

μ PD78F0988A, 78F0988A(A)

8-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The μ PD78F0988A and 78F0988A(A) are products in the μ PD780988 Subseries in the 78K/0 Series that have flash memory in the place of the internal ROM of the μ PD780988. Flash memory can be written or erased electrically with the device mounted on the board. Therefore, the μ PD78F0988A and μ PD78F0988A(A) are ideal for evaluation in system development, small-scale production, or systems likely to be upgraded frequently.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

 μ PD780988 Subseries User's Manual: U13029E 78K/0 Series Instruction User's Manual: U12326E

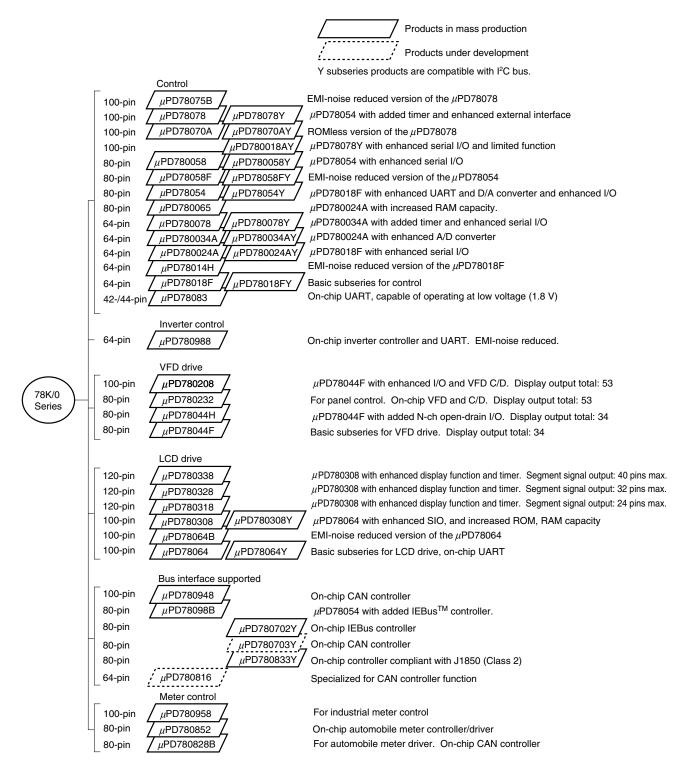
FEATURES

- Pin-compatible with mask ROM version (except VPP pin)
- Flash memory: 60 KBNote 1
- Internal high-speed RAM: 1024 bytes
- Internal expansion RAM: 1024 bytes^{Note 2}
- Operable in the same supply voltage range as the mask ROM version (VDD = 4.0 to 5.5 V)
- Notes 1. The capacity of the flash memory can be changed with the internal memory size switching register (IMS).
 - 2. The capacity of the internal expansion RAM can be changed with the internal expansion RAM size switching register (IXS).

Remark For the differences between the flash memory versions and the mask ROM versions, refer to

1. DIFFERENCES BETWEEN μ PD78F0988A AND MASK ROM VERSIONS.

ORDERING INFORMATION


Part Number	Package	Quality Grade
μPD78F0988ACW	64-pin plastic SDIP (19.05 mm (750))	Standard
		(for general electrical equipment)
μ PD78F0988AGC-AB8	64-pin plastic QFP (14 × 14)	Standard
		(for general electrical equipment)
μ PD78F0988AGC-8BS	64-pin plastic LQFP (14 \times 14)	Standard
		(for general electrical equipment)
μ PD78F0988AGC(A)-AB8	64-pin plastic QFP (14 × 14)	Special
		(for high-reliability electrical equipment)
μ PD78F0988AGC(A)-8BS	64-pin plastic LQFP (14 \times 14)	Special
		(for high-reliability electrical equipment)

For details of the quality grade and its application fields, refer to **Quality Grades on NEC Semiconductor Devices (C11531E)**.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

78K/0 SERIES LINEUP

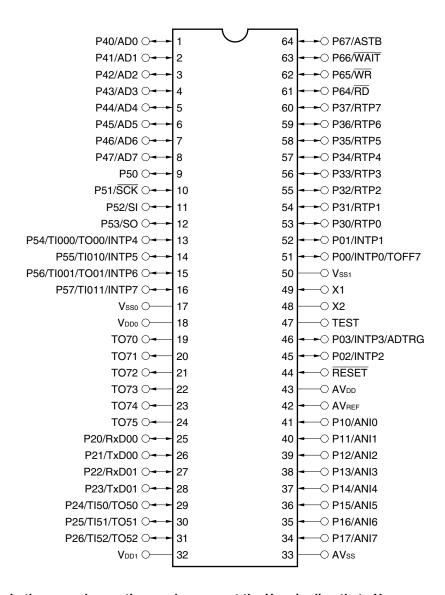
The products in the 78K/0 Series are listed below. The names enclosed in boxes are subseries names.

Remark VFD (Vacuum Fluorescent Display) is referred to as FIP™ (Fluorescent Indicator Panel) in some documents, but the functions of the two are the same.

The major functional differences between the subseries are shown below.

	Function	ROM Capacity		Tin	ner			10-Bit	8-Bit	Serial Interface	I/O	V _{DD}	External
Subseries	Name	(Bytes)	8-Bit	16-Bit	Watch	WDT	A/D	A/D	D/A			Value	Expansion
Control	μPD78075B	32 K to 40 K	4 ch	1 ch	1 ch	1 ch	8 ch	_	2 ch	3 ch (UART: 1 ch)	88	1.8 V	√
	μPD78078	48 K to 60 K											
	μPD78070A	1									61	2.7 V	
	μPD780058	24 K to 60 K	2 ch							3 ch (time-division UART: 1 ch)	68	1.8 V	
	μPD78058F	48 K to 60 K								3 ch (UART: 1 ch)	69	2.7 V	
	μPD78054	16 K to 60 K										2.0 V	
	μPD780065	40 K to 48 K							_	4 ch (UART: 1 ch)	60	2.7 V	
	μPD780078	48 K to 60 K		2 ch			_	8 ch		3 ch (UART: 2 ch)	52	1.8 V	
	μPD780034A	8 K to 32 K		1 ch						3 ch (UART: 1 ch)	51		
	μPD780024A						8 ch	_					
	μPD78014H									2 ch	53		
	μPD78018F	8 K to 60 K											
	μPD78083	8 K to 16 K		1	_					1 ch (UART: 1 ch)	33		-
Inverter control	μPD780988	16 K to 60 K	3 ch	Note	-	1 ch	-	8 ch	-	3 ch (UART: 2 ch)	47	4.0 V	V
VFD	μPD780208	32 K to 60 K	2 ch	1 ch	1 ch	1 ch	8 ch	_	-	2 ch	74	2.7 V	_
drive	μPD780232	16 K to 24 K	3 ch	ı	-		4 ch				40	4.5 V	
	μPD78044H	32 K to 48 K	2 ch	1 ch	1 ch		8 ch			1 ch	68	2.7 V	
	μPD78044F	16 K to 40 K								2 ch			
LCD	μPD780338	48 K to 60 K	3 ch	2 ch	1 ch	1 ch	_	10 ch	1 ch	2 ch (UART: 1 ch)	54	1.8 V	-
drive	μPD780328										62		
	μPD780318										70		
	μPD780308	48 K to 60 K	2 ch	1 ch			8 ch	_	_	3 ch (time-division UART: 1 ch)	57	2.0 V	
	μPD78064B	32 K								2 ch (UART: 1 ch)			
	μPD78064	16 K to 32 K											
Bus	μPD780948	60 K	2 ch	2 ch	1 ch	1 ch	8 ch	_	_	3 ch (UART: 1 ch)	79	4.0 V	√
interface supported	μPD78098B	40 K to 60 K		1 ch					2 ch		69	2.7 V	_
	μPD780816	32 K to 60 K		2 ch			12 ch	-	_	2 ch (UART: 1 ch)	46	4.0 V	-
Meter control	μPD780958	48 K to 60 K	4 ch	2 ch	-	1 ch	-	-	-	2 ch (UART: 1 ch)	69	2.2 V	-
Dash	μPD780852	32 K to 40 K	3 ch	1 ch	1 ch	1 ch	5 ch	-	-	3 ch (UART: 1 ch)	56	4.0 V	-
board control	μPD780828B	32 K to 60 K									59		

Note 16-bit timer: 2 channels 10-bit timer: 1 channel

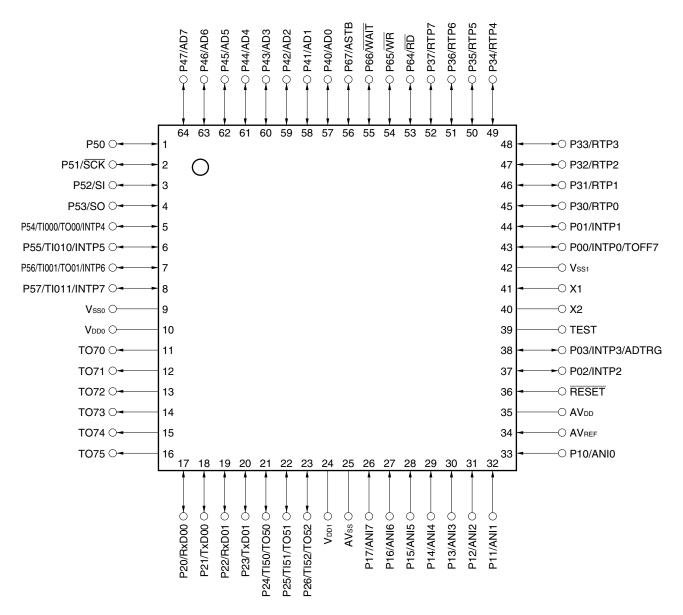

OVERVIEW OF FUNCTIONS

Item		Function			
Internal	Flash memory	60 KBNote 1			
memory	High-speed RAM	1024 bytes			
	Expansion RAM	1024 bytes ^{Note 2}			
Memory spa	ace	64 KB			
General-pur	pose register	8 bits × 32 registers (8 bits × 8 registers × 4 banks)			
Instruction of	cycle	On-chip instruction execution time variable function			
		0.24 μs/0.48 μs/0.96 μs/1.9 μs/3.8 μs (@ 8.38 MHz operation with system clock)			
Instruction s	set	• 16-bit operation			
		Multiply/divide (8 bits × 8 bits, 16 bits ÷ 8 bits)			
		Bit manipulation (set, reset, test, Boolean operation)			
		BCD adjust, etc.			
I/O ports		Total: 47			
		• CMOS inputs: 8			
		• CMOS I/O: 39			
Real-time o	utput ports	• 8 bits × 1 or 4 bits × 2			
		• 6 bits × 1 or 4 bits × 1			
A/D convert	er	• 10-bit resolution × 8 channels			
		• Power supply voltage: AV _{DD} = 4.0 to 5.5 V			
Serial interf	ace	UART mode: 2 channels			
		• 3-wire serial I/O mode: 1 channel			
Timer		16 bit timer/event counter: 2 channels			
		8-bit timer/event counter: 3 channels			
		10-bit inverter control timer: 1 channel			
		Watchdog timer: 1 channel			
Timer outpu	ıt	11 (general-purpose outputs: 5, inverter control outputs: 6)			
Vectored	Maskable	Internal: 16, external: 8			
interrupt	Non-maskable	Internal: 1			
sources	Software	1			
Power supply voltage		V _{DD} = 4.0 to 5.5 V			
Operating ar	mbient temperature	$T_A = -40 \text{ to } +85^{\circ}\text{C}$			
Package		• 64-pin plastic SDIP (19.05 mm (750))Note 3			
		• 64-pin plastic QFP (14 × 14)			
		• 64-pin plastic LQFP (14 × 14)			

- **Notes 1.** The capacity of the flash memory can be changed with the internal memory size switching register (IMS).
 - 2. The capacity of the internal expansion RAM can be changed with the internal expansion RAM size switching register (IXS).
 - 3. Standard quality grade products only.

PIN CONFIGURATION (TOP VIEW)

• 64-Pin Plastic SDIP (19.05 mm (750)) μPD78F0988ACW


Cautions 1. In the normal operation mode, connect the VPP pin directly to Vsso.

- 2. In the flash memory writing mode, connect the VPP pin to Vss0 via a 10 k Ω pull-down resistor.
- 3. The 64-pin plastic SDIP (19.05 mm (750)) package is not provided for special quality grade products.

Remark When the μ PD78F0988A and 78F0988A(A) are used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to VDD0 and VDD1 individually and connecting Vss0 and Vss1 to different ground lines, is recommended.

- 64-pin plastic QFP (14 \times 14) μ PD78F0988AGC-AB8, 78F0988AGC(A)-AB8
- 64-pin plastic LQFP (14 × 14) μPD78F0988AGC-8BS, 78F0988AGC(A)-8BS

Cautions 1. In the normal operation mode, connect the VPP pin directly to Vsso.

2. In the flash memory writing mode, connect the VPP pin to Vsso via a 10 k Ω pull-down resistor.

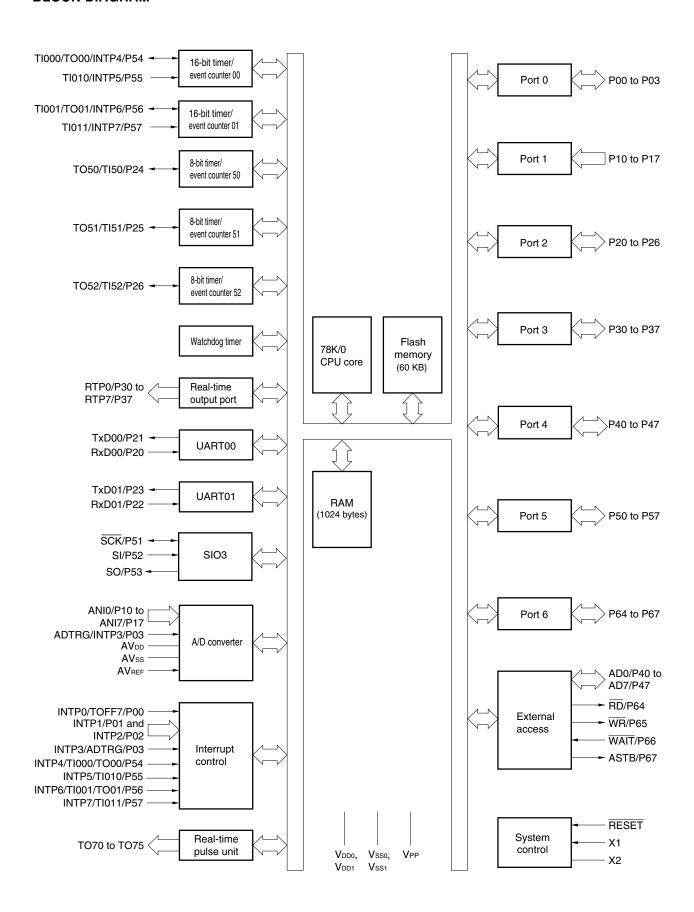
Remark When the μPD78F0988A and 78F0988A(A) are used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} individually and connecting V_{SS0} and V_{SS1} to different ground lines, is recommended.

RxD00, RxD01: Receive data AD0 to AD7: Address/data bus SCK: ADTRG: Serial clock AD trigger input SI: Serial input ANI0 to ANI7: Analog input SO: Serial output ASTB: Address strobe

AV_{DD}: Analog power supply TI000, TI001, AV_{REF}: Analog reference voltage TI010, TI011,

AVss: Analog ground TI50 to TI52: Timer input

INTP0 to INTP7: External interrupt input TO00, TO01, P00 to P03: Port 0 TO50 to TO52,


TO70 to TO75: Timer output P10 to P17: Port 1 TOFF7: P20 to P26: Port 2 Timer output off TxD00, TxD01: Transmit data P30 to P37: Port 3 P40 to P47: VDD0, VDD1: Power supply Port 4

P50 to P57: Port 5 VPP: Programming power supply

RESET:Reset \overline{WR} :Write strobeRTP0 to RTP7:Real-time portX1, X2:Crystal

BLOCK DIAGRAM

CONTENTS

1.	DIFF	FERENCES BETWEEN μ PD78F0988A AND MASK ROM VERSIONS	10
2.	DIFF	FERENCES BETWEEN μ PD78F0988A AND μ PD78F0988	11
3.	PIN	FUNCTIONS	12
	3.1	Port Pins	12
	3.2	Non-Port Pins	13
	3.3	Pin I/O Circuits and Recommended Connection of Unused Pins	15
4.	INTE	ERNAL MEMORY SIZE SWITCHING REGISTER (IMS)	17
5.	INTE	ERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)	18
6.	FLA	SH MEMORY PROGRAMMING	19
	6.1	Selection of Communication Mode	
	6.2	Flash Memory Programming Functions	20
	6.3	Connection of Flashpro III	20
7.	ELE	CTRICAL SPECIFICATIONS	22
8.	PAC	KAGE DRAWINGS	38
9.	REC	OMMENDED SOLDERING CONDITIONS	41
ΑF	PENI	DIX A. DEVELOPMENT TOOLS	42
ΑF	PENI	DIX B. RELATED DOCUMENTS	48

1. DIFFERENCES BETWEEN μ PD78F0988A AND MASK ROM VERSIONS

The μ PD78F0988A is a product with a flash memory which enables on-board writing, erasing and rewriting of programs.

Except for flash memory specifications, the same functions as those of mask ROM versions can be obtained by setting the internal memory size switching register (IMS) and internal expansion RAM size switching register (IXS).

Table 1-1 shows the differences between the flash memory version (μ PD78F0988A) and mask ROM versions (μ PD780982, 780983, 780984, 780986, 780988).

Table 1-1. Differences Between μ PD78F0988A and Mask ROM Versions

Item	μPD78F0988A	Mask ROM Versions
Internal ROM structure	Flash memory	Mask ROM
Internal ROM capacities	60 KB	μPD780982: 16 KB μPD780983: 24 KB μPD780984: 32 KB μPD780986: 48 KB μPD780988: 60 KB
Internal expansion RAM capacities	1024 bytes	μPD780982: None μPD780983: None μPD780984: None μPD780986: 1024 bytes μPD780988: 1024 bytes
Change of internal ROM capacity with internal memory size switching register (IMS)	Available ^{Note 1}	Not available
Change of internal expansion RAM capacity with internal expansion RAM size switching register (IXS)	Available ^{Note 2}	Not available
TEST pin	Not provided	Provided
VPP pin	Provided	Not provided

Notes 1. Flash memory capacity becomes 60 KB by RESET input.

2. Internal expansion RAM capacity becomes 0 bytes by RESET input.

Caution

There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations for the commercial samples (not engineering samples) of the mask ROM versions. In addition, when replacing the μ PD78F0988 with the μ PD78F0988A, be sure to also conduct sufficient evaluation with the μ PD78F0988A.

2. DIFFERENCES BETWEEN μ PD78F0988A AND μ PD78F0988

The differences between the μ PD78F0988A and μ PD78F0988 (old version) are shown in Table 2-1.

Table 2-1. Differences Between μ PD78F0988A and μ PD78F0988

Part Number Item	μPD78F0988A	μPD78F0988 (Old Version)
Flash memory area	Two areas 0: 0 to 1FFFH 1: 2000H to EFFFH	Three areas 0: 0 to 1FFFH 1: 2000H to 7FFFH 2: 8000H to EFFFH
Quality grade	 Standard Special (64-pin plastic QFP (14 × 14), 64-pin plastic LQFP (14 × 14)) 	Standard

11

3. PIN FUNCTIONS

3.1 Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
P00	I/O	Port 0	Input	INTP0/TOFF7
P01	1	4-bit I/O port		INTP1
P02		Input/output can be specified in 1-bit units.		INTP2
P03	1	Use of an on-chip pull-up resistor can be specified by		INTP3/ADTRG
		software setting.		
P10 to P17	Input	Port 1	Input	ANI0 to ANI7
		8-bit input only port		
P20	I/O	Port 2	Input	RxD00
P21		7-bit I/O port		TxD00
P22	1	Input/output can be specified in 1-bit units.		RxD01
P23	1	Use of an on-chip pull-up resistor can be specified by		TxD01
P24	1	software setting.		TI50/TO50
P25	1			TI51/TO51
P26	1			TI52/TO52
P30 to P37	I/O	Port 3	Input	RTP0 to RTP7
		8-bit I/O port		
		Input/output can be specified in 1-bit units.		
		Use of an on-chip pull-up resistor can be specified by		
		software setting.		
P40 to P47	I/O	Port 4	Input	AD0 to AD7
		8-bit I/O port		
		Input/output can be specified in 1-bit units.		
		Use of an on-chip pull-up resistor can be specified by		
		software setting.		
P50	I/O	Port 5	Input	_
P51		8-bit I/O port		SCK
P52		Input/output can be specified in 1-bit units.		SI
P53		LEDs can be driven directly.		SO
P54		Use of an on-chip pull-up resistor can be specified by		INTP4/TI000/TO00
P55		software setting.		INTP5/TI010
P56				INTP6/TI001/TO01
P57				INTP7/TI011
P64	I/O	Port 6	Input	RD
P65	7	4-bit I/O port		WR
P66		Input/output can be specified in 1-bit units.		WAIT
P67		Use of an on-chip pull-up resistor can be specified by		ASTB
		software setting.		

3.2 Non-Port Pins (1/2)

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	External interrupt request input for which the valid edge	Input	P00/TOFF7
INTP1		(rising edge, falling edge, or both rising and falling	Input	P01
INTP2		edges) can be specified	Input	P02
INTP3	1		Input	P03/ADTRG
INTP4	1		Input	P54/TI000/TO00
INTP5			Input	P55/TI010
INTP6			Input	P56/TI001/TO01
INTP7			Input	P57/TI011
TI50	Input	External count clock input to 8-bit timer/event counter 50	Input	P24/TO50
TI51	1	External count clock input to 8-bit timer/event counter 51	Input	P25/TO51
TI52	1	External count clock input to 8-bit timer/event counter 52	Input	P26/TO52
TI000		External count clock input to 16-bit timer/event counter 00	Input	P54/INTP4/TO00
		Capture trigger input to capture register (CR000, CR010) of		
		16-bit timer/event counter 00		
TI010		Capture trigger input to capture register (CR000) of 16-bit	Input	P55/INTP5
		timer/event counter 00		
TI001		External count clock input to 16-bit timer/event counter 01	Input	P56/INTP6/TO01
		Capture trigger input to capture register (CR001, CR011) of		
		16-bit timer/event counter 01		
TI011	1	Capture trigger input to capture register (CR001) of 16-bit	Input	P57/INTP7
		timer/event counter 01		
TO50	Output	8-bit timer/event counter 50 output	Input	P24/TI50
TO51	1	8-bit timer/event counter 51 output	Input	P25/TI51
TO52	1	8-bit timer/event counter 52 output	Input	P26/TI52
TO00	1	16-bit timer/event counter 00 output	Input	P54/INTP4/TI000
TO01		16-bit timer/event counter 01 output	Input	P56/INTP6/TI001
RTP0 to RTP7	Output	Real-time output port that outputs pulses in synchronization	Input	P30 to P37
		with trigger signals outputs from the real-time pulse unit		
TxD00	Output	Asynchronous serial interface serial data output	Input	P21
TxD01	1		Input	P23
RxD00	Input	Asynchronous serial interface serial data input	Input	P20
RxD01	1 .		Input	P22
SCK	I/O	Serial interface serial clock input/output	Input	P51
SI	Input	Serial interface serial data input	Input	P52
SO	Output	Serial interface serial data output	Input	P53
ANI0 to ANI7	Input	A/D converter analog input	Input	P10 to P17
ADTRG	Input	External trigger signal input to the A/D converter	Input	P03/INTP3
TO70 to TO75	Output	Timer output for the 3-phase PWM inverter control	Hi-Z	_
TOFF7	Input	Timer output (TO70 to TO75) stop external input	Input	P00/INTP0
AD0 to AD7	1/0	Address/data bus for expanding memory externally	Input	P40 to P47
RD	Output	Strobe signal output for reading from external memory	Input	P64
WR	1	Strobe signal output for writing to external memory	Input	P65
WAIT	Input	Wait insertion at external memory access	Input	P66
ASTB	Output	Strobe output that externally latches address information	Input	P67
		output to ports 4 and 5 to access external memory		
AVREF	Input	A/D converter reference voltage input	_	_
AV _{DD}	<u> </u>	A/D converter analog power supply	_	_

3.2 Non-Port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
AVss	-	A/D converter ground potential	-	-
RESET	Input	System reset input	_	-
X1	Input	Connecting crystal resonator for system clock oscillation	-	-
X2	_		_	-
V _{DD0}	_	Positive power supply for ports	_	_
Vsso	_	Ground potential for ports	_	_
V _{DD1}	_	Positive power supply except for ports	_	_
V _{SS1}	_	Ground potential except for ports	_	_
VPP	_	High-voltage application during program write/verify. In the normal operation mode, connect directly to Vsso.	_	-

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

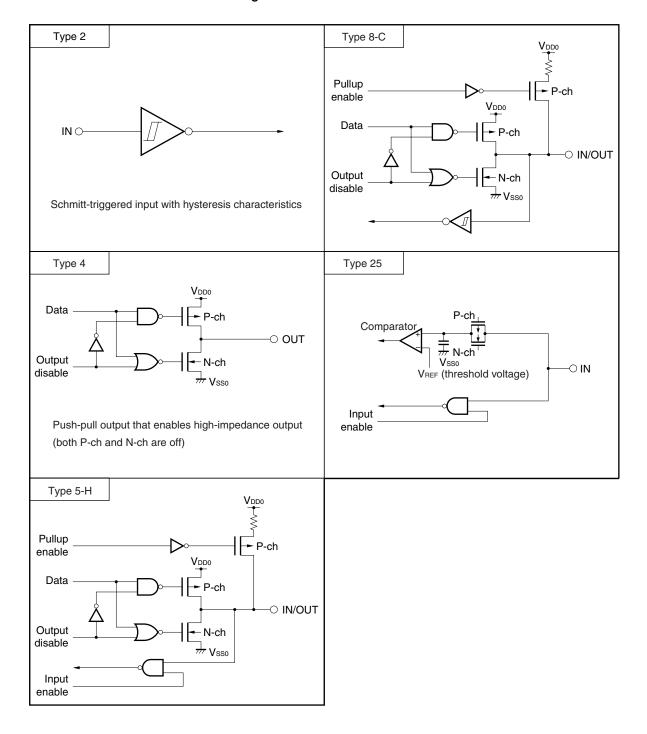

The I/O circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the I/O circuit configuration of each type, refer to Figure 3-1.

Table 3-1. Types of Pin I/O Circuits

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/INTP0/TOFF7	8-C	I/O	Input: Independently connect to Vsso via a resistor.
P01/INTP1			Output: Leave open
P02/INTP2			
P03/INTP3/ADTRG			
P10/ANI0 to P17/ANI7	25	Input	Independently connect to VDDO or VSSO via a resistor.
P20/RxD00	8-C	I/O	Input: Independently connect to VDD0 or Vss0 via a
P21/TxD00	5-H		resistor.
P22/RxD01	8-C	-	Output: Leave open.
P23/TxD01	5-H		
P24/TI50/TO50	8-C		
P25/TI51/TO51			
P26/TI52/TO52	1		
P30/RTP0 to P37/RTP7	5-H	-	
P40/AD0 to P47/AD7			
P50			
P51/SCK	8-C		
P52/SI	5-H		
P53/SO			
P54/INTP4/TI000/TO00			
P55/INTP5/TI010			
P56/INTP6/TI001/TO01			
P57/INTP7/TI011			
P64/RD			
P65/WR			
P66/WAIT			
P67/ASTB			
TO70 to TO75	4	Output	Leave open.
RESET	2	Input	-
AV _{DD}	_	_	Connect to VDDO.
AVREF			Connect to Vsso.
AVss			
V _{PP}			Connect directly to Vsso.

Figure 3-1. Pin I/O Circuits

4. INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)

IMS is a register that is set by software and is used to specify a part of the internal memory that is not to be used. By setting this register, the internal memory of the μ PD78F0988A and μ PD78F0988 can be mapped in the same manner as that of a mask ROM version with a different internal memory (ROM and RAM) capacity.

IMS is set with an 8-bit memory manipulation instruction.

IMS is set to CFH by RESET input.

0 Address After reset R/W RAM2 RAM1 RAM0 ROM3 ROM2 ROM1 ROM0 FFF0H CFH R/W помз пом2 ROM1 ROM0 Selection of internal ROM capacity 0 0 16 KB 0 0 1 0 24 KB 0 0 0 32 KB 0 48 KB 1 60 KB Other than above Setting prohibited RAM2 RAM1 RAM0 Selection of internal high-speed RAM capacity 1 0 1024 bytes Other than above Setting prohibited

Figure 4-1. Format of Internal Memory Size Switching Register

Table 4-1 shows the IMS setting values to make the memory mapping the same as that of mask ROM versions.

Target Mask ROM Versions	IMS Setting Value
μPD780982	C4H
μPD780983	C6H
μPD780984	C8H
μPD780986	ССН
μPD780988	CFH

Table 4-1. Setting Value of Internal Memory Size Switching Register

5. INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)

IXS is a register that sets the internal expansion RAM capacity by software setting. By using this register, the memory of the μ PD78F0988A and μ PD78F0988A(A) can be mapped in the same manner as that of a mask ROM version with a different internal expansion RAM capacity.

IXS is set with an 8-bit memory manipulation instruction.

IXS is set to 0CH by RESET input.

0 Address After reset R/W IXS 0 0 0 IXRAM4 | IXRAM3 | IXRAM2 | IXRAM1 | IXRAM0 FFF4H 0CH R/W IXRAM4|IXRAM3|IXRAM2|IXRAM1|IXRAM0 Selection of internal expansion RAM capacity 1 0 1 0 1024 bytes 0 0 1 1 0 No internal expansion RAM Other than above Setting prohibited

Figure 5-1. Format of Internal Expansion RAM Size Switching Register

Table 5-1 shows the IXS setting values to make the memory mapping the same as that of mask ROM versions.

Table 5-1. Setting Value of Internal Expansion RAM Size Switching Register

Target Mask ROM Versions	IXS Setting Value
μPD780982	0CH
μPD780983	
μPD780984	
μPD780986	0AH
μPD780988	

6. FLASH MEMORY PROGRAMMING

On-board writing of flash memory (with device mounted on target system) is supported. On-board writing is done after connecting a dedicated flash programmer (Flashpro III (part numbers FL-PR3 and PG-FP3)) to the host machine and target system. Moreover, writing to flash memory can also be performed using a flash memory writing adapter connected to Flashpro III.

Remark FL-PR3 is a product of Naito Densei Machida Mfg. Co., Ltd.

6.1 Selection of Communication Mode

Writing to flash memory is performed using Flashpro III with a serial communication mode. Select the communication mode for writing from Table 6-1. For the selection of the communication mode, a format like the one shown in Figure 6-1 is used. The communication modes are selected using the VPP pulse numbers shown in Table 6-1.

Communication Mode	Number of Channels	Pin Used ^{Note 1}	Number of V _{PP} Pulses
3-wire serial I/O	1	SCK/P51 SI/P52 SO/P53	0
3-wire serial I/O + HS	1	P50 (HS) SCK/P51 SI/P52 SO/P53	3
UART	1	RxD00/P20 TxD00/P21	8
Pseudo 3-wire serial I/O mode ^{Note 2}	1	P24/TI50/TO50 (Serial data input) P25/TI51/TO51 (Serial data output) P26/TI52/TO52 (Serial clock input)	12

Table 6-1. Communication Mode List

- Notes 1. Shifting to the flash memory programming mode sets all pins not used for flash memory programming to the same state as that immediately after reset. If the external device connected to each port does not acknowledge the state immediately after reset, pin handling such as connecting to VDD or Vss via a resistor is required.
 - 2. Serial transfer is performed by controlling ports using software.

Caution Always select the communication mode according to the number of VPP pulses shown in Table 6-1.

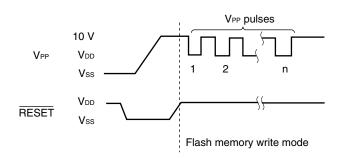
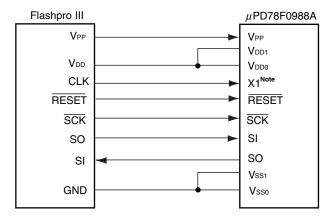


Figure 6-1. Communication Mode Selection Format

6.2 Flash Memory Programming Functions

Flash memory writing is performed via command and data transmit/receive operations using the selected communication mode. The main functions are listed in Table 6-2.


Table 6-2. Main Functions of Flash Memory Programming

Function	Description
Batch erase	Erases the contents of the entire memory.
Batch blank check	Checks that the entire memory has been erased.
Data write	Performs writing to flash memory according to the write start address and the number of the data to be written (the number of bytes).
Batch verify	Compares the contents of the entire memory and the input data.
Write back	Countermeasure for the over-erase state of the flash memory.

6.3 Connection of Flashpro III

The connection of the Flashpro III and the μ PD78F0988A differs depending on the communication mode. The types of connections are shown in Figures 6-2, 6-3, and 6-4.

Figure 6-2. Connection of Flashpro III Using 3-Wire Serial I/O Mode

Note For input to X1, a normal oscillator can also be used instead of CLK.

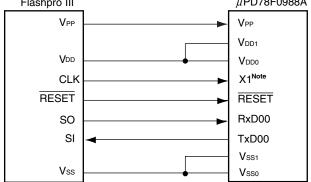

Flashpro III μ PD78F0988A V_{PP} V_{DD1} V_{DD} V_{DD0} X1^{Note} CLK RESET RESET SCK SCK SO SI SI SO P50 (HS) HS V_{SS1} **GND** Vsso

Figure 6-3. Connection of Flashpro III Using 3-Wire Serial I/O Mode (When Using Handshake)

Note For input to X1, a normal oscillator can also be used instead of CLK.

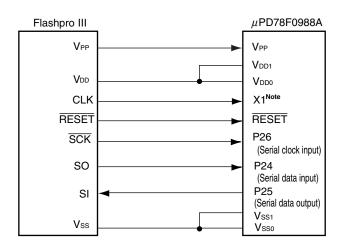

 μ PD78F0988A Flashpro III VPP

Figure 6-4. Connection of Flashpro III Using UART

Note For input to X1, a normal oscillator can also be used instead of CLK.

Figure 6-5. Connection of Flashpro III Using Pseudo 3-Wire Serial I/O Mode

Note For input to X1, a normal oscillator can also be used instead of CLK.

7. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol	Conditions	s		Ratings	Unit
Supply voltage	V _{DD}				-0.3 to +6.5	V
	V _{PP}				-0.3 to +10.5	V
	AV _{DD}				-0.3 to V _{DD} + 0.3	٧
	AVREF				-0.3 to V _{DD} + 0.3	V
	AVss				-0.3 to +0.3	V
Input voltage	Vı	P00 to P03, P10 to P17, P20 to F	0 to P37, P50	-0.3 to V _{DD} + 0.3	٧	
		to P57, P64 to P67, TO70 to T0	075, X1	1, X2, RESET		
Output voltage	Vo				-0.3 to V _{DD} + 0.3	V
Analog input voltage	Van	P10 to P17	Analog	input pin	AVss - 0.3 to AVREF + 0.3	٧
					and -0.3 to V _{DD} + 0.3	
Output current, high	Іон	Per pin		-10	mA	
		P00, P01, P30 to P37, P40 to P47, P50	to P57,	P64 to P67 total	-15	mA
		P02, P03, P20 to P26, TO70 to	TO75	total	-15	mA
Output current, low	loLNote	P00 to P03, P10 to P17, P20 to	P26,	Peak value	20	mA
		P30 to P37, P40 to P47, P64 to P67 pe	er pin	rms value	10	mA
		P50 to P57, TO70 to TO75 per	pin	Peak value	30	mA
				rms value	15	mA
		P00, P01, P30 to P37, P40 to P47, P64	to P67	Peak value	100	mA
		total		rms value	70	mA
		P02, P03, P20 to P26 total		Peak value	30	mA
				rms value	15	mA
		TO70 to TO75 total		Peak value	100	mA
				rms value	70	mA
		P50 to P57 total		Peak value	100	mA
				rms value	70	mA
Operating ambient	Та	In normal operating mode			-40 to +85	°C
temperature		In flash memory programming n	node		+10 to +40	°C
Storage temperature	T _{stg}				-40 to +125	°C

Note The rms value should be calculated as follows: [rms value] = [Peak value] $\times \sqrt{\text{Duty}}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Capacitance (TA = 25°C, VDD = Vss = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input capacitance	CIN	f = 1 MHz Unmeasured pins returned to 0 V				15	pF
I/O capacitance	Сю	f = 1 MHz	P00 to P03, P20 to P26, P30			15	pF
		Unmeasured pins	to P37, P40 to P47, P50 to				
		returned to 0 V	P57, P64 to P67, TO70 to TO75				

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

System Clock Oscillator Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 4.0 \text{ to } 5.5 \text{ V}$)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	V _{PP} X2 X1	Oscillation frequency (fx)Note 1		1.0		8.38	MHz
	C1= C2=	Oscillation stabilization time ^{Note 2}	After V _{DD} reaches oscillation voltage range MIN.			4	ms
Crystal resonator	V _{PP} X2 X1	Oscillation frequency (fx) ^{Note 1}		1.0		8.38	MHz
	C1= C2=	Oscillation stabilization time ^{Note 2}	After V _{DD} reaches oscillation voltage range MIN.			10	ms
External clock	X2 X1	X1 input frequency (fx)Note 1		1.0		8.38	MHz
	μPD74HCU04 Δ	X1 input high-/low-level width (txH, txL)		50		500	ns

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2. Time required to stabilize oscillation after reset or STOP mode release.

Caution When using the system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- · Always make the ground point of the oscillator capacitor the same potential as Vss1.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

Recommended Oscillator Constant

System clock: Ceramic resonator ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

Manufacturer	Part Number	Frequency	Recommended	Circuit Constant	Oscillation Vo	oltage Range
		(MHz)	C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)
Murata Mfg.	CSA2.00MG040	2.00	100	100	4.0	5.5
Co., Ltd.	CST2.00MG040	2.00	On-chip	On-chip	4.0	5.5
	CSA3.58MG	3.58	30	30	4.0	5.5
	CST3.58MGW	3.58	On-chip	On-chip	4.0	5.5
	CSA4.00MG	4.00	30	30	4.0	5.5
	CST4.00MGW	4.00	On-chip	On-chip	4.0	5.5
	CSA4.19MG	4.19	30	30	4.0	5.5
	CST4.19MGW	4.19	On-chip	On-chip	4.0	5.5
	CSA4.91MG	4.91	30	30	4.0	5.5
	CST4.91MGW	4.91	On-chip	On-chip	4.0	5.5
	CSA5.00MG	5.00	30	30	4.0	5.5
	CST5.00MGW	5.00	On-chip	On-chip	4.0	5.5
	CSA7.37MTZ	7.37	30	30	4.0	5.5
	CST7.37MTW	7.37	On-chip	On-chip	4.0	5.5
	CSA8.00MTZ	8.00	30	30	4.0	5.5
	CST8.00MTW	8.00	On-chip	On-chip	4.0	5.5
	CSA8.38MTZ	8.38	30	30	4.0	5.5
	CST8.38MTW	8.38	On-chip	On-chip	4.0	5.5

Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation.

Oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit. For details, contact directly the manufacturer of the resonator you will use.

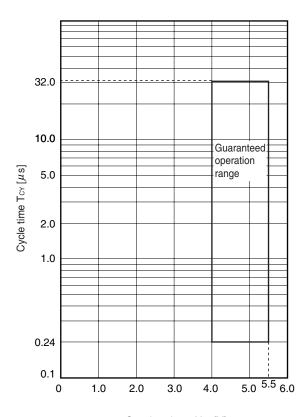
DC Characteristics (TA = -40 to +85°C, VDD = 4.0 to 5.5 V)

Parameter	Symbol		Condition	s		MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	P10 to P17, P21, P P64 to P67	23, P30 to P3	7, P40 to F	P47, P50, P53,	0.7VDD		V _{DD}	V
ingii	V _{IH2}	RESET, P00 to P03	3, P20, P22, P	24 to P26,	P51, P52,	0.8V _{DD}		V _{DD}	٧
	VIH3	X1, X2				V _{DD} - 0.5		V _{DD}	V
Input voltage, low	V _{IL1}	P10 to P17, P21, P	23, P30 to P3	7, P40 to F	P47, P50, P53,	0		0.3V _{DD}	V
	V _{IL2}		64 to P67 ESET, P00 to P03, P20, P22, P24 to P26, P51, P52, 54 to P57		0		0.2V _{DD}	V	
	V _{IL3}	X1, X2				0		0.4	V
Output voltage,	V _{OH1}	$4.5 \text{ V} \leq V_{DD} \leq 5.5 \text{ V}$, Іон = -1 mA			V _{DD} - 1.0		V _{DD}	٧
high		Іон = -100 μА				VDD - 0.5		V _{DD}	V
Output voltage, low	V _{OL1}	P50 to P57, TO70 t	o TO75	5.0 V ≤ \ loL = 15	V _{DD} ≤ 5.5 V, mA		0.4	2.0	V
		P00 to P03, P20 to P30 to P37, P40 to P64 to P67		+	V _{DD} ≤ 5.5 V,			0.4	V
	V _{OL2}	$I_{OL} = 400 \ \mu A$						0.5	V
Input leakage current, high	ILIH1	Vin = Vdd		P20 to P P40 to P P64 to P	,			3	μΑ
				X1, X2	TO75, RESET			00	
Input leakage	ILIH2	V _{IN} = 0 V		<u> </u>	03, P10 to P17,			20 -3	μA μA
current, low				P20 to P P40 to P P64 to P	26, P30 to P37, 247, P50 to P57,				,
	ILIL2			X1, X2				-20	μΑ
Output leakage	Ісон	Vout = VDD		7, 7.2				3	μΑ
current, high Output leakage	ILOL	Vout = 0 V						-3	μΑ
Software pull-up	R ₂	Vin = 0 V				15	30	90	kΩ
resistor		P00 to P03, P20 to P57, P64 to P67	P26, P30 to P	37, P40 to) P47, P50 to				
Power supply current ^{Note 1}	I _{DD1}	8.38 MHz crystal oscillation operating mode	VDD = 5.0 V	±10% ^{Note 2}	When A/D converter stopped		15	30	mA
					When A/D converter operating		16	32	mA
	IDD2	8.38 MHz crystal oscillation HALT mode	V _{DD} = 5.0 V =	±10% ^{Note 2}	When peripheral function stopped		1.3	2.6	mA
					When peripheral function operating			7.3	mA
	I _{DD3}	STOP mode	V _{DD} = 5.0 V	±10%			0.1	30	μΑ
V _{PP} supply voltage	V _{PP1}	In normal operation	mode			0		0.2VDD	V

Notes 1. Refers to the total current flowing to the internal power supply $(V_{DD0} \text{ and } V_{DD1})$. The peripheral operation current is included, but the current flowing to the pull-up resistors of ports and the AV_{REF} pin is not.

2. High-speed mode operation (when the processor clock control register (PCC) is set to 00H).

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.


AC Characteristics

(1) Basic operation (T_A = -40 to +85°C, V_{DD} = 4.0 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time	Тсч	Operating with system clock	0.24		32	μs
(Min. instruction						
execution time)						
TI000, TI001,	f TI0		0		fx/64	MHz
TI010, TI011						
input frequency						
TI000, TI001,	tтіно		2/f _{sam} +			μs
TI010, TI011	ttilo		0.1 ^{Note}			
input high-/						
low-level width						
TI50, TI51, TI52	f TI5	8-/16-bit precision	0		4	MHz
input frequency						
TI50, TI51, TI52	t тін5	8-/16-bit precision	100			ns
input high-/	t TIL5					
low-level width						
Interrupt request	tinth	INTP0 to INTP7	1			μs
input high-/	tintl					
low-level width						
TOFF input	tтоғғн		2			μs
high-/low-level	t TOFFL					
width						
RESET input	trsL		10			μs
low-level width						

Note Selection of $f_{sam} = f_x$, $f_x/4$, $f_x/32$ is possible with bits 0 and 1 (PRM000, PRM001) of prescaler mode register 00 (PRM00) or with bits 0 and 1 (PRM010, PRM011) of prescaler mode register 01 (PRM01). Note that when selecting Tl000 (TM00) or Tl001 (TM01) valid edge as the count clock, $f_{sam} = f_x/16$.

Tcy vs VDD (System clock operation)

Supply voltage VDD [V]

(2) Read/write operation (T_A = -40 to +85°C, V_{DD} = 4.0 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.3tcy		ns
Address setup time	tads		20		ns
Address hold time	tadh		6		ns
Data input time from address	tadd1			(2 + 2n)tcy - 54	ns
	tADD2			(3 + 2n)tcy - 60	ns
Address output time from $\overline{RD} ↓$	trdad		0	100	ns
Data input time from RD ↓	t _{RDD1}			(2 + 2n)tcy - 87	ns
	tRDD2			(3 + 2n)tcy - 93	ns
Read data hold time	tпрн		0		ns
RD low-level width	t _{RDL1}		(1.5 + 2n)tcy - 33		ns
	tRDL2		(2.5 + 2n)tcy - 33		ns
$\overline{\text{WAIT}} \downarrow \text{ input time from } \overline{\text{RD}} \downarrow$	tndwt1			tcy - 43	ns
	tndwt2			tcy - 43	ns
$\overline{\mathrm{WAIT}} \downarrow \mathrm{input\ time\ from}\ \overline{\mathrm{WR}} \downarrow$	twrwt			0.5tcy - 25	ns
WAIT low-level width	twTL		(0.5 + 2n)tcy + 10	(2 + 2n)tcy	ns
Write data setup time	twos		60		ns
Write data hold time	twdн		6		ns
WR low-level width	twrL		(1.5 + 2n)tcy - 15		ns
Delay time from ASTB↓ to $\overline{\text{RD}}$ ↓	tastrd		6		ns
Delay time from ASTB↓ to WR↓	tastwr		2tcy - 15		ns
Delay time from RD↑ at external	t rdast		0.8tcy - 15	1.2tcy	ns
fetch to ASTB↑					
Write data output time from RD↑	trowd		40		ns
Write data output time from $\overline{WR} \!\!\downarrow$	twrwd		10	60	ns
Delay time from WAIT↑ to RD↑	twtrd		0.8tcy	2.5tcy + 25	ns
Delay time from WAIT↑ to WR↑	twrwr		0.8tcy	2.5tcy + 25	ns

- **Remarks** 1. tcy = Tcy/4
 - 2. n indicates the number of waits.
 - 3. $C_L = 100 \text{ pF}$ (C_L is the load capacitance of the AD0 to AD7, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{WAIT}}$, and ASTB pins.)

(3) Serial interface ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 4.0 \text{ to } 5.5 \text{ V}$)

(a) 3-wire serial I/O mode (SCK... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcy1		954			ns
SCK high-/low-level width	t _{KH1}		tkcy1/2 - 50			ns
	t _{KL1}					
SI setup time (to SCK↑)	tsıĸı		100			ns
SI hold time (from SCK↑)	tksi1		400			ns
Delay time from SCK ↓	tkso1	C = 100 pF ^{Note}			300	ns
to SO output						

Note C is the load capacitance of the $\overline{\text{SCK}}$ and SO output lines.

(b) 3-wire serial I/O mode (SCK... External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcy2		800			ns
SCK high-/low-level width	t _{KH2}		400			ns
	t _{KL2}					
SI setup time (to SCK↑)	tsik2		100			ns
SI hold time (from SCK↑)	tks12		400			ns
Delay time from SCK↓	tkso2	C = 100 pF ^{Note}			300	ns
to SO output						

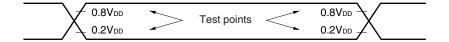
Note C is the load capacitance of the \overline{SCK} and SO output lines.

(c) UART mode (UART00) (Dedicated baud rate generator output)

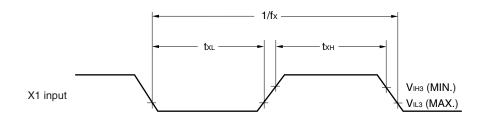
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					125000	bps

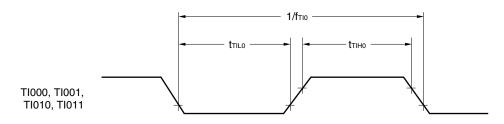
(d) UART mode (UART00) (Infrared data transfer mode)

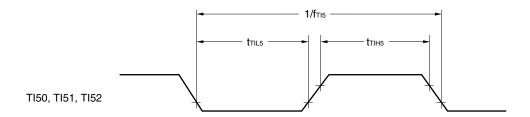
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					115200	bps
Bit rate allowable error					±0.87	%
Output pulse width			1.2		0.24/fbr ^{Note}	μs
Input pulse width			4/fx			μs


Note fbr: Set baud rate

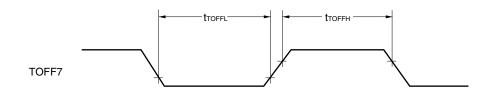
(e) UART mode (UART01) (Dedicated baud rate generator output)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					38400	bps

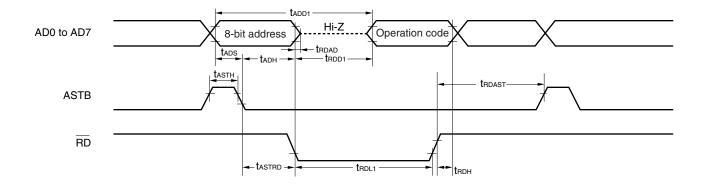

AC Timing Test Points (Excluding X1 Input)

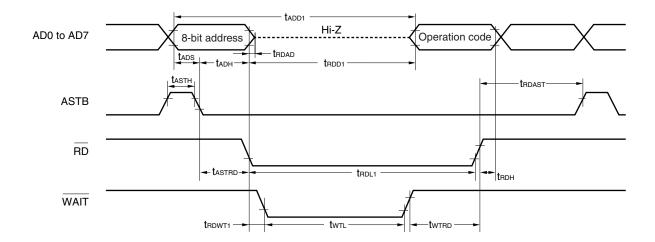


Clock Timing



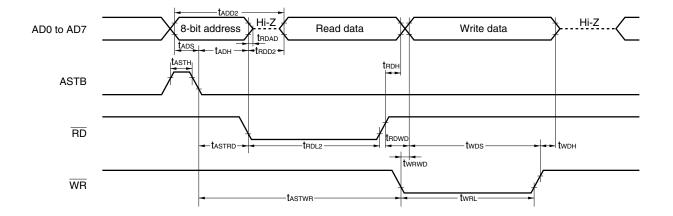
TI Timing


TOFF Timing

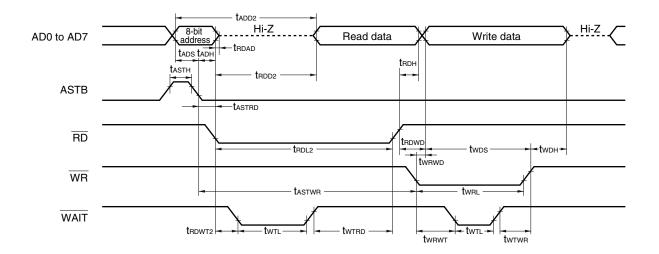


Read/Write Operation

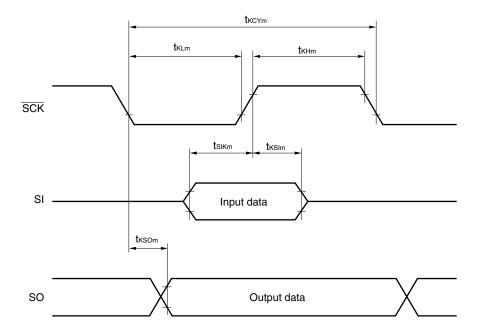
External fetch (no wait):



External fetch (wait insertion):



External data access (no wait):



External data access (wait insertion):

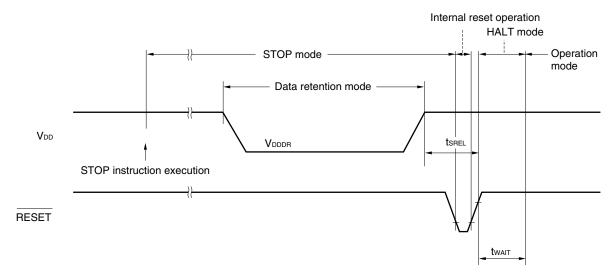
Serial Transfer Timing

3-wire serial I/O mode:

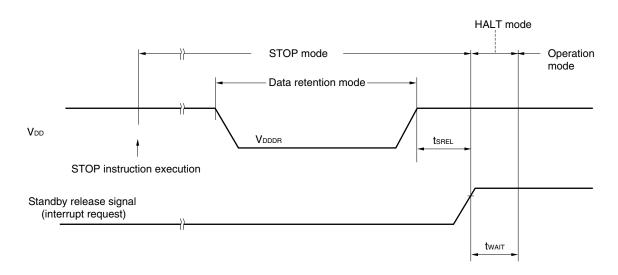
m = 1, 2

A/D Converter Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = AV_{DD} = 4.0 \text{ to } 5.5 \text{ V}$, $AV_{SS} = V_{SS} = 0 \text{ V}$)

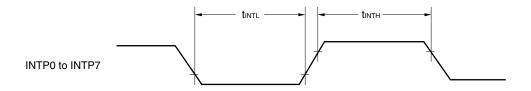
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			10	10	10	bit
Overall error ^{Note}		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$		±0.2	±0.4	%FSR
		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} < 4.0 \text{ V}$		±0.3	±0.6	%FSR
Conversion time	tconv	$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$	14		96	μs
		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} < 4.0 \text{ V}$	19		96	μs
Zero-scale error ^{Note}		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±0.4	%FSR
		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} < 4.0 \text{ V}$			±0.6	%FSR
Full-scale error ^{Note}		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±0.4	%FSR
		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} < 4.0 \text{ V}$			±0.6	%FSR
Non-linearity error		4.0 V ≤ AV _{REF} ≤ 5.5 V			±2.5	LSB
		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} < 4.0 \text{ V}$			±4.5	LSB
Differential non-linearity error		4.0 V ≤ AV _{REF} ≤ 5.5 V			±1.5	LSB
		2.7 V ≤ AV _{REF} < 4.0 V			±2.0	LSB
Analog input voltage	VIAN		0		AVREF	V
Reference voltage	AVREF		2.7		AV _{DD}	V
Resistance between AVREF and AVss	RREF	When A/D converter is not operating	20	40		kΩ

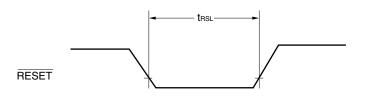

Note Excludes quantization error ($\pm 1/2$ LSB). This value is indicated as a ratio (%FSR) to the full-scale value.

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = -40 to +85°C)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	VDDDR		2.0		5.5	V
Data retention power supply current	IDDDR	VDDDR = 2.0 V		0.1	10	μΑ
Release signal set time	tsrel		0			μs
Oscillation stabilization	twait	Release by RESET		2 ¹⁷ /fx		ms
wait time		Release by interrupt request		Note		ms

Note Selection of 2^{12} /fx and 2^{14} /fx to 2^{17} /fx is possible with bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS).


Data Retention Timing (STOP Mode Release by RESET)


Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Request Signal)

Interrupt Request Input Timing

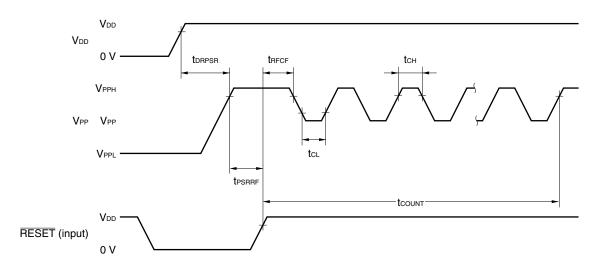
RESET Input Timing

Flash Memory Programming Characteristics

(Ta = 10 to 40° C, Vdd = AVdd = 4.0 to 5.5 V, Vss = AVss = 0 V, Vpp = 9.7 to 10.3 V)

(1) Basic characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operation frequency	fx		1.0		8.38	MHz
Supply voltage	V _{DD}		4.0		5.5	V
	VPPL	When VPP low-level is detected	0		0.2V _{DD}	V
	V _{PP}	When VPP high-level is detected	0.8V _{DD}	V _{DD}	1.2V _{DD}	V
	V _{PPH}	When VPP high-voltage is detected	9.0	10.0	10.5	V
		When programming	9.7	10.0	10.3	٧
Number of rewrites	Cwrt		20 ^{Note}	·		Times
Programming temperature	TPRG		10		40	°C


Note Operation is not guaranteed for over 20 rewrites.

Remark After execution of the program command, execute the verify command and check that the writing has been completed normally.

(2) Serial write operation characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Set time from V _{DD} ↑ to V _{PP} ↑	torpsr	V _{PP} high voltage	0			μs
Set time from V _{PP} ↑ to RESET↑	tpsrrf	V _{PP} high voltage	1.0			μs
V _{PP} count start time from RESET↑	trfcf	V _{PP} high voltage	1.0			μs
Count execution time	tcount				20	ms
VPP counter high-level width	tсн		8.0			μs
VPP counter low-level width	tcL		8.0			μs
VPP counter noise elimination width	tnfw			40		ns

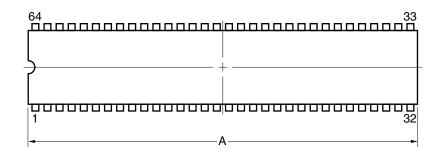
Flash Write Mode Setting Timing

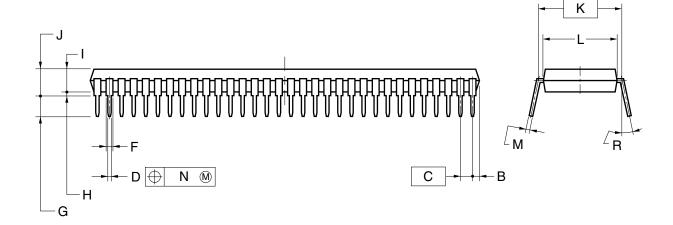
(3) Write erase characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{PP} supply voltage	V _{PP2}	During flash memory programming	9.7	10.0	10.3	V
V _{DD} supply current	IDD	When VPP = VPP2, fxx = 8.38 MHz			40	mA
VPP supply current	IPP	When VPP = VPP2			100	mA
Step erase time	Ter	Note 1	0.199	0.2	0.201	s
Overall erase time per area	Tera	When step erase time = 0.2 s ^{Note 2}			20	s/area
Write-back time	Twb	Note 3	49.4	50	50.6	ms
Number of write-backs per write-back command	Cwb	When write-back time = 50 ms ^{Note 4}			60	Times/ write- back command
Number of erase/ write-backs	Cerwb				16	Times
Step write time	Twr	Note 5	48	50	52	μs
Overall write time per word	Twrw	When step write time = 50 μ s (1 word = 1 byte) ^{Note 6}	48		520	μs/ word
Number of rewrites per area	Cerwr	1 erase + 1 write after erase = 1 rewrite ^{Note 7}		20		Times/ area

Notes 1. The recommended setting value for the step erase time is 0.2 s.

- 2. The prewrite time before erasure and the erase verify time (write-back time) is not included.
- 3. The recommended setting value for the write-back time is 50 ms.
- 4. Write-back is executed once by the issuance of the write-back command. Therefore, the number of retries must be the maximum value minus the number of commands issued.
- **5.** Recommended step write setting value is 50 μ s.
- 6. The actual write time per word is 100 μ s longer. The internal verify time during or after a write is not included.
- 7. When a product is first written after shipment, "erase \rightarrow write" and "write only" are both taken as one rewrite.

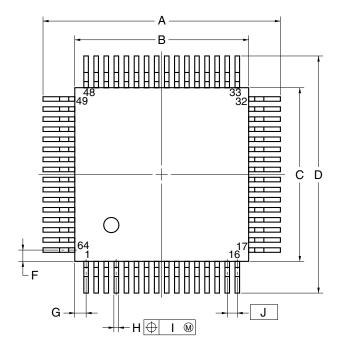

Example: P: Write, E: Erase


Shipped product \rightarrow $P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$: 3 rewrites Shipped product \rightarrow E \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P: 3 rewrites

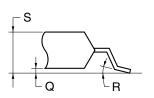
- Remarks 1. The range of the operating clock during flash memory programming is the same as the range during normal operation.
 - 2. When using the PG-FP3, the time parameters that need to be downloaded from the parameter files for write/erase are automatically set. Unless otherwise directed, do not change the set values.

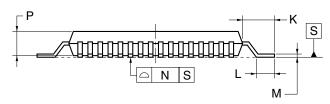
8. PACKAGE DRAWINGS

64-PIN PLASTIC SDIP (19.05mm(750))


NOTES

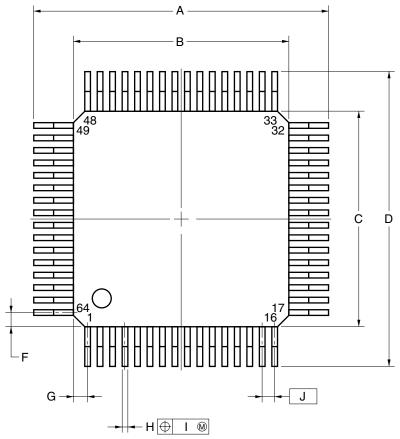
- Each lead centerline is located within 0.17 mm of its true position (T.P.) at maximum material condition.
- 2. Item "K" to center of leads when formed parallel.

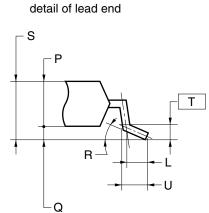

ITEM	MILLIMETERS
Α	$58.0^{+0.68}_{-0.20}$
В	1.78 MAX.
С	1.778 (T.P.)
D	0.50±0.10
F	0.9 MIN.
G	3.2±0.3
Н	0.51 MIN.
1	$4.05^{+0.26}_{-0.20}$
J	5.08 MAX.
K	19.05 (T.P.)
L	17.0±0.2
М	$0.25^{+0.10}_{-0.05}$
N	0.17
R	0 ~ 15°

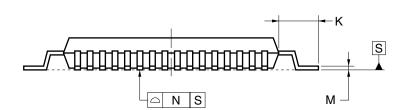

P64C-70-750A,C-4

64-PIN PLASTIC QFP (14x14)

detail of lead end


NOTE


Each lead centerline is located within 0.15 mm of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS
A	17.6±0.4
В	14.0±0.2
С	14.0±0.2
D	17.6±0.4
F	1.0
G	1.0
Н	$0.37^{+0.08}_{-0.07}$
I	0.15
J	0.8 (T.P.)
K	1.8±0.2
L	0.8±0.2
М	$0.17^{+0.08}_{-0.07}$
N	0.10
Р	2.55±0.1
Q	0.1±0.1
R	5°±5°
S	2.85 MAX.
	P64GC-80-AB8-

P64GC-80-AB8-5

64-PIN PLASTIC LQFP (14x14)

NOTE

Each lead centerline is located within 0.20 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	17.2±0.2
В	14.0±0.2
С	14.0±0.2
D	17.2±0.2
F	1.0
G	1.0
Н	$0.37^{+0.08}_{-0.07}$
I	0.20
J	0.8 (T.P.)
K	1.6±0.2
L	0.8
М	$0.17^{+0.03}_{-0.06}$
N	0.10
Р	1.4±0.1
Q	0.127±0.075
R	3°+4°
S	1.7 MAX.
Т	0.25
U	0.886±0.15
	P64GC-80-8BS

9. RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions.

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

For details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

Table 9-1. Surface Mounting Type Soldering Conditions

(1) μ PD78F0988AGC-AB8: 64-pin plastic QFP (14 \times 14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Three times or less	IR35-00-3
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Three times or less	VP15-00-3
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	

Caution Do not use different soldering methods together (except for partial heating).

(2) μ PD78F0988AGC(A)-AB8: 64-pin plastic QFP (14 \times 14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less	IR35-00-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less	VP15-00-2
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Caution Do not use different soldering methods together (except for partial heating).

Table 9-2. Insertion Type Soldering Conditions

 μ PD78F0988ACW: 64-pin plastic SDIP (19.05 mm (750))

Soldering Method	Soldering Condition
Wave soldering (only for pins)	Solder bath temperature: 260°C max., Time: 10 seconds max.
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)

Caution Apply wave soldering only to the pins and be careful not to bring solder into direct contact with the package.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD780988 Subseries. Also refer to (5) Cautions on Using Development Tools.

(1) Software package

(2) Language processing software

RA78K0	Assembler package common to 78K/0 Series	
CC78K0	C compiler package common to 78K/0 Series	
DF780988	Device file for μPD780988 Subseries	
CC78K0-L	C compiler library source file common to 78K/0 Series	

(3) Flash memory writing tools

Flashpro III (part No. FL-PR3, PG-FP3)	Flash programme	r dedicated to on-chip flash memory microcontroller
FA-64CW	· ·	memory writing. Used connected to Flashpro III.
FA-64GC	• FA-64CW:	for 64-pin plastic SDIP (CW type)
FA-64GC-8BS-A	• FA-64GC:	for 64-pin plastic QFP (GC-AB8 type)
	• FA-64GC-8BS	S-A: for 64-pin plastic LQFP (GC-8BS type)

(4) Debugging tools

• When IE-78K0-NS, IE-78K0-NS-A in-circuit emulator is used

IE-78K0-NS	In-circuit emulator common to 78K/0 Series
IE-78K0-NS-PA	Performance board for enhancement and expansion of IE-78K0-NS functions
IE-78K0-NS-A	Combination of IE-78K0-NS and IE-78K0-NS-PA
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS
IE-70000-98-IF-C	Interface adapter necessary when PC-9800 series PC (except notebook type) is used as host machine (C bus supported)
IE-70000-CD-IF-A	PC card and interface cable when notebook PC is used as host machine (PCMCIA socket supported)
IE-70000-PC-IF-C	Interface adapter necessary when using IBM PC/AT™ or compatible as host machine (ISA bus supported)
IE-70000-PCI-IF-A	Adapter necessary when using PCI bus incorporated personal computer as host machine
IE-780988-NS-EM4, IE-78K0-NS-P01	Emulation board and I/O board to emulate μ PD780988 Subseries
NP-64CW	Emulation probe for 64-pin plastic SDIP (CW type)
NP-64GC NP-64GC-TQ NP-H64GC-TQ	Emulation probe for 64-pin plastic QFP (GC-AB8 type), 64-pin plastic LQFP (GC-8BS type)
EV-9200GC-64	Conversion socket to connect the NP-64GC and a target system board on which the 64-pin plastic QFP (GC-AB8 type), 64-pin plastic LQFP (GC-8BS type) can be mounted
TGC-064SAP	Conversion adapter to connect the NP-64GC-TQ or NP-H64GC-TQ and a target system board on which the 64-pin plastic QFP (GC-AB8 type), 64-pin plastic LQFP (GC-8BS type) can be mounted
ID78K0-NS	Integrated debugger for IE-78K0-NS
SM78K0	System simulator common to 78K/0 Series
DF780988	Device file for μ PD780988 Subseries

• When IE-78001-R-A in-circuit emulator is used

IE-78001-R-A	In-circuit emulator common to 78K/0 Series
IE-70000-98-IF-C	Adapter necessary when PC-9800 series PC (except notebook type) is used as host machine (C bus supported)
IE-70000-PC-IF-C	Adapter necessary when using IBM PC/AT or compatible as host machine (ISA bus supported)
IE-70000-PCI-IF-A	Adapter necessary when using PCI bus incorporated personal computer as host machine
IE-78000-R-SV3	Interface adapter and cable when using EWS as host machine
IE-780988-NS-EM4, IE-78K0-NS-P01	Emulation board and I/O board to emulate μ PD780988 Subseries
IE-78K0-R-EX1	Emulation probe conversion board necessary when using IE-780988-NS-EM4 and IE-78K0-NS-P01 on IE-78001-R-A
EP-78240CW-R	Emulation probe for 64-pin plastic SDIP (CW type)
EP-78240GC-R	Emulation probe for 64-pin plastic QFP (GC-AB8 type), 64-pin plastic LQFP (GC-8BS type)
EV-9200GC-64	Socket to connect target system board made for mounting 64-pin plastic QFP (GC-AB8 type) or 64-pin plastic LQFP (GC-8BS type) and EP-78240GC-R
ID78K0	Integrated debugger for IE-78001-R-A
SM78K0	System simulator common to 78K/0 Series
DF780988	Device file for μPD780988 Subseries

(5) Real-time OS

RX78K0	Real-time OS for 78K/0 Series
--------	-------------------------------

(6) Cautions on using development tools

- The ID78K0-NS, ID78K0, and SM78K0 are used in combination with the DF780988.
- The CC78K0 and RX78K0 are used in combination with the RA78K0 or DF780988.
- The FL-PR3, FA-64CW, FA-64GC, NP-64CW, NP-64GC, NP-64GC-TQ, and NP-H64GC-TQ are products made by Naito Densei Machida Mfg. Co., Ltd. (TEL +81-45-475-4191).
- The TGC-064SAP is a product made by TOKYO ELETECH CORPORATION. For further information, contact: Daimaru Kogyo, Ltd.

Tokyo Electronics Department (TEL +81-3-3820-7112)

Osaka Electronics Department (TEL +81-6-6244-6672)

- For third-party development tools, see the Single-Chip Microcontroller Development Tool Selection Guide (U11069E).
- The host machine and OS suitable for each software are as follows.

Host Machine [OS]	PC PC-9800 series [Japanese Windows™] IBM PC/AT and compatibles	EWS HP9000 series 700 [™] [HP-UX [™]] SPARCstation [™] [SunOS [™] , Solaris [™]]
Software	[Japanese/English Windows]	of Artostation [outloo , outlis]
RA78K0	√Note	V
CC78K0	\sqrt{Note}	√
ID78K0-NS	√	-
ID78K0	√	-
SM78K0	√	-
RX78K0	√Note	√

Note DOS-based software

(7) Cautions on designing target system

The connection condition diagrams for an emulation probe, conversion connector, and conversion socket or conversion adapter are shown below. Design the system taking into consideration the dimension or shape, etc. of the parts to be mounted on the target system.

Table A-1. Distance Between In-Circuit Emulator and Conversion Socket

Emulation Probe	Conversion Adapter, Conversion Socket	Distance Between In-Circuit Emulator and Conversion Socket or Conversion Adapter
	Conversion Socket	and Conversion Socket of Conversion Adapter
NP-64GC	EV-9200GC-64	170 mm
NP-64GC-TQ	TGC-064SAP	170 mm
NP-H64GC-TQ		370 mm
NP-64CW	_	160 mm

Figure A-1. Distance Between In-Circuit Emulator and Conversion Socket or Conversion Adapter (1)

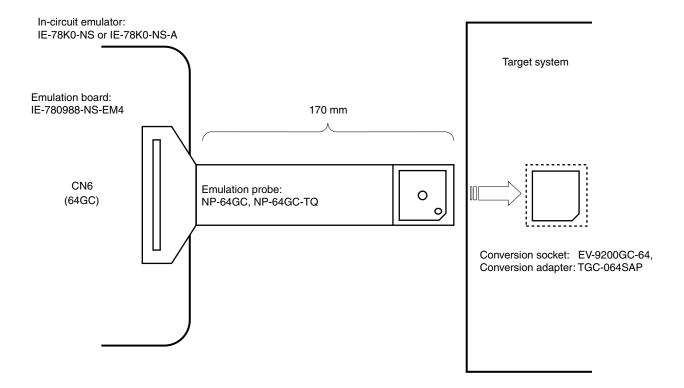


Figure A-2. Distance Between In-Circuit Emulator and Conversion Socket or Conversion Adapter (2)

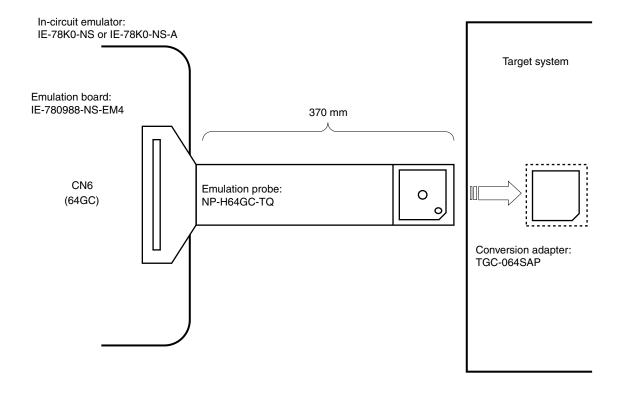
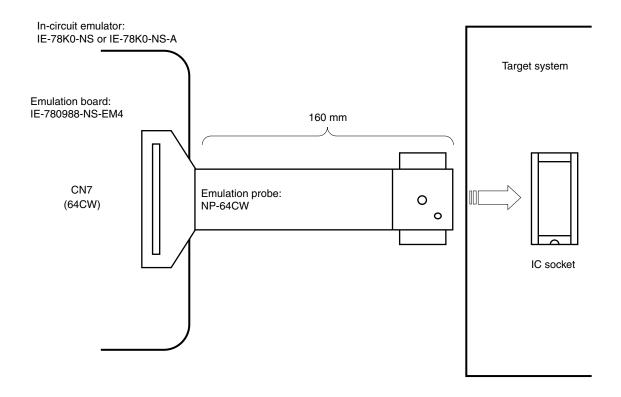



Figure A-3. Distance Between In-Circuit Emulator and Conversion Socket or Conversion Adapter (3)

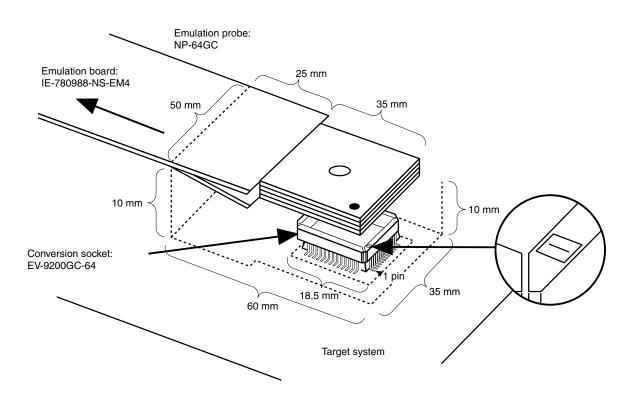
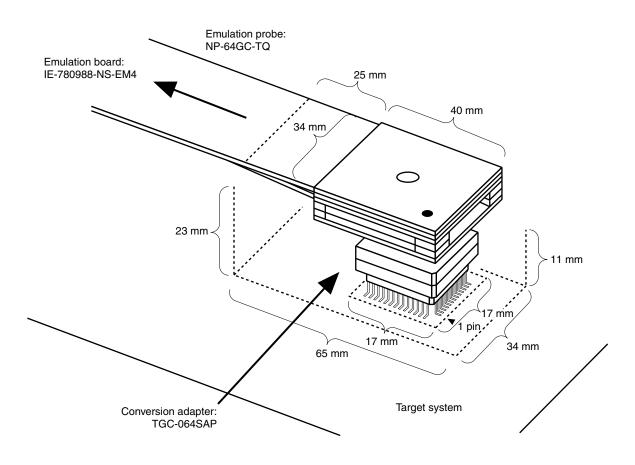



Figure A-4. Connection Condition of Target System (1)

Figure A-5. Connection Condition of Target System (2)

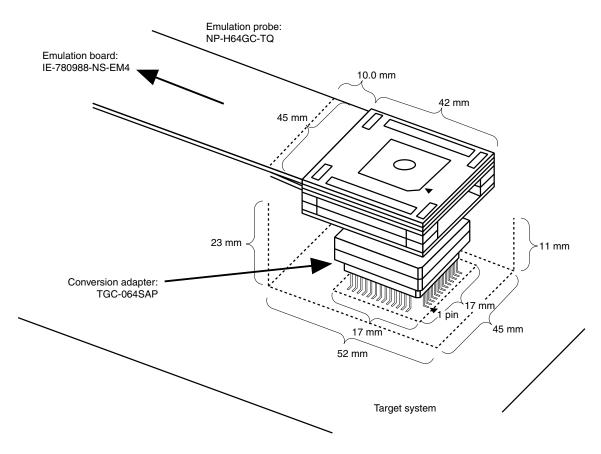
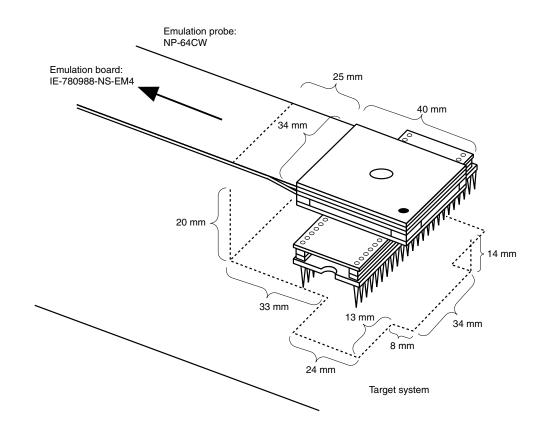



Figure A-6. Connection Condition of Target System (3)

APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

· Documents related to devices

Document Name	Document No.
μPD780988 Subseries User's Manual	U13029E
μPD780982, 780983, 780984, 780986, 780988, 780982(A), 780983(A), 780984(A), 780986(A), 780988(A) Data Sheet	U12804E
μPD78F0988A, 78F0988A(A) Data Sheet	This manual
μPD780988 Subseries Inverter Control Application Note	U13119E
78K/0 Series Instructions User's Manual	U12326E

• Documents related to development software tools (user's manuals)

Document Name		Document No.
RA78K0 Assembler Package	Operation	U14445E
	Language	U14446E
	Structured Assembly Language	U11789E
CC78K0 C Compiler	Operation	U14297E
	Language	U14298E
SM78K0S, SM78K0 System Simulator Ver. 2.10 or Later	Operation (Windows Based)	U14611E
SM78K Series System Simulator Ver. 2.10 or Later	External Part User Open Interface Specifications	U15006E
ID78K0-NS Integrated Debugger Ver. 2.00 or Later	Operation (Windows Based)	U14379E
ID78K0 Integrated Debugger Windows Based	Reference	U11539E
	Guide	U11649E
RX78K0 Real-Time OS	Fundamentals	U11537E
	Installation	U11536E
Project Manager Ver. 3.12 or Later (Windows Based)		U14610E

• Documents related to development hardware tools (user's manuals)

Document Name	Document No.
IE-78K0-NS In-Circuit Emulator	U13731E
IE-78K0-NS-A In-Circuit Emulator	U14889E
IE-78001-R-A In-Circuit Emulator	U14142E
IE-78K0-R-EX1 In-Circuit Emulator	To be prepared

• Documents related to flash memory writing

Document Name	Document No.
PG-FP3 Flash Memory Programmer User's Manual	U13502E

· Other related documents

Document Name	Document No.
SEMICONDUCTORS SELECTION GUIDE - Products & Packages -	X13769E
Semiconductor Device Mounting Technology Manual	C10535E
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

NOTES FOR CMOS DEVICES -

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

FIP and IEBus are trademarks of NEC Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/ or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- · Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-3067-5800 Fax: 01-3067-5899

NEC Electronics (France) S.A.

Madrid Office Madrid, Spain Tel: 091-504-2787 Fax: 091-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore

Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Guarulhos-SP, Brasil Tel: 11-6462-6810 Fax: 11-6462-6829

J01.2

- The information in this document is current as of September, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).