16/8-BIT SINGLE-CHIP MICROCONTROLLERS

The $\mu \mathrm{PD} 78 \mathrm{~F} 4216 \mathrm{Y}$ is a member of the $\mu \mathrm{PD} 784216 \mathrm{Y}$ Subseries in the $78 \mathrm{~K} / \mathrm{IV}$ Series.
The μ PD78F4216Y has a flash memory in place of the internal ROM of the μ PD784216Y. The flash memory can be written or erased while mounted on the target board.

The μ PD78F4216Y is based on the μ PD78F4216 but with an $I^{2} \mathrm{C}$ bus control function added, and is suited to AV equipment applications.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

$$
\begin{array}{ll}
\mu \text { PD784216, 784216Y Subseries User's Manual - Hardware: U12015E } \\
\text { 78K/IV Series User's Manual - Instruction: } & \text { U10905E }
\end{array}
$$

FEATURES

- $I^{2} \mathrm{C}$ bus serial interface supporting multi master
- Pin-compatible with mask ROM model (except Vpp pin)
- Flash memory: 128 Kbytes
- Internal RAM: 8192 bytes
- Supply voltage: VDD $=2.7$ to 5.5 V

ORDERING INFORMATION

Part Number	Package
μ PD78F4216YGC-8EU	100-pin plastic LQFP (fine pitch) $(14 \times 14 \mathrm{~mm})$
μ PD78F4216YGF-3BA	100-pin plastic QFP $(14 \times 20 \mathrm{~mm})$

* 78K/IV SERIES LINEUP

FUNCTIONS (1/2)

Item		Function	
Number of basic instructions (mnemonics)		113	
General-purpose register		8 bits $\times 16$ registers $\times 8$ banks, or 16 bits $\times 8$ registers $\times 8$ banks (memory mapping)	
Minimum instruction execution time		$160 \mathrm{~ns} / 320 \mathrm{~ns} / 640 \mathrm{~ns} / 1280 \mathrm{~ns} / 2560 \mathrm{~ns}$ (@ fxx $=12.5-\mathrm{MHz}$ operation with main system clock)	
Internal memory	Flash memory	128 Kbytes	
	RAM	8192 bytes	
Memory space		1 Mbyte with program and data spaces combined	
I/O port	Total	86	
	CMOS Input	8	
	CMOS I/O	72	
	N-ch open-drain I/O	6	
Pins with ancillary functions ${ }^{\text {Note }}$	Pins with pull-up resistor	70	
	LEDs direct drive output	22	
	Middle voltage pin	6	
Real-time output port		4 bits $\times 2$, or 8 bits $\times 1$	
Timer/counter		$\begin{array}{ll}\text { Timer/counter: } & \text { Timer register } \times 1 \\ (16 \text {-bit) } & \text { Capture/compare register } \times 2\end{array}$	Pulse output - PPG output - Square wave output - One-shot pulse output
		Timer/counter 1: Timer register $\times 1$ (8-bit) Compare register $\times 1$	Pulse output - PWM output - Square wave output
		$\begin{array}{ll}\text { Timer/counter 2: } & \text { Timer register } \times 1 \\ \text { (8-bit) } & \text { Compare register } \times 1\end{array}$	Pulse output - PWM output - Square wave output
		$\begin{array}{ll}\text { Timer/counter 5: } & \text { Timer register } \times 1 \\ \text { (8-bit) } & \text { Compare register } \times 1\end{array}$	Pulse output - PWM output - Square wave output
		$\begin{array}{ll}\text { Timer/counter 6: } & \text { Timer register } \times 1 \\ \text { (8-bit) } & \text { Compare register } \times 1\end{array}$	Pulse output - PWM output - Square wave output
		$\begin{array}{ll}\text { Timer/counter 7: } & \text { Timer register } \times 1 \\ \text { (8-bit) } & \text { Compare register } \times 1\end{array}$	Pulse output - PWM output - Square wave output
		Timer/counter 8: Timer register $\times 1$ (8-bit) Compare register $\times 1$	Pulse output - PWM output - Square wave output

Note The pins with ancillary functions are included in the I/O pins.

FUNCTIONS (2/2)

	Item	Function
	Serial interface	UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator) CSI (3 -wire serial I/O, $\mathrm{I}^{2} \mathrm{C}$ bus supporting multi master): 1 channel
	A/D converter	8 -bit resolution $\times 8$ channels
	D/A converter	8 -bit resolution $\times 2$ channels
	Clock output	
	Buzzer output	Selectable from $\mathrm{fxx} / 2^{10}, \mathrm{fxx} / 2^{11}, \mathrm{fxx} / 2^{12}, \mathrm{fxx} / 2^{13}$
	Watch timer	1 channel
	Watchdog timer	1 channel
	Standby	HALT/STOP/IDLE mode
	Hardware source	29 (internal: 20, external: 9)
	Software source	BRK instruction, BRKCS instruction, operand error
	Non-maskable	Internal: 1, external: 1
	Maskable	Internal: 19, external: 8
		- 4 programmable priority levels - 3 service modes: vectored interrupt/macro service/context switching
	Supply voltage	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V
	Package	100-pin plastic LQFP (fine pitch) ($14 \times 14 \mathrm{~mm}$) 100 -pin plastic QFP $(14 \times 20 \mathrm{~mm})$

CONTENTS

1. DIFFERENCES AMONG MODELS IN μ PD784216Y SUBSERIES 6
2. PIN CONFIGURATION (Top View) 7
3. BLOCK DIAGRAM 10
4. PIN FUNCTION 11
4.1 Port Pins 11
4.2 Non-Port Pins 13
4.3 Pin Input/Output Circuit and Recommended Connections of Unused Pins 15
5. INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS) 18
6. PROGRAMMING FLASH MEMORY 19
6.1 Selecting Communication Mode 19
6.2 Flash Memory Programming Function 20
6.3 Connecting Flashpro II, Flashpro III 20
7. ELECTRICAL SPECIFICATIONS 21
8. PACKAGE DRAWINGS 40
9. RECOMMENDED SOLDERING CONDITIONS 42
APPENDIX A DEVELOPMENT TOOLS 43
APPENDIX B. RELATED DOCUMENTS 49

1. DIFFERENCES AMONG MODELS IN μ PD784216Y SUBSERIES

The only difference among the μ PD784214Y, 784215Y, and 784216 Y lies in the internal memory capacity. The μ PD78F4216Y is provided with a 128-Kbytes flash memory instead of the mask ROM of the above models. These differences are summarized in Table 1-1.

Table 1-1. Differences among Models in μ PD784216Y Subseries

Part Number Item	μ PD784214Y	$\mu \mathrm{PD} 784215 \mathrm{Y}$	μ PD784216Y	μ PD78F4216Y
Internal ROM	96 Kbytes (mask ROM)	128 Kbytes (mask ROM)		128 Kbytes (Flash memory)
Internal RAM	3584 bytes	5120 bytes	8192 bytes	
Internal memory size switching register (IMS)	None			Provided ${ }^{\text {Note }}$
Supply voltage	$\mathrm{V}_{\mathrm{DD}}=2.2$ to 5.5 V			$V_{D D}=2.7$ to 5.5 V
CPU clock	Main system clock, subsystem clock			Main system clock
Electrical specifications	Refer to the Data Sheet for each devices			
Recommended soldering conditions				
TEST pins	Provided			None
Vpp pin	None			Provided

Note The internal flash memory capacity and the internal RAM capacity can be changed with the internal memory size switching register (IMS).

Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations for the commercial samples (not engineering samples) of the mask ROM version.

2. PIN CONFIGURATION (Top View)

```
- 100-pin plastic LQFP (fine pitch) (14 > 14 mm)
    \muPD78F4216YGC-8EU
```


Notes 1. Connect the VPp pin directly to Vss in normal operation mode.
2. Connect the AVdd pin to Vdd.
3. Connect the AV ss pin to $\mathrm{V} s \mathrm{~s}$.

- 100-pin plastic QFP $(14 \times 20 \mathrm{~mm})$ μ PD78F4216YGF-3BA

Notes 1. Connect the Vpp pin directly to Vss in normal operation mode.
2. Connect the $A V$ dd pin to $V_{d d}$.
3. Connect the AV ss pin to $\mathrm{V} s \mathrm{~s}$.

A0 to A19:	Address Bus	P130, P131:	Port13
AD0 to AD7:	Address/Data Bus	PCL:	Programmable Clock
ANIO to ANI7:	Analog Input	$\overline{\mathrm{RD}}$:	Read Strobe
ANO0, ANO1:	Analog Output	RESET:	Reset
ASCK1, ASCK2:	Asynchronous Serial Clock	RTP0 to RTP7:	Real-time Output Port
ASTB:	Address Strobe	RxD1, RxD2:	Receive Data
AVdd:	Analog Power Supply	$\overline{\text { SCK0 }}$ to $\overline{\text { SCK2 }}$	Serial Clock
AVrefo, AVref1:	Analog Reference Voltage	SCLO:	Serial Clock
AVss:	Analog Ground	SDA0:	Serial Data
BUZ:	Buzzer Clock	SIO to SI2:	Serial Input
INTP0 to INTP6:	Interrupt from Peripherals	SO0 to SO2:	Serial Output
NMI:	Non-maskable Interrupt	TIO0, TI01,	
P00 to P06:	Port0	TI1, TI2, TI5 to TI8:	Timer Input
P10 to P17:	Port1	TO0 to TO2,	
P20 to P27:	Port2	TO5 to TO8:	Timer Output
P30 to P37:	Port3	TxD1, TxD2:	Transmit Data
P40 to P47:	Port4	VDD:	Power Supply
P50 to P57:	Port5	VPP:	Programming Power Supply
P60 to P67:	Port6	Vss:	Ground
P70 to P72:	Port7	WAIT:	Wait
P80 to P87:	Port8	WR:	Write Strobe
P90 to P95:	Port9	X1, X2:	Crystal (Main System Clock)
P100 to P103:	Port10	XT1, XT2:	Crystal (Subsystem Clock)
P120 to P127:	Port12		

3. BLOCK DIAGRAM

4. PIN FUNCTION

4.1 Port Pins (1/2)

Pin Name	I/O	Alternate Function	Function
P00	I/O	INTP0	Port 0 (PO): - 7-bit I/O port - Input/output can be specified in 1-bit units. - Whether specifying input mode or output mode, an on-chip pull-up resistor can be specified in 1 -bit units by means of software.
P01		INTP1	
P02		INTP2/NM1	
P03		INTP3	
P04		INTP4	
P05		INTP5	
P06		INTP6	
P10 to P17	Input	ANI0 to ANI7	Port 1 (P1): - 8-bit dedicated input port
P20	I/O	RxD1/SI1	Port 2 (P2): - 8-bit I/O port - Input/output can be specified in 1-bit units. - Whether specifying input mode or output mode, an on-chip pull-up resistor can be specified in 1-bit units by means of software.
P21		TxD1/SO1	
P22		ASCK1/\CK1	
P23		PCL	
P24		BUZ	
P25		SIO/SDA0	
P26		SO0	
P27		$\overline{\text { SCKO/SCLO }}$	
P30	1/O	TOO	Port 3 (P3): - 8-bit I/O port - Input/output can be specified in 1-bit units. - Whether specifying input mode or output mode, an on-chip pull-up resistor can be specified in 1 -bit units by means of software.
P31		TO1	
P32		TO2	
P33		TI1	
P34		TI2	
P35		TIOO	
P36		TI01	
P37		-	
P40 to P47	I/O	AD0 to AD7	Port 4 (P4): - 8-bit I/O port - Input/output can be specified in 1-bit units. - For all pins set in input mode, an on-chip pull-up resistor can be specified in one operation by means of software. - LEDs can be driven directly.
P50 to P57	1/O	A8 to A15	Port 5 (P5): - 8-bit I/O port - Input/output can be specified in 1-bit units. - For all pins set in input mode, an on-chip pull-up resistor can be specified in one operation by means of software. - LEDs can be driven directly.

4.1 Port Pins (2/2)

Pin Name	1/O	Alternate Function	Function
P60	I/O	A16	Port 6 (P6): - 8-bit I/O port - Input/output can be specified in 1-bit units. - For all pins set in input mode, an on-chip pull-up resistor can be specified in one operation by means of software.
P61		A17	
P62		A18	
P63		A19	
P64		$\overline{\mathrm{RD}}$	
P65		$\overline{W R}$	
P66		$\overline{\text { WAIT }}$	
P67		ASTB	
P70	I/O	RxD2/SI2	Port 7 (P7): - 3-bit I/O port - Input/output can be specified in 1-bit units. - Whether specifying input mode or output mode, an on-chip pull-up resistor can be specified in 1-bit units by means of software.
P71		TxD2/SO2	
P72		ASCK2/ $\overline{\text { SCK2 }}$	
P80 to P87	I/O	A0 to A7	Port 8 (P8): - 8-bit I/O port - Input/output can be specified in 1-bit units. - Whether specifying input mode or output mode, an on-chip pull-up resistor can be specified in 1-bit units by means of software. - Interrupt control flag (KRIF) is set to 1 when falling edge is detected at a pin of this port.
P90 to P95	I/O	-	Port 9 (P9): - N-ch open-drain middle-voltage I/O port -6-bit I/O port - Input/output can be specified in 1-bit units. - LEDs can be driven directly.
P100	I/O	TI5/TO5	Port 10 (P10): - 4-bit I/O port - Input/output can be specified in 1-bit units. - Whether specifying input mode or output mode, an on-chip pull-up resistor can be specified in 1-bit units by means of software.
P101		T16/TO6	
P102		TI7/TO7	
P103		TI8/TO8	
P120 to P127	I/O	RTP0 to RTP7	Port 12 (P12): - 8-bit I/O port - Input/output can be specified in 1-bit units. - Whether specifying input mode or output mode, an on-chip pull-up resistor can be specified in 1-bit units by means of software.
P130, P131	1/O	ANO0, ANO1	Port 13 (P13): - 2-bit I/O port - Input/output can be specified in 1-bit units.

4.2 Non-Port Pins (1/2)

Pin Name	I/O	Alternate Function	Function
TIOO	Input	P35	External count clock input to 16-bit timer register
TI01		P36	Capture trigger signal input to capture/compare register 00
TI1		P33	External count clock input to 8-bit timer register 1
TI2		P34	External count clock input to 8-bit timer register 2
TI5		P100/TO5	External count clock input to 8-bit timer register 5
TI6		P101/TO6	External count clock input to 8-bit timer register 6
TI7		P102/TO7	External count clock input to 8-bit timer register 7
TI8		P103/TO8	External count clock input to 8-bit timer register 8
TOO	Output	P30	16-bit timer output (shared by 14-bit PWM output)
TO1		P31	8 -bit timer output (shared by 8-bit PWM output)
TO2		P32	
TO5		P100/T15	
TO6		P101/TI6	
TO7		P102/TI7	
TO8		P103/TI8	
RxD1	Input	P20/SI1	Serial data input (UART1)
RxD2		P70/SI2	Serial data input (UART2)
TxD1	Output	P21/SO1	Serial data output (UART1)
TxD2		P71/SO2	Serial data output (UART2)
ASCK1	Input	P22/SCK1	Baud rate clock input (UART1)
ASCK2		P72/SCK2	Baud rate clock input (UART2)
SIO	Input	P25/SDA0	Serial data input (3-wire serial I/O0)
SI1		P20/RxD1	Serial data input (3-wire serial I/O1)
SI2		P70/RxD2	Serial data input (3-wire serial I/O2)
SOO	Output	P26	Serial data output (3-wire serial I/O0)
SO1		P21/TxD1	Serial data output (3-wire serial I/O1)
SO2		P71/TxD2	Serial data output (3-wire serial I/O2)
SDAO	1/O	P25/SI0	Serial data input/output (${ }^{2} \mathrm{C}$ bus)
$\overline{\text { SCKO }}$	I/O	P27/SCL0	Serial clock input/output (3-wire serial I/O0)
$\overline{\text { SCK1 }}$		P22/ASCK1	Serial clock input/output (3-wire serial I/O1)
$\overline{\text { SCK2 }}$		P72/ASCK2	Serial clock input/output (3-wire serial I/O2)
SCL0		P27/SCK0	Serial clock input/output (${ }^{2} \mathrm{C}$ bus)
NMI	Input	P02/INTP2	Non-maskable interrupt request input
INTP0		P00	External interrupt request input
INTP1		P01	
INTP2		P02/NMI	
INTP3		P03	
INTP4		P04	
INTP5		P05	
INTP6		P06	

4.2 Pins Other Than Port Pins (2/2)

Pin Name	I/O	Alternate Function	Function
PCL	Output	P23	Clock output (for trimming of main system clock and subsystem clock)
BUZ	Output	P24	Buzzer output
RTP0 to RTP7	Output	P120 to P127	Real-time output port from which data is output in synchronization with trigger
AD0 to AD7	1/O	P40 to P47	Lower address/data bus for expanding memory externally
A0 to A7	Output	P80 to P87	Lower address bus for expanding memory externally
A8 to A15		P50 to P57	Middle address bus for expanding memory externally
A16 to A19		P60 to P63	Higher address bus for expanding memory externally
$\overline{\mathrm{RD}}$	Output	P64	Strobe signal output for reading from external memory
$\overline{\mathrm{WR}}$		P65	Strobe signal output for writing external memory
$\overline{\text { WAIT }}$	Input	P66	Wait insertion at external memory access
ASTB	Output	P67	Strobe output that externally latches address information output to ports 4 through 6 and port 8 to access external memory
RESET	Input	-	System reset input
X1	Input	-	Connecting crystal resonator for main system clock oscillation
X2	-		
XT1	Input	-	Connecting crystal resonator for subsystem clock oscillation
XT2	-		
ANIO to ANI7	Input	P10 to P17	A/D converter analog voltage input
ANOO, ANO1	Output	P130, P131	D/A converter analog voltage output
$\mathrm{AV}_{\text {Refo }}$	-	-	To apply A/D converter reference voltage
AV REF			To apply D/A converter reference voltage
AVDD			A/D converter positive power supply. Connect to Vod.
AVss			GND for A/D converter and D/A converter. Connect to Vss.
Vod			Positive power supply
Vss			GND
Vpp			Sets flash memory programming mode. To apply a high voltage when program is written or verified. In normal operation mode, connect directly to Vss.

4.3 Pin Input/Output Circuit and Recommended Connections of Unused Pins

Table 4-1 shows symbols indicating the input/output circuit types of the respective pins and the recommended connection of unused pins.

For the circuit diagram of each type of input/output circuit, refer to Figure 4-1.

Table 4-1. Types of Pin Input/Output Circuits and Recommended Connections of Unused Pins (1/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connections of Unused Pins
P00/INTP0	8-A	I/O	Input: Independently connect to Vss via a resistor Output: Leave open
P01/INTP1			
P02/INTP2/NMI			
P03/INTP3 to P06/INTP6			
P10/ANI0 to P17/ANI7	9	Input	Connect to Vss or Vod
P20/RxD1/SI1	10-A	I/O	Input: Independently connect to $\mathrm{V}_{\text {ss }}$ via a resistor Output: Leave open
P21/TxD1/SO1			
P22/ASCK1/SCK1			
P23/PCL			
P24/BUZ			
P25/SDA0/SI0			
P26/SO0			
P27/SCL0/SCK0			
P30/TO0 to P32/TO2	8-A		
P33/TI1, P34/TI2			
P35/TI00, P36/TI01			
P37			
P40/AD0 to P47/AD7	5-A		
P50/A8 to P57/A15			
P60/A16 to P63/A19			
P64/ $\overline{\mathrm{RD}}$			
P65/WR			
P66/WAIT			
P67/ASTB			
P70/RxD2/SI2	8-A		
P71/TxD2/SO2			
P72/ASCK2/SCK2			
P80/A0 to P87/A7			
P90 to P95	13-D		
P100/TI5/TO5	8-A		
P101/TI6/TO6			
P102/TI7/TO7			
P103/TI8/TO8			
P120/RTP0 to P127/RTP7			
P130/ANO0, P131/ANO1	12-A		

Table 4-1. Types of Pin Input/Output Circuits and Recommended Connections of Unused Pins (2/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connections of Unused Pins
RESET	2	Input	-
XT1	16		Connect to Vss
XT2		-	Leave open
AVrefo	-		Connect to Vss
AVref1			Connect to Vdo
AVDD			
AVss			Connect to Vss
Vpp			Connect directly to Vss

Remark Because the circuit type numbers are standardized among the 78 K Series products, they are not sequential in some models (i.e., some circuits are not provided).

Figure 4-1. Types of Pin Input/Output Circuits

5. INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)

The IMS is a register that prevents a part of the internal memory from being used by means of software. By setting this register, the memory of the μ PD78F4216Y can be mapped in the same manner as a mask ROM model with different internal memory (ROM and RAM) capacity.

This register is set by using an 8-bit memory manipulation instruction.
Its value is set to FFH by $\overline{\text { RESET input. }}$

Figure 5-1. Format of Internal Memory Size Switching Register (IMS)

Address: OFFFCH At reset: FFH W

IMS

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | ROM1 | ROM0 | 1 | 1 | RAM1 | RAM0 |

ROM1	ROM0	Selects internal ROM capacity
0	0	48 Kbytes
0	1	64 Kbytes
1	0	96 Kbytes
1	1	128 Kbytes

RAM1	RAM0	Selects peripheral RAM capacity
0	0	3072 bytes
0	1	4608 bytes
1	0	6114 bytes
1	1	7680 bytes

Caution IMS is not provided on the mask ROM models (μ PD784214Y, 784215Y, and 784216Y).

The value to be set to the IMS to map the memory of the μ PD78F4216Y in the same manner as the mask ROM model is shown in Table 5-1.

Table 5-1. Set Value of Internal Memory Size Switching Register (IMS)

Mask ROM Model	Set Value of IMS
μ PD784214Y	ECH
μ PD784215Y	FDH
μ PD784216Y	FFH

6. PROGRAMMING FLASH MEMORY

The flash memory can be written with the μ PD78F4216Y mounted on the target board (on-board). To do so,
$\star \quad$ Remark FL-PR2 and FL-PR3 are products of Naitou Densei Machidaseisakusho Co., Ltd.

6.1 Selecting Communication Mode

To write the flash memory, use Flashpro II and Flashpro III with serial communication. Select a serial communication mode from those listed in Table 6-1 in the format shown in Figure 6-1. Each communication mode is selected by the number of Vpp pulses shown in Table 6-1.

Table 6-1. Communication Modes

Communication Mode	Number of Channels	Pins Used	Number of VPP Pulses
3-wire serial I/O	3	$\overline{\text { SCK0/SCL0/P27 }}$ SO0/P26 SI0/SDA0/P25	0
		$\overline{\text { SCK1/ASCK1/P22 }}$ SO1/TxD1/P21 SI1/RxD1/P20	1
		$\overline{\text { SCK2/ASCK2/P72 }}$ SO2/TxD2/P71 SI2/RxD2/P70	2
	TxD1/SO1/P21 RxD1/SI1/P20	8	
		TxD2/SO2/P71 RxD2/SI2/P70	9

Caution Be sure to select a communication mode with the number of Vpp pulses shown in Table 6-1.

Figure 6-1. Communication Mode Selecting Format

6.2 Flash Memory Programming Function

The flash memory is written by transmitting or receiving commands and data in a selected communication mode. The major functions of flash memory programming are listed in Table 6-2.

Table 6-2. Major Functions of Flash Memory Programming

Function	Description
Batch erasure	Erases all contents of memory.
Block erasure	Erases contents of specified memory block with one memory block consisting of 16 Kbytes.
Batch blank check	Checks erased status of entire memory.
Block blank check	Checks erased status of specified block
Data write	Writes flash memory based on write start address and number of data to be written (in bytes).
Batch verify	Compares all contents of memory with input data.
Block verify	Compares contents of specified memory block with input data.

6.3 Connecting Flashpro II, Flashpro III

The Flashpro II, Flashpro III and μ PD78F4216Y are connected differently depending on the selected communication mode (3-wire serial I/O or UART). Figures 6-2 and 6-3 show the connections in the respective communication modes.

Figure 6-2. Connection of Flashpro II, Flashpro III in 3-Wire Serial I/O Mode

Figure 6-3. Connection of Flashpro II, Flashpro III in UART Mode

^ 7. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions		Ratings	Unit
Supply voltage	VDD			-0.3 to +6.5	V
	AVDD			-0.3 to $V_{\text {DD }}+0.3$	V
	AVss			-0.3 to Vss +0.3	V
	AV $\mathrm{REFF}^{\text {a }}$	A/D converter reference voltage input		-0.3 to VDD +0.3	V
	AV Ref1	D/A converter reference voltage input		-0.3 to VDD +0.3	V
Input voltage	V_{11}	Other than P90 to P95		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
	V_{12}	P90 to P95	N -ch open drain	-0.3 to +12	V
Analog input voltage	$\mathrm{V}_{\text {AN }}$	Analog input pin		$\mathrm{AV}_{\text {Ss }}-0.3$ to $\mathrm{AV}_{\text {REFO }}+0.3$	V
Output voltage	Vo			-0.3 to $\mathrm{VDD}+0.3$	V
Output current, low	loL	Per pin		15	mA
		Total for all pins of Ports 2, 4 to 8		75	mA
		Total for all pins of Ports 0, 3, 9, 10, 12, and 13		75	mA
Output current, high	Іон	Per pin		-10	mA
		Total for all pins of Ports 2, 4 to 8		-50	mA
		Total for all pins of Ports 0, 3, 9, 10, 12, and 13		-50	mA
Operating ambient temperature	TA			-10 to +60	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-10 to +80	${ }^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

<< Restriction >>

Do not select the subsystem clock as the operation clock of CPU.
When the operation clock of CPU is supplied from the subsystem clock, a malfunction may occur in the μ PD78F4216Y.

Operating Conditions

- Operating ambient temperature (T_{A}): -10 to $+60^{\circ} \mathrm{C}$
- Supply voltage and clock cycle time: See Figure 7-1

Figure 7-1. Supply Voltage and Clock Cycle Time

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{dd}}=\mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input capacitance	Cl_{1}	$f=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V .	Other than Port 9			15	pF
			Port 9			20	pF
Output capacitance	Co		Other than Port 9			15	pF
			Port 9			20	pF
I/O capacitance	Cıo		Other than Port 9			15	pF
			Port 9			20	pF

Main System Clock Oscillator Characteristics ($\mathrm{T}_{\mathrm{A}}=-10$ to $+60^{\circ} \mathrm{C}$)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator or crystal resonator		Oscillation frequency (fx)	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	2		12.5	MHz
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	2		6.25	
External clock		X1 input frequency (fx)	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	2		25	MHz
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	2		12.5	
		X1 input high/lowlevel width (twxh, twxı)		35		250	ns
		X1 input rise/	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0		5	ns
		fall time (txR, txF)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	0		10	

Caution When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor in a ground pattern in which a high current flows.
- Do not fetch signals from the oscillator.

Subsystem Clock Oscillator Characteristics ($\mathrm{T}_{\mathrm{A}}=-10$ to $+60^{\circ} \mathrm{C}$)

Note Time required to stabilize oscillation after Vod reaches oscillator voltage MIN.

Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern in which a high current flows.
- Do not fetch signals from the oscillator.

2. Do not select the subsystem clock as the operation clock of CPU.

When the operation clock of CPU is supplied from subsystem clock, a malfunction may occur in the μ PD78F4216Y.

DC Characteristics $\left(T_{A}=-10\right.$ to $+60^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{AVDD}=2.7$ to 5.5 V , $\left.\mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}=0 \mathrm{~V}\right)(1 / 2)$

Parameter	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Input voltage, low	VIL1	Note		0		0.3 Vdo	V
	VIL2	Total for P00 to P06, P20, P22, P33, P34, P70, P72, P100 to P103, RESET		0		0.2 VDD	V
	VIL3	P90 to P95 (N-ch open drain)		0		0.3 VDD	V
	VIL4	Total for P10 to P17, P130, P131		0		0.3 Vdo	V
	VIL5	Total for $\mathrm{X} 1, \mathrm{X} 2, \mathrm{XT1}$, XT2		0		0.2 Vdo	V
	VIL6	P25, P27		0		0.3 VDD	V
Input voltage, high	VIH1	Note		0.7 VDD		Vdd	V
	$\mathrm{V}_{\mathbf{H} 2}$	Total for P00 to P06, P20, P22, P33, P34, P70, P72, P100 to P103, RESET		0.8 VDD		VDD	V
	V \mathbf{H}_{3}	P90 to P95 (N-ch open drain)		0.7 Vdo		12	V
	V_{1+4}	Total for P10 to P17, P130, P131		0.7 VDD		Vdo	V
	$\mathrm{V}_{\text {H5 }}$	Total for $\mathrm{X} 1, \mathrm{X} 2, \mathrm{XT1} 1, \mathrm{XT} 2$		0.8 VDD		Vdo	V
	V Н6	P25, P27		0.7 VDD		VDD	V
Output voltage, low	Vol1	For pins other than P 40 to P47, P50 to P57, P90 to P95 $\mathrm{loL}=1.6 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V			0.4	V
		Total for P40 to P47, P50 to P57 $\mathrm{loL}=8 \mathrm{~mA}$	$V_{D D}=4.5$ to 5.5 V			1.0	V
		P 90 to $\mathrm{P} 95 \mathrm{loL}=15 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V		0.4	2.0	V
	VoL2	$\mathrm{loL}=400 \mu \mathrm{~A}$				0.5	V
Output voltage, high	Voh1	$\mathrm{IOH}=-1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	VDD-1.0			V
		$\mathrm{loL}=-100 \mu \mathrm{~A}$		VDD-0.5			V
Input leakage current, low	ILIL1	V IN $=0 \mathrm{~V}$	$\begin{aligned} & \text { Except X1, X2, } \\ & \text { XT1, XT2 } \end{aligned}$			-3	$\mu \mathrm{A}$
	ILLL2		X1, X2, XT1, XT2			-20	$\mu \mathrm{A}$
Input leakage current, high	ILIH1	$V_{I N}=V_{\text {di }}$	$\begin{aligned} & \text { Except X1, X2, } \\ & \text { XT1, XT2 } \end{aligned}$			3	$\mu \mathrm{A}$
	Іإ1H2		X1, X2, XT1, XT2			20	$\mu \mathrm{A}$
Output leakage current, low	ILoL1	Vout $=0 \mathrm{~V}$				-3	$\mu \mathrm{A}$
Output leakage current, high	ILoh1	Vout $=\mathrm{V}_{\text {D }}$				3	$\mu \mathrm{A}$

Note P21, P23, P24, P26, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P60 to P67, P71, P80 to P87, P120 to P127

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics $\left(\mathrm{T}_{\mathrm{A}}=-10\right.$ to $+60^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{AVDD}=2.7$ to $\left.5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{Ss}}=\mathrm{AV} \mathrm{Vs}=0 \mathrm{~V}\right)(2 / 2)$

Parameter	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Supply current	ldD1	Operation mode	$\mathrm{fxx}^{\text {a }} 12.5 \mathrm{MHz}$			40	mA
			$\mathrm{fxx}_{\mathrm{x}}=6 \mathrm{MHz}, \mathrm{V} \mathrm{DD}=2.7$ to 3.3 V			20	mA
	ldD2	HALT mode	$\mathrm{fxx}^{\text {a }}$ 12.5 MHz			20	mA
			$\mathrm{fxx}^{\text {a }}=6 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 3.3 V			10	mA
	IdD3	IDLE mode	$\mathrm{fxx}=12.5 \mathrm{MHz}$			20	mA
			$f x x=6 \mathrm{MHz}, \mathrm{Vdo}=2.7$ to 3.3 V			10	mA
Data retention voltage	Vdddr	HALT, IDLE modes		2.7		5.5	V
Data retention current	Iddor	STOP mode	$V_{D D}=2.7 \mathrm{~V}$		2	10	$\mu \mathrm{A}$
			$V_{D D}=4.5$ to 5.5 V		10	50	$\mu \mathrm{A}$
Pull-up resistor	RL	V IN $=0 \mathrm{~V}$		10	30	100	$\mathrm{k} \Omega$

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.
$A C$ Characteristics $\left(\mathrm{T}_{\mathrm{A}}=-10\right.$ to $+60^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AVDD}=2.7$ to 5.5 V , $\left.\mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}=0 \mathrm{~V}\right)$
(1) Read/write operation (1/2)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Cycle time (Minimum Instruciton	tсүк	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		80			ns
execution time)		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		160			ns
Address setup time (to ASTB \downarrow)	tsast	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	(0.5 + a) T-11	29			ns
		$V_{D D}=3.0 \mathrm{~V}$	$(0.5+a) T-15$	65			ns
Address hold time (from ASTB \downarrow)	thstla	$V_{\text {DD }}=5.0 \mathrm{~V}$	0.5T-19	21			ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	0.5T-24	56			ns
ASTB high-level width	twsth	$V_{D D}=5.0 \mathrm{~V}$	$(0.5+\mathrm{a}) \mathrm{T}-17$	23			ns
		$V_{D D}=3.0 \mathrm{~V}$	(0.5 + a) T-40	40			ns
Address hold time (from $\overline{\mathrm{RD}} \uparrow$)	thra	$V_{D D}=5.0 \mathrm{~V}$	0.5T-14	26			ns
		$V_{D D}=3.0 \mathrm{~V}$	0.5T-14	66			ns
$\overline{\mathrm{RD}} \downarrow$ delay time from address	toar	$V_{D D}=5.0 \mathrm{~V}$	(1+a) T-24	56			ns
		$V_{D D}=3.0 \mathrm{~V}$	(1+a) T-24	136			ns
Address float time (from $\overline{\mathrm{RD}} \downarrow$)	tfra			0			ns
Data input time from address	tdaid	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	$(2.5+a+n) T-37$			403	ns
		$V_{D D}=3.0 \mathrm{~V}$	$(2.5+a+n) T-52$			828	ns
Data input time from ASTB \downarrow	tostid	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	(2+n) T-35			285	ns
		$V_{\text {DD }}=3.0 \mathrm{~V}$	(2+n) T-50			590	ns
Data input time from $\overline{\mathrm{RD}} \downarrow$	torid	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	$(1.5+n) T-40$			240	ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	$(1.5+n) T-50$			510	ns
$\overline{\mathrm{RD}} \downarrow$ delay time from ASTB \downarrow	tostr	$V_{D D}=5.0 \mathrm{~V}$	0.5T-9	31			ns
		$V_{D D}=3.0 \mathrm{~V}$	0.5T-9	71			ns
Data hold time (from $\overline{\mathrm{RD}} \uparrow$)	thrid			0			ns
Address active time from $\overline{\mathrm{RD}} \uparrow$	tDRA	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	0.5T-2	38			ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	0.5T-12	68			ns
ASTB \uparrow delay time from $\overline{\mathrm{RD}} \uparrow$	torst	$V_{D D}=5.0 \mathrm{~V}$	0.5T-9	31			ns
		$V_{D D}=3.0 \mathrm{~V}$	0.5T-9	71			ns
$\overline{\mathrm{RD}}$ low-level width	twrL	$V_{D D}=5.0 \mathrm{~V}$	$(1.5+n) T-25$	95			ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	$(1.5+n) T-30$	210			ns
$\overline{\mathrm{WR}} \downarrow$ delay time from address	tdaw	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	(1+a) T-24	56			ns
		$V_{D D}=3.0 \mathrm{~V}$	(1+a) T-24	136			ns
Address hold time (from $\overline{W R} \uparrow$)	thwa	$V_{D D}=5.0 \mathrm{~V}$	0.5T-14	26			ns
		$V_{D D}=3.0 \mathrm{~V}$	0.5T-14	66			ns
Data output delay time from ASTB \downarrow	tostod	$V_{D D}=5.0 \mathrm{~V}$	$0.5 T+15$			55	ns
		$V_{D D}=3.0 \mathrm{~V}$	$0.5 \mathrm{~T}+20$			100	ns

Remark T: tcyk = $1 / f x x$ ($f x x$: main system clock frequency)
a: 1 (during address wait), otherwise, 0
n : Number of wait states $(\mathrm{n} \geq 0)$

AC Characteristics

(1) Read/write operation (2/2)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Data output delay time from $\overline{\mathrm{WR}} \downarrow$	towod				10	62	ns
$\overline{\mathrm{WR}} \downarrow$ delay time from ASTB \downarrow	tostw	$\mathrm{VDD}=5.0 \mathrm{~V}$	0.5T-9	31			ns
		$\mathrm{V} D=3.0 \mathrm{~V}$	0.5T-9	71			ns
Data setup time (to $\overline{\mathrm{WR} \uparrow \text {) }}$	tsodwr	V DD $=5.0 \mathrm{~V}$	$(1.5+n) T-20$	100			ns
		$\mathrm{V} D=3.0 \mathrm{~V}$	$(1.5+n) T-25$	215			ns
Data hold time (from $\overline{\mathrm{WR} \uparrow \text {) }}$	thwod	$\mathrm{VDD}=5.0 \mathrm{~V}$	0.5T-14	26			ns
		$\mathrm{V} D=3.0 \mathrm{~V}$	0.5T-14	66			ns
ASTB \uparrow delay time from $\overline{\mathrm{WR}} \uparrow$	towst	$\mathrm{VDD}=5.0 \mathrm{~V}$	0.5T-9	31			ns
		$\mathrm{VDD}=3.0 \mathrm{~V}$	0.5T-9	71			ns
$\overline{\mathrm{WR}}$ low-level width	twwL	$\mathrm{V} D=5.0 \mathrm{~V}$	$(1.5+n) T-25$	95			ns
		$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$	$(1.5+n) T-30$	210			ns

Remark T: tcyk $=1 / \mathrm{fxx}$ (fxx: main system clock frequency)
a: 1 (during address wait), otherwise, 0
n : Number of wait states $(\mathrm{n} \geq 0)$

AC Characteristics

(2) External wait timing

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { WAIT }} \downarrow$ input time from address	toawt	$V_{D D}=5.0 \mathrm{~V}$	$(2+a) T-40$			200	ns
		$V_{D D}=3.0 \mathrm{~V}$	$(2+a) T-60$			420	ns
$\overline{\text { WAIT }} \downarrow$ input time from ASTB \downarrow	tostwt	$V_{D D}=5.0 \mathrm{~V}$	1.5T-40			80	ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	1.5T-60			180	ns
$\overline{\text { WAIT }}$ hold time from ASTB \downarrow	thstwt	$V_{D D}=5.0 \mathrm{~V}$	$(0.5+n) T+5$	125			ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	$(0.5+n) T+10$	250			ns
$\overline{\text { WAIT } \uparrow \text { delay time from ASTB } \downarrow}$	tostwit	$V_{D D}=5.0 \mathrm{~V}$	$(1.5+n) T-40$			240	ns
		$V_{D D}=3.0 \mathrm{~V}$	$(1.5+n) T-60$			500	ns
$\overline{\text { WAIT }} \downarrow$ input time from $\overline{\mathrm{RD}} \downarrow$	torwt	$V_{D D}=5.0 \mathrm{~V}$	T-40			40	ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	T-60			100	ns
$\overline{\text { WAIT }} \downarrow$ hold time from $\overline{\mathrm{RD}} \downarrow$	thrwt	$V_{D D}=5.0 \mathrm{~V}$	$\mathrm{nT}+5$	85			ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	$\mathrm{nT}+10$	170			ns
$\overline{\text { WAIT }} \uparrow$ delay time from $\overline{\mathrm{RD}} \downarrow$	torwth	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	$(1+n) T-40$			200	ns
		$V_{D D}=3.0 \mathrm{~V}$	$(1+n) T-60$			420	ns
Data input time from $\overline{\text { WAIT }} \uparrow$	towtid	$V_{D D}=5.0 \mathrm{~V}$	0.5T-5			35	ns
		$V_{D D}=3.0 \mathrm{~V}$	0.5T-10			70	ns
$\overline{\mathrm{RD}} \uparrow$ delay time from $\overline{\text { WAIT }} \uparrow$	towtr	$V_{D D}=5.0 \mathrm{~V}$	0.5T	40			ns
		$V_{D D}=3.0 \mathrm{~V}$	0.5T	80			ns
$\overline{\mathrm{WR}} \uparrow$ delay time from $\overline{\text { WAIT }} \uparrow$	towtw	$V_{\text {DD }}=5.0 \mathrm{~V}$	0.5T	40			ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	0.5T	80			ns
$\overline{\text { WAIT }} \downarrow$ input time from $\overline{\text { WR }} \downarrow$	towwt	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	T-40			40	ns
		$V_{D D}=3.0 \mathrm{~V}$	T-60			100	ns
$\overline{\text { WAIT }}$ hold time from $\overline{\text { WR }} \downarrow$	thwwt	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	$\mathrm{nT}+5$	85			ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	$\mathrm{nT}+10$	170			ns
	towwth	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	$(1+n) T-40$			200	ns
		$V_{D D}=3.0 \mathrm{~V}$	$(1+n) T-60$			420	ns

Remark T: tcyk $=1 / f x x$ (fxx: main system clock frequency)
a: 1 (during address wait), otherwise, 0
n : Number of wait states $(\mathrm{n} \geq 0)$

Serial Operation ($\mathrm{T}_{\mathrm{A}}=-10$ to $+60^{\circ} \mathrm{C}, \mathrm{V} \mathrm{DD}=\mathrm{AVDD}=2.7$ to 5.5 V , V ss $=A V \mathrm{Ss}=0 \mathrm{~V}$)
(a) 3-wire serial I/O mode ($\overline{\mathrm{SCK}}$: internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Serial clock ($\overline{\mathrm{SCK}}$) cycle time	tkcy1		800			ns
Serial clock ($\overline{\mathrm{SCK}}$) high/lowlevel width	$\mathrm{t}_{\mathrm{KH}} \mathrm{H}_{1}$ tKL1		350			ns
SI setup time (to $\overline{\mathrm{SCK}} \uparrow$)	tsik1		10			ns
SI hold time (from $\overline{\mathrm{SCK}} \uparrow$)	tksı11		40			ns
SO output delay time (from $\overline{\text { SCK }} \downarrow$)	tkso1				30	ns

(b) 3-wire serial I/O mode ($\overline{\mathrm{SCK}}$: external clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Serial clock ($\overline{\mathrm{SCK}}$) cycle time	tkcy2		800			ns
Serial clock ($\overline{\mathrm{SCK}}$) high/lowlevel width	tкH2, tкı2		400			ns
SI setup time (to $\overline{\mathrm{SCK}} \uparrow$)	tsik2		10			ns
SI hold time (from $\overline{\text { SCK }} \uparrow$)	tks12		40			ns
SO output delay time (from $\overline{\text { SCK }} \downarrow$)	tksoz				30	ns

(c) UART mode

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	tксү3	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	417			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	833			$n s$
ASCK high/low-level width	七кнз, tкıз	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	208			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	416			ns

(d) $\mathrm{I}^{2} \mathrm{C}$ bus mode

Parameter		Symbol	Normal Operation Mode		High-Speed Mode		Unit	
		MIN.	MAX.	MIN.	MAX.			
SCL0 clock frequency			fclk	0	100	0	400	kHz
Bus free time (between stop and start conditions)		fbuF	4.7	-	1.3	-	$\mu \mathrm{S}$	
Hold time ${ }^{\text {Note } 1}$		thi: sta	4.0	-	0.6	-	$\mu \mathrm{S}$	
SCLO clock low-level width		tıow	4.7	-	1.3	-	$\mu \mathrm{s}$	
SCLO clock high-level width		thigh	4.0	-	0.6	-	$\mu \mathrm{s}$	
Start/restart condition setup time		tsu: STA	4.7	-	0.6	-	$\mu \mathrm{s}$	
Data hold time	CBUS compatible master	thd: DAT	5.0	-	-	-	$\mu \mathrm{s}$	
	$\mathrm{I}^{2} \mathrm{C}$ bus		$0^{\text {Note }} 2$	-	$0^{\text {Note }} 2$	0.9Note 3	$\mu \mathrm{S}$	
Data setup time		tsu: DAT	250	-	$100^{\text {Note }} 4$	-	ns	
Rise time of SDA0 and SCL0 signal		tR	-	1000	$20+0.1 \mathrm{Cb}^{\text {Note }} 5$	300	ns	
Fall time of SDA0 and SCL0 signal		tF	-	300	$20+0.1 \mathrm{Cb}^{\text {Note } 5}$	300	ns	
Stop condition setup time		tsu: STO	4.0	-	0.6	-	$\mu \mathrm{s}$	
Spike pulse width suppressed by input filter		tsp	-	-	0	50	ns	
Load capacitance of each bus line		Cb	-	400	-	400	pF	

Notes 1. At the start condition, the first clock pulse is generated after this hold time.
2. In order to fill out the undefined area of the falling edge of SCLO, supply a hold time internally at least 300 -ns for the SDA0 signal (at VıHmin. of SCL0 signal).
3. When the low hold time (tlow) of the SCLO signal is not extended, only the maximum data hold time (thd: DAT) should be filled.
4. High-speed mode $\mathrm{I}^{2} \mathrm{C}$ bus can be used in the normal operation mode $\mathrm{I}^{2} \mathrm{C}$ bus system. In this case, the following conditions should be met.

- When the low-state hold time (tlow) of the SCLO signal is not extended tsu: DAT $\geq 250 \mathrm{~ns}$
- When the low-state hold time (tlow) of the SCLO signal is extended Send out the next data bits to the SDAO line before the SCL0 line is released (trmax. + tsu: DAT $=1000$ $+250=1250 \mathrm{~ns}$: by normal operation mode $\mathrm{I}^{2} \mathrm{C}$ bus specification).

5. Cb: Total capacitance of a bus line (Unit: pF)

Other Operations ($\mathrm{T}_{\mathrm{A}}=-10$ to $+60^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{AV} \mathrm{DD}=2.7$ to 5.5 V , $\mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{VS}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
NMI high/low-level width	twNIL twNIH		10			$\mu \mathrm{~s}$
INTP input high/low-level width	twiTL twiTH	INTP0 to INTP6	10			$\mu \mathrm{~s}$
RESET high/low-level width	twRSL twRSH		10			$\mu \mathrm{~s}$

Clock Output Operation ($\mathrm{T}_{\mathrm{A}}=-10$ to $+60^{\circ} \mathrm{C}, \mathrm{V} D=\mathrm{AVDD}=2.7$ to 5.5 V , V ss $=\mathrm{AV}$ ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
PCL cycle time	tcycl	$\mathrm{VDD}=4.5$ to 5.5 V , nT	80		31250	ns
PCL high/low-level width	tcll tcLH	$V_{D D}=4.5$ to $5.5 \mathrm{~V}, 0.5 \mathrm{~T}-10$	30		15615	ns
PCL rise/fall time	tcLR tclF	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			5	ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD}^{2} 4.5 \mathrm{~V}$			10	ns

Remark T: tcyk $=1 / \mathrm{fxx}$ (fxx: main system clock frequency)
n : Divided frequency ratio set by software in the CPU
(When using the main system clock: $\mathrm{n}=1,2,4,8,16,32,64,128$)

- When using the subsystem clock: $\mathrm{n}=1$
A / D Converter Characteristics $\left(\mathrm{T}_{\mathrm{A}}=-10\right.$ to $+60^{\circ} \mathrm{C}, \mathrm{V} \mathrm{DD}=\mathrm{AVDD}=2.7$ to 5.5 V , V ss $\left.=\mathrm{AVss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Total error ${ }^{\text {Note }}$		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {REFO }} \leq \mathrm{AV} \mathrm{VDD}^{\text {d }}$			1.2	\%
Conversion time	tconv		14		144	$\mu \mathrm{s}$
Sampling time	tsamp		24/fxx			$\mu \mathrm{s}$
Analog input voltage	Vian		AVss		AVrefo	V
Reference voltage	AV $\mathrm{refo}^{\text {a }}$		2.7		AVDD	V
Resistance between $\mathrm{AV}_{\text {refo }}$ and $A V_{\text {Ss }}$	Ravrefo			29.4		$\mathrm{k} \Omega$

Note Quantization error ($\pm 1 / 2$ LSB) is not included.

Remark fxx: Main system clock frequency

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution				8	8	8	bit
Total error		$\mathrm{R}=2 \mathrm{M} \Omega, 2.7 \mathrm{~V}<\mathrm{AV}_{\text {ref } 1} \leq 5.5 \mathrm{~V}$				1.2	\%
		$\mathrm{R}=4 \mathrm{M} \Omega, 2.7 \mathrm{~V}<\mathrm{AV}_{\text {ref } 1} \leq 5.5 \mathrm{~V}$				0.8	\%
		$\mathrm{R}=10 \mathrm{M} \Omega, 2.7 \mathrm{~V}<\mathrm{AV}_{\text {ref } 1} \leq 5.5 \mathrm{~V}$				0.6	\%
Settling time		Load conditions:$\mathrm{C}=30 \mathrm{pF}$	$4.5 \mathrm{~V} \leq \mathrm{AV}_{\text {ref } 1} \leq 5.5 \mathrm{~V}$			10	$\mu \mathrm{s}$
			2.7 V $\leq \mathrm{AV}_{\text {REF } 1}<4.5 \mathrm{~V}$			15	$\mu \mathrm{S}$
Output resistance	Ro	DACS0, $1=7 \mathrm{FH}$			5.3		$\mathrm{k} \Omega$
Reference voltage	AVref1			2.7		VDD	V
AV ${ }_{\text {REF1 }}$ current	Alref1	For only 1 channel				2.5	mA

Data Retention Characteristics ($\mathrm{T}_{\mathrm{A}}=-10$ to $+60^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AVDD}=2.7$ to 5.5 V , $\mathrm{V} s \mathrm{ss}=\mathrm{AV} s \mathrm{D}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention voltage	Vddor	STOP mode	2.7		5.5	V
Data retention current	Idodr	$\mathrm{V}_{\text {DDDR }}=+4.5$ to 5.5 V		5	20	$\mu \mathrm{A}$
		$V_{\text {dDDR }}=+2.7 \mathrm{~V}$		2	10	$\mu \mathrm{A}$
Vod rise time	trvo		200			$\mu \mathrm{s}$
Vod fall time	trvd		200			$\mu \mathrm{s}$
Vod hold time (from STOP mode setting)	thvo		0			ms
STOP release signal input time	torel		0			ms
Oscillation stabilization wait time	twait	Crystal resonator	30			ms
		Ceramic resonator	5			ms
Input voltage, low	VIL	RESET, P00/INTP0 to P06/INTP6	0		0.1 Vodor	V
Input voltage, high	V_{IH}		0.9 Vodor		Vdddr	V

AC Timing Test Points

Timing Wave Form

(1) Read operation

(2) Write operation

Serial Operation

(1) 3-wire serial I/O mode

(2) UART mode

(3) $I^{2} C$ bus mode

Clock Output Timing

Interrupt Input Timing

INTP0 to INTP6

Reset Input Timing

Clock Timing

Data Retention Characteristics

^ 8. PACKAGE DRAWINGS

100 PIN PLASTIC LQFP (FINE PITCH) (14×14)

NOTE
Each lead centerline is located within 0.08 mm (0.003 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	16.00 ± 0.20	0.630 ± 0.008
B	14.00 ± 0.20	$0.551+0.009$
C	14.00 ± 0.20	$0.551{ }_{-0.008}^{+0.009}$
D	16.00 ± 0.20	0.630 ± 0.008
F	1.00	0.039
G	1.00	0.039
H	$0.22_{-0.04}^{+0.05}$	0.009 ± 0.002
1	0.08	0.003
J	0.50 (T.P.)	0.020 (T.P.)
K	1.00 ± 0.20	$0.039_{-0.008}^{+0.009}$
L	0.50 ± 0.20	0.020 ${ }_{-0.009}^{+0.008}$
M	$0.17{ }_{-0.07}^{+0.03}$	$0.007{ }_{-0.003}^{+0.001}$
N	0.08	0.003
P	1.40 ± 0.05	0.055 ± 0.002
Q	0.10 ± 0.05	0.004 ± 0.002
R	$3^{\circ}{ }_{-3^{\circ}}{ }^{\circ}$	$3^{\circ}{ }_{-3^{\circ}}{ }^{\circ}$
S	1.60 MAX .	0.063 MAX.
S100GC-50-8EU		

Remark The external dimensions and material of the ES version are the same as those of the mass-produced version.

100PIN PLASTIC QFP (14x20)

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	23.6 ± 0.4	0.929 ± 0.016
B	20.0 ± 0.2	$0.795_{-0.008}^{+0.009}$
C	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
D	17.6 ± 0.4	$0.693^{+0.016}$
F	0.8	0.031
G	0.6	0.024
H	0.30 ± 0.10	$0.012_{-0.005}^{+0.004}$
I	0.15	0.006
J	$0.65($ T.P. $)$	0.026 (T.P.)
K	1.8 ± 0.2	$0.071_{-0.009}^{+0.008}$
L	0.8 ± 0.2	$0.031_{-0.008}^{+0.009}$
M	$0.15_{-0.05}^{+0.10}$	$0.006_{-0.003}^{+0.004}$
N	0.10	0.004
P	2.7 ± 0.1	$0.106_{-0.004}^{+0.005}$
Q	0.1 ± 0.1	0.004 ± 0.004
R	$5^{\circ} \pm 5^{\circ}$	$5^{\circ} \pm 5^{\circ}$
S	3.0 MAX.	0.119 MAX.
		P100GF-65-3BA1-3

Remark The external dimensions and material of the ES version are the same as those of the mass-produced version.

* 9. RECOMMENDED SOLDERING CONDITIONS

The μ PD78F4216Y should be soldered and mounted under the following recommended conditions. For the details of the recommended soldering conditions, refer to the document Semiconductor Device Mounting Technology Manual (C10535E). For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Caution Because μ PD78F4216YGC-8EU is under development, the recommended soldering conditions are undefined.

Table 9-1. Soldering Conditions for Surface Mounting Type
μ PD78F4216YGF-3BA: 100-pin plastic QFP ($14 \times 20 \mathrm{~mm}$)

Soldering Method		Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 sec. Max. (at $210^{\circ} \mathrm{C}$ or higher), Count: two times or less	IR35-00-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 sec. Max. (at $200^{\circ} \mathrm{C}$ or higher), Count: two times or less	VP15-00-2
Wave soldering	Solder bath temperature: $260^{\circ} \mathrm{C}$ Max., Time: 10 sec. Max., Count: once, Preheating temperature: $120^{\circ} \mathrm{C}$ Max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ Max., Time: 3 sec. Max. (per pin row)	-

Caution Do not use different soldering methods together (except for partial heating).

\star
 APPENDIX A DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78F4216Y. Also refer to (5) Cautions on Using Development Tools.
(1) Language Processing Software

RA78K4	Assembler package common to 78K/IV Series
CC78K4	C compiler package common to $78 \mathrm{~K} / \mathrm{IV}$ Series
DF784218	Device file common to μ PD784216Y Subseries
CC78K4-L	C compiler library source file common to $78 \mathrm{~K} / \mathrm{IV}$ Series

(2) Flash Memory Writing Tools

Flashpro II (Model number: FL-PR2), Flashpro III (Model number: FL-PR3, PG-FP3)	Dedicated flash programmer for microcontrollers incorporating flash memory
FA-100GF	Adapter for writing 100-pin plastic QFP (GF-3BA type) flash memory. Connection must be performed depending on the target product.
FA-100GC	Adapter for writing 100-pin plastic LQFP (GC-8EU type) flash memory. Connection must be performed depending on the target product.
Flashpro II controller, Flashpro III controller	Control program that runs on a personal computer and is attached to Flashpro II and Flashpro III. Operates on Windows ${ }^{\text {TM }} 95$, etc.

(3) Debugging Tools

- When in-circuit emulator IE-78K4-NS is used

IE-78K4-NS	In-circuit emulator common to 78K/IV Series
IE-70000-MC-PS-B	Power supply unit for IE-78K4-NS
IE-70000-98-IF-C	Interface adapter used when PC-9800 series PC (except notebook type) is used as host machine (C bus supported)
IE-70000-CD-IF-ANote	PC card and cable when PC-9800 series notebook PC is used as host machine (PCMCIA socket supported)
IE-70000-PC-IF-C	Interface adapter when using IBM PC/AT TM compatible as host machine (ISA bus supported)
IE-70000-PCI-IFNote	Interface adapter when using PC that incorporates PCI bus as host machine
IE-784225-NS-EM1	Emulation board to emulate μ PD784216Y Subseries
NP-100GF	Emulation probe for 100-pin plastic QFP (GF-3BA type)
NP-100GC	Emulation probe for 100-pin plastic LQFP (GC-8EU type)
EV-9200GF-100	Socket to be mounted on a target system board made for 100-pin plastic QFP (GF-3BA type)
TGC-100SDW	Conversion adapter to connect the NP-100GC and a target system board on which a 100- pin plastic LQFP (GC-8EU type) can be mounted
ID78K4-NS	Integrated debugger for IE-78K4-NS
SM78K4	System simulator common to 78K/IV Series
DF784218	Device file common to μ PD784216Y Subseries

Note Under development

- When in-circuit emulator IE-784000-R is used

IE-784000-R	In-circuit emulator common to 78K/IV Series
IE-70000-98-IF-C	Interface adapter used when PC-9800 series PC (except notebook type) is used as host machine (C bus supported)
IE-70000-98N-IF	Interface adapter and cable used when PC-9800 series notebook PC is used as host machine
IE-70000-PC-IF-C	Interface adapter when using IBM PC/AT compatible as host machine (ISA bus supported)
IE-70000-PCI-IFNote	Interface adapter when using PC that incorporates PCI bus as host machine
IE-78000-R-SV3	Interface adapter and cable used when EWS is used as host machine
IE-784225-NS-EM1 IE-784216-R-EM1	Emulation board to emulate μ PD784216Y Subseries
IE-784000-R-EM	Emulation board common to 78K/IV Series
IE-78K4-R-EX3	Emulation probe conversion board necessary when using IE-784225-NS-EM1 on IE- $784000-R$. Not necessary when IE-784216-R-EM1 is used.
EP-78064GF-R	Emulation probe for 100-pin plastic QFP (GF-3BA type)
EP-78064GC-R	Emulation probe for 100-pin plastic LQFP (GC-8EU type)
EV-9200GF-100	Socket to be mounted on a target system board made for 100-pin plastic QFP (GF-3BA type)
TGC-100SDW	Conversion adapter to connect the NP-100GC and a target system board on which a 100- pin plastic LQFP (GC-8EU type) can be mounted
ID78K4	Integrated debugger for IE-784000-R
SM78K4	System simulator common to 78K/IV Series
DF784218	Device file common to μ PD784216Y Subseries

Note Under development

(4) Real-time OS

RX78K/IV	Real-time OS for 78K/IV Series
MX78K4	OS for 78K/IV Series

(5) Cautions on Using Development Tools

- The ID78K4-NS, ID78K4, and SM78K4 are used in combination with the DF784218.
- The CC78K4 and RX78K/IV are used in combination with the RA78K4 and DF784218.
- The FL-PR2, FL-PR3, FA-100GF, FA-100GC, NP-100GF, and NP-100GC are products made by Naitou Densei Machidaseisakusho Co., Ltd. (TEL: +81-44-822-3813). Contact an NEC distributor regarding the purchase of these products.
- The TGC-100SDW is a product made by TOKYO ELETECH CORPORATION.
- For further information, contact to: Daimaru Kogyo, Ltd.

> Electronics Dept. (Tokyo) (TEL: +81-3-3820-7112)
> Electronics Dept. (Osaka) (TEL: +81-6-6244-6672)

- For third party development tools, see the 78K/IV Series Selection Guide (U13355E).
- The host machine and OS suitable for each software are as follows:

	PC	EWS
	PC-9800 series [Windows] IBM PC/AT and compatibles [Japanese/English Windows]	HP9000 Series $700^{\text {TM }}$ [HP-UX ${ }^{\text {TM }}$] SPARCstation ${ }^{\text {TM }}$ [SunOS ${ }^{\top \mathrm{M}}$, Solaris ${ }^{\top}{ }^{\text {M }}$] NEWS ${ }^{\text {TM }}$ (RISC) [NEWS-OS ${ }^{\top M}$]
RA78K4	\checkmark Note	\checkmark
CC78K4	\checkmark Note	\checkmark
ID78K4-NS	\checkmark	-
ID78K4	\checkmark	\checkmark
SM78K4	\checkmark	-
RX78K/IV	\checkmark Note	\checkmark
MX78K4	\checkmark Note	\checkmark

Note DOS-based software
\star Drawing of Conversion Socket (EV-9200GF-100) and Recommended Footprint
Mount the conversion socket together with the EP-78064GF-R.

Figure A-1. Drawing of EV-9200GF-100 (for reference only)

ITEM	MILLIMETERS	INCHES
A	24.6	0.969
B	21	0.827
C	15	0.591
D	18.6	0.732
E	$4-C 2$	$4-C \quad 0.079$
F	0.8	0.031
G	12.0	0.472
H	22.6	0.89
I	25.3	0.996
J	6.0	0.236
K	16.6	0.654
L	19.3	0.76
M	8.2	0.323
N	8.0	0.315
O	2.5	0.098
P	2.0	0.079
Q	0.35	0.014
R	$\phi 2.3$	$\phi 0.091$
S	$\phi 1.5$	$\phi 0.059$

Figure A-2. Recommended Footprint of EV-9200GF-100 (for reference only)

EV-9200GF-100-P1E		
ITEM	MILLIMETERS	INCHES
A	26.3	1.035
B	21.6	0.85
C	$0.65 \pm 0.02 \times 29=18.85 \pm 0.05$	$0.026_{-0.002}^{+0.001} \times 1.142=0.742_{-0.002}^{+0.002}$
D	$0.65 \pm 0.02 \times 19=12.35 \pm 0.05$	$0.026_{-0.002}^{+0.001} \times 0.748=0.486_{-0.002}^{+0.003}$
E	15.6	0.614
F	20.3	0.799
G	12 ± 0.05	$0.472_{-0.002}^{+0.003}$
H	6 ± 0.05	$0.236_{-0.002}^{+0.003}$
I	0.35 ± 0.02	$0.014_{-0.000}^{+0.001}$
J	$\phi 2.36 \pm 0.03$	$\phi 0.093_{-0.002}^{+0.001}$
K	$\phi 2.3$	$\phi 0.091$
L	$\phi 1.57 \pm 0.03$	$\phi 0.062_{-0.002}^{+0.001}$

Caution Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to 'SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).
\star Drawing of Conversion Adapter (TGC-100SDW)
Mount the conversion adapter together with the EP-78064GC-R.

Figure A-3. Drawing of TGC-100SDW (for reference only)

ITEM	MILLIMETERS	INCHES	ITEM	MILLIMETERS	INCHES
A	21.55	0.848	a	14.45	0.569
B	0.5x24=12	$0.020 \times 0.945=0.472$	b	1.85 ± 0.25	0.073 ± 0.010
C	0.5	0.020	C	3.5	0.138
D	$0.5 \times 24=12$	$0.020 \times 0.945=0.472$	d	2.0	0.079
E	15.0	0.591	e	3.9	0.154
F	21.55	0.848	f	0.25	0.010
G	¢3.55	$\phi 0.140$	g	$\phi 4.5$	$\phi 0.177$
H	10.9	0.429	h	16.0	0.630
I	13.3	0.524	i	1.125 ± 0.3	0.044 ± 0.012
J	15.7	0.618	j	0~5 ${ }^{\circ}$	$0.000 \sim 0.197^{\circ}$
K	18.1	0.713	k	5.9	0.232
L	13.75	0.541	I	0.8	0.031
M	$0.5 \times 24=12.0$	$0.020 \times 0.945=0.472$	m	2.4	0.094
N	1.125 ± 0.3	0.044 ± 0.012	n	2.7	0.106
O	1.125 ± 0.2	0.044 ± 0.008			TGC-100SDW-G1E
P	7.5	0.295			
Q	10.0	0.394			
R	11.3	0.445			
S	18.1	0.713			
T	$\phi 5.0$	$\phi 0.197$			
U	5.0	0.197			
V	4- $\phi 1.3$	4- $\phi 0.051$			
W	1.8	0.071			
X	C 2.0	C 0.079			
Y	$\phi 0.9$	$\phi 0.035$			
Z	$\phi 0.3$	$\phi 0.012$			

note: Product by TOKYO ELETECH CORPORATION.

APPENDIX B. RELATED DOCUMENTS

Documents Related to Device

Document Name	Document No.	
	Japanese	English
μ PD784214Y, 784215Y, 784216Y Data Sheet	U11725J	U11725E
μ PD78F4216Y Data Sheet	U11824J	This document
μ PD784216, 784216Y Subseries User's Manual Hardware	U12015J	U12015E
μ PD784216Y Subseries Special Function Register Table	U12046J	-
$78 K / I V$ Series User's Manual Instructions	U10905J	U10905E
$78 K / I V$ Series Instruction Table	U10594J	-
$78 K / I V$ Series Instruction Set	U10595J	-
$78 K / I V$ Series Application Note Software Basics	U10095J	U10095E

Documents Related to Development Tool (User's Manual)

Document Name		Document No.	
		Japanese	English
RA78K4 Assembler Package	Language	U11162J	U11162E
	Operation	U11334J	U11334E
RA78K Structured Assembler Preprocessor		U11743J	U11743E
CC78K4 C Compiler	Language	U11571J	U11571E
	Operation	U11572J	U11572E
IE-78K4-NS		U13356J	U13356E
IE-784000-R		U12903J	U12903E
IE-784218-R-EM1		U12155J	U12155E
IE-784225-NS-EM1		To be prepared	-
EP-78064		EEU-934	EEU-1469
SM78K4 System Simulator Windows Based	Reference	U10093J	U10093E
SM78K Series System Simulator	External Part User Open Interface Specifications	U10092J	U10092E
ID78K4-NS Integrated Debugger PC Based	Reference	U12796J	U12796E
ID78K4 Integrated Debugger Windows Based	Reference	U10440J	U10440E
ID78K4 Integrated Debugger HP-UX, SunOS, NEWS-OS based	Reference	U11960J	U11960E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

Documents Related to Embedded Software (User's Manual)

Document Name		Document No.	
		Japanese	English
78K/IV Series Real-Time OS	Fundamental	U10603J	U10603E
	Installation	U10604J	U10604E
	Debugger	U10364J	-

Other Documents

Document Name	Document No.	
	Japanese	English
NEC IC Package Manual (CD-ROM)	-	C13388E
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892J	C11892E
Guide to Quality Assurance for Semiconductor Devices	-	MEI-1202
Guide to Microcontroller-Related Products by Third Parties	C11416J	

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

NEC
[MEMO]
[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to Vdo or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
800-366-9782
Fax: 408-588-6130
800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.I.
Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH NEC Electronics Hong Kong Ltd.
Benelux Office
Eindhoven, The Netherlands Tel: 2886-9318
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-67 5899
NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

Hong Kong

Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 65-253-8311
Fax: 65-250-3583
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951
NEC do Brasil S.A.
Electron Devices Division
Rodovia Presidente Dutra, Km 214
07210-902-Guarulhos-SP Brasil
Tel: 55-11-6465-6810
Fax: 55-11-6465-6829

Caution Purchase of NECI ${ }^{2} \mathrm{C}$ components conveys a license under the Philips $\mathrm{I}^{2} \mathrm{C}$ Patent Rights to use these components in an $\mathrm{I}^{2} \mathrm{C}$ system, provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined by Philips.

IEBus is a trademark of NEC Corporation.
Windows is a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
PC/AT is a trademark of International Business Machines Corporation.
HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.
SPARCstation is a trademark of SPARC International, Inc.
Solaris and SunOS are trademarks of Sun Microsystems, Inc.
NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

