

MOS INTEGRATED CIRCUIT μ PD78F0078, 78F0078Y

8-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The μ PD78F0078 is a product of the μ PD780078 Subseries in the 78K/0 Series, and equivalent to the μ PD780078 with a flash memory in place of internal ROM.

The μ PD78F0078Y is a product of the μ PD780078Y Subseries in the 78K/0 Series, and equivalent to the μ PD780078Y with a flash memory in place of internal ROM.

This device can be programmed without being removed from the substrate.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

μPD780076, 780078, 780076Y, 780078Y Subseries User's Manual: U14260E 78K/0 Series User's Manual – Instructions: U12326E

FEATURES

- Pin-compatible with mask ROM versions (except VPP and HS pins)
- Flash memory: 60 KB
 - Internal high-speed RAM: 1024 bytes
 - Internal expansion RAM: 1024 bytes
 - Supply voltage: VDD = 1.8 to 5.5 V

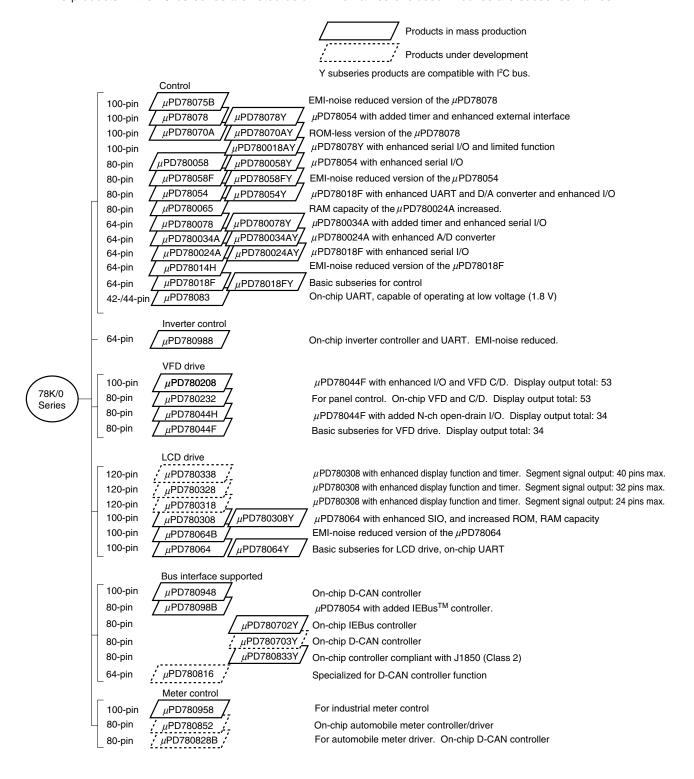
Remark For the difference between the flash memory version and the mask ROM version, refer to 4. DIFFERENCES BETWEEN µPD78F0078, 78F0078Y AND MASK ROM VERSION.

APPLICATIONS

Personal computers, air conditioners, dash boards, air bags, car audios, etc.

ORDERING INFORMATION

Part Number	Package
μPD78F0078GC-AB8	64-pin plastic QFP (14 \times 14)
μ PD78F0078GK-9ET	64-pin plastic TQFP (12 \times 12)
μ PD78F0078YGC-AB8	64-pin plastic QFP (14 \times 14)
μPD78F0078YGK-9ET	64-pin plastic TQFP (12 \times 12)


The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

★ 78K/0 SERIES LINEUP

The products in the 78K/0 series are listed below. The names enclosed in boxes are subseries names.

Remark VFD (Vacuum Fluorescent Display) is referred to as FIP[™] (Fluorescent Indicator Panel) in some documents, but the functions of the two are the same

The major functional differences among the subseries are shown below.

Non Y Subseries

	Function	ROM Capacity		Tin	ner			10-Bit	8-Bit	Serial Interface	I/O	V _{DD}	External
Subseries	Name	(Bytes)	8-Bit	16-Bit	Watch	WDT	A/D	A/D	D/A			Value	Expansion
Control	μPD78075B	32 K to 40 K	4 ch	1 ch	1 ch	1 ch	8 ch	_	2 ch	3 ch (UART: 1 ch)	88	1.8 V	√
	μPD78078	48 K to 60 K											
	μPD78070A	_									61	2.7 V	
	μPD780058	24 K to 60 K	2 ch							3 ch (time-division UART: 1 ch)	68	1.8 V	
	μ PD78058F	48 K to 60 K								3 ch (UART: 1 ch)	69	2.7 V	
	μPD78054	16 K to 60 K										2.0 V	
	μPD780065	40 K to 48 K							_	4 ch (UART: 1 ch)	60	2.7 V	
	μPD780078	48 K to 60 K		2 ch			_	8 ch		3 ch (UART: 2 ch)	52	1.8 V	
	μPD780034A	8 K to 32 K		1 ch						3 ch (UART: 1 ch)	51		
	μPD780024A						8 ch	-					
	μPD78014H									2 ch	53		
	μPD78018F	8 K to 60 K											
	μ PD78083	8 K to 16 K		-	-					1 ch (UART: 1 ch)	33		_
Inverter control	μPD780988	16 K to 60 K	3 ch	Note	-	1 ch	_	8 ch	-	3 ch (UART: 2 ch)	47	4.0 V	√
VFD	μPD780208	32 K to 60 K	2 ch	1 ch	1 ch	1 ch	8 ch	_	-	2 ch	74	2.7 V	_
drive	μPD780232	16 K to 24 K	3 ch	_	_		4 ch				40	4.5 V	
	μPD78044H	32 K to 48 K	2 ch	1 ch	1 ch		8 ch			1 ch	68	2.7 V	
	μPD78044F	16 K to 40 K								2 ch			
LCD	μPD780338	48 K to 60 K	3 ch	2 ch	1 ch	1 ch	_	10 ch	1 ch	2 ch (UART: 1 ch)	54	1.8 V	_
drive	μPD780328										62		
	μPD780318										70		
	μPD780308	48 K to 60 K	2 ch	1 ch			8 ch	_	_	3 ch (time-division UART: 1 ch)	57	2.0 V	
	μPD78064B	32 K								2 ch (UART: 1 ch)			
	μPD78064	16 K to 32 K											
Bus	μPD780948	60 K	2 ch	2 ch	1 ch	1 ch	8 ch	-	-	3 ch (UART: 1 ch)	79	4.0 V	√
interface supported	μPD78098B	40 K to 60 K		1 ch					2 ch		69	2.7 V	_
	μPD780816	32 K to 60 K		2 ch			12 ch		_	2 ch (UART: 1 ch)	46	4.0 V	
Meter control	μPD780958	48 K to 60 K	4 ch	2 ch	-	1 ch	-	-	-	2 ch (UART: 1 ch)	69	2.2 V	-
Dash	μPD780852	32 K to 40 K	3 ch	1 ch	1 ch	1 ch	5 ch	-	_	3 ch (UART: 1 ch)	56	4.0 V	-
board control	μPD780828B	32 K to 60 K								2 ch (UART: 1 ch)	59		

Note 16-bit timer: 2 channels 10-bit timer: 1 channel

Y Subseries

	Function	ROM Capacity		Tin	ner		8-Bit	10-Bit	8-Bit	Serial Interface	I/O	V _{DD}	External
Subserie	es Name	(Bytes)	8-Bit	16-Bit	Watch	WDT	A/D	A/D	D/A			Value	Expansion
Control	μPD78078Y	48 K to 60 K	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1 ch,	88	1.8 V	√
	μPD78070AY	_								I ² C: 1 ch)	61	2.7 V]
	μPD780018AY	48 K to 60 K							_	3 ch (I ² C: 1 ch)	88		
	μPD780058Y	24 K to 60 K	2 ch						2 ch	3 ch (time division UART: 1 ch, l ² C: 1 ch)	68	1.8 V	
	μPD78058FY	48 K to 60 K								3 ch (UART: 1 ch,	69	2.7 V	
	μPD78054Y	16 K to 60 K								I ² C: 1 ch)		2.0 V]
	μPD780078Y	48 K to 60 K		2 ch			_	8 ch	-	4 ch (UART: 2 ch, I ² C: 1 ch)	52	1.8 V	
	μPD780034AY	8 K to 32 K		1 ch						3 ch (UART: 1 ch,	51		
	μPD780024AY						8 ch	_		I ² C: 1 ch)			
	μPD78018FY	8 K to 60 K								2 ch (I ² C: 1 ch)	53		
LCD drive	μPD780308Y	48 K to 60 K	2 ch	1 ch	1 ch	1 ch	8 ch	-	-	3 ch (time division UART: 1 ch, I ² C: 1 ch)	57	2.0 V	_
	μPD78064Y	16 K to 32 K								2 ch (UART: 1 ch, I ² C: 1 ch)			
For bus	μPD780702Y	60 K	3 ch	2 ch	1 ch	1 ch	16 ch	-	-	4 ch (UART: 1 ch,	67	3.5 V	-
interface	μPD780703Y									I ² C: 1 ch)			
	μPD780833Y										65	4.5 V	

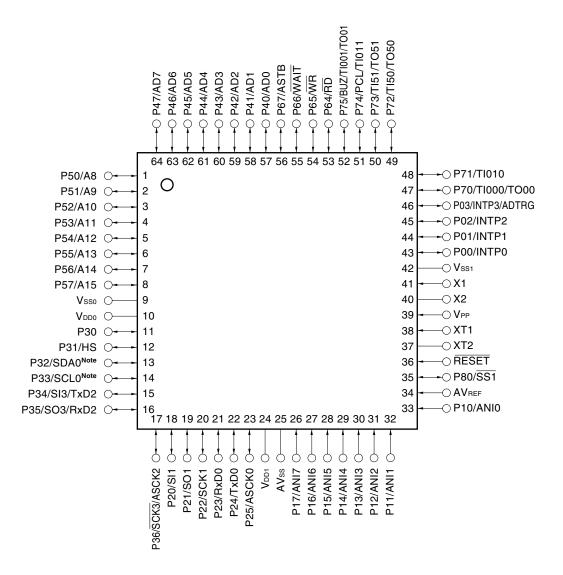
Remark The functions of non Y subseries and Y subseries products are the same, except for the serial interface.

4

OVERVIEW OF FUNCTIONS

	Item	μPD78F0078	μPD78F0078Y					
Internal	Flash memory	60 KB						
memory	High-speed RAM	1024 bytes						
	Expansion RAM	1024 bytes						
Memory space	ce	64 KB						
General-purp	ose registers	8 bits \times 32 registers (8 bits \times 8 registers \times 4	banks)					
Minimum instr	ruction execution time	On-chip minimum instruction execution time	variable function					
	When main system clock selected	0.24 μs/0.48 μs/0.95 μs/1.91 μs/3.81 μs (@8	3.38 MHz operation)					
	When subsystem clock selected	122 μs (@32.768 kHz operation)						
Instruction se	ot	 16-bit operation Multiply/divide (8 bits × 8 bits,16 bits ÷ 8 bit Bit manipulation (set, reset, test, Boolean of BCD adjust, etc. 						
I/O ports		Total: 52 • CMOS input: 8						
		• CMOS Iriput. 6 • CMOS I/O: 40 • N-ch open-drain I/O: 4						
A/D converte	r	10-bit resolution × 8 channels Low-voltage operation available: AV _{DD} = 2.2 to 5.5 V						
Serial interfa	ce	 3-wire serial I/O mode: 1 channel UART mode: 1 channel 3-wire serial I/O/UART mode selectable^{Note}: 1 channel 	3-wire serial I/O mode: 1 channel UART mode: 1 channel 3-wire serial I/O/UART mode selectable ^{Note} : 1 channel I ² C bus mode: 1 channel					
Timers		16-bit timer/event counter: 2 channels 8-bit timer/event counter: 2 channels Watch timer: 1 channel Watchdog timer: 1 channel						
Timer outputs	S	4 (8-bit PWM output capable: 2)						
Clock output		65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.10 MHz, 4.19 MHz, 8.38 MHz (@8.38 MHz operation with main system clock) 32.768 kHz (@32.768 kHz operation with subsystem clock)						
Buzzer outpu	it	1.02 kHz, 2.05 kHz, 4.10 kHz, 8.19 kHz (@8	3.38 MHz operation with main system clock)					
Vectored interrupt	Maskable	Internal: 18 External: 5	Internal: 19 External: 5					
source	Non-maskable	Internal: 1						
	Software	1						
Power supply	voltage	V _{DD} = 1.8 to 5.5 V						
Operating an	nbient temperature	T _A = -40 to +85°C						
Package		• 64-pin plastic QFP (14 × 14) • 64-pin plastic TQFP (12 × 12)						

Note Pins are multiplexed. Select either of these interfaces.


CONTENTS

1.	PIN CONFIGURATION (TOP VIEW)	/
2.	BLOCK DIAGRAM	9
3.	PIN FUNCTIONS	10
	3.1 Port Pins	10
	3.2 Non-Port Pins	
	3.3 Pin I/O Circuits and Recommended Connection of Unused Pins	13
4.	DIFFERENCES BETWEEN μ PD78F0078, 78F0078Y AND MASK ROM VERSION	15
5.	MEMORY SIZE SWITCHING REGISTER (IMS)	16
6.	INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)	17
7.	FLASH MEMORY PROGRAMMING	18
	7.1 Selection of Communication Mode	18
	7.2 Function of Flash Memory Programming	19
	7.3 Connection of Flashpro III	19
8.	ELECTRICAL SPECIFICATIONS	21
9.	PACKAGE DRAWINGS	44
10	0. RECOMMENDED SOLDERING CONDITIONS	46
ΑF	PPENDIX A. DEVELOPMENT TOOLS	47
٨٥	DDENDLY R. DELATED DOCUMENTS	5 4

1. PIN CONFIGURATION (Top View)

- 64-pin plastic QFP (14 × 14)
 μPD78F0078GC-AB8, 78F0078YGC-AB8
- 64-pin plastic TQFP (12 × 12)
 μPD78F0078GK-9ET, 78F0078YGK-9ET

Note SDA0 and SCL0 are only provided on the μ PD78F0078Y.

Cautions 1. Connect the VPP pin directly to Vsso or Vss1 in normal operation mode.

2. Connect the AVss pin to Vsso.

Remark When used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} individually and connecting V_{SS0} and V_{SS1} to different ground lines, is recommended.

A8 to A15: Address bus PCL: Programmable clock

AD0 to AD7: Address/data bus RD: Read strobe
ADTRG: AD trigger input RESET: Reset

ANI0 to ANI7: Analog input RxD0, RxD2: Receive data

ASCK0, ASCK2: Asynchronous serial clock SCK1, SCK3, SCL0: Serial clock

ASTB: Address strobe SDA0: Serial data

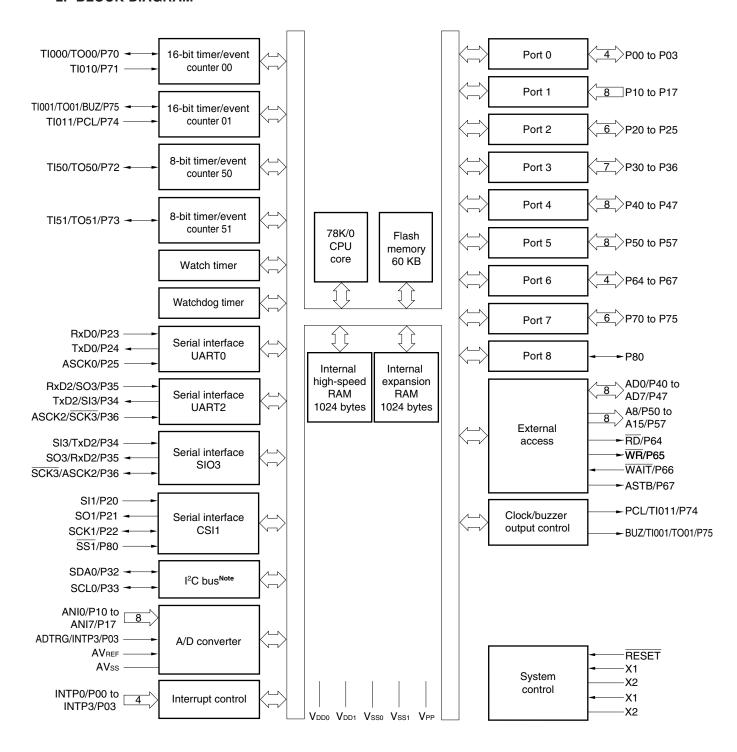
AVREF: Analog reference voltage SI1, SI3: Serial input AVss: Analog ground SO1, SO3: Serial output

BUZ: Buzzer output SS1: Serial interface chip select input

HS: Handshake output TI000, TI010, TI001,

INTP0 to INTP3: External interrupt input TI011, TI50, TI51: Timer input P00 to P03: Port 0 TO00, TO01, TO50, TO51: Timer output P10 to P17: Port 1 TxD0, TxD2: Transmit data P20 to P25: Port 2 VDD0, VDD1: Power supply

P30 to P36: Port 3 VPP: Programming power supply


P40 to P47: Port 4 $\frac{V_{SS0}, V_{SS1}}{WAIT}$: Ground P50 to P57: Port 5 WAIT: Wait

P64 to P67: Port 6 WR: Write strobe

P70 to P75: Port 7 X1, X2: Crystal (main system clock)
P80: Port 8 XT1, XT2: Crystal (subsystem clock)

2. BLOCK DIAGRAM

Note I²C BUS is only provided on the μ PD78F0078Y.

3. PIN FUNCTIONS

3.1 Port Pins (1/2)

Pin Name	I/O		Function	After	Alternate
				Reset	Function
P00	I/O	Port 0 4-bit I/O port.	Input	INTP0	
P01		Input/output can be specified in		INTP1	
P02			r can be specified by a software setting.		INTP2
P03					INTP3/ADTRG
P10 to P17	Input	Port 1 8-bit input only port.		Input	ANI0 to ANI7
P20	I/O	Port 2		Input	SI1
P21		6-bit I/O port.	4 hisis		SO1
P22		Input/output can be specified in Use of an on-chip pull-up resisto	r can be specified by a software setting.		SCK1
P23					RxD0
P24					TxD0
P25					ASCK0
P30	I/O	Port 3	N-ch open-drain I/O port.	Input	_
P31		7-bit I/O port. Input/output can be specified	LEDs can be driven directly.		HS
P32		in 1-bit units.			SDA0 ^{Note}
P33					SCL0 ^{Note}
P34			Use of an on-chip pull-up resistor can be		SI3/TxD2
P35			specified by a software setting-		SO3/RxD2
P36					SCK3/ASCK2
P40 to P47	I/O	Port 4 8-bit I/O port. Input/output can be specified in Use of an on-chip pull-up resisto The interrupt request flag (KRIF)	Input	AD0 to AD7	
P50 to P57	I/O	Port 5 8-bit I/O port. LEDs can be driven directly. Input/output can be specified in Use of an on-chip pull-up resisto	Input	A8 to A15	
P64	I/O	Port 6		Input	RD
P65		4-bit I/O port. Input/output can be specified in	1-hit units		WR
P66		I .	r can be specified by a software setting.		WAIT
P67					ASTB

Note These pins are only provided on the μ PD78F0078Y.

3.1 Port Pins (2/2)

Pin Name	I/O	Function	After	Alternate
			Reset	Function
P70	I/O	Port 7	Input	TI000/TO00
P71		6-bit I/O port.		TI010
P72		Input/output can be specified 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.		TI50/TO50
P73				TI51/TO51
P74				TI011/PCL
P75				TI001/TO01/ BUZ
P80	I/O	Port 8 1-bit I/O port. Input/output can be specified 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input	SS1

3.2 Non-Port Pins (1/2)

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0-INTP2	Input	External interrupt request input for which the valid edge (rising edge,	Input	P00-P02
INTP3		falling edge, or both rising edge and falling edges) can be specified.		P03/ADTRG
SI1	Input	Serial interface serial data input.	Input	P20
SI3				P34/TxD2
SO1	Output	Serial interface serial data output.	Input	P21
SO3				P35/RxD2
SDA0 ^{Note}	I/O	Serial interface serial data input/output.	Input	P32
SCK1	I/O	Serial interface serial clock input/output.	Input	P22
SCK3				P36/ASCK2
SCL0 ^{Note}				P33
SS1	Input	Serial interface chip select input.	Input	P80
RxD0	Input	Serial data input for asynchronous serial interface.	Input	P23
RxD2				P35/SO3
TxD0	Output	Serial data output for asynchronous serial interface.	Input	P24
TxD2				P34/SI3
ASCK0	Input	Serial clock input for asynchronous serial interface.	Input	P25
ASCK2				P36/SCK3
TI000	Input	External count clock input to 16-bit timer/event counter 00. Capture trigger input to capture register 000, 010 of 16-bit timer/event counter 00.	Input	P70/TO00
TI010		Capture trigger input to capture register 000 of 16-bit timer/event counter 00.		P71
TI001		External count clock input to 16-bit timer/event counter 01. Capture trigger input to capture register 001, 011 of 16-bit timer/event counter 01.		P75/TO01/ BUZ
TI011		Capture trigger input to capture register 001 of 16-bit timer/event counter 01.		P74/PCL
TI50		External count clock input to 8-bit timer/event counter 50.		P72/TO50
TI51		External count clock input to 8-bit timer/event counter 51.		P73/TO51

Note These pins are only provided on the μ PD78F0078Y.

3.2 Non-Port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
TO00	Output	16-bit timer/event counter 00 output.	Input	P70/TI000
TO01		16-bit timer/event counter 01 output.		P75/TI001/ BUZ
TO50		8-bit timer/event counter 50 output.		P72/TI50
TO51		8-bit timer/event counter 51 output.		P73/TI51
PCL	Output	Clock output (for trimming of main system clock and subsystem clock).	Input	P74/TI011
BUZ	Output	Buzzer output.	Input	P75/TI001/ TO01
AD0 to AD7	I/O	Lower address/data bus for extending memory externally.	Input	P40 to P47
A8 to A15	Output	Higher address bus for extending memory externally.	Input	P50 to P57
RD	Output	Strobe signal output for read operation of external memory.	Input	P64
WR		Strobe signal output for write operation of external memory.		P65
WAIT	Input	Inserting wait for accessing external memory.	Input	P66
ASTB	Output	Strobe output which externally latches address information output to port 4 and port 5 to access external memory.	Input	P67
ANI0 to ANI7	Input	A/D converter analog input.	Input	P10 to P17
ADTRG	Input	A/D converter trigger signal input.	Input	P03/INTP3
HS	Output	Handshake output when writing data to the flash memory using SIO3.	Input	P31
AVREF	Input	A/D converter reference voltage and analog power supply.	_	_
AVss	_	A/D converter ground potential. Set the same potential as that of Vsso or Vss1.	_	_
X1	Input	Connecting crystal resonator for main system clock oscillation.	_	_
X2	_		_	_
XT1	Input	Connecting crystal resonator for subsystem clock oscillation.	_	_
XT2	_		_	_
RESET	Input	System reset input.	Input	_
V _{DD0}	_	Positive power supply for ports.	_	_
V _{DD1}	_	Positive power supply (except ports).	_	_
Vsso	_	Ground potential of ports.	_	_
V _{SS1}	_	Ground potential (except ports).	_	_
VPP	_	Applying high-voltage for program write/verify. Connect directly to V_{SS0} or V_{SS1} in normal operation mode.	_	_

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

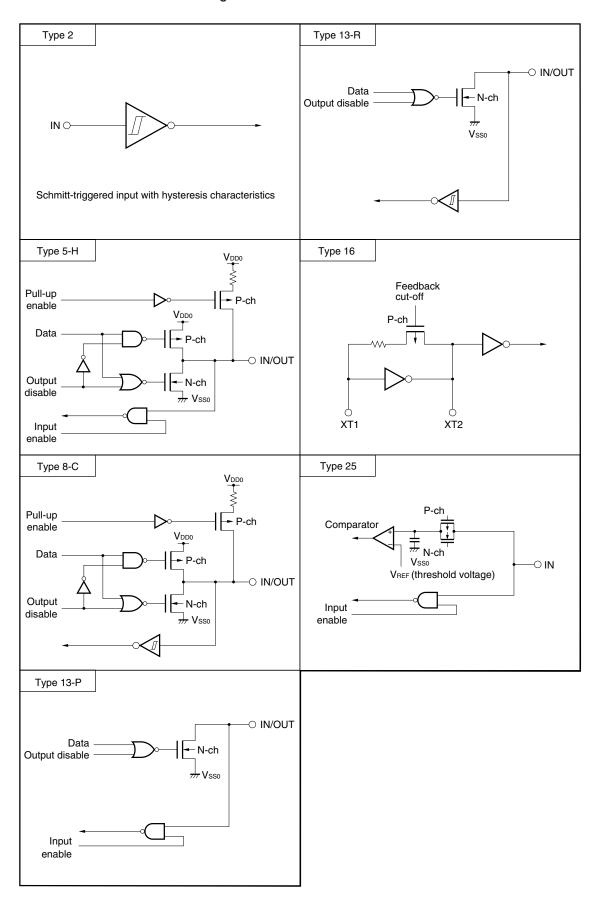

The I/O circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the I/O circuit configuration of each type, see Figure 3-1.

Table 3-1. Types of Pin I/O Circuits

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/INTP0-P02/INTP2	8-C	I/O	Input: Independently connect to Vsso via a resistor.
P03/INTP3/ADTRG			Output: Leave open.
P10/ANI0 to P17/ANI7	25	Input	Connect to VDD0 or Vsso.
P20/SI1	8-C	I/O	Input: Independently connect to VDD0 or VSS0 via a resistor
P21/SO1	5-H		Output: Leave open.
P22/SCK1	8-C		
P23/RxD0			
P24/TxD0	5-H		
P25/ASCK0	8-C		
P30	13-P		Input: Independently connect to VDDO via a resistor.
P31/HS			Output: Leave open.
P32, P33 (μPD78F0078 only)			
P32/SDA0 (μPD78F0078Y only)	13-R		
P33/SCL0 (μPD78F0078Y only)			
P34/SI3/TxD2	8-C		Input: Independently connect to VDD0 or VSS0 via a resistor
P35/SO3/RxD2			Output: Leave open.
P36/SCK3/ASCK2			
P40/AD0 to P47/AD7	5-H		Input: Independently connect to VDDO via a resistor.
P50/A8 to P57/A15			Output: Leave open.
P64/RD			Input: Independently connect to VDDO or VSSO via a resistor
P65/WR			Output: Leave open.
P66/WAIT			
P67/ASTB			
P70/TI000/TO00	8-C		
P71/TI010			
P72/TI50/TO50			
P73/TI51/TO51			
P74/TI011/PCL			
P75/TI001/TO01/BUZ			
P80/SS1			Input: Connect to Vsso via a resistor. Output: Leave open.
RESET	2	Input	_
XT1	16		Connect to VDD0.
XT2		_	Leave open.
AVREF	_		Connect to Vsso.
AVss			
V _{PP}			Connect directly to Vsso or Vss1.

Figure 3-1. Pin I/O Circuits

4. DIFFERENCES BETWEEN μ PD78F0078, 78F0078Y AND MASK ROM VERSION

The μ PD78F0078 and 78F0078Y are products provided with a flash memory which enables on-board reading, erasing, and rewriting of programs with device mounted on target system.

Table 4-1 and 4-2 show the difference between the μ PD78F0078, 78F0078Y and the mask ROM version.

Table 4-1. Difference Between μ PD78F0078 and Mask ROM Version

Item	μPD780076	μPD780078	μPD78F0078		
Internal ROM capacity	48 KB	60 KB	60 KB		
Internal ROM structure	Mask ROM	Flash memory			
Mask option to specify the on-chip pull-up resistors of pins P30 to P33	Possible	Not possible			
IC pin	Provided		Not provided		
V _{PP} and HS pins	Not provided	Provided			
Electrical specifications	Refer to the data sheet of individual products.				

Table 4-2. Difference Between μ PD78F0078Y and Mask ROM Version

Item	μPD780076Y	μPD780078Y	μPD78F0078Y		
Internal ROM capacity	48 KB	60 KB	60 KB		
Internal ROM structure	Mask ROM	Flash memory			
Mask option to specify the on-chip pull-up resistors of pins P30 to P31	Possible	Not possible			
IC pin	Provided		Not provided		
V _{PP} and HS pins	Not provided	Provided			
Electrical specifications	Refer to the data sheet of individual products.				

Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When preproducing an application set with the flash memory version and then mass producing it with the mask ROM version, be sure to conduct sufficient evaluations on the commercial samples (CS) (not engineering samples (ES)) of the mask ROM version.

5. MEMORY SIZE SWITCHING REGISTER (IMS)

This register sets a part of internal memory unused by software. The memory mapping can be made the same as that of mask ROM version with different type of internal memory (ROM, RAM).

IMS is set with an 8-bit memory manipulation instruction.

RESET input sets IMS to CFH.

Figure 5-1. Format of Memory Size Switching Register

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
IMS	RAM2	RAM1	RAM0	0	ROM3	ROM2	ROM1	ROM0	FFF0H	CFH	R/W

RAM2	RAM1	RAM0	Selection of internal high-speed RAM capacity
1	1	0	1024 bytes
Other th	an above		Setting prohibited

ROM3	ROM2	ROM1	ROM0	Selection of internal ROM capacity
1	1	0	0	48 KB
1	1	1	1	60 KB
Other th	an above			Setting prohibited

Table 5-1 shows the IMS set value to make the memory mapping the same as that of mask ROM version.

Table 5-1. Set Value of Memory Size Switching Register

Target Mask ROM Version	IMS Set Value
μPD780076, 780076Y	ССН
μPD780078, 780078Y	CFH

6. INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)

This register sets the internal expansion RAM capacity.

IXS is set with an 8-bit memory manipulation instruction.

RESET input sets IXS to 0CH.

Caution The default value of the IXS is 0CH (setting prohibited). Be sure to set 0AH at initial setting.

Figure 6-1. Format of Internal Expansion RAM Size Switching Register

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
IXS	0	0	0	IXRAM4	IXRAM3	IXRAM2	IXRAM1	IXRAM0	FFF4H	0CH	R/W

IXRAM4	IXRAM3	IXRAM2	IXRAM1	IXRAM0	Selection of internal high-speed RAM capacity				
0	1	0	1	0	1024 bytes				
Other th	an above				Setting prohibited				

7. FLASH MEMORY PROGRAMMING

Writing to a flash memory can be performed without removing the memory from the target system. Writing is performed connecting the dedicated flash programmer Flashpro III (part number: FL-PR3 and PG-FP3) to the host machine and the target system. Moreover, writing to flash memory can also be performed using a flash memory writing adapter connected to Flashpro III.

Remark FL-PR3 is a product of Naito Densei Machida Mfg. Co., Ltd.

7.1 Selection of Communication Mode

Writing to a flash memory is performed using Flashpro III with a serial communication mode. One of the communication mode is selected from those in Table 7-1. The selection of the communication mode is made by using the format shown in Figure 7-1. Each communication mode is selected by the number of VPP pulses shown in Table 7-1.

Communication Mode	Numbers of Channels	Pin Used ^{Note 1}	V _{PP} Pulses
3-wire serial I/O (SIO3)	1	SI3/P34	1
		SO3/P35	
		SCK3/P36	
		HS/P31	3
		SI3/P34	
		SO3/P35	
		SCK3/P36	
I ² C bus (IIC0) ^{Note 2}	1	SDA0/P32	4
		SCL0/P33	
UART (UART0)	1	RxD0/P23	8
		TxD0/P24	

Table 7-1. List of Communication Mode

- Notes 1. Shifting to the flash memory programming mode sets all pins not used for flash memory programming to the same state as that after reset. If the external device connected to each port does not acknowledge the state after reset, pin handling such as connecting to VDDO or VDD1 via a resistor, or VSSO or VSS1 via a resistor is required.
 - **2.** Provided on the μ PD78F0078Y only.

Caution Select a Communication Mode always using the number of VPP pulses shown in Table 7-1.

VPP Pulses

10 V

VPP VDD

VSS

VDD

RESET

VSS

Flash memory write mode

Figure 7-1. Format of Communication Mode Selection

7.2 Function of Flash Memory Programming

Operations such as writing to a flash memory are performed by various command/data transmission and reception operations according to the selected communication mode. Table 7-2 shows major functions of flash memory programming.

Table 7-2. Major Functions of Flash Memory Programming

Functions	Descriptions
Reset	Used to stop write operation and detect communication synchronization.
Batch verify	Compares the entire memory contents with the input data.
Batch delete	Deletes the entire memory contents.
Batch blank check	Checks the deletion status of the entire memory.
High-speed write	Performs write to the flash memory based on the write start address and the number of data to be written (number of bytes).
Continuous write	Performs continuous write based on the information input with high-speed write operation.
Status	Used to confirm the current operation mode and operation end.
Oscillation frequency setting	Sets the frequency of the resonator.
Delete time setting	Sets the memory delete time.
Baud rate setting	Sets the communication rate when UART mode is selected.
I ² C mode setting	Sets the standard/high-speed mode when I ² C bus mode is selected.
Silicon signature read	Outputs the device name and memory capacity, and device block information.

7.3 Connection of Flashpro III

The connection of Flashpro III and the μ PD78F0078, 78F0078Y differs according to the communication mode (3-wire serial I/O, UART, and I²C bus^{Note 2}). The connection for each communication mode is shown in Figures 7-2 through 7-5, respectively.

Note Provided on the μ PD78F0078Y only.

Figure 7-2. Connection of Flashpro III Using 3-Wire Serial I/O (SIO3) Mode

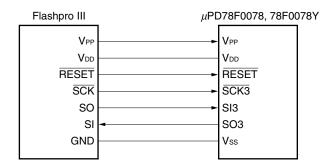


Figure 7-3. Connection of Flashpro III Using 3-Wire Serial I/O (SIO3) Method (When using handshake)

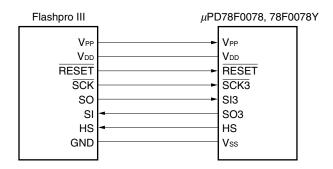


Figure 7-4. Connection of Flashpro III Using I²C Bus (IIC0) Mode (μPD78F0078Y only)

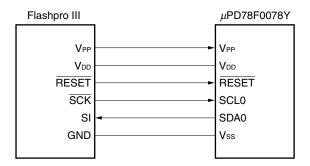
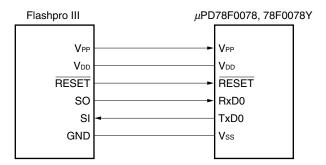



Figure 7-5. Connection of Flashpro III Using UART (UART0) Mode

8. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol		Conditions	Ratings	Unit
Supply voltage	V _{DD}			-0.3 to +6.5	V
	V _{PP}			-0.5 to +10.5	V
	AVREF			-0.3 to V _{DD} + 0.3 ^{Note}	V
	AVss			-0.3 to +0.3 ^{Note}	V
Input voltage	Vıı		to P17, P20 to P25, P34 to P36, P40 to P47, to P67, P70 to P75, P80, X1, X2, XT1, XT2, RESET	-0.3 to V _{DD} + 0.3 ^{Note}	V
	V ₁₂	P30 to P33	N-ch open drain	-0.3 to V _{DD} + 0.3 ^{Note}	V
Output voltage	Vo			-0.3 to V _{DD} + 0.3 ^{Note}	V
Analog input voltage	Van	P10 to P17	Analog input pin	AVss - 0.3 to AVREF + 0.3 and -0.3 to VDD + 0.3	V
Output current,	Іон	Per pin		-10	mA
high		Total for P00 to P	03, P40 to P47, P50 to P57, P64 to P67, P70 to P75, P80	-15	mA
		Total for P20	to P25, P30 to P36	-15	mA
Output current, low	Іоь		0 to P03, P20 to P25, P34 to P36, 64 to P67, P70 to P75, P80	20	mA
		Per pin for P3	0 to P33, P50 to P57	30	mA
		Total for P00 to	P03, P40 to P47, P64 to P67, P70 to P75, P80	50	mA
		Total for P20	to P25	20	mA
		Total for P30	to P36	100	mA
		Total for P50	to P57	100	mA
Operating ambient temperature	Та			-40 to +85	°C
Storage temperature	Tstg			-40 to +125	°C

Note The absolute value is 6.5 V max.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Main System Clock Oscillator Characteristics (T_A = −40 to 85°C, V_{DD} = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	AT AZ VPP	Oscillation frequency (fx) ^{Note 1}	V _{DD} = 4.0 to 5.5 V	1.0		8.38	MHz
resonator	├ □ ├- -	riequency (ix)		1.0		5.0	MHz
	†C1	Oscillation stabilization time ^{Note 2}	After V _{DD} reaches oscillation voltage range MIN.			4	ms
Crystal	X1 X2 V _{PP}	Oscillation	V _{DD} = 4.0 to 5.5 V	1.0		8.38	MHz
resonator	nator	frequency (fx)Note 1		1.0		5.0	MHz
	+C1 +C2	Oscillation	V _{DD} = 4.0 to 5.5 V			10	ms
	7/7	stabilization time ^{Note 2}				10	ms
External	V1 V2	X1 input frequency (fx)Note 1	V _{DD} = 4.0 to 5.5 V	1.0		8.38	MHz
CIOCK	ock X1 X2	rrequency (ix)				5.0	MHz
		X1 input	V _{DD} = 4.0 to 5.5 V	50		500	ns
	μ PD74HCU04	high-/low-level width (txH, txL)		85		500	ns

Notes 1. Indicates only oscillator characteristics.

2. Time required to stabilize oscillation after reset or STOP mode release.

Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- · Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss1.
- Do not ground the capacitor to a ground pattern in which a high current flows.
- Do not fetch signals from the oscillator.
- 2. When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Subsystem Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	XT2 XT1V _{PP}	Oscillation frequency (fxr)Note 1		32	32.768	35	kHz
	=C4 =C3	Oscillation stabilization time ^{Note 2}	V _{DD} = 4.0 to 5.5 V		1.2	2	s
	: <u>-</u>	Stabilization time				10	s
External clock	XT2 XT1	XT1 input frequency (fx	T)Note 1	32		38.5	kHz
	μPD74HCU04 Δ	XT1 input high-/low- lev	vel width (tхтн, tхть)	5		15	μs

- Notes 1. Indicates only oscillator characteristics.
 - 2. Time required to stabilize oscillation after VDD reaches oscillation voltage MIN.
- Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - · Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss1.
 - Do not ground the capacitor to a ground pattern in which a high current flows.
 - Do not fetch signals from the oscillator.
 - The subsystem clock oscillator is designed as a low-amplitude circuit for reducing current consumption, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.

Capacitance (TA = 25°C, VDD = Vss = 0 V)

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Input capacitance	Cin	f = 1 MHz Unmeasured pins returned	I to 0 V.			15	pF
I/O capacitance	Сю	f = 1 MHz Unmeasured pins returned to 0 V.	P00 to P03, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, P80			15	pF
			P30 to P33	·	·	20	pF

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (Ta = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current,	Іон	Per pin				-1	mA
high		All pins				-15	mA
Output current, low	Гоь	Per pin for P00 to P03, P20 to P29 P40 to P47, P64 to P67, P70 to P				10	mA
		Per pin for P30 to P33, P50 to P57	7			15	mA
		Total for P00 to P03, P40 to P47, P70 to P75, P80	P64 to P67,			20	mA
		Total for P20 to P25				10	mA
		Total for P30 to P36				70	mA
		Total for P50 to P57				70	mA
Input voltage,	V _{IH1}	P10 to P17, P21, P24, P40 to P47,	V _{DD} = 2.7 to 5.5 V	0.7V _{DD}		V _{DD}	V
high		P50 to P57, P64 to P67		0.8V _{DD}		V _{DD}	V
	V _{IH2}	P00 to P03, P20, P22, P23, P25,	V _{DD} = 2.7 to 5.5 V	0.8V _{DD}		V _{DD}	V
	P34 to P36, P70 to P75, P80, RESET		0.85V _{DD}		V _{DD}	٧	
	VIH3	P30 to P33 (N-ch open drain)	V _{DD} = 2.7 to 5.5 V	0.7V _{DD}		V _{DD}	V
				0.8V _{DD}		V _{DD}	V
	V _{IH4}	X1, X2	V _{DD} = 2.7 to 5.5 V	V _{DD} - 0.5		V _{DD}	V
			V _{DD} - 0.2		V _{DD}	V	
	V _{IH5}	XT1, XT2	V _{DD} = 4.0 to 5.5 V	0.8V _{DD}		V _{DD}	V
				0.9V _{DD}		V _{DD}	V
Input voltage, V _{IL1}	V _{IL1}	P10 to P17, P21, P24, P40 to P47,	V _{DD} = 2.7 to 5.5 V	0		0.3V _{DD}	V
		P50 to P57, P64 to P67		0		0.2V _{DD}	V
	V _{IL2}	P00 to P03, P20, P22, P23, P25,	V _{DD} = 2.7 to 5.5 V	0		0.2V _{DD}	V
		P34 to P36, P70 to P75, P80, RESET		0		0.15V _{DD}	V
	V _{IL3}	P30 to P33 (N-ch open drain)	$4.0~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	0		0.3V _{DD}	V
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$	0		0.2V _{DD}	V
			$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0		0.1V _{DD}	V
	V _{IL4}	X1, X2	V _{DD} = 2.7 to 5.5 V	0		0.4	V
				0		0.2	V
	V _{IL5}	XT1, XT2	V _{DD} = 4.0 to 5.5 V	0		0.2V _{DD}	V
				0		0.1V _{DD}	V
Output voltage,	V _{OH1}	Iон = −1 mA	V _{DD} = 4.0 to 5.5 V	V _{DD} - 1.0		V _{DD}	V
high		Іон = -100 μА	V _{DD} = 1.8 to 5.5 V	V _{DD} - 0.5		V _{DD}	V
Output voltage, low	V _{OL1}	P30 to P33	$V_{DD} = 4.0 \text{ to } 5.5 \text{ V},$ $I_{OL} = 15 \text{ mA}$			2.0	V
	V _{OL2}	P50 to P57	$V_{DD} = 4.0 \text{ to } 5.5 \text{ V},$ $I_{OL} = 15 \text{ mA}$		0.4	2.0	V
Vols	V _{OL3}	P00 to P03, P20 to P25, P34 to P36, P40 to P47, P64 to P67, P70 to P75, P80	V _{DD} = 4.0 to 5.5 V, I _{OL} = 1.6 mA			0.4	V
	V _{OL4}	IoL = 400 μA				0.5	V

Remark Unless specified otherwise, alternate-function pin characteristics are the same as port pin characteristics.

DC Characteristics (TA = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	С	onditions	MIN.	TYP.	MAX.	Unit
High-level input leakage current	Іин1	V _{IN} = V _{DD}	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, P80, RESET			3	μΑ
	ILIH2		X1, X2, XT1, XT2			20	μΑ
	Інз	V _{IN} = 5.5 V	P30 to P33			3	μΑ
Low-level input leakage current	ILIL1	V _{IN} = 0 V	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, P80, RESET			-3	μΑ
	ILIL2		X1, X2, XT1, XT2			-20	μΑ
	Ішз		P30 to P33			-3	μΑ
High-level output leakage current	Ісон	Vout = Vdd				3	μΑ
Low-level output leakage current	ILOL	Vout = 0 V				-3	μΑ
Software pull-up resistor	R ₂	V _{IN} = 0 V, P00 to P03, P20 P50 to P57, P64 to P67, P	to P25, P34 to P36, P40 to P47, 70 to P75, P80	15	30	90	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

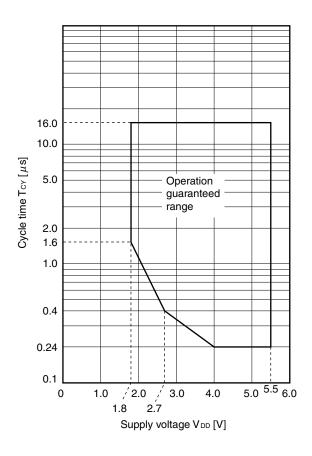
DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol		Condition	ns	MIN.	TYP.	MAX.	Unit	
Power supply	_{DD1} Note 2	8.38 MHz crystal oscillation operation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When A/D converter stopped		10.5	21.0	mA	
current ^{Note 1}		mode		When A/D converter is operating		11.5	23.0	mA	
		5.0 MHz crystal	$V_{DD}=3.0~V~\pm10\%^{\text{Note 3}}$	When A/D converter stopped		4.5	9.0	mA	
		oscillation operation			When A/D converter is operating		5.5	11.0	mA
		mode	$V_{DD}=2.0~V~\pm10\%^{Note~4}$	When A/D converter stopped		1	2	mA	
				When A/D converter is operating		2	6	mA	
	I _{DD2}	8.38 MHz crystal	$V_{DD} = 5.0~V~\pm10\%^{\text{Note 3}}$	When peripheral function stopped		1.2	2.4	mA	
	oscillation HALT mode		When peripheral function is operating			5	mA		
	5.0 MHz crystal		$V_{DD} = 3.0~V~\pm 10\%^{\text{Note 3}}$	When peripheral function stopped		0.4	0.8	mA	
	oscillation HALT			When peripheral function is operating			1.7	mA	
		mode	$V_{\text{DD}} = 2.0~V \pm 10\%^{\text{Note 4}}$	When peripheral function stopped		0.2	0.4	mA	
				When peripheral function is operating			1.1	mA	
	IDD3	32.768 kHz crystal	$V_{DD} = 5.0 \text{ V} \pm 10\%$			115	230	μΑ	
		oscillation operation	V _{DD} = 3.0 V ±10%			95	190	μΑ	
		mode ^{Note 5}	$V_{DD} = 2.0 \text{ V} \pm 10\%$			75	150	μΑ	
	I _{DD4}	32.768 kHz crystal	$V_{DD} = 5.0 \text{ V} \pm 10\%$			30	60	μΑ	
		oscillation HALT	$V_{DD} = 3.0 \text{ V} \pm 10\%$			6	18	μΑ	
	mode ^{Note 5}		V _{DD} = 2.0 V ±10%			2	10	μΑ	
	I _{DD5}	STOP mode	$V_{DD} = 5.0 \text{ V} \pm 10\%$			0.1	30	μΑ	
			V _{DD} = 3.0 V ±10%			0.05	10	μΑ	
			$V_{DD} = 2.0 \text{ V} \pm 10\%$			0.05	10	μΑ	

Notes 1. Total current flowing in the internal power supply (V_{DD0}, V_{DD1}) .

- 2. Includes the peripheral operating current. However, the pull-up resistor on the port and the current flowing in the AVREF pin are not included.
- 3. When the processor clock control register (PCC) is set to 00H.
- 4. When PCC is set to 02H.
- 5. When the main system clock has been stopped.

AC Characteristics


(1) Basic operation (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Conditi	Conditions		TYP.	MAX.	Unit
Cycle time	Тсч	Main system clock	$4.0~V \leq V_{DD} \leq 5.5~V$	0.24		16	μs
(Min. instruction		operation	2.7 V ≤ V _{DD} < 4.0 V	0.4		16	μs
execution time)			1.8 V ≤ V _{DD} < 2.7 V	1.6		16	μs
		Subsystem clock operati	ubsystem clock operation 1		122	125	μs
TI000, TI010,	tтіно		$3.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2/f _{sam} + 0.1 ^{Note2}			μs
TI001, TI011 input	t TILO		2.7 V ≤ V _{DD} < 3.5 V	2/f _{sam} + 0.2 ^{Note2}			μs
high-/low-level width			1.8 V ≤ V _{DD} < 2.7 V	2/f _{sam} + 0.5 ^{Note2}			μs
TI50, TI51 input	f T15	V _{DD} = 2.7 to 5.5 V		0		4	MHz
frequency				0		275	kHz
TI50, TI51 input	t тін5	V _{DD} = 2.7 to 5.5 V		100			ns
high-/low-level width	t _{TIL5}			1.8			μs
Interrupt request input	tınth	INTP0 to INTP3,	V _{DD} = 2.7 to 5.5 V	1			μs
high-/low-level width	tintl	P40 to P47		2			μs
RESET	trsL	V _{DD} = 2.7 to 5.5 V		10			μs
low-level width				20			μs

Notes 1. Value when using the external clock. When using a crystal resonator, the value becomes 114 μ s (MIN.).

2. Selection of $f_{sam} = fx$, fx/4, fx/64 is available with bits 0 and 1 (PRM0n0, PRM0n1) of prescaler mode register 0n (PRM0n). However, if the TI00n valid edge is selected as the count clock, the value becomes $f_{sam} = fx/8$ (n = 0, 1).

Tcy vs Vdd (at main system clock operation)

(2) Read/write operation ($T_A = -40 \text{ to } + 85^{\circ}\text{C}$, $V_{DD} = 4.0 \text{ to } 5.5 \text{ V}$) (1/3)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.3tcy		ns
Address setup time	tads		20		ns
Address hold time	tadh		6		ns
Data input time from address	t _{ADD1}			(2 + 2n)tcy - 54	ns
	tADD2			(3 + 2n)tcy - 60	ns
Address output time from $\overline{\text{RD}} \downarrow$	trdad		0	100	ns
Data input time from RD↓	tRDD1			(2 + 2n)tcy - 87	ns
	tRDD2			(3 + 2n)tcy - 93	ns
Read data hold time	trdh		0		ns
RD low-level width	trol1		(1.5 + 2n)tcy - 33		ns
	tRDL2		(2.5 + 2n)tcy - 33		ns
$\overline{\text{WAIT}} \downarrow \text{input time from } \overline{\text{RD}} \downarrow$	tRDWT1			tcy - 43	ns
	tRDWT2			tcy - 43	ns
$\overline{\text{WAIT}} \downarrow$ input time from $\overline{\text{WR}} \downarrow$	twrwt			tcy - 25	ns
WAIT low-level width	twTL		(0.5 + 2n)tey + 10	(2 + 2n)tcy	ns
Write data setup time	twos		60		ns
Write data hold time	twoн		6		ns
WR low-level width	twRL1		(1.5 + 2n)toy - 15		ns
Delay time from ASTB↓ to $\overline{\text{RD}}$ ↓	tastrd		6		ns
Delay time from ASTB \downarrow to $\overline{\text{WR}}\downarrow$	tastwr		2tcy - 15		ns
Delay time from RD↑ in external fetch	trdast		0.8tcy - 15	1.2tcy	ns
Address hold time from RD↑ to ASTB↑ in external fetch	trdadh		0.8tcy - 15	1.2tcy + 30	ns
Write data output time from \overline{RD} ↑	trowd		40		ns
Write data output time from $\overline{\text{WR}} \downarrow$	twrwd		10	60	ns
Address hold time from WR↑	twradh		0.8tcy - 15	1.2tcy + 30	ns
Delay time from WAIT↑ to RD↑	twrnd		0.8tcy	2.5tcy + 25	ns
Delay time from WAIT↑ to WR↑	twrwn		0.8tcy	2.5tcy + 25	ns

Remarks 1. tcy = Tcy/4

2. n indicates the number of waits.

3. $C_L = 100 \text{ pF}$ (C_L is the load capacitance of AD0 to AD7, A8 to A15, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{WAIT}}$, and ASTB pins)

(2) Read/write operation (TA = $-40 \text{ to} + 85^{\circ}\text{C}$, VDD = 2.7 to 4.0 V) (2/3)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.3tcy		ns
Address setup time	tads		30		ns
Address hold time	tadh		10		ns
Data input time from address	t _{ADD1}			(2 + 2n)tcy - 108	ns
	tADD2			(3 + 2n)tcy - 120	ns
Address output time from \overline{RD} ↓	trdad		0	200	ns
Data input time from RD↓	tRDD1			(2 + 2n)tcy - 148	ns
	tRDD2			(3 + 2n)tcy - 162	ns
Read data hold time	trdh		0		ns
RD low-level width	t _{RDL1}		(1.5 + 2n)tcy - 40		ns
	tRDL2		(2.5 + 2n)tcy - 40		ns
WAIT↓ input time from RD↓	tRDWT1			tcy - 75	ns
	tRDWT2			tcy - 75	ns
$\overline{\mathrm{WAIT}} \downarrow \mathrm{input\ time\ from\ } \overline{\mathrm{WR}} \downarrow$	twrwt			tcy - 50	ns
WAIT low-level width	twTL		(0.5 + 2n)tcy + 10	(2 + 2n)tcy	ns
Write data setup time	twos		60		ns
Write data hold time	twoн		10		ns
WR low-level width	twrL		(1.5 + 2n)tcy - 30		ns
Delay time from ASTB↓ to $\overline{\text{RD}}$ ↓	tastrd		10		ns
Delay time from ASTB↓ to WR↓	tastwr		2tcy - 30		ns
Delay time from RD↑ to ASTB↑ in external fetch	trdast		0.8tcy - 30	1.2tcy	ns
Address hold time from RD↑ in external fetch	trdadh		0.8tcy - 30	1.2tcy + 60	ns
Write data output time from RD↑	trowd		40		ns
Write data output time from $\overline{WR} \downarrow$	twrwd		20	120	ns
Address hold time from WR↑	twradh		0.8tcy - 30	1.2tcy + 60	ns
Delay time from WAIT↑ to RD↑	twrnd		0.5tcy	2.5tcy + 50	ns
Delay time from WAIT↑ to WR↑	twrwr		0.5tcy	2.5tcy + 50	ns

Remarks 1. tcy = Tcy/4

- 2. n indicates the number of waits.
- 3. $C_L = 100 \text{ pF}$ (C_L is the load capacitance of AD0 to AD7, A8 to A15, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{WAIT}}$, and ASTB pins)

(2) Read/write operation (T_A = -40 to + 85°C, V_{DD} = 1.8 to 2.7 V) (3/3)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.3tcy		ns
Address setup time	tads		120		ns
Address hold time	tadh		20		ns
Data input time from address	t _{ADD1}			(2 + 2n)tcy - 233	ns
	t _{ADD2}			(3 + 2n)tcy - 240	ns
Address output time from RD↓	trdad		0	400	ns
Data input time from RD↓	t _{RDD1}			(2 + 2n)tcy - 325	ns
	tRDD2			(3 + 2n)tcy - 332	ns
Read data hold time	tпрн		0		ns
RD low-level width	trol1		(1.5 + 2n)tcy - 92		ns
	tRDL2		(2.5 + 2n)tcy - 92		ns
WAIT↓ input time from RD↓	tnowt1			tcy - 350	ns
	tRDWT2			tcy - 350	ns
WAIT↓ input time from WR↓	twrwt			tcy - 100	ns
WAIT low-level width	twTL		(0.5 + 2n)tcy + 10	(2 + 2n)tcy	ns
Write data setup time	twos		60		ns
Write data hold time	twoн		20		ns
WR low-level width	twrL1		(1.5 + 2n)tcy - 60		ns
Delay time from ASTB↓ to \overline{RD} ↓	tastrd		20		ns
Delay time from ASTB↓ to WR↓	tastwr		2tcy - 60		ns
Delay time from RD↑ to ASTB↑ in external fetch	trdast		0.8tcy - 60	1.2tcy	ns
Address hold time from RD↑ in external fetch	trdadh		0.8tcy - 60	1.2tcy + 120	ns
Write data output time from RD↑	trowd		40		ns
Write data output time from WR↓	twrwd		40	240	ns
Address hold time from WR↑	twradh		0.8tcy - 60	1.2tcy + 120	ns
Delay time from WAIT↑ to RD↑	twrnd		0.5tcy	2.5tcy + 100	ns
Delay time from WAIT↑ to WR↑	twrwr		0.5tcy	2.5tcy + 100	ns

Remarks 1. tcy = Tcy/4

- 2. n indicates the number of waits.
- 3. $C_L = 100 \text{ pF}$ (C_L is the load capacitance of AD0 to AD7, A8 to A15, \overline{RD} , \overline{WR} , \overline{WAIT} , and ASTB pins)

(3) Serial interface ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

(a) SIO3 3-wire serial I/O mode (SCK3 ... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK3 cycle time	tkcy1	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	954			ns
		2.7 V ≤ V _{DD} < 4.0 V	1600			ns
		1.8 V ≤ V _{DD} < 2.7 V	3200			ns
SCK3 high-/low-level	t _{KH1}	V _{DD} = 4.0 to 5.5 V	tkcy1/2 - 50			ns
width	t _{KL1}		tксу1/2 - 100			ns
SI3 setup time	tsıĸı	4.0 V ≤ V _{DD} ≤ 5.5 V	100			ns
(to SCK3↑)		2.7 V ≤ V _{DD} < 4.0 V	150			ns
		1.8 V ≤ V _{DD} < 2.7 V	300			ns
SI3 hold time (from SCK3↑)	tksi1		400			ns
Delay time from SCK3↓ to SO3 output	tkso1	C = 100 pFNote			300	ns

Note C is the load capacitance of the $\overline{SCK3}$ and SO3 output lines.

(b) SIO3 3-wire serial I/O mode (SCK3 ... External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK3 cycle time	tkcy2	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	800			ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$	1600			ns
		1.8 V ≤ V _{DD} < 2.7 V	3200			ns
SCK3 high-/low-level	t _{KH2}	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	400			ns
width	t _{KL2}	$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$	800			ns
		1.8 V ≤ V _{DD} < 2.7 V	1600			ns
SI3 setup time (to SCK3↑)	tsıĸ2		100			ns
SI3 hold time (from SCK3↑)	tksi2		400			ns
Delay time from SCK3↓ to SO3 output	tkso2	C = 100 pFNote			300	ns

Note C is the load capacitance of the SO3 output line.

(c) CSI1 3-wire serial I/O mode (SCK1 ... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tксүз	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	240			ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$	500			ns
		$1.8 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	1			μs
SCK1 high-/low-level	tкнз	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	tксүз/2-5			ns
width	tкLз	$2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}$	tксүз/2-20			ns
		$1.8 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	tксүз/2-30			ns
SI1 setup time (to SCK1↑)	tsık3		25			ns
SI1 hold time (to SCK1↑)	tksi3		110			ns
Delay time from SCK1↓ to SO1 output	tkso3	C = 100 pF ^{Note}			150	ns

Note C is the load capacitance of the SCK1 and SO1 output lines.

(d) CSI1 3-wire serial I/O mode (SCK1 ... External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkCY4	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	200			ns
		2.7 V ≤ V _{DD} < 4.0 V	500			ns
		1.8 V ≤ V _{DD} < 2.7 V	1			μs
SCK1 high-/low-level	t кн4	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	100			ns
width t _F	t _{KL4}	2.7 V ≤ V _{DD} < 4.0 V	250			ns
		1.8 V ≤ V _{DD} < 2.7 V	500			ns
SI1 setup time (to SCK1↑)	tsıĸ4		25			ns
SI1 hold time (to SCK1↑)	tksi4		110			ns
Delay time from SCK1↓ to SO1 output	tkso4	C = 100 pF ^{Note}			150	ns

Note C is the load capacitance of the SO1 output line.

(e) UART0 mode (Dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			131031	bps
		2.7 V ≤ V _{DD} < 4.0 V			78125	bps
		1.8 V ≤ V _{DD} < 2.7 V			39063	bps

(f) UART0 mode (External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK0 cycle time	tkcy5	$4.0~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	800			ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$	1600			ns
		1.8 V ≤ V _{DD} < 2.7 V	3200			ns
ASCK0 high-/low-level	t _{KH5}	$4.0~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	400			ns
width	t _{KL5}	2.7 V ≤ V _{DD} < 4.0 V	800			ns
		1.8 V ≤ V _{DD} < 2.7 V	1600			ns
Transfer rate		$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			39063	bps
		2.7 V ≤ V _{DD} < 4.0 V			19531	bps
		1.8 V ≤ V _{DD} < 2.7 V			9766	bps

(g) UART0 mode (Infrared data transfer mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			131031	bps
Bit rate allowable error		4.0 V ≤ V _{DD} ≤ 5.5 V			±0.87	%
Output pulse width		4.0 V ≤ V _{DD} ≤ 5.5 V	1.2		0.24/fbr ^{Note}	μs
Input pulse width		$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	4/fx			μs

Note fbr: Specified baud rate

(h) UART2 (Dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			262062	bps
		2.7 V ≤ V _{DD} < 4.0 V			156250	bps
		1.8 V ≤ V _{DD} < 2.7 V			62500	bps

(i) UART2 (External clock input)

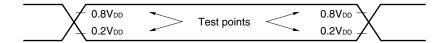
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK2 cycle time	tkcy6	4.0 V ≤ V _{DD} ≤ 5.5 V 80				ns
		2.7 V ≤ V _{DD} < 4.0 V	1600			ns
		1.8 V ≤ V _{DD} < 2.7 V	3200			ns
ASCK2 high-/low-level	t кн6	4.0 V ≤ V _{DD} ≤ 5.5 V	400			ns
width	t _{KL6}	2.7 V ≤ V _{DD} < 4.0 V	800			ns
		1.8 V ≤ V _{DD} < 2.7 V	1600			ns
Transfer rate		4.0 V ≤ V _{DD} ≤ 5.5 V			78125	bps
		2.7 V ≤ V _{DD} < 4.0 V			39063	bps
		1.8 V ≤ V _{DD} < 2.7 V			19531	bps

(j) UART2 (Infrared data transfer mode)

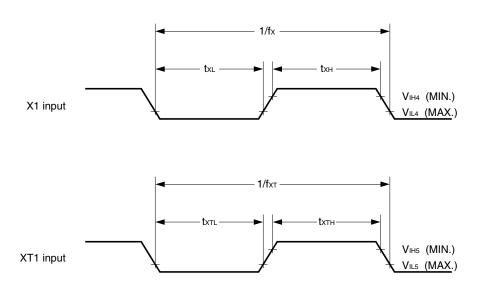
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			262062	bps
Bit rate allowable error		$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			±0.87	%
Output pulse width		$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	1.2		0.24/fbr ^{Note}	μs
Input pulse width		$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	4/fx			μs

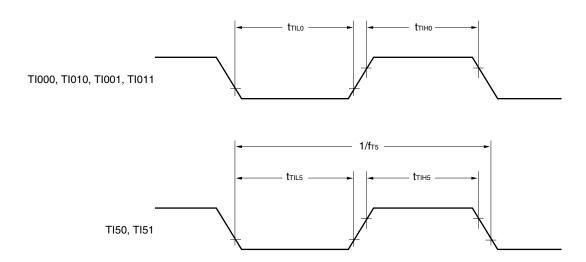
Note fbr: Specified baud rate

(k) I2C bus mode

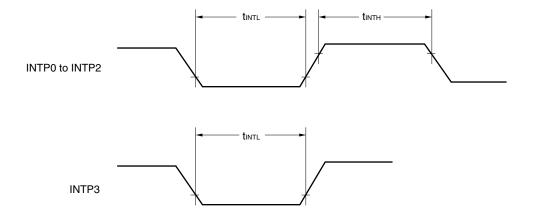

Parameter			Standa	rd Mode	High-spe	ed Mode	Unit
		Symbol	MIN.	MAX.	MIN.	MAX.	
SCL0 clock frequency	uency	fscL	0	100	0	400	kHz
Bus free time (between stop a	nd start condition)	tbur	4.7	_	1.3	_	μs
Hold time ^{Note 1}		thd:sta	4.0	_	0.6	_	μs
SCL0 clock low-	level width	tLOW	4.7	_	1.3	_	μs
SCL0 clock high	-level width	tніgн	4.0	_	0.6	_	μs
Start/restart con-	Start/restart condition setup time		4.7	_	0.6	_	μs
Data hold time	CBUS compatible master	thd:dat	5.0	_	_	_	μs
	I ² C bus		O ^{Note 2}	_	O ^{Note 2}	0.9 ^{Note 3}	μs
Data setup time	Data setup time		250	_	100 ^{Note 4}	_	ns
SDA0 and SCL0	SDA0 and SCL0 signal rise time		_	1000	20 + 0.1Cb ^{Note 5}	300	ns
SDA0 and SCL0 signal fall time		tF	_	300	20 + 0.1Cb ^{Note 5}	300	ns
Stop condition setup time		tsu:sto	4.0	_	0.6	_	μs
Capacitive load per each bus line		Cb		400	_	400	pF
Spike pulse widt	h controlled by input filter	tsp		_	0	50	ns

- Notes 1. On start condition, the first clock pulse is generated after hold period.
 - 2. To fulfill undefined area of the SCL0 falling edge, it is necessary for the device to provide internally SDA0 signal (on VIHmin. of SCL0 signal) with at least 300 ns of hold time.
 - 3. If the device does not extend the SCL0 signal low hold time (tLow), only maximum data hold time thd:DAT needs to be fulfilled.
 - **4.** The high-speed mode I²C bus is available in the standard mode I²C bus system. At this time, the conditions described below must be satisfied.
 - If the device does not extend the SCL0 signal low state hold time $t_{\text{SU:DAT}} \geq 250 \text{ ns}$
 - If the device extends the SCL0 signal low state hold time

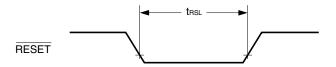

 Be sure to transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the school line before
 - **5.** Cb: total capacitance per one bus line (unit: pF)


AC Timing Test Points (excluding X1, XT1 input)

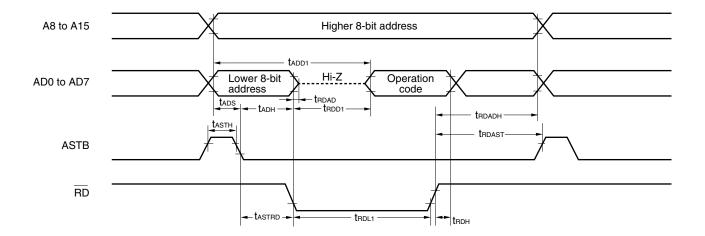
Clock Timing

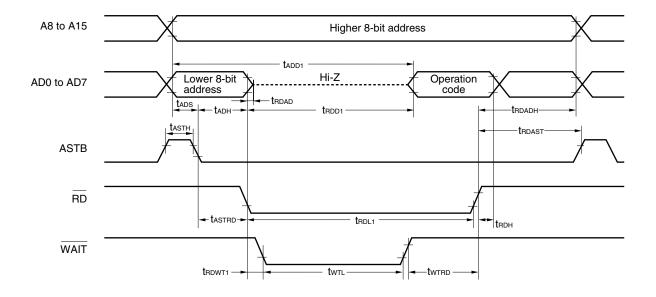


TI Timing



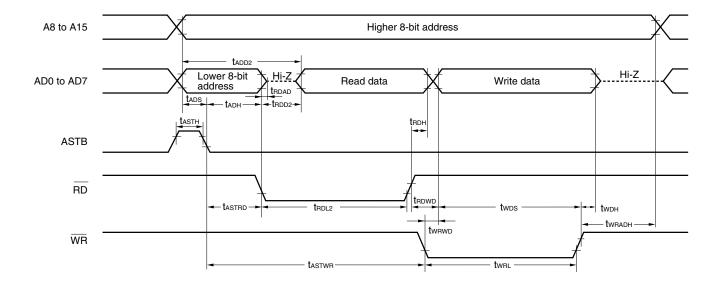
Interrupt Request Input Timing


RESET Input Timing

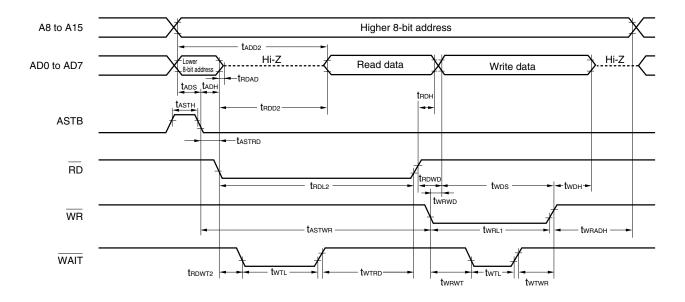


Read/Write Operation

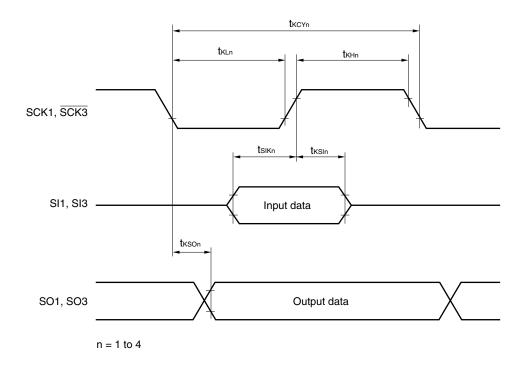
External fetch (no wait):

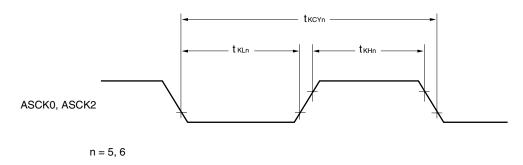


External fetch (wait insertion):

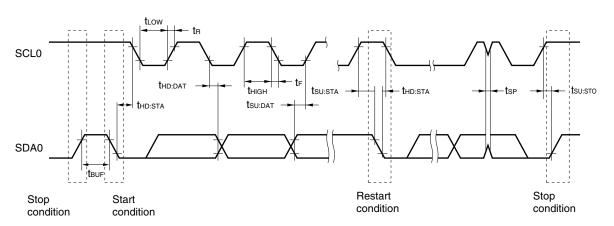


External data access (no wait):


External data access (wait insertion):



Serial Transfer Timing


3-wire serial I/O mode:

UART mode (external clock input):

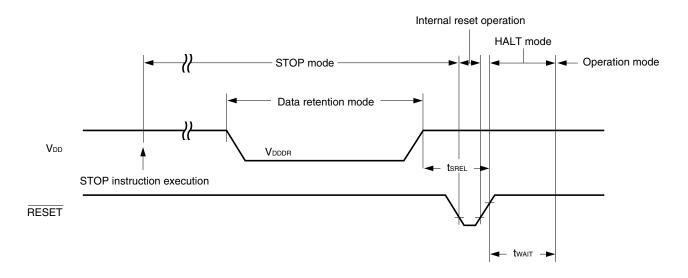
I²C bus mode

A/D Converter Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = AV_{REF} = 2.2 \text{ to } 5.5 \text{ V}$, $V_{SS} = V_{SS} = 0 \text{ V}$)

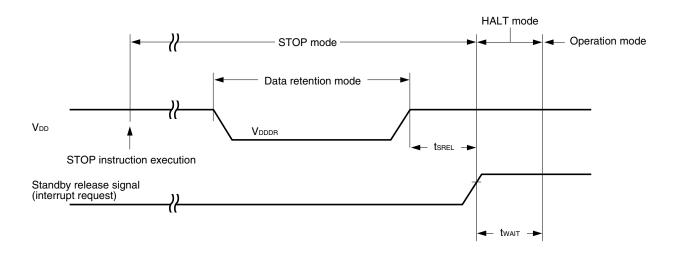
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			10	10	10	bit
Overall error ^{Note}		4.0 V ≤ AV _{REF} ≤ 5.5 V		±0.2	±0.4	%FSR
		2.7 V ≤ AVREF < 4.0 V		±0.3	±0.6	%FSR
		2.2 V ≤ AVREF < 2.7 V		±0.6	±1.2	%FSR
Conversion time	tconv	4.0 V ≤ AVREF ≤ 5.5 V	14		100	μs
		2.7 V ≤ AVREF < 4.0 V	19		100	μs
		2.2 V ≤ AVREF < 2.7 V	28		100	μs
Zero-scale error ^{Note}		4.0 V ≤ AV _{REF} ≤ 5.5 V			±0.4	%FSR
		2.7 V ≤ AVREF < 4.0 V			±0.6	%FSR
		2.2 V ≤ AVREF < 2.7 V			±1.2	%FSR
Full-scale error ^{Note}		4.0 V ≤ AV _{REF} ≤ 5.5 V			±0.4	%FSR
		2.7 V ≤ AVREF < 4.0 V			±0.6	%FSR
		2.2 V ≤ AVREF < 2.7 V			±1.2	%FSR
Integral linear error		4.0 V ≤ AVREF ≤ 5.5 V			±2.5	LSB
		2.7 V ≤ AVREF < 4.0 V			±4.5	LSB
		2.2 V ≤ AVREF < 2.7 V			±8.5	LSB
Differential linear error		4.0 V ≤ AVREF ≤ 5.5 V			±1.5	LSB
		2.7 V ≤ AVREF < 4.0 V			±2.0	LSB
		2.2 V ≤ AVREF < 2.7 V			±3.5	LSB
Analog input impedance		During sampling			100	kΩ
		During non-sampling		10		МΩ
Analog input voltage	VIAN		0		AVREF	V
AV _{REF} resistance	Rairef	During A/D conversion	20	40		kΩ

Note Overall error excluding quantization error ($\pm 1/2$ LSB). It is indicated as a ratio to the full-scale value.

Remark FSR: Full-scale range



Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = -40 to +85°C)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	VDDDR		1.6		5.5	V
Data retention power supply current	IDDDR			0.1	30	μΑ
Release signal set time	tsrel		0			μs
Oscillation stabilization wait time	twait	Release by RESET		2 ¹⁷ /fx	·	ms
		Release by interrupt request		Note		ms

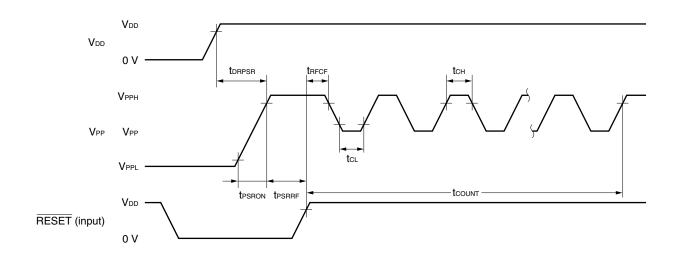
Note Selection of 2^{12} /fx, 2^{14} /fx, 2^{15} /fx, 2^{16} /fx, or 2^{17} /fx is possible with bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time selection register (OSTS).

Data Retention Timing (STOP mode release by RESET)

Data Retention Timing (Standby release signal: STOP mode release by interrupt request signal)

Flash Memory Programming Characteristics (VDD = 2.7 to 5.5 V, Vss = 0 V, VPP = 9.7 to 10.3 V)

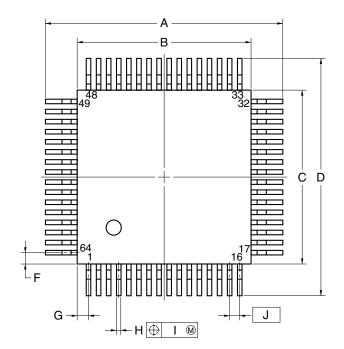
(1) Basic characteristics

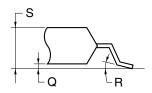

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fx	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	1.0		8.38	MHz
			1.0		5.0	MHz
Supply voltage	V _{DD}	Operating voltage during write operation	2.7		5.5	V
	VPPL	When detecting VPP low level	0		0.2 V _{DD}	٧
	VPP	When detecting VPP high level	0.8 V _{DD}	V_{DD}	1.2 V _{DD}	٧
	VPPH	When detecting VPP high voltageNote	9.7	10.0	10.3	٧
V _{DD} supply current	IDD				10	mA
VPP supply current	IPP	V _{PP} = 10.0 V		75	100	mA
Write time (per byte)	Twrt		50		500	μs
Write frequency	CWRT				20	times
Erase time	TERASE		1		20	S
Programming temperature	TPRG		10		40	°C

Note For details of the input/output voltage and input/output leakage voltage, refer to DC Characteristics.

(2) Write operation characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{PP} set time	tpsron	V _{PP} high voltage	1.0			μs
V _{PP} ↑ set time from V _{DD} ↑	torpsr	V _{PP} high voltage	1.0			μs
RESET↑ set time from V _{PP} ↑	tpsrrf	V _{PP} high voltage	1.0			μs
V _{PP} count start time from RESET↑	trece		1.0			μs
Count execution time	tсоинт				2.0	ms
VPP counter high-/low-level width	tcн, tcl		8.0			μs
VPP counter noise elimination width	tnrw			40		ns


Flash Write Mode Setting Timing



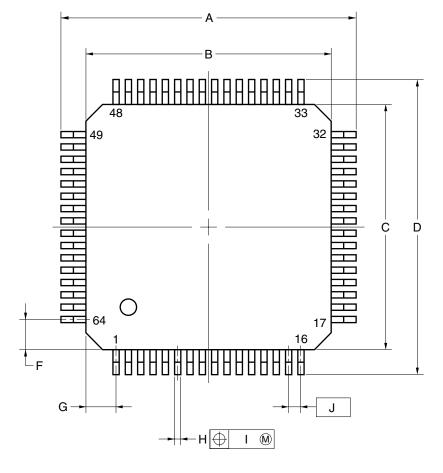
9. PACKAGE DRAWINGS

64-PIN PLASTIC QFP (14x14)

detail of lead end

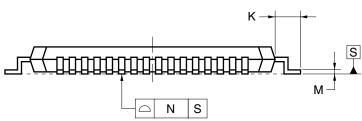
NOTE

Each lead centerline is located within 0.15 mm of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS
Α	17.6±0.4
В	14.0±0.2
С	14.0±0.2
D	17.6±0.4
F	1.0
G	1.0
Н	$0.37^{+0.08}_{-0.07}$
I	0.15
J	0.8 (T.P.)
K	1.8±0.2
L	0.8±0.2
М	$0.17^{+0.08}_{-0.07}$
N	0.10
Р	2.55±0.1
Q	0.1±0.1
R	5°±5°
S	2.85 MAX.
	P64GC-80-AB8-5

. . .


Remark The external dimensions and material of the ES version are the same as those of the mass-produced version.



64-PIN PLASTIC TQFP (12x12)

detail of lead end

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	14.0±0.2
В	12.0±0.2
C	12.0±0.2
D	14.0±0.2
F	1.125
G	1.125
Н	$0.32^{+0.06}_{-0.10}$
- 1	0.13
J	0.65 (T.P.)
K	1.0±0.2
L	0.5
М	$0.17^{+0.03}_{-0.07}$
N	0.10
Р	1.0
Q	0.1±0.05
R	3°+4° -3°
S	1.1±0.1
Т	0.25
U	0.6±0.15
	P64GK-65-9ET-3

P64GK-65-9ET-3

Remark The external dimensions and material of the ES version are the same as those of the mass-produced version.

10. RECOMMENDED SOLDERING CONDITIONS

The μ PD78F0078 and 78F0078Y should be soldered and mounted under the following recommended conditions. For details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 10-1. Surface Mounting Type Soldering Conditions

(1) μ PD78F0078GC-AB8: 64-pin plastic QFP (14 × 14) μ PD78F0078YGC-AB8: 64-pin plastic QFP (14 × 14)

Soldering	Soldering Conditions	Recommended Method Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 sec. max. (at 210°C or higher), Count: three times or less	IR35-00-3
VPS	Package peak temperature: 215°C, Time: 40 sec. max. (at 200°C or higher), Count: three times or less	VP15-00-3
Wave soldering	Solder bath temperature: 260°C max., Time: 10 sec. max., Count: once, Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max., Time: 3 sec. max. (per pin row)	_

Caution Do not use different soldering methods together (except for partial heating).

(2) μ PD78F0078GK-9ET: 64-pin plastic TQFP (12 × 12) μ PD78F0078YGK-9ET: 64-pin plastic TQFP (12 × 12)

Soldering	Soldering Conditions	Recommended Method Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 sec. max. (at 210°C or higher), Count: two times or less, Exposure limit: 3 days ^{Note} (after that, prebake at 125°C for 10 hours)	IR35-103-2
VPS	Package peak temperature: 215°C, Time: 40 sec. max. (at 200°C or higher), Count: two times or less, Exposure limit: 3 days ^{Note} (after that, prebake at 125°C for 10 hours)	VP15-103-2
Wave soldering	Solder bath temperature: 260°C max., Time: 10 sec. max., Count: once, Preheating temperature: 120°C max. (package surface temperature), Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	WS60-107-1
Partial heating	Pin temperature: 300°C max., Time: 3 sec. max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78F0078 and 78F0078Y. Also refer to **(6) Cautions on using development tools.**

(1) Software package

SP78K0	Software package common to 78K/0 Series
--------	---

(2) Language processing software

RA78K0	Assembler package common to 78K/0 Series
CC78K0	C compiler package common to 78K/0 Series
DF780078	Device file for μPD780078, 780078Y Subseries
CC78K0-L	C compiler library source file common to 78K/0 Series

(3) Flash memory programming tools

Flashpro III (FL-PR3, PG-FP3)	Flash programmer dedicated to on-chip flash memory microcontroller
FA-64GC	Adapter for flash memory programming
FA-64GK-9ET	FA-64GC: For 64-pin plastic QFP (GC-AB8 type)
	FA-64GK-9ET: For 64-pin plastic TQFP (GK-9ET type)

(4) Debugging tool

• When using in-circuit emulator IE-78K0-NS(-A)

IE-78K0-NS(-A)	In-circuit emulator common to 78K/0 Series
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS
IE-78K0-NS-PA	Performance board to enhance/expand functions of IE-78K0-NS
IE-70000-98-IF-C	Adapter when using PC-9800 series as host machine (excluding notebook PCs) (C bus compatible)
IE-70000-CD-IF-A	PC card and interface cable when using notebook PC as host machine (PCMCIA socket compatible)
IE-70000-PC-IF-C	Adapter when using IBM PC/AT TM compatible as host machine (ISA bus compatible)
IE-70000-PCI-IF-A	Adapter necessary when using on-chip PCI bus PC as host machine
IE-780078-NS-EM1	Emulation board to emulate μ PD780078, 780078Y Subseries
NP-64GC NP-64GC-TQ	Emulation probe for 64-pin plastic QFP (GC-AB8 type)
NP-64GK	Emulation probe for 64-pin plastic TQFP (GK-9ET type)
EV-9200GC-64	Conversion socket for connecting target system designed to mount a 64-pin plastic QFP (GC-AB8 type) and NP-64GC
TGC-064SAP	Conversion adapter for connecting target system designed to mount a 64-pin plastic QFP (GC-AB8 type) and NP-64GC-TQ
TGK-064SBP	Conversion adapter for connecting target system board designed to mount a 64-pin plastic TQFP (GK-9ET type) and NP-64GK
ID78K0-NS	Integrated debugger for IE-78K0-NS
SM78K0	System simulator common to 78K/0 Series
DF780078	Device file common to μPD780078, 780078Y Subseries

• When using in-circuit emulator IE-78001-R-A

IE-78001-R-A	In-circuit emulator common to 78K/0 Series
IE-70000-98-IF-C	Interface adapter when using PC-9800 series as host machine (excluding notebook PCs) (C bus compatible)
IE-70000-PC-IF-C	Interface adapter when using IBM PC/AT compatible as host machine (ISA bus compatible)
IE-70000-PCI-IF-A	Adapter necessary when using on-chip PCI bus PC as host machine
IE-78000-R-SV3	Interface adapter and cable when using EWS as host machine
IE-780078-NS-EM1	Emulation board common to μPD780078 Subseries
IE-78K0-R-EX1	Emulation probe conversion board necessary to use IE-780078-NS-EM1 on IE-78001-R-A
EP-78240GC-R	Emulation probe for 64-pin plastic QFP (GC-AB8 type)
EP-78012GK-R	Emulation probe for 64-pin plastic LQFP (GK-9ET type)
EV-9200GC-64	Socket to be mounted on target system board for 64-pin plastic QFP (GC-AB8 type)
TGK-064SBP	Conversion adapter for connecting target system board designed to mount a 64-pin plastic LQFP (GK-9ET) and EP-78012GK-R.
ID78K0	Integrated debugger for IE-78001-R-A
SM78K0	System simulator common to 78K/0 Series
DF780078	Device file common to μPD780078, 780078Y Subseries

(5) Real-time OS

RX78K/0	Real-time OS for 78K/0 Series
MX78K0	OS for 78K/0 Series

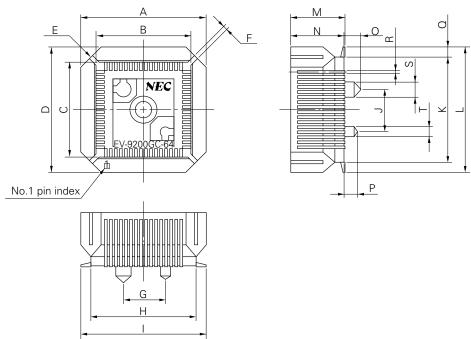
(6) Cautions on using development tools

- The ID78K0-NS, ID78K0, and SM78K0 are used in combination with the DF780078.
- The CC78K0 and RX78K0 are used in combination with the RA78K0 and the DF780078.
- The FL-PR3, FA-64GC, FA64GK, NP-64GC, NP-64GC-TQ, and NP-64GK-9ET are products made by Naito Densei Machida Mfg. Co., Ltd. (+81-45-475-4191).
- The TGC-064SAP and TGK-064SBP are products made by Tokyo Eletech Corp. Refer to: Daimaru Kogyo, Ltd.

Electronics Dept. (TEL: Tokyo +81-3-3820-7112) Electronics 2nd Dept. (TEL: Osaka +81-6-6244-6672)

- For third party development tools, see the Single-Chip Microcontroller Development Tools Selection Guide (U11069E).
- The host machines and OSs supporting each software are as follows.

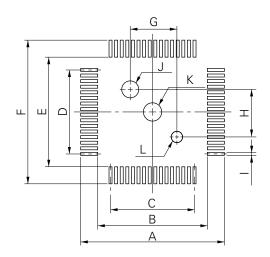
Host Machine	PC	EWS
[OS]	PC-9800 series [Japanese Windows™] IBM PC/AT compatible	HP9000 series 700 [™] [HP-UX [™]] SPARCstation [™] [SunOS [™] , Solaris [™]]
Software	[Japanese/English Windows]	
RA78K0	Note	\checkmark
CC78K0	Note	V
ID78K0-NS	V	_
ID78K0	V	_
SM78K0	V	_
RX78K0	√ Note	√
MX78K0	√ Note	V


Note DOS-based software

Conversion Socket (EV-9200GC-64) Package Drawing and Recommended Board Mounting Pattern

Figure A-1. EV-9200GC-64 Package Drawing (for reference)

Based on EV-9200GC-64 (1) Package drawing (in mm)


EV-9200GC-64-G0E

LV-9200GC-04-G0		
ITEM	MILLIMETERS	INCHES
А	18.8	0.74
В	14.1	0.555
С	14.1	0.555
D	18.8	0.74
Е	4-C 3.0	4-C 0.118
F	0.8	0.031
G	6.0	0.236
Н	15.8	0.622
I	18.5	0.728
J	6.0	0.236
K	15.8	0.622
L	18.5	0.728
М	8.0	0.315
N	7.8	0.307
0	2.5	0.098
Р	2.0	0.079
Q	1.35	0.053
R	0.35±0.1	0.014 ^{+0.004} _{-0.005}
S	φ2.3	Ø0.091
Т	Ø1.5	φ0.059

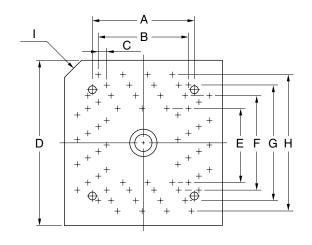
Figure A-2. EV-9200GC-64 Recommended Board Mounting Pattern (for reference)

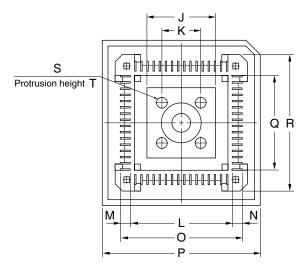
Based on EV-9200GC-64 (2) Pad drawing (in mm)

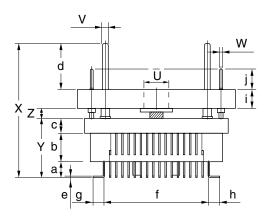
EV-9200GC-64-P1E

ITEM	MILLIMETERS	INCHES
А	19.5	0.768
В	14.8	0.583
С	$0.8\pm0.02\times15=12.0\pm0.05$	$0.031^{+0.002}_{-0.001} \times 0.591 = 0.472^{+0.003}_{-0.002}$
D	0.8±0.02 × 15=12.0±0.05	$0.031^{+0.002}_{-0.001} \times 0.591 = 0.472^{+0.003}_{-0.002}$
Е	14.8	0.583
F	19.5	0.768
G	6.00±0.08	$0.236^{+0.004}_{-0.003}$
Н	6.00±0.08	$0.236^{+0.004}_{-0.003}$
1	0.5±0.02	0.197 ^{+0.001} _{-0.002}
J	\$\psi_2.36±0.03\$	$\phi_{0.093^{+0.001}_{-0.002}}$
K	φ2.2±0.1	φ0.087 ^{+0.004} _{-0.005}
L	φ1.57±0.03	φ0.062 ^{+0.001} _{-0.002}

Caution Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).




Conversion Adapter (TGC-064SAP) Package Drawing


Figure A-3. TGC-064SAP Package Drawing (for reference)

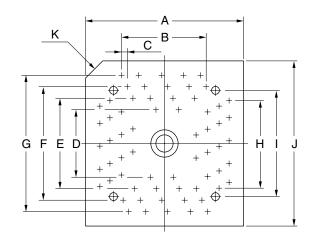
Reference diagram: TGC-064SAP (TQPACK064SA+TQSOCKET064SAP)

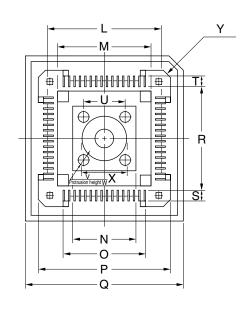
Package dimension (unit: mm)

ITEM	MILLIMETERS	INCHES
Α	14.12	0.556
В	0.8x15=12.0	0.031x0.591=0.472
С	0.8	0.031
D	20.65	0.813
E	10.0	0.394
F	12.4	0.488
G	14.8	0.583
Н	17.2	0.677
I	C 2.0	C 0.079
J	9.05	0.356
K	5.0	0.197
L	13.35	0.526
М	1.325	0.052
N	1.325	0.052
0	16.0	0.630
Р	20.65	0.813
Q	12.5	0.492
R	17.5	0.689
S	$4-\phi 1.3$	4-φ0.051
Т	1.8	0.071
U	φ3.55	φ0.140
V	φ0.9	φ0.035
W	φ0.3	φ0.012
X	(19.65)	(0.667)
Υ	7.35	0.289
Z	1.2	0.047

	ITEM	MILLIMETERS	INCHES
	а	1.85	0.073
2	b	3.5	0.138
	С	2.0	0.079
	d	6.0	0.236
	е	0.25	0.010
	f	13.6	0.535
	g	1.2	0.047
	h	1.2	0.047
	i	2.4	0.094
	j	2.7	0.106

TGC-064SAP-G0E


note: Product by TOKYO ELETECH CORPORATION.



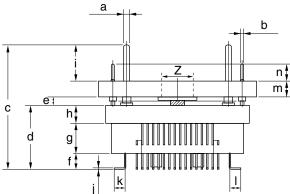

Conversion Adapter (TGK-064SBP) Package Drawing

Figure A-4. TGK-064SBP Package Drawing (for reference)

Reference diagram: TGK-064SBP (TQPACK064SB+TQSOCKET064SBP) Package dimension (unit: mm)

ITEM	MILLIMETERS	INCHES
Α	18.4	0.724
В	0.65x15=9.75	0.026x0.591=0.384
С	0.65	0.026
D	7.75	0.305
E	10.15	0.400
F	12.55	0.494
G	14.95	0.589
Н	0.65x15=9.75	0.026x0.591=0.384
I	11.85	0.467
J	18.4	0.724
K	C 2.0	C 0.079
L	12.45	0.490
М	10.25	0.404
N	7.7	0.303
0	10.02	0.394
Р	14.92	0.587
Q	18.4	0.724
R	11.1	0.437
S	1.45	0.057
Т	1.45	0.057
U	5.0	0.197
V	$4-\phi 1.3$	φ0.051
W	1.8	0.071
X	φ5.3	φ0.209
Y	4-C 1.0	4-C 0.039
Z	φ3.55	φ0.140

ITEM	MILLIMETERS	INCHES
а	ϕ 0.9	ϕ 0.035
b	ϕ 0.3	φ0.012
С	(16.95)	(0.667)
d	7.35	0.289
е	1.2	0.047
f	1.85	0.073
g	3.5	0.138
h	2.0	0.079
i	6.0	0.236
j	0.25	0.010
k	1.325	0.052
I	1.325	0.052
m	2.4	0.094
n	2.7	0.106
		TOK OGACOD COE

TGK-064SBP-G0E

note: Product by TOKYO ELETECH CORPORATION.

APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Document No.
μPD780078, 780078Y Subseries User's Manual	U14260E
μPD780076, 780078, 780076Y, 780078Y Data Sheet	U14259E
μPD78F0078, 78F0078Y Data Sheet	This document
78K/0 Series User's Manual — Instruction	U12326E

Documents Related to Development Software Tools (User's Manuals)

Document Name		Document No.
RA78K0 Assembler Package	Operation	U14445E
	Language	U14446E
	Structured Assembly Language	U11789E
CC78K0 C Compiler	Operation	U14297E
	Language	U14298E
SM78K0S, SM78K0 System Simulator	Operation	U14611E
Ver.2.10 or Later Windows Based		
SM78K Series System Simulator Ver. 2.10 or Later	External Part User Open Interface Specification	U15006E
ID78K0-NS Integrated Debugger Ver. 2.00	Operation	U14379E
or Later Windows based		
ID78K0 Integrated Debugger Windows based	Reference	U11539E
	Guide	U11649E
RX78K0 Real-time OS	Fundamentals	U11537E
	Installation	U11536E
MX78K0 Embedded OS	Fundamental	U12257E

Documents Related to Devices

Document Name	Document No.
IE-78K0-NS In-Circuit Emulator	U13731E
IE-78K0-NS-A In-Circuit Emulator	U14889E
IE-780078-NS-EM1 Emulation Board	To be prepared
IE-78001-R-A In-Circuit Emulator	U14142E
IE-78K0-R-EX1 In-Circuit Emulator	To be prepared

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

Documents Related to Flash Memory Writing

Document Name	Document No.
PG-FP3 Flash Memory Programmer User's Manual	U13502E
78K/0, 78K/0S Series Application Note - Flash Memory write	U14458E

Other Documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE - Products & Packages -	X13769E
Semiconductor Device Mounting Technology Manual	C10535E
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

[MEMO]

[MEMO]

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Purchase of NEC I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

FIP and IEBus are trademarks of NEC Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-3067-5800 Fax: 01-3067-5899

NEC Electronics (France) S.A.

Madrid Office Madrid, Spain Tel: 091-504-2787 Fax: 091-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore Tel: 253-8311

Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Guarulhos-SP, Brasil Tel: 11-6462-6810 Fax: 11-6462-6829

J01.2

- The information in this document is current as of July, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).