT + 30			ns
Delay time from $\overline{RD}\downarrow$ to	torwth	Vdd = 5.0 V ±10%			(1 + n) T – 40	ns
WAIT		$V_{DD} = 3.0 \text{ V} \pm 10\%$			(1 + n) T – 60	ns
		VDD = 2.0 V ±5%			(1 + n) T – 90	ns
Data input time from WAIT↑	towtid	Vdd = 5.0 V ±10%			0.5T – 5	ns
		$V_{DD} = 3.0 \text{ V} \pm 10\%$			0.5T – 10	ns
		$V_{DD} = 2.0 V \pm 5\%$			0.5T – 30	ns
Delay time from WAIT↑ to	t dwtr	$V_{DD} = 5.0 \text{ V} \pm 10\%$	0.5T			ns
RD↑		$V_{DD} = 3.0 \text{ V} \pm 10\%$	0.5T			ns
		Vdd = 2.0 V ±5%	0.5T + 5			ns
Delay time from WAIT↑ to	towtw	$V_{DD} = 5.0 \text{ V} \pm 10\%$	0.5T			ns
WR↑		Vdd = 3.0 V ±10%	0.5T			ns
		Vdd = 2.0 V ±5%	0.5T + 5			ns
Input time from $\overline{WR}{\downarrow}$ to	t dwwtl	Vdd = 5.0 V ±10%			T – 40	ns
WAIT↓		Vdd = 3.0 V ±10%			T – 60	ns
		V _{DD} = 2.0 V ±5%			T – 90	ns

Remark T: tcyk = 1/fxx (fxx: Main system clock frequency)

- a: 1 (during address wait), otherwise, 0
- n: Number of wait states $(n \ge 0)$

(2) External wait timing (2/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Hold time from $\overline{\mathrm{WR}} \downarrow$ to	tнwwт	$V_{DD} = 5.0 \text{ V} \pm 10\%$	nT + 5			ns
WAIT		VDD = 3.0 V ±10%	nT + 10			ns
		$V_{DD} = 2.0 \text{ V} \pm 5\%$	nT + 30			ns
Delay time from $\overline{\mathrm{WR}} {\downarrow}$ to	towwth	$V_{DD} = 5.0 \text{ V} \pm 10\%$			(1 + n) T – 40	ns
WAIT ↑		$V_{DD} = 3.0 \text{ V} \pm 10\%$			(1 + n) T – 60	ns
		$V_{DD} = 2.0 \text{ V} \pm 5\%$			(1 + n) T – 90	ns

Remark T: tcyk = 1/fxx (fxx: Main system clock frequency)

n: Number of wait states (n \ge 0)

★

*

Serial Operation (TA = -40 to $+85^{\circ}$ C, VDD = VDD0 = VDD1 = AVDD = 1.9 to 5.5 V, Vss = Vss0 = Vss1 = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcy1	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	640			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1,280			ns
		$2.0 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	2,560			ns
		$1.9 \text{ V} \le \text{V}_{\text{DD}} < 2.0 \text{ V}$	4,000			ns
SCK high-/low-level	tкнı,	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	270			ns
width	tĸL1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	590			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1,180			ns
		$1.9 \text{ V} \le \text{V}_{\text{DD}} < 2.0 \text{ V}$	1,900			ns
SI setup time (to $\overline{SCK}\uparrow$)	tsıĸı	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	10			ns
			30			ns
SI hold time (from $\overline{\text{SCK}}^{\uparrow}$)	tksi1		40			ns
SO output delay time (from $\overline{SCK}\downarrow$)	tkso1				30	ns

(a) 3-wire serial I/O mode (SCK: Internal clock output)

(b) 3-wire serial I/O mode (SCK: External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tксү2	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	640			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1,280			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	2,560			ns
		$1.9 \text{ V} \leq V_{\text{DD}} < 2.0 \text{ V}$	4,000			ns
SCK high-/low-level	tкн2	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	320			ns
width	tĸl2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	640			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1,280			ns
		$1.9 \text{ V} \leq V_{\text{DD}} < 2.0 \text{ V}$	2,000			ns
SI setup time (to $\overline{SCK}\uparrow$)	tsik2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	10			ns
			30			ns
SI hold time (from $\overline{\text{SCK}}^{\uparrow}$)	tksi2		40			ns
SO output delay time (from $\overline{SCK}\downarrow$)	tkso2				30	ns

(c) UART mode

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	tксүз	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	417			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	833			ns
			1,667			ns
ASCK high-/low-level	tкнз tк∟з	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	208			ns
width		$2.7 \text{ V} \leq V_{\text{DD}} < 4.5 \text{ V}$	416			ns
			833			ns

(d)	l ² C bι	us mode	(µPD78F4225Y	only)
-----	---------------------	---------	--------------	-------

Parameter		Symbol	Standard Mode		High-Spe	Unit	
			MIN.	MAX.	MIN.	MAX.	
SCL0 cloc	k frequency	fськ	0	100	0	400	kHz
Bus free ti and start c	me (between stop conditions)	tbuf	4.7	-	1.3	_	μs
Hold time ^N	lote1	thd : STA	4.0	-	0.6	-	μs
Low-level	width of SCL0	t∟ow	4.7	-	1.3	_	μs
High-level clock	width of SCL0	tніgн	4.0	_	0.6	_	μs
Setup time conditions	of start/restart	tsu : sta	4.7	_	0.6	_	μs
Data hold time	When using CBUS-compatible master	thd : dat	5.0	_	_	_	μs
	When using I ² C bus		_O Note 2	_	_O Note 2	0.9Note 3	μs
Data setup	time	tsu : dat	250	_	100 ^{Note 4}	_	ns
Rise time SCL0 sign	of SDA0 and als	tĸ	_	1,000	20 + 0.1Cb ^{Note 5}	300	ns
Fall time of SDA0 and SCL0 signals		t⊧	_	300	20 + 0.1Cb ^{Note 5}	300	ns
Setup time of stop condition		tsu : sto	4.0	-	0.6	_	μs
Pulse width of spike restricted by input filter		tsp	_	_	0	50	ns
Load capa bus line	citance of each	Cb	_	400	_	400	pF

Notes 1. For the start condition, the first clock pulse is generated after the hold time.

- 2. To fill the undefined area of the SCL0 falling edge, it is necessary for the device to provide an internal SDA0 signal (on VIHmin.) with at least 300 ns of hold time.
- 3. If the device does not extend the SCL0 signal low-level hold time (tLow), only the maximum data hold time tHD : DAT needs to be satisfied.
- The high-speed mode I²C bus can be used in a standard mode I²C bus system. In this case, the conditions described below must be satisfied.
 - If the device does not extend the SCL0 signal low-level hold time tsu : ${\tt DAT} \geq 250~ns$
 - If the device extends the SCL0 signal low-level hold time Be sure to transmit the data bit to the SDA0 line before the SCL0 line is released ($t_{Rmax.} + t_{SU:DAT} = 1,000 + 250 = 1,250$ ns by standard mode I²C bus specification)
- 5. Cb: Total capacitance per bus line (unit: pF)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
NMI high-/low-level width	twni∟ twniн		10			μs
Interrupt input high-/ low-level width	twiт∟ twiтн	INTP0 to INTP5	100			ns
RESET high-/low-level width	twrsi twrsh		10			μs

Other Operations (TA = -40 to $+85^{\circ}$ C, VDD = VDD0 = VDD1 = AVDD = 1.9 to 5.5 V, Vss = Vss0 = Vss1 = AVss = 0 V)

Clock Output Operation

```
(T_A = -40 \text{ to } +85^{\circ}C, V_{DD} = V_{DD0} = V_{DD1} = AV_{DD} = 1.9 \text{ to } 5.5 \text{ V}, V_{SS} = V_{SS0} = V_{SS1} = AV_{SS} = 0 \text{ V})
```

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
PCL cycle time	tcyc∟	$4.5 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}, \text{ nT}$	80		31,250	ns
PCL high-/low-level width	tcll tclн	$4.5 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \ 0.5 \text{T} - 10$	30		15,615	ns
PCL rise/fall time	t CLR	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			5	ns
	tclf	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$			10	ns
		$1.9 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$			20	ns

Remark T: tcyk = 1/fxx (fxx: Main system clock frequency)

- n: Division ratio set by software in the CPU
 - When using the main system clock: n = 1, 2, 4, 8, 16, 32, 64, 128
 - When using the subsystem clock: n = 1

A/D Converter Characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, V_{DD} = V_{DD0} = V_{DD1} = AV_{DD} = 1.9 \text{ to } 5.5 \text{ V}, V_{SS} = V_{SS0} = V_{SS1} = AV_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error ^{Note}		6.25 MHz < fxx \le 12.5 MHz, 4.5 V \le Vdd \le 5.5 V, AVdd = Vddo			±1.2	%FSR
		3.125 MHz < fxx \le 6.25 MHz, 2.7 V \le Vdd \le 5.5 V, AVdd = Vddo			±1.2	%FSR
		2 MHz < fxx \leq 3.125 MHz, 2.0 V \leq Vdd \leq 5.5 V, AVdd = Vdd			±1.6	%FSR
		$\label{eq:relation} \begin{array}{l} f_{XX} = 2 \mbox{ MHz}, \ 1.9 \mbox{ V} \leq V_{DD} \leq 5.5 \mbox{ V} \\ AV_{DD} = V_{DD0} \end{array}$			±1.6	%FSR
Conversion time	tсоми		14		144	μs
Sampling time	t SAMP		24/fxx			μs
Analog input voltage	VIAN		AVss		AVDD	V
Reference voltage	AVDD		VDD	VDD	Vdd	V
Resistance between	RAVREFO	A/D conversion is not performed		40		kΩ

Note Excludes quantization error (±0.2%FSR).

Remark FSR: Full-scale range

D/A Converter Characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, V_{DD} = V_{DD0} = V_{DD1} = AV_{DD} = 1.9 \text{ to } 5.5 \text{ V}, V_{SS} = V_{SS0} = V_{SS1} = AV_{SS} = 0 \text{ V})$

Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
Resolution				8	8	8	bit
Overall error ^{Note}		$ \begin{array}{l} 2.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ \text{AV}_{\text{DD}} = V_{\text{DD0}} \\ \\ \text{R} = 10 \ \text{M}\Omega, \ 2.0 \ V \leq \text{AV}_{\text{REF1}} \leq \text{AV}_{\text{DD}} \end{array} $				±0.6	%FSR
		$\label{eq:linear} \begin{array}{l} 1.9 \ V \leq V_{\text{DD}} \leq 2.0 \ V, \ AV_{\text{DD}} = V_{\text{DD0}} \\ \\ R = 10 \ M\Omega, \ 1.9 \ V \leq AV_{\text{REF1}} \leq AV_{\text{DD}} \end{array}$				±1.2	%FSR
Settling time		Load conditions:	$4.5 \text{ V} \leq \text{AV}_{\text{REF1}} \leq 5.5 \text{ V}$			10	μs
		C = 30 pF	$2.7 \text{ V} \leq \text{AV}_{\text{REF1}} < 4.5 \text{ V}$			15	μs
			$1.9 \text{ V} \leq \text{AV}_{\text{REF1}} < 2.7 \text{ V}$			20	μs
Output resistance	Ro	DACS0, 1 = 55H			8		kΩ
Reference voltage	AV _{REF1}			1.9		VDD0	V
AVREF1 current	AIREF1	For only 1 channel				2.5	mA

Note Excludes quantization error (±0.2%FSR).

Remark FSR: Full-scale range

Flash Memory Programming Characteristics

(TA = 10 to 40° C, VDD = AVDD = 1.9 to 5.5 V, Vss = AVss = 0 V, VPP = 9.7 to 10.3 V)

(1) Basic characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fxx	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2		12.5	MHz
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.5 \text{ V}$	2		6.25	MHz
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	2		3.125	MHz
		$1.9 \text{ V} \le \text{V}_{\text{DD}} < 2.0 \text{ V}$	2	2	2	MHz
Oscillation	fx	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	4		25	MHz
frequency ^{Note 1}		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	4		12.5	MHz
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	4		6.25	MHz
		$1.9 \text{ V} \le \text{V}_{\text{DD}} < 2.0 \text{ V}$	4	4	4	MHz
Supply voltage	Vdd		1.9		5.5	V
	Vppl	When detecting VPP low level	0		0.2VDD	V
	Vpp	When detecting VPP high level	0.9Vdd		1.1Vdd	V
	Vpph	When detecting VPP high voltage	9.7	10	10.3	V
Write time	Cwrt		20 ^{Note 2}			times
Operating temperature	TA		-40		85	°C
Storage temperature	Tstg		-65		125	°C
Programming temperature	Tprg		10		40	°C

Notes 1. When rewriting without using handshake mode

2. Operation cannot be guaranteed when the number of rewrites exceeds 20.

In the case of K standard products, operation cannot be guaranteed when the number of rewrites exceeds 5.

- Cautions 1. If writing is not successful in the initial write operation, execute the program command again, and then execute the verify command to confirm that the write operation has been completed normally (I, K standard).
 - 2. Handshake mode is supported by products other than those with the I or K standard.
- **Remarks** 1. The fifth letter from the left in the lot number indicates the standard of the product.
 - **2.** After executing the program command, execute the verify command to confirm that the write operation has been completed normally.
 - 3. Handshake mode is the CSI write mode that uses P24. Handshake mode can be used with the PG-FR3 and FL-PR3.
 - **4.** The I standard only applies to ES (engineering sample) products. Because these products are engineering samples, their operation cannot be guaranteed.

Flash Memory Programming Characteristics (TA = 10 to 40°C, VDD = AVDD = 1.9 to 5.5 V, Vss = AVss = 0 V, VPP = 9.7 to 10.3 V)

(2) Write erase characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VPP supply voltage	Vpp2	During flash memory programming	9.7	10.0	10.3	V
VDD supply current	loo	When $V_{PP} = V_{PP2}$, fxx = 12.5 kHz			40	mA
VPP supply current	IPP	When VPP = VPP2			100	mA
Step erase time	Ter	Note 1		0.2		s
Overall erase time per area	Tera	When step erase time = $0.2 \text{ s}^{\text{Note 2}}$			20	s/area
Write-back time	Twb	Note 3		50		ms
Number of write-backs per write-back command	Cwb	When write-back time = 50 ms ^{Note 4}			60	times/ write- back command
Number of erase/ write-backs	Cerwb				16	times
Step write time	Twr	Note 5		50		μs
Overall write time per word	Twrw	When step write time = 50 μ s (1 word = 1 byte) ^{Note 6}	50		500	μs/ word
Number of rewrites per area	Cerwr	1 erase + 1 write after erase = 1 rewrite ^{Note 7}		20		times/ area

Notes 1. The recommended setting value for the step erase time is 0.2 s.

- 2. The prewrite time before erasure and the erase verify time (write-back time) is not included.
- 3. The recommended setting value for the write-back time is 50 ms.
- **4.** Write-back is executed once by the issuance of the write-back command. Therefore, the retry times must be the maximum value minus the number of commands issued.
- 6. The actual write time per word is 100 μ s longer. The internal verify time during or after a write is not included.
- When a product is first written after shipment, "erase → write" and "write only" are both taken as one rewrite.

Example: P: Write, E: Erase

 $\begin{array}{lll} \text{Shipped product} \rightarrow & \mathsf{P} \rightarrow \mathsf{E} \rightarrow \mathsf{P} \rightarrow \mathsf{E} \rightarrow \mathsf{P} : & \texttt{3 rewrites} \\ \text{Shipped product} \rightarrow \mathsf{E} \rightarrow \mathsf{P} \rightarrow \mathsf{E} \rightarrow \mathsf{P} \rightarrow \mathsf{E} \rightarrow \mathsf{P} : & \texttt{3 rewrites} \end{array}$

- **Remarks 1.** The range of the operating clock during flash memory programming is the same as the range during normal operation.
 - 2. When using the PG-FP3, the time parameters that need to be downloaded from the parameter files for write/erase are automatically set. Unless otherwise directed, do not change the set values.

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention voltage	Vdddr	STOP mode	1.9		5.5	V
Data retention current	Idddr	$V_{DDDR} = 5.0 \text{ V} \pm 10\%$		10	50	μA
		$V_{DDDR} = 2.0 \text{ V} \pm 5\%$		2	10	μA
V _{DD} rise time	trvd		200			μs
VDD fall time	tevd		200			μs
V _{DD} hold time (from STOP mode setting)	thyd		0			ms
STOP release signal input time	t DREL		0			ms
Oscillation stabilization	twait	Crystal resonator	30			ms
wait time		Ceramic resonator	5			ms
Input voltage, low	VIL	RESET, P00/INTP0 to P05/INTP5	0		0.1Vdddr	V
Input voltage, high	Vін		0.9Vdddr		VDDDR	V

Data Retention Characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, V_{DD} = V_{DD0} = V_{DD1} = AV_{DD} = 1.9 \text{ to } 5.5 \text{ V}, V_{SS} = V_{SS0} = V_{SS1} = AV_{SS} = 0 \text{ V})$

AC Timing Measurement Points

Timing Waveform

★ (1) Read operation

(2) Write operation

Serial Operation

(1) 3-wire serial I/O mode

(2) UART mode

(3) I²C bus mode (μ PD78F4255Y only)

Clock Output Timing

Interrupt Input Timing

Reset Input Timing

Clock Timing

Data Retention Characteristics

8. PACKAGE DRAWINGS

80-PIN PLASTIC QFP (14x14)

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	17.20±0.20
В	14.00±0.20
С	14.00±0.20
D	17.20±0.20
F	0.825
G	0.825
Н	0.32±0.06
I	0.13
J	0.65 (T.P.)
К	1.60±0.20
L	0.80±0.20
М	$0.17\substack{+0.03 \\ -0.07}$
N	0.10
Р	1.40±0.10
Q	0.125±0.075
R	3° ^{+7°} -3°
S	1.70 MAX.
	P80GC-65-8BT-1

80-PIN PLASTIC TQFP (FINE PITCH) (12x12)

NOTE

Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
А	14.0±0.2
В	12.0±0.2
С	12.0±0.2
D	14.0±0.2
F	1.25
G	1.25
Н	0.22±0.05
I	0.08
J	0.5 (T.P.)
ĸ	1.0±0.2
L	0.5
М	0.145±0.05
Ν	0.08
Р	1.0
Q	0.1±0.05
R	3° ^{+4°} 3°
S	1.1±0.1
Т	0.25
U	0.6±0.15
	P80GK-50-9EU-1

9. RECOMMENDED SOLDERING CONDITIONS

The μ PD78F4225Y should be soldered and mounted under the following recommended conditions. For details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 9-1. Soldering Conditions for Surface Mount Type

(1) μ PD78F4225GC-8BT: 80-pin plastic QFP (14 × 14) μ PD78F4225YGC-8BT: 80-pin plastic QFP (14 × 14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	IR35-107-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	VP15-107-2
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature) Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	WS60-107-1
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

(2) μ PD78F4225GK-9EU: 80-pin plastic TQFP (fine pitch) (12 × 12) μ PD78F4225YGK-9EU: 80-pin plastic TQFP (fine pitch) (12 × 12)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	IR35-103-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	VP15-103-2
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78F4225Y. Also see (5) Cautions on Using Development Tools.

(1) Language Processing Software

RA78K4	Assembler package common to 78K/IV Series
CC78K4	C compiler package common to 78K/IV Series
DF784225	Device file common to μ PD784225, 784225Y Subseries
CC78K4-L	C compiler library source file common to 78K/IV Series

(2) Flash Memory Writing Tools

Flashpro III (Part No.: FL-PR3, PG-FP3)	Dedicated flash programmer for microcontroller incorporating flash memory
FA-80GC	Adapter for writing 80-pin plastic QFP (GC-8BT type) flash memory
FA-80GK	Adapter for writing 80-pin plastic TQFP (GK-9EU type) flash memory

(3) Debugging Tools

• When IE-78K4-NS in-circuit emulator is used

IE-78K4-NS	In-circuit emulator common to 78K/IV Series
IE-70000-MC-PS-B	Power supply unit for IE-78K4-NS
IE-70000-98-IF-C	Interface adapter used when PC-9800 series PC (except notebook type) is used as host machine (C bus supported)
IE-70000-CD-IF-A	PC card and cable when notebook PC is used as host machine (PCMCIA socket supported)
IE-70000-PC-IF-C	Interface adapter when using IBM PC/AT TM or compatible as host machine (ISA bus supported)
IE-70000-PCI-IF-A	Interface adapter when using PC that incorporates PCI bus as host machine
IE-784225-NS-EM1	Emulation board to emulate μ PD784225, 784225Y Subseries
NP-80GC	Emulation probe for 80-pin plastic QFP (GC-8BT type)
NP-80GK	Emulation probe for 80-pin plastic TQFP (GK-9EU type)
EV-9200GC-80	Socket to be mounted on a target system board made for 80-pin plastic QFP (GC-8BT type)
TGK-080-SDW	Conversion adapter to connect the NP-80GK and a target system board on which an 80- pin plastic TQFP (GK-9EU type) can be mounted
ID78K4-NS	Integrated debugger for IE-78K4-NS
SM78K4	System simulator common to 78K/IV Series
DF784225	Device file common to μ PD784225, 784225Y Subseries

٠	When	IE-784000-	R in-circuit	emulator	is used
---	------	------------	--------------	----------	---------

IE-784000-R	In-circuit emulator common to 78K/IV Series
IE-70000-98-IF-C	Interface adapter used when PC-9800 series PC (except notebook type) is used as host machine (C bus supported)
IE-70000-PC-IF-C	Interface adapter when using IBM PC/AT or compatible as host machine (ISA bus supported)
IE-70000-PCI-IF-A	Interface adapter when using PC that incorporates PCI bus as host machine
IE-78000-R-SV3	Interface adapter and cable used when EWS is used as host machine
IE-784225-NS-EM1	Emulation board to emulate μ PD784225, 784225Y Subseries
IE-784000-R-EM	Emulation board common to 78K/IV Series
IE-78K4-R-EX2	Emulation probe conversion board necessary when using IE-784225-NS-EM1 on IE-784000-R
EP-78230GC-R	Emulation probe for 80-pin plastic QFP (GC-8BT type)
EP-78054GK-R	Emulation probe for 80-pin plastic LQFP (GK-9EU type)
EV-9200GC-80	Socket to be mounted on a target system board made for 80-pin plastic QFP (GC-8BT type)
TGK-080SDW	Conversion adapter to connect the EP-78054GK-R and a target system board on which an 80-pin plastic TQFP (GK-9EU type) can be mounted
ID78K4	Integrated debugger for IE-784000-R
SM78K4	System simulator common to 78K/IV Series
DF784225	Device file common to μ PD784225, 784225Y Subseries

(4) Real-time OS

RX78K/IV	Real-time OS for 78K/IV Series
MX78K4	OS for 78K/IV Series

(5) Cautions on Using Development Tools

- The ID78K4-NS, ID78K4, and SM78K4 are used in combination with the DF784225.
- The CC78K4 and RX78K/IV are used in combination with the RA78K4 and DF784225.
- The FL-PR3, FA-80GC, FA-80GK, NP-80GC, and NP-80GK are products made by Naito Densei Machida Mfg. Co., Ltd. (TEL: +81-44-822-3813).
- The TGK-080-SDW is a product made by TOKYO ELETECH CORPORATION.

For further information, contact Daimaru Kogyo, Ltd.

Tokyo Electronics Department (TEL: +81-3-3820-7112)

Osaka Electronics Department (TEL: +81-6-6244-6672)

- For third-party development tools, see the Single-Chip Microcontroller Development Tools Selection Guide (U11069E).
- The host machine and OS suitable for each software are as follows:

Host Machine	PC	EWS
[OS] Software	PC-9800 series [Windows] IBM PC/AT and compatibles [Japanese/English Windows]	HP9000 series 700 TM [HP-UX TM] SPARCstation TM [SunOS TM , Solaris TM] NEWS TM (RISC) [NEWS-OS TM]
RA78K4	ONote	0
CC78K4	ONote	0
ID78K4-NS	0	-
ID78K4	0	0
SM78K4	0	_
RX78K/IV	ONote	0
MX78K4	⊖ ^{Note}	0

Note DOS-based software

APPENDIX B. RELATED DOCUMENTS

Documents Related to Device

Document Name	Document No.
μPD784224, 784225, 784224Y, 784225Y Data Sheet	U12376E
μPD78F4225, 78F4225Y Data Sheet	This document
µPD784225, 784225Y Subseries User's Manual Hardware	To be prepared
78K/IV Series User's Manual Instruction	U10905E

Documents Related to Development Tools (User's Manuals)

Document Name		Document No.
RA78K4 Assembler Package	Operation	U11334E
	Language	U11162E
	Structured Assembler Preprocessor	U11743E
CC78K4 Series	Operation	U11572E
	Language	U11571E
IE-78K4-NS		U13356E
IE-784000-R		U12903E
IE-784225-NS-EM1		U13742E
EP-78230		EEU-1515
EP-78054		U13630E
SM78K4 System Simulator Windows Base	Reference	U10093E
SM78K Series System Simulator	External component user open interface specification	U10092E
ID78K4-NS Integrated Debugger PC based	Reference	U12796E
ID78K4 Integrated Debugger Windows based	Reference	U10440E
ID78K4 Integrated Debugger HP-UX, SunOS, NEWS-OS based	Reference	U11960E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

Documents Related to Embedded Software (User's Manual)

Document Name		Document No.
78K/IV Series Real-Time OS	Fundamentals	U10603E
	Installation	U10604E

Other Documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE Products & Packages (CD-ROM)	X13769X
Semiconductor Device Mounting Technology Manual	C10535E
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

NOTES FOR CMOS DEVICES -

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130	NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580	NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044
800-729-9288		NEC Electronics Hong Kong Ltd.
	NEC Electronics (France) S.A.	Seoul Branch
NEC Electronics (Germany) GmbH	Velizy-Villacoublay, France	Seoul, Korea
Duesseldorf, Germany	Tel: 01-30-67 58 00	Tel: 02-528-0303
Tel: 0211-65 03 02	Fax: 01-30-67 58 99	Fax: 02-528-4411
Fax: 0211-65 03 490		
NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133	NEC Electronics (France) S.A. Madrid Office Madrid, Spain Tel: 91-504-2787	NEC Electronics Singapore Pte. Ltd. United Square, Singapore Tel: 65-253-8311 Fax: 65-250-3583
Fax: 01908-670-290	Fax: 91-504-2860	NEC Electronics Taiwan I td
NEC Electronics Italiana s.r.l. Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99	NEC Electronics (Germany) GmbH Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388	Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951 NEC do Brasil S.A. Electron Devices Division Guarulhos-SP Brasil

J00.7

Tel: 55-11-6462-6810 Fax: 55-11-6462-6829

Caution Purchase of NEC I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

IEBus is a trademark of NEC Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

- The information in this document is current as of November, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
 developed based on a customer-designated "quality assurance program" for a specific application. The
 recommended applications of a semiconductor product depend on its quality grade, as indicated below.
 Customers must check the quality grade of each semiconductor product before using it in a particular
 application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.

(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).