

MOS INTEGRATED CIRCUIT μ PD78F0034Y

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD78F0034Y is a product of the μ PD780034Y Subseries in the 78K/0 Series and equivalent to the μ PD780034Y with a flash memory in place of internal ROM.

The μ PD78F0034Y incorporates a flash memory, which can be programmed and erased without being removed from the substrate.

Functions are described in detail in the following user's manuals. Be sure to read them before designing.

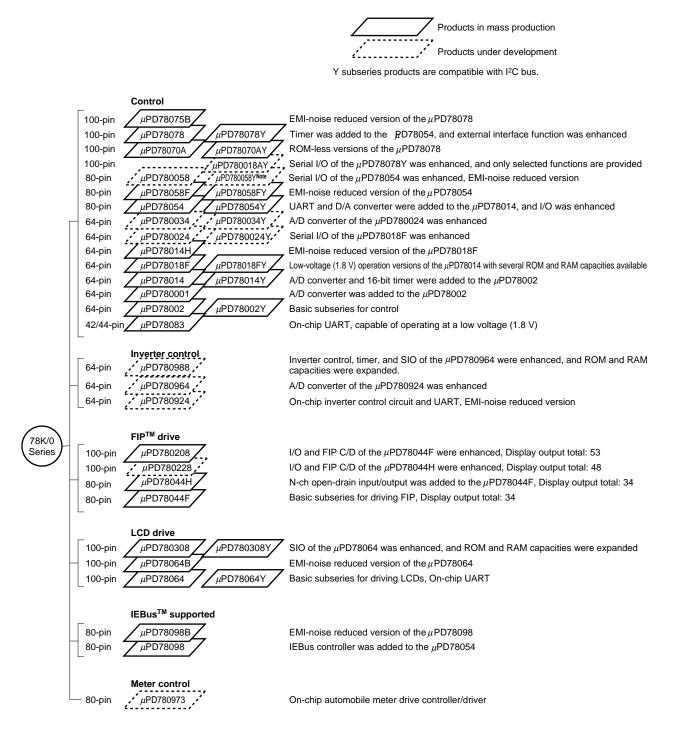
μPD780024, 780024Y, 780034, 780034Y Subseries User's Manual : U12022E 78K/0 Series User's Manual — Instructions : U12326E

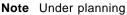
FEATURES

- I²C bus serial interface supporting multimaster
- Pin-compatible with mask ROM versions (except VPP pin)
- Flash memory : 32 Kbytes
- Internal high-speed RAM : 1024 bytes^{Note}
- Power supply voltage : VDD = 2.7 to 5.5 V

Note The flash memory and internal high-speed RAM capacities can be changed with the memory size switching register (IMS).

Remark For the differences between the flash memory versions and the mask ROM versions, refer to **1.** DIFFERENCES BETWEEN μPD78F0034Y AND MASK ROM VERSIONS.


ORDERING INFORMATION


Part Number	Package	Internal ROM
μPD78F0034YCW	64-pin plastic shrink DIP (750 mils)	Flash memory
μ PD78F0034YGC-AB8	64-pin plastic QFP (14 $ imes$ 14 mm)	Flash memory
μPD78F0034YGK-8A8	64-pin plastic LQFP (12 $ imes$ 12 mm)	Flash memory

The information in this document is subject to change without notice.

* 78K/0 SERIES DEVELOPMENT

The products in the 78K/0 Series are listed below. The names enclosed in boxes are subseries names.

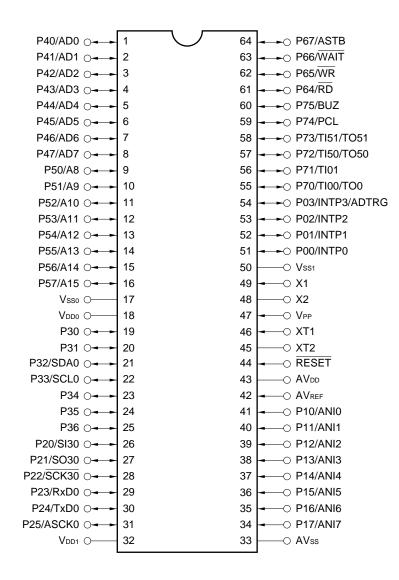
Subserie	Function s Name	ROM Capacity	Configuration of Serial Interface	9	I/O	V _{DD} MIN. Value
Control	μPD78078Y	48 K to 60 K	3-wire/2-wire/I ² C	: 1 ch	88	1.8 V
	μPD78070AY	_	3-wire with automatic transmit/receive function 3-wire/UART	: 1 ch : 1 ch	61	2.7 V
	μΡD780018AY	48 K to 60 K	3-wire with automatic transmit/receive function Time-division 3-wire I ² C bus (multimaster supported)	: 1 ch : 1 ch : 1 ch	88	
	μΡD780058Υ	24 K to 60 K	3-wire/2-wire/l ² C 3-wire with automatic transmit/receive function 3-wire/time-division UART	: 1 ch : 1 ch : 1 ch	68	1.8 V
	μPD78058FY	48 K to 60 K	3-wire/2-wire/I ² C	: 1 ch	69	2.7 V
	μPD78054Y	16 K to 60 K	3-wire with automatic transmit/receive function 3-wire/UART	: 1 ch : 1 ch		2.0 V
	μPD780034Y	8 K to 32 K	UART	: 1 ch	51	1.8 V
	μPD780024Y		3-wire I ² C bus (multimaster supported)	: 1 ch : 1 ch		
	μPD78018FY	8 K to 60 K	3-wire/2-wire/l ² C 3-wire with automatic transmit/receive function	: 1 ch : 1 ch	53	
	μΡD78014Υ	8 K to 32 K	3-wire/2-wire/SBI/I ² C 3-wire with automatic transmit/receive function	: 1 ch : 1 ch		2.7 V
	μPD78002Y	8 K to 16 K	3-wire/2-wire/SBI/I ² C	: 1 ch		
LCD drive	μPD780308Y	48 K to 60 K	3-wire/2-wire/l ² C 3-wire/time-division UART 3-wire	: 1 ch : 1 ch : 1 ch	57	2.0 V
	μΡD78064Y	16 K to 32 K	3-wire/2-wire/l ² C 3-wire/UART	: 1 ch : 1 ch		

The major functional differences among the Y subseries are shown below.

Remark The functions other than the serial interface are common to the subseries without Y.

OVERVIEW OF FUNCTION

lt	em	Function		
Internal Flash memory		32 Kbytes ^{Note}		
memory H	ligh-speed RAM	1024 bytes ^{Note}		
Memory space		64 Kbytes		
General-purpose	e registers	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)		
Minimum instruc	tion execution time	On-chip minimum instruction execution time cycle modification function		
	Vhen main system lock selected	0.24 μs/0.48 μs/0.95 μs/1.91 μs/3.81 μs (at 8.38-MHz operation)		
	Vhen subsystem lock selected	122 μs (at 32.768-kHz operation)		
Instruction set		 16-bit operate • multiply/divide (8 bits × 8 bits, 16 bits ÷ 8 bits) Bit manipulate (set, reset, test, Boolean operation) BCD adjust, etc. 		
I/O ports		Total : 51		
		CMOS input : 8 CMOS I/O : 39 N-ch open-drain I/O (5-V withstand voltage) : 4		
A/D converter		• 10-bit resolution × 8 channels		
Serial interface		S-wire serial I/O mode : 1 channel UART mode : 1 channel I ² C bus mode (multimaster supported) : 1 channel		
Timer		 16-bit timer/event counter : 1 channel 8-bit timer/event counter : 2 channels Watch timer : 1 channel Watchdog timer : 1 channel 		
Timer output		3 (8-bit PWM output capable: 2)		
Clock output		131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.10 MHz, 4.19 MHz, 8.38 MHz (at 8.38-MHz operation with main system clock) 32.768 kHz (at 32.768-kHz operation with subsystem clock)		
Buzzer output		1.02 kHz, 2.05 kHz, 4.10 kHz, 8.19 kHz (at 8.38-MHz operation with main system clock)		
Vectored interru	pt Maskable	Internal : 13, External : 5		
source	Non-maskable	Internal : 1		
	Software	1		
Test input		Internal : 1, External : 1		
Power supply vo	ltage	V _{DD} = 2.7 to 5.5 V		
Operating ambie	ent temperature	$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$		
Package		 64-pin plastic shrink DIP (750 mils) 64-pin plastic QFP (14 × 14 mm) 64-pin plastic LQFP (12 × 12 mm) 		

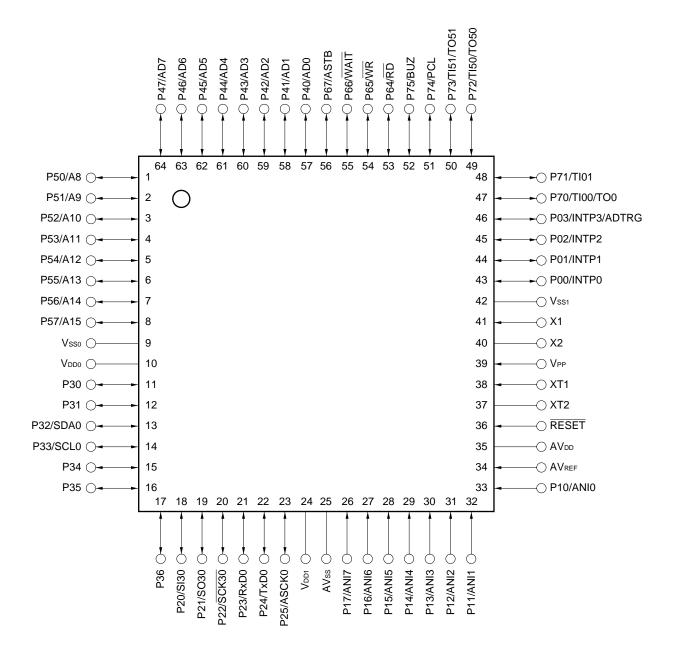

Note The capacities of the flash memory and the internal high-speed RAM can be changed with the memory size switching register (IMS).

 \star

 \star

PIN CONFIGURATION (TOP VIEW)

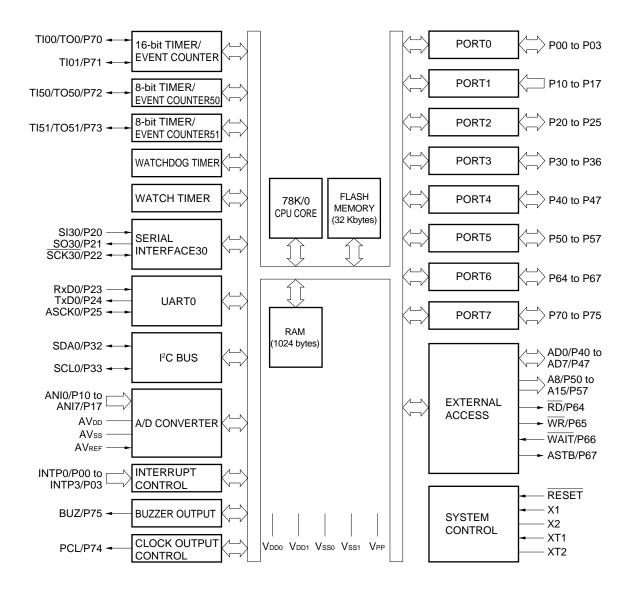
 64-pin Plastic Shrink DIP (750 mils) μPD78F0034YCW



Cautions 1. Connect the VPP pin directly to Vsso or Vss1 in normal operation mode. 2. Connect the AVss pin to Vsso.

Remark When the μPD78F0034Y is used in application fields that require reduction of the noise generated from inside the microcontroller, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} independently and connecting V_{SS0} and V_{SS1} to different ground lines, is recommended.

NEC


- 64-pin Plastic QFP (14 \times 14 mm) μ PD78F0034YGC-AB8
- 64-pin Plastic LQFP (12 × 12 mm) μPD78F0034YGK-8A8

- Cautions 1. Connect the VPP pin directly to Vss0 or Vss1 in normal operation mode.
 Connect the AVss pin to Vss0.
 - **Remark** When the μPD78F0034Y is used in application fields that require reduction of the noise generated from inside the microcontroller, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} independently and connecting V_{SS0} and V_{SS1} to different ground lines, is recommended.

A8 to A15	: Address Bus	PCL	: Programmable Clock
AD0 to AD7	: Address/Data Bus	RD	: Read Strobe
ADTRG	: AD Trigger Input	RESET	: Reset
ANI0 to ANI7	: Analog Input	RxD0	: Receive Data
ASCK0	: Asynchronous Serial Clock	SCK30	: Serial Clock
ASTB	: Address Strobe	SCL0	: Serial Clock
AVdd	: Analog Power Supply	SDA0	: Serial Data
AVREF	: Analog Reference Voltage	SI30	: Serial Input
AVss	: Analog Ground	SO30	: Serial Output
BUZ	: Buzzer Clock	TI00, TI01, TI50, TI5	1 : Timer Input
INTP0 to INTP3	: Interrupt from Peripherals	TO0, TO50, TO51	: Timer Output
P00 to P03	: Port 0	TxD0	: Transmit Data
P10 to P17	: Port 1	Vdd0, Vdd1	: Power Supply
P20 to P25	: Port 2	Vpp	: Programming Power Supply
P30 to P36	: Port 3	Vsso, Vss1	: Ground
P40 to P47	: Port 4	WAIT	: Wait
P50 to P57	: Port 5	WR	: Write Strobe
P64 to P67	: Port 6	X1, X2	: Crystal (Main System Clock)
P70 to P75	: Port 7	XT1, XT2	: Crystal (Subsystem Clock)

BLOCK DIAGRAM

 \star

CONTENTS

1	. DIFFERENCES BETWEEN $\mu\text{PD78F0034Y}$ AND MASK ROM VERSIONS	0
2	2. PIN FUNCTIONS	1
	2.1 Port Pins 1	1
	2.2 Non-Port Pins 1	2
	2.3 Pin I/O Circuits and Recommended Connection of Unused Pins 1	4
3	. MEMORY SIZE SWITCHING REGISTER (IMS)1	6
4	. FLASH MEMORY PROGRAMMING1	
	4.1 Selection of Transmission Method 1	
	4.2 Function of Flash Memory Programming 1	
	4.3 Connection of Flashpro II 1	8
5	ELECTRICAL SPECIFICATIONS	0
6	. PACKAGE DRAWINGS	8
A	APPENDIX A. DEVELOPMENT TOOLS4	1
A	APPENDIX B. RELATED DOCUMENTS4	7

1. DIFFERENCES BETWEEN $\mu \text{PD78F0034Y}$ AND MASK ROM VERSIONS

The μ PD78F0034Y is a product provided with a flash memory that enables on-board writing, erasing, and rewriting of programs with the device mounted on the target system.

The functions of the μ PD78F0034Y (except the functions specified for flash memory) can be made the same as those of the mask ROM versions by setting the memory size switching register (IMS).

Table 1-1 shows the differences between the flash memory version (μ PD78F0034Y) and the mask ROM versions (μ PD780031Y, 780032Y, 780033Y, and 780034Y).

Item	μPD78F0034	Mask ROM Versions	
Internal ROM type	Flash memory	Mask ROM	
Internal ROM capacity	32 Kbytes	μPD780031Y : 8 Kbytes μPD780032Y : 16 Kbytes μPD780033Y : 24 Kbytes μPD780034Y : 32 Kbytes	
Internal high-speed RAM capacity	1024 bytes	μPD780031Y : 512 bytes μPD780032Y : 512 bytes μPD780033Y : 1024 bytes μPD780034Y : 1024 bytes	
Internal ROM and internal high-speed RAM capacity changeable/not changeable with memory size switching register (IMS)	Changeable ^{Note}	Not changeable	
IC pin	Not provided	Provided	
VPP pin	Provided	Not provided	
Power supply voltage	V _{DD} = 2.7 to 5.5 V V _{DD} = 1.8 to 5.5 V		
Electrical specifications, recommended soldering conditions	Refer to the data sheet of individual products.		

Table 1-1. Differences between µPD78F0034Y and Mask ROM Versions

Note Flash memory is set to 32 Kbytes and internal high-speed RAM is set to 1024 bytes by RESET input.

* Caution There are differences in noise immunity and noise radiation between the flash memory versions and mask ROM versions. When pre-producing an application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluation for commercial samples (not engineering samples) of the mask ROM version.

*

2. PIN FUNCTIONS

2.1 Port Pins (1/2)

Pin Name	I/O		Function	After Reset	Alternate Function
P00	I/O	Port 0		Input	INTP0
P01	1	4-bit input/output port. Input/output can be specified bit-wise.			INTP1
P02	1		n on-chip pull-up resistor can be used by		INTP2
P03	1	software.			INTP3/ADTRG
P10 to P17	Input	Port 1 8-bit input only port.		Input	ANI0 to ANI7
P20	I/O	Port 2		Input	SI30
P21	1	6-bit input/output port.	it wice		SO30
P22	1	Input/output can be specified b When used as an input port, an	n on-chip pull-up resistor can be used by		SCK30
P23	1	software.			RxD0
P24	1				TxD0
P25	1				ASCK0
P30	I/O	Port 3	N-ch open-drain input/output port.	Input	_
P31	1	7-bit input/output port.	LEDs can be driven directly.		
P32	1	Input/output can be specified bit-wise.			SDA0
P33	1				SCL0
P34	1		When used as an input port, an on-chip pull-		_
P35	1		up resistor can be used by software.		
P36	1				
P40 to P47	I/O	software.	it-wise. n on-chip pull-up resistor can be used by 1 by the falling-edge detection.	Input	AD0 to AD7
P50 to P57	I/O	Port 5 8-bit input/output port. LEDs can be driven directly. Input/output can be specified b When used as an input port, an software.	it-wise. n on-chip pull-up resistor can be used by	Input	A8 to A15
P64	I/O	Port 6		Input	RD
P65		4-bit input/output port. Input/output can be specified b	it-wise		WR
P66			n on-chip pull-up resistor can be used by		WAIT
P67]	software.			ASTB

2.1 Port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
P70	I/O	Port 7	Input	TI00/TO0
P71		6-bit input/output port.		TI01
P72		Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by		TI50/TO50
P73		software.		TI51/TO51
P74				PCL
P75				BUZ

2.2 Non-Port Pins (1/2)

Pin Name	I/O	Function		Alternate Function
INTP0	Input	External interrupt request input for which the effective edge (rising edge,		P00
INTP1		falling edge, or both rising edge and falling edge) can be specified.		P01
INTP2				P02
INTP3				P03/ADTRG
SI30	Input	Serial interface serial data input.	Input	P20
SO30	Output	Serial interface serial data output.	Input	P21
SDA0	I/O	Serial interface serial data input/output.	Input	P32
SCK30	I/O	Serial interface serial clock input/output.	Input	P22
SCL0				P33
RxD0	Input	Serial data input for asynchronous serial interface.	Input	P23
TxD0	Output	Serial data output for asynchronous serial interface.	Input	P24
ASCK0	Input	Serial clock input for asynchronous serial interface.	Input	P25
* TI00	Input	External count clock input to 16-bit timer (TM0). Input Input Capture trigger signal input to TM0 capture register (CR01).		P70/TO0
★ TI01		Capture trigger signal input to TM0 capture register (CR00).		P71
TI50		External count clock input to 8-bit timer (TM50).	-	P72/TO50
TI51		External count clock input to 8-bit timer (TM51).		P73/TO51
TO0	Output	16-bit timer (TM0) output. Input		P70/TI00
TO50		8-bit timer (TM50) output (alternate function is 8-bit PWM output).	Input	P72/TI50
TO51		8-bit timer (TM51) output (alternate function is 8-bit PWM output).		P73/TI51
PCL	Output	Clock output (for trimming of main system clock and subsystem clock).	Input	P74
BUZ	Output	Buzzer output.	Input	P75
AD0 to AD7	I/O	Lower address/data bus for extending memory externally.	Lower address/data bus for extending memory externally. Input	
A8 to A15	Output	Higher address bus for extending memory externally.	Input	P50 to P57
RD	Output	Strobe signal output for read operation of external memory.	Input	P64
WR	1	Strobe signal output for write operation of external memory.	1	P65
WAIT	Input	Inserting wait for accessing external memory.	Input	P66
ASTB	Output	Strobe output that externally latches address information output to port 4 and port 5 to access external memory.	Strobe output that externally latches address information output to Input P6	

2.2 Non-Port Pins (2/2)

Pin Name	I/O	Function		Alternate Function
ANI0 to ANI7	Input	A/D converter analog input.	Input	P10 to P17
ADTRG	Input	A/D converter trigger signal input.	Input	P03/INTP3
AVREF	Input	A/D converter reference voltage input.	_	_
AVDD	—	A/D converter analog power supply. Set the voltage equal to VDD0 or VDD1.	—	_
AVss	—	A/D converter ground potential. Set the voltage equal to V _{SS0} or V _{SS1} .	_	_
RESET	Input	System reset input.	_	—
X1	Input	Connecting crystal resonator for main system clock oscillation.		—
X2	—			—
XT1	Input	Connecting crystal resonator for subsystem clock oscillation.		—
XT2	—		_	—
Vddo	—	Positive power supply for ports.	—	—
Vsso	—	Ground potential of ports.		
VDD1	—	Positive power supply (except ports).		—
Vss1	—	Ground potential (except ports).		_
Vpp	—	Applying high voltage for program write/verify. Connect directly to V_{SS0} or V_{SS1} in normal operation mode.	_	_

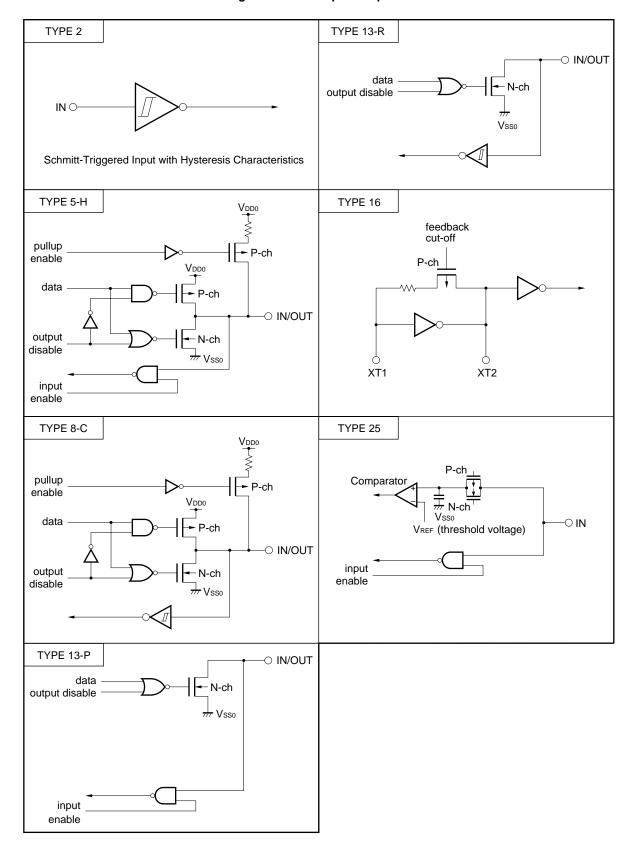
 \star

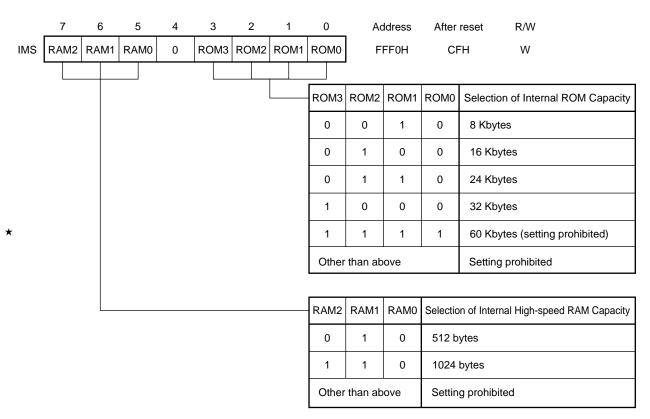
\star 2.3 Pin I/O Circuits and Recommended Connection of Unused Pins

Table 2-1 shows the types of pin I/O circuits and recommended connection of unused pins. Refer to Figure 2-1 about the configuration of each type of I/O circuit.

Pin Name	Input/output Circuit Type	Input/Output	Recommended Connection of Unused Pins
P00/INTP0	8-C	Input	Independently connect to Vsso via a resistor.
P01/INTP1			
P02/INTP2			
P03/INTP3			
P10/ANI0 to P17/ANI7	25	Input	Independently connect to VDD0 or VSS0 via a resistor.
P20/SI30	8-C	Input/output	
P21/SO30	5-H		
P22/SCK30	8-C		
P23/RxD0			
P24/TxD0	5-H		
P25/ASCK0	8-C		
P30, P31	13-P	Input/output	Independently connect to VDD0 via a resistor.
P32/SDA0	13-R		
P33/SCL0			
P34	8-C		Independently connect to VDD0 or VSS0 via a resistor.
P35	5-H		
P36	8-C		
P40/AD0 to P47/AD7	5-H	Input/output	Independently connect to VDD0 via a resistor.
P50/A8 to P57/A15	5-H	Input/output	Independently connect to VDD0 or VSS0 via a resistor.
P64/RD		Input/output	
P65/WR	-		
P66/WAIT	-		
P67/ASTB	_		
P70/TI00/TO0	8-C		
P71/TI01	-		
P72/TI50/TO50	-		
P73/TI51/TO51	-		
P74/PCL	5-H		
P75/BUZ	-		
RESET	2	Input	_
XT1	16		Connect to VDD0.
XT2			Leave open.
AVdd	_		Connect to VDD0.
AVREF	1		Connect to V _{SS0} .
AVss	-		
	1		Connect directly to Vsso or Vss1.

Table 2-1. Pin I/O Circuit Type




Figure 2-1 Pin Input/Output Circuit

3. MEMORY SIZE SWITCHING REGISTER (IMS)

This register sets a part of internal memory not used by software. The memory mapping can be made the same as that of mask ROM versions with different types of internal memory (ROM and RAM).

The IMS is set with an 8-bit memory manipulation instruction.

RESET input sets the IMS to CFH.

Figure 3-1. Format of Memory Size Switching Register

Table 3-1 shows the IMS set value to make the memory mapping the same as those of mask ROM versions.

Table 3-1. Set Value of Memory Size Switching Register

Target Mask ROM Versions	IMS Set Value
μPD780031Y	42H
μPD780032Y	44H
μPD780033Y	C6H
μPD780034Y	C8H

***** Caution When using mask ROM versions, set values indicated in Table 3-1 to IMS.

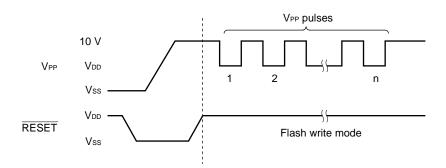
4. FLASH MEMORY PROGRAMMING

Writing to a flash memory can be performed without removing the memory from the target system. Writing is performed connecting the dedicated flash memory programmer (Flashpro II) to the host machine and the target system.

Also, it can be performed on an adapter for flash memory writing connected to the Flashpro II.

Remark Flashpro II is a product of Naitou Densei Machidaseisakusho Co., Ltd.

4.1 Selection of Transmission Method

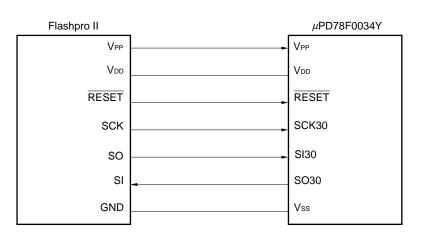

Writing to a flash memory is performed using the Flashpro II with a serial transmission mode. One of the transmission methods in Table 4-1 is selected. The selection of the transmission method is made by using the format shown in Figure 4-1. Each transmission method is selected by the number of VPP pulses shown in Table 4-1.

Transmission Method	Channels	Pin	VPP Pulses
3-wire serial I/O	1	SI30/P20 SO30/P21 SCK30/P22	0
UART	1	RxD0/P23 TxD0/P24 ASCK0/P25	8
I ² C bus	1	SDA0/P32 SCL0/P33	4
Pseudo 3-wire serial I/O	1	P72/TI50/TO50 (serial clock input) P71/TI01 (serial data output) P70/TI00/TO0 (serial data input)	12

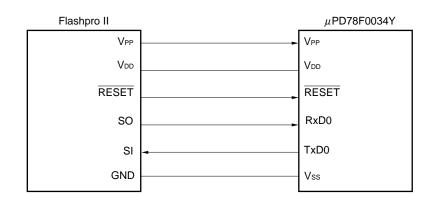
Table 4-1. Transmission Methods

Caution Be sure to select a communication system using the number of VPP pulses shown in Table 4-1.

4.2 Function of Flash Memory Programming


Operations such as writing to a flash memory are performed by various command/data transmission and reception operations according to the selected transmission method. Table 4-2 shows major functions of flash memory programming.

Functions	Descriptions
Reset	Used to stop write operation and detect transmission cycle.
Batch verify	Compares the entire memory contents with the input data.
Batch delete	Deletes the entire memory contents.
Batch blank check	Checks the deletion status of the entire memory.
High-speed write	Performs write to the flash memory based on the write start address and the number of data to be written (number of bytes).
Continuous write	Performs continuous write based on the information input with high-speed write operation.
Status	Used to confirm the current operating mode and operation end.
Oscillation frequency setting	Sets the frequency of the resonator.
Delete time setting	Sets the memory delete time.
Silicon signature read	Outputs the device name and memory capacity, and device block information.


Table 4-2.	Major Functions	of Flash Memory	Programming
------------	------------------------	-----------------	-------------

4.3 Connection of Flashpro II

The connection of the Flashpro II and the μ PD78F0034Y differs according to the transmission method (3-wire serial I/O, UART, and I²C bus). The connection for each transmission method is shown in Figures 4-2, 4-3, and 4-4, respectively.

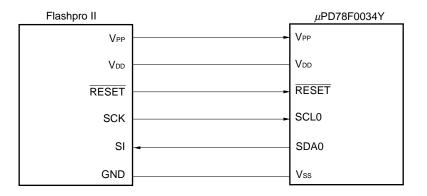


Figure 4-2.	Connection of F	lashpro II for	3-wire Se	rial I/O System

Figure 4-3. Connection of Flashpro II for UART System

★ 5. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol		Test Conditions		Rating	Unit
Supply voltage	Vdd				-0.3 to +6.5	V
	Vpp				-0.3 to +11.0	V
Supply voltage Input voltage Output voltage Analog input voltage High-level output current	AVDD				-0.3 to V _{DD} + 0.3	V
	AVREF				-0.3 to V _{DD} + 0.3	V
	AVss				-0.3 to +0.3	V
Input voltage	VI1	· · ·	0 to P17, P20 to P25, P34 to 4 to P67, P70 to P75, X1, X2,		-0.3 to V _{DD} + 0.3	V
	Vı2	P30 to P33	N-ch Open-drain		-0.3 to V _{DD} + 0.3	V
Output voltage	Vo				-0.3 to V _{DD} + 0.3	V
Analog input voltage	Van	P10 to P17	Analog input pin		AVss - 0.3 to AVREF + 0.3 and -0.3 to VDD + 0.3	V
High-level output	Іон	Per pin			-10	mA
current		Total for P00 to P	03, P40 to P47, P50 to P57, P64	-15	mA	
		Total for P20	to P25, P30 to P36	-15	mA	
Low-level output	lo_Note	Per pin for P00	to P03, P20 to P25, P34 to	20	mA	
current		P36, P40 to P4	7, P64 to P67, P70 to P75	Effective value	10	mA
		Per pin for Pa	30 to P33, P50 to P57	Peak value	30	mA
				Effective value	15	mA
		Total for P00	to P03, P40 to P47,	Peak value	50	mA
		P64 to P67, F	P70 to P75	Effective value	20	mA
		Total for P20	to P25	Peak value	20	mA
				Effective value	10	mA
		Total for P30	to P36	Peak value	100	mA
				Effective value	70	mA
		Total for P50	to P57	Peak value	100	mA
				Effective value	70	mA
Operating ambient temperature	TA				-40 to +85	°C
Storage temperature	Tstg				-65 to +150	°C

Note The effective value should be calculated as follows: [Effective value] = [Peak value] $\times \sqrt{duty}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Capacitance (TA = 25°C, VDD = Vss = 0 V)

Parameter	Symbol	Test Conditions			TYP.	MAX.	Unit
Input capacitance	Cin	f = 1 MHz Unmeasured pins returne	d to 0 V.			15	pF
I/O capacitance	Сю	f = 1 MHz Unmeasured pins returned to 0 V.	P00 to P03, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75,			15	pF
			P30 to P33			20	pF

Remark Unless otherwise specified, the characteristics of the alternate function are the same as those of the port-pin function.

Main System Clock Oscillator Characteristics (TA = -40 to 85°C, VDD = 2.7 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Ceramic	VPP X2 X1	Oscillation	V _{DD} = 4.5 to 5.5 V	1.0		8.38	MHz
resonator	│	frequency (fx) ^{Note 1}		1.0		5.0	
		Oscillation stabilization time ^{Note 2}	After V _{DD} reaches oscil- lation voltage range MIN.			4	ms
Crystal	VPP X2 X1	Oscillation	V _{DD} = 4.5 to 5.5 V	1.0		8.38	MHz
resonator	│	frequency (fx) ^{Note 1}		1.0		5.0	
		Oscillation	V _{DD} = 4.5 to 5.5 V			10	ms
	- I	stabilization time ^{Note 2}				30	
External	X2 X1	X1 input	V _{DD} = 4.5 to 5.5 V	1.0		8.38	MHz
clock		frequency (fx) ^{Note 1}				5.0	
		X1 input	V _{DD} = 4.5 to 5.5 V	50		500	ns
	μPD74HCU04	high-/low-level width (tхн , tх∟)		85		500	

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 2. Time required to stabilize oscillation after reset or STOP mode release.
- Cautions 1. When using the main system clock oscillator, wiring in the area enclosed with the broken line in the above figures should be carried out as follows to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always keep the ground point of the oscillator to the same potential as Vss1.
 - Do not ground the capacitor to a ground pattern in which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. When the main system clock is stopped and the system is operated by the subsystem clock, switching back to the main system clock should be done after the oscillation stabilization time has been secured by the program.

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	XT2 XT1VPP	Oscillation frequency (f _{XT}) ^{Note 1}		32	32.768	35	kHz
	= <u>C4</u> = <u>C3</u>	Oscillation	V _{DD} = 4.5 to 5.5 V		1.2	2	s
		stabilization time ^{Note 2}				10	
External clock		XT1 input frequency (f _{XT}) ^{Note 1}		32		100	kHz
		XT1 input high-/low-level width (txтн , txт∟)		5		15	μs

Subsystem Clock Oscillator Characteristics ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 2.7$ to 5.5 V)

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 2. Time required to stabilize oscillation after VDD reaches oscillation voltage MIN.
- Cautions 1. When using the subsystem clock oscillator, wiring in the area enclosed with the broken line in the above figures should be carried out as follows to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always keep the ground point of the oscillator to the same potential as Vss1.
 - Do not ground the capacitor to a ground pattern in which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. The subsystem clock oscillator is a low-amplitude circuit in order to achieve a low consumption current, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.

Parameter	Symbol	Test Conditio	ons	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P10 to P17, P21, P24, P35, P40 to P47, P50 to P57, P64 to P67, P74, P75		0.7Vdd		Vdd	V
	VIH2	P00 to P03, P20, P22, P23, P25, P34, P36, P70 to P73, RESET		0.8Vdd		Vdd	V
	Vінз	P30 to P33 (N-ch open-drain)		0.7Vdd		5.5	V
	VIH4	X1, X2		Vdd - 0.5		Vdd	V
	Vih5	XT1, XT2	V _{DD} = 4.5 to 5.5 V	0.8Vdd		Vdd	V
				0.9Vdd		Vdd	V
Input voltage, Iow	VIL1	P10 to P17, P21, P24, P35, P40 to P47, P50 to P57, P64 to P67, P74, P75		0		0.3Vdd	V
	VIL2	P00 to P03, P20, P22, P23, P25, P34, P36, P70 to P73, RESET		0		0.2Vdd	V
	VIL3	P30 to P33	V _{DD} = 4.5 to 5.5 V	0		0.3Vdd	V
				0		0.2Vdd	V
	VIL4	X1, X2		0		0.4	V
	VIL5	XT1, XT2	V _{DD} = 4.5 to 5.5 V	0		0.2Vdd	V
				0		0.1Vdd	V
Output voltage,	Vон1	VDD = 4.5 to 5.5 V, IOH = -1 mA		Vdd - 1.0		Vdd	V
high		Іон = -100 <i>µ</i> А		Vdd - 0.5		Vdd	V
Output voltage, low	Vol1	P30 to P33, P50 to P57	V _{DD} = 4.5 to 5.5 V, Io∟ = 15 mA		0.4	2.0	V
		P00 to P03, P20 to P25, P34 to P36, P40 to P47, P64 to P67, P70 to P75	V _{DD} = 4.5 to 5.5 V, I _{OL} = 1.6 mA			0.4	V
	Vol2	Iol = 400 μA				0.5	V

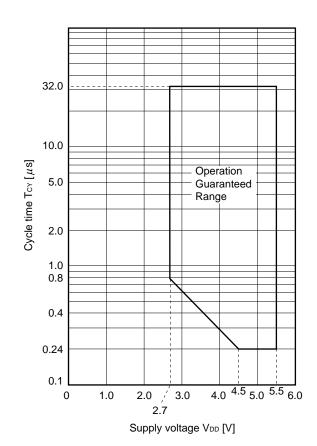
DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 2.7 to 5.5 V)

Remark Unless otherwise specified, the characteristics of the alternate function are the same as those of the port-pin function.

Parameter	Symbol	Test	Conditions	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішні	Vin = Vdd	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET			3	μΑ
	ILIH2	_	X1, X2, XT1, XT2			20	μA
	Ілнз	VIN = 5.5 V	P30 to P33			80	μA
Input leakage current, low	ILIL1	V _{IN} = 0 V	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET			-3	μA
	ILIL2		X1, X2, XT1, XT2			-20	μA
	Ililis		P30 to P33			-3	μA
Output leakage current, low	Ігон	Vout = Vdd				3	μA
Output leakage current, low	Ilol	Vout = 0 V				-3	μA
Software pull- up resistance	R	V _{IN} = 0 V, P00 to P03, P20 to P25, P50 to P57, P64 to P67,	P34 to P36, P40 to P47, P70 to P75	15	30	90	kΩ
Power supply current ^{Note 1}	IDD1	8.38-MHz crystal oscillation operating mode	$V_{DD} = 5.0 V \pm 10\%$		9.5	19.0	mA
	IDD2	8.38-MHz crystal oscillation HALT mode	$V_{DD} = 5.0 V \pm 10\%$		1.6	3.2	mA
	Ірдз	32.768-kHz crystal oscillation	Vdd = 5.0 V ±10%		100	200	μA
		operating mode ^{Note 2}	VDD = 3.0 V ±10%		70	140	μA
	IDD4	32.768-kHz crystal oscillation	Vdd = 5.0 V ±10%		25	55	μA
		HALT mode ^{Note 2}	$V_{DD} = 3.0 \text{ V} \pm 10\%$		5	15	μA
	IDD5	XT1 = V _{DD1} , STOP mode	$V_{DD} = 5.0 \text{ V} \pm 10\%$		1	30	μA
		When feedback resistor is used	VDD = 3.0 V ±10%		0.5	10	μA
	IDD6	XT1 = V _{DD1} , STOP mode	$V_{DD} = 5.0 \text{ V} \pm 10\%$		0.1	30	μA
		When feedback resistor is not used	VDD = 3.0 V ±10%		0.05	10	μA

DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 2.7 to 5.5 V)

- **Notes 1.** Does not include the current flowing into the on-chip pull-up resistor, the AV_{REF} current, and port current.
 - 2. When the main system clock is stopped.
- **Remark** Unless otherwise specified, the characteristics of the alternate function are the same as those of the port-pin function.


AC Characteristics

Parameter	Symbol		Test Conditions	MIN.	TYP.	MAX.	Unit
Cycle time	Тсү	Operating with	V _{DD} = 4.5 to 5.5 V	0.24		32	μs
(Min. instruction		main system clock		0.8		32	μs
execution time)		Operating with sub	system clock	40 ^{Note 1}	122	125	μs
TI00, TI01 input	ttiho, ttilo	$3.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	1	2/fsam + 0.1 ^{Note 2}			μs
high-/low-level width				2/fsam + 0.2 ^{Note 2}			μs
TI50, TI51 input frequency	fti5			0		4	MHz
TI50, TI51 input high-/low-level width	ttih5, ttil5			100			ns
Interrupt request input high-/low -level width	tinth, tintl	INTP0 to INTP3, P4	40 to P47	1			μs
RESET low-level width	trsl			10			μs

(1) Basic Operation ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 2.7$ to 5.5 V)

Notes 1. Value when using the external clock. When using a crystal resonator, the value becomes 114 μ s (MIN.).

Selection of fsam = fx, fx/4, fx/64 is possible with bits 0 and 1 (PRM00, PRM01) of prescaler mode register 0 (PRM0). However, if the TI00 valid edge is selected as the count clock, the value becomes fsam = fx/8.

TCY VS VDD (at main system clock operation)

(2) Read/Write Operation (T_A = -40 to + 85°C, V_{DD} = 4.5 to 5.5 V) (1/2)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level width	t asth		0.5tcr		ns
Address setup time	tads		tcy - 40		ns
Address hold time	t adh		6		ns
Data input time from address	tADD1			(2 + 2n)tcy - 54	ns
	tADD2			(3 + 2n)tcy - 60	ns
Address output time from $\overline{\text{RD}} {\downarrow}$	trdad		0	100	ns
Data input time from $\overline{RD}\downarrow$	trdd1			(2 + 2n)tcr – 87	ns
	trdd2			(3 + 2n)tcy - 93	ns
Read data hold time	t rdh		0		ns
RD low-level width	trdl1		(1.5 + 2n)tcr – 33		ns
	trdl2		(2.5 + 2n)tcr - 33		ns
$\overline{\text{WAIT}} \downarrow$ input time from $\overline{\text{RD}} \downarrow$	trdwt1			0.5tcy - 43	ns
	trdwt2			tcy - 43	ns
$\overline{\text{WAIT}} \downarrow$ input time from $\overline{\text{WR}} \downarrow$	twrwt			0.5tcy - 25	ns
WAIT low-level width	tw⊤∟		(0.5 + 2n)tcr + 10	(2 + 2n)tcr	ns
Write data setup time	twps		60		ns
Write data hold time	twdн		6		ns
WR low-level width	twrL1		(1.5 + 2n)tcr – 15		ns
$\overline{\mathrm{RD}} \downarrow$ delay time from ASTB \downarrow	t ASTRD		6		ns
$\overline{WR} \downarrow$ delay time from ASTB \downarrow	t astwr		2tcy – 15		ns
ASTB [↑] delay time from RD [↑] in external fetch	t rdast		0.8tcy - 15	1.2tcy	ns
Address hold time from \overline{RD}^{\uparrow} in external fetch	t RDADH		0.8tcy - 15	1.2tcr + 30	ns
Write data output time from $\overline{\text{RD}}$	trdwd		40		ns
Write data output time from $\overline{\rm WR} \downarrow$	twrwd		10	60	ns
Address hold time from $\overline{\rm WR}\uparrow$	twradh		0.8tcy - 15	1.2tcy + 30	ns
$\overline{\mathrm{RD}}$ delay time from $\overline{\mathrm{WAIT}}$	twtrd		0.8tcy	2.5tcy + 25	ns
\overline{WR}^{\uparrow} delay time from $\overline{WAIT}^{\uparrow}$	t wtwr		0.8tcy	2.5tcy + 25	ns

Remarks 1. tcy = Tcy/4

2. n indicates the number of waits.

(2) Read/Write Operation (T_A = -40 to + 85°C, V_{DD} = 2.7 to 4.5 V) (2/2)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level width	t ASTH		0.5tcr		ns
Address setup time	tads		0.5tcy – 54		ns
Address hold time	t ADH		10		ns
Data input time from address	tadd1			(2 + 2n)tcy - 108	ns
	tADD2			(3 + 2n)tcy - 120	ns
Address output time from $\overline{\text{RD}} \downarrow$	t RDAD		0	200	ns
Data input time from $\overline{RD} \downarrow$	trdd1			(2 + 2n)tcy - 148	ns
	trdd2			(3 + 2n)tcy - 162	ns
Read data hold time	t RDH		0		ns
RD low-level width	trdl1		(1.5 + 2n)tcr – 40		ns
	trdl2		(2.5 + 2n)tcy - 40		ns
$\overline{\text{WAIT}}\downarrow$ input time from $\overline{\text{RD}}\downarrow$	trdwt1			0.5tcy - 60	ns
	trdwt2			tcy - 60	ns
$\overline{\text{WAIT}} \downarrow$ input time from $\overline{\text{WR}} \downarrow$	twrwt			0.5tcy - 50	ns
WAIT low-level width	tw⊤∟		(0.5 + 2n)tcr + 10	(2 + 2n)tcr	ns
Write data setup time	twos		60		ns
Write data hold time	twdн		10		ns
WR low-level width	twrl1		(1.5 + 2n)tcy – 30		ns
$\overline{RD} \downarrow$ delay time from ASTB \downarrow	t ASTRD		10		ns
$\overline{WR} \downarrow$ delay time from ASTB \downarrow	t astwr		2tcy - 30		ns
ASTB [↑] delay time from \overline{RD}^{\uparrow} in external fetch	t rdast		0.8tcy - 30	1.2tcr	ns
Address hold time from \overline{RD}^{\uparrow} in external fetch	t RDADH		0.8tcy - 30	1.2tcy + 60	ns
Write data output time from $\overline{\text{RD}}$	trdwd		40		ns
Write data output time from $\overline{\rm WR} \downarrow$	twrwd		20	120	ns
Address hold time from $\overline{\mathrm{WR}} \uparrow$	twradh		0.8tcy - 30	1.2tcy + 60	ns
\overline{RD} delay time from \overline{WAIT}	twtrd		0.5tcy	2.5tcy + 50	ns
WR↑ delay time from WAIT↑	t WTWR		0.5tcr	2.5tcr + 50	ns

Remarks 1. tcy = Tcy/4

2. n indicates the number of waits.

(3) Serial Interface (T_A = -40 to +85°C, V_{DD} = 2.7 to 5.5 V) (a) 3-wire serial I/O mode (SCK30 ... Internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK30 cycle time	t ксү1	V _{DD} = 4.5 to 5.5 V	954			ns
			1600			ns
SCK30 high-/low-level	tkh1, tkL1	V _{DD} = 4.5 to 5.5 V	tксү1/2 – 50			ns
width			tксү1/2 – 100			ns
SI30 setup time	tsik1	V _{DD} = 4.5 to 5.5 V	100			ns
(to SCK30, SCK31↑)			150			ns
SI30 hold time (from SCK30, SCK31↑)	tksii		400			ns
SO30 output delay time from $\overline{\text{SCK30}}\downarrow$	tkso1	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the $\overline{SCK30}$, SO30 output lines.

Parameter Symbol **Test Conditions** MIN. TYP. MAX. Unit SCK30 VDD = 4.5 to 5.5 V 800 **t**KCY2 ns 1600 ns SCK30, high-/low-level VDD = 4.5 to 5.5 V 400 tkh2, tkl2 ns width 800 ns SI30 setup time tsik2 100 ns (to SCK30↑) SI30 hold time 400 **t**KSI2 ns (from SCK30↑) $C = 100 \text{ pF}^{Note}$ SO30 output delay tkso2 300 ns time from $\overline{\text{SCK30}} \downarrow$ SCK30 rise fall time When using external device 160 tr2, tr2 ns expansion function When not using external When using 700 ns device expansion function 16-bit timer output function When not 1000 ns using 16-bit timer output function

(b) 3-wire serial I/O mode (SCK30 ... External clock input)

Note C is the load capacitance of the SO30 output line.

(c) UART mode (Dedicated baud rate generator output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$			125000	bps
					78125	bps

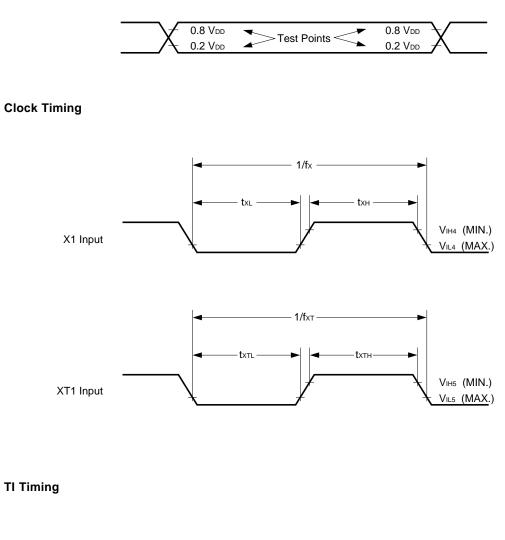
(d) UART mode (External clock input)

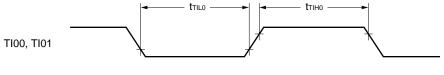
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
ASCK0 cycle time	tксүз	V _{DD} = 4.5 to 5.5 V	800			ns
			1600			ns
ASCK0 high-/low-level width	t кнз,	V _{DD} = 4.5 to 5.5 V	400			ns
	tĸ∟з		800			ns
Transfer rate		V _{DD} = 4.5 to 5.5 V			39063	bps
					19531	bps
ASCK0 rise, fall time	tr3, tF3	V_{DD} = 4.5 to 5.5 V, when not using external device expansion function			1000	ns
					160	ns

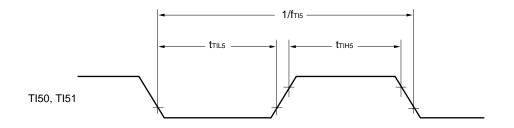
(e) UART mode (Infrared ray data transfer mode)

Parameter	Symbol	Test Conditions	TYP.	MAX.	Unit
Transfer rate		V _{DD} = 4.5 to 5.5 V		115200	bps
Bit rate allowable error		V _{DD} = 4.5 to 5.5 V		±0.87	%
Output pulse width		V _{DD} = 4.5 to 5.5 V	1.2	0.24/fbr ^{Note}	μs
Input pulse width		V _{DD} = 4.5 to 5.5 V	4/fx		μs

Note fbr: specified baud rate

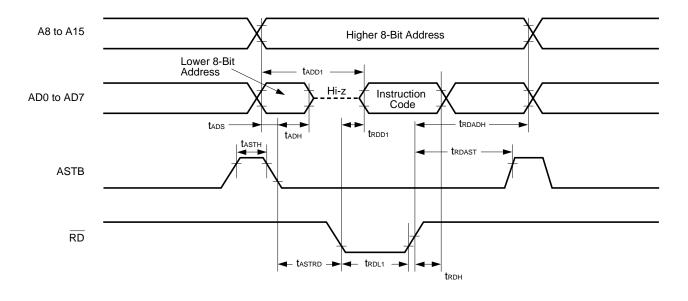

(f) I²C bus Mode

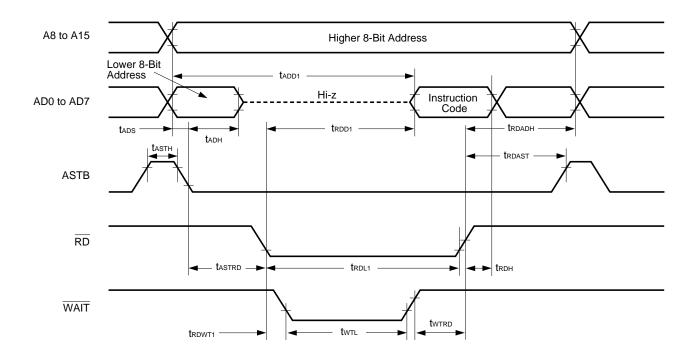

	_		Standar	d Mode	High-spe	ed Mode	Unit
	Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	
SCL0 clock freq	uency	fclk	0	100	0	400	kHz
Bus free time (between stop and start conditions)		tbuf	4.7	_	1.3	—	μs
Hold time ^{Note 1}		thd:sta	4.0	_	0.6	_	μs
SCL0 clock low-level width		tLOW	4.7	_	1.3	_	μs
SCL0 clock high-level width		tніgн	4.0	_	0.6	—	μs
Start/restart condition setup time		tsu:sta	4.7	—	0.6	—	μs
Data hold time	CBUS compatible master	thd:dat	5.0	_	—	_	μs
	I ² C bus		O ^{Note 2}	_	O ^{Note 2}	0.9 ^{Note 3}	μs
Data setup time		tsu:dat	250	—	100 ^{Note 4}	—	ns
SDA0 and SCL0) signal rise time	tR	_	1000	20 + 0.1Cb ^{Note 5}	300	ns
SDA0 and SCL0 signal fall time		tr	_	300	20 + 0.1Cb ^{Note 5}	300	ns
Stop condition setup time		tsu:sto	4.0	_	0.6	_	μs
Spike pulse width controlled by input filter		ts₽		_	0	50	ns
Capacitive load	per each bus line	Cb		400		400	pF


Notes 1. On start condition, the first clock pulse is generated after this period.

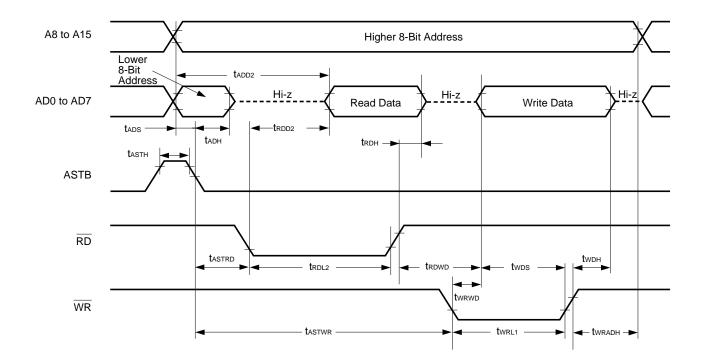
- 2. To fulfill undefined area of the SCL0 falling edge, it is necessary for the device to provide internally SDA0 signal (on VIHmin. of SCL0 signal) with at least 300 ns of hold time.
- **3.** If the device does not extend the SCL0 signal low hold time (tLow), only maximum data hold time (tHD:DAT) needs to be fulfilled.
- **4.** The high-speed mode I²C bus is available in the standard mode I²C bus system. At this time, the conditions described below must be satisfied.
 - If the device does not extend the SCL0 signal low state hold time tsu:DAT ≥ 250 ns
 - If the device extends the SCL0 signal low state hold time
 Be sure to transmit the next data bit to the SDA0 line before the SCL0 line is released (tRmax. + tsu:DAT = 1000 + 250 = 1250 ns by standard mode l²C bus specification).
- 5. Cb : total capacitance per one bus line (unit : pF)

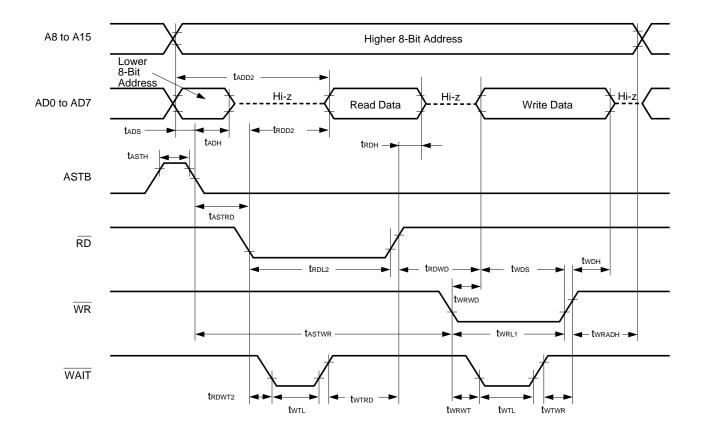
AC Timing Test Point (Excluding X1, XT1 Input)



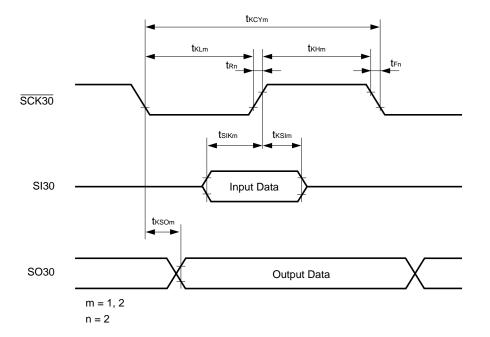


Read/Write Operation

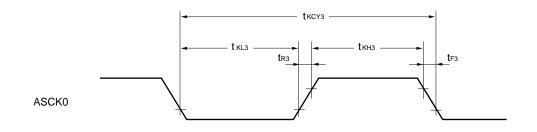

External Fetch (No Wait) :


External Fetch (Wait Insertion) :

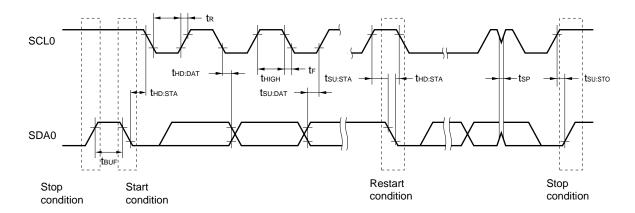
External Data Access (No Wait) :



External Data Access (Wait Insertion) :



Serial Transfer Timing

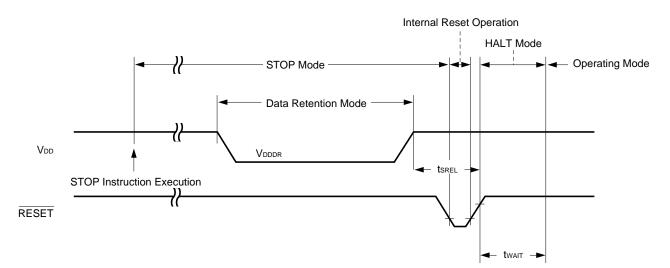

3-wire Serial I/O Mode :

UART Mode (External Clock Input) :

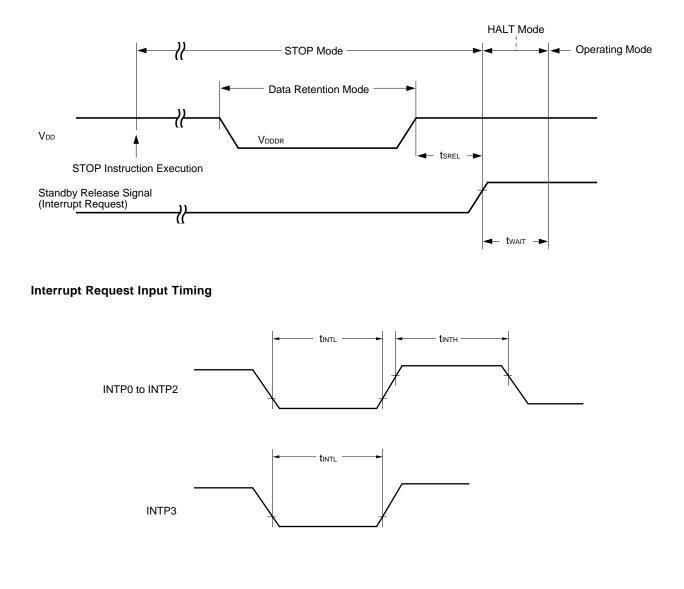
I²C Bus Mode

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Resolution			10	10	10	bit
Overall error ^{Note}		AV _{REF} = 4.5 to 5.5 V			±0.4	%
					±0.7	%
Conversion time	Тсолу	AV _{REF} = 4.5 to 5.5 V	14		200	μs
			20		200	μs
Analog input voltage	Vian		0		AVREF + 0.3	V
Reference voltage	AVREF		2.7		AVDD	V
AVREF resistance	RAIREF		10	20		kΩ

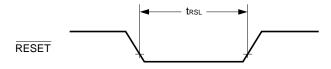
A/D Converter Characteristics (TA = -40 to 85°C, VDD = AVDD = AVREF = 2.7 to 5.5 V, AVSS = VSS = 0 V)


Note Excluding quantization error (±1/2LSB). Shown as a percentage of the full scale value.

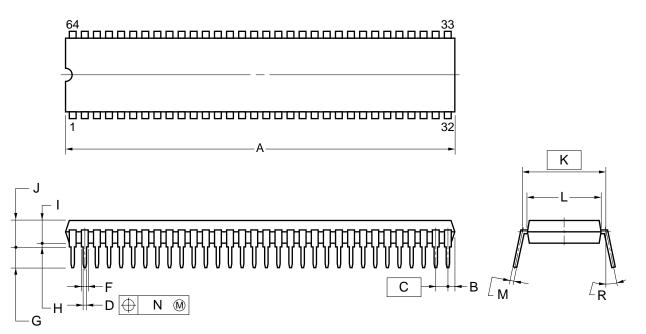
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (T_A = -40 to +85°C)


Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	Vdddr		1.6		5.5	V
Data retention power supply current	Idddr	V _{DDDR} = 1.6 V Subsystem clock stops and feed-back resistor disconnected		0.1	10	μA
Release signal set time	tSREL		0			μs
Oscillation stabilization	twait	Release by RESET		2 ¹⁷ /fx		ms
wait time		Release by interrupt request		Note		ms

Note Selection of 2¹²/fx and 2¹⁴/fx to 2¹⁷/fx is possible with bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS).


Data Retention Timing (STOP Mode Release by RESET)

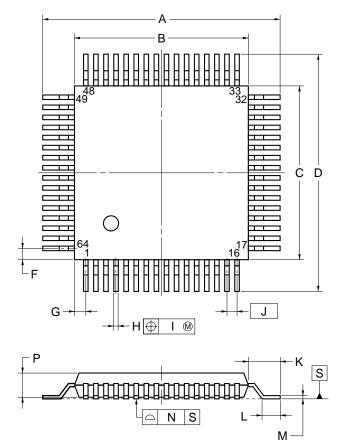
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Request Signal)

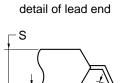


RESET Input Timing

6. PACKAGE DRAWINGS

64-PIN PLASTIC SHRINK DIP (750 mils) (Unit: mm)


NOTES

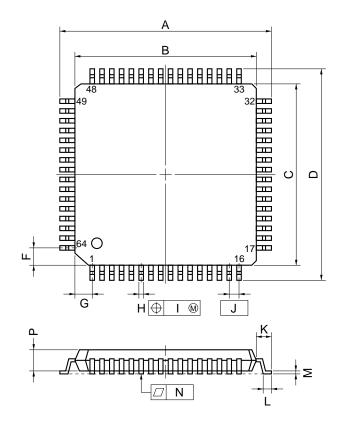

- 1. Controlling dimension— millimeter.
- 2. Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 3. Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
А	58.0 <mark>+0.68</mark>	2.283 ^{+0.028} -0.008
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
I	$4.05^{+0.26}_{-0.20}$	0.159 ^{+0.011}
J	5.08 MAX.	0.200 MAX.
K	19.05 (T.P.)	0.750 (T.P.)
L	17.0±0.2	$0.669^{+0.009}_{-0.008}$
М	$0.25_{-0.05}^{+0.10}$	$0.010^{+0.004}_{-0.003}$
N	0.17	0.007
R	0 to 15°	0 to 15°
	01013	0.013

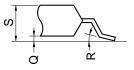
P64C-70-750A,C-3

64-PIN PLASTIC QFP (14 x 14) (Unit: mm)

Q


ITEM	MILLIMETERS	INCHES
Α	17.6±0.4	0.693±0.016
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
н	$0.37^{+0.08}_{-0.07}$	$0.015^{+0.003}_{-0.004}$
I	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
К	1.8±0.2	0.071±0.008
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.17\substack{+0.08 \\ -0.07}$	$0.007^{+0.003}_{-0.004}$
Ν	0.10	0.004
Р	2.55±0.1	0.100±0.004
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	2.85 MAX.	0.113 MAX.
		P64GC-80-AB8-4

NOTE


2. Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

^{1.} Controlling dimension — millimeter.

64-PIN PLASTIC LQFP (12 x 12) (Unit: mm)

detail of lead end

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	14.8±0.4	0.583±0.016
В	12.0±0.2	$0.472^{+0.009}_{-0.008}$
С	12.0±0.2	$0.472^{+0.009}_{-0.008}$
D	14.8±0.4	0.583±0.016
F	1.125	0.044
G	1.125	0.044
н	0.30±0.10	$0.012^{+0.004}_{-0.005}$
I	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
К	1.4±0.2	$0.055 {\pm} 0.008$
L	0.6±0.2	$0.024^{+0.008}_{-0.009}$
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	1.4	0.055
Q	0.125±0.075	0.005±0.003
R	5°±5°	5°±5°
S	1.7 MAX.	0.067 MAX.
		P64GK-65-8A8-1

* APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78F0034Y. Be sure to refer to (5) Cautions on using development tools.

(1) Language Processing Software

RA78K/0	Assembler package common to 78K/0 Series
CC78K/0	C compiler package common to 78K/0 Series
DF780034	Device file common to μ PD780034 Subseries
CC78K/0-L	C compiler library source file common to 78K/0 Series

(2) Flash Memory Writing Tools

Flashpro II (FL-PR2)	Flash programmer dedicated to on-chip flash memory microcontroller
FA-64CW	Adapter for flash writing
FA-64GC	
FA-64GK ^{Note}	

Note Under development

(3) Debugging Tool

• When using in-circuit emulator IE-78K0-NS

IE-78K0-NS ^{Note}	In-circuit emulator common to 78K/0 Series
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS
IE-70000-98-IF-C ^{Note}	Interface adapter when using PC-9800 series as host machine (excluding notebook PCs)
IE-70000-CD-IF ^{Note}	PC card and interface cable when using notebook PC of PC-9800 series as host machine
IE-70000-PC-IF-C ^{Note}	Interface adapter when using IBM PC/AT [™] or compatible as host machine
IE-780034-NS-EM1 ^{Note}	Emulation board to emulate μ PD780034 Subseries
NP-64CW	Emulation probe for 64-pin plastic shrink DIP (CW type)
NP-64GC	Emulation probe for 64-pin plastic QFP (GC-AB8 type)
NP-64GK ^{Note}	Emulation probe for 64-pin plastic LQFP (GK-8A8 type)
TGK-064SBW	Conversion adapter for connecting target system board designed to allow mounting of 64-pin
	plastic LQFP (GK-8A8 type) and NP-64GK.
EV-9200GC-64	Socket to be mounted on target system board manufactured for 64-pin plastic QFP (GC-AB8 type)
ID78K0-NS ^{Note}	Integrated debugger for IE-78K0-NS
SM78K0	System simulator common to 78K/0 Series
DF780034	Device file common to μ PD780034 Subseries

Note Under development

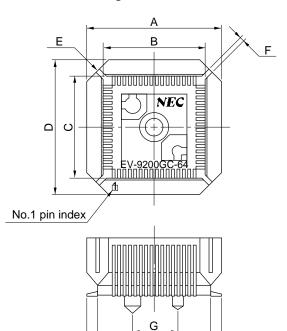
• When using in-circuit emulator IE-78001-R-A

IE-78001-R-A ^{Note}	In-circuit emulator common to 78K/0 Series
IE-70000-98-IF-B	Interface adapter when using PC-9800 series as host machine (excluding notebook PCs)
IE-70000-98-IF-C ^{Note}	
IE-70000-PC-IF-B	Interface adapter when using IBM PC/AT or compatible as host machine
IE-70000-PC-IF-C ^{Note}	
IE-78000-R-SV3	Interface adapter and cable when using EWS as host machine
IE-780034-NS-EM1 ^{Note}	Emulation board to emulate μ PD780034 Subseries
IE-78K0-R-EX1 ^{Note}	Emulation probe conversion board to use IE-780034-NS-EM1 on IE-78001-R-A
EP-78240CW-R	Emulation probe for 64-pin plastic shrink DIP (CW type)
EP-78240GC-R	Emulation probe for 64-pin plastic QFP (GC-AB8 type)
EP-78012GK-R	Emulation probe for 64-pin plastic LQFP (GK-8A8 type)
TGK-064SBW	Conversion adapter for connecting target system board and EP-78012GK-R designed to allow
	mounting of 64-pin plastic LQFP (GK-8A8).
EV-9200GC-64	Socket to be mounted on target system board manufactured for 64-pin plastic QFP (GC-AB8 type)
ID78K0	Integrated debugger for IE-78001-R-A
SM78K0	System simulator common to 78K/0 Series
DF780034	Device file common to μ PD780034 Subseries

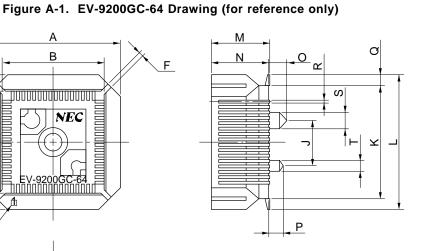
Note Under development

(4) Real-time OS

RX78K/0	Real-time OS for 78K/0 Series
MX78K0	OS for 78K/0 Series


(5) Cautions on using development tools

- The ID-78K0-NS, ID78K0, and SM78K0 are used in combination with the DF780034.
- The CC78K/0 and RX78K/0 are used in combination with the RA78K/0 and the DF780034.
- The Flashpro II, FA-64CW, FA-64GC, FA64GK, NP-64CW, NP64GC, and NP-64GK are products made by Naitou Densei Machidaseisakusho (044-822-3813).
- Contact an NEC distributor regarding the purchase of these products.
- The TGK-064SBW is a product made by TOKYO ELETECH CORPORATION.
 - Refer to: Daimaru Kogyo, Ltd.
 - Tokyo Electronic Components Division (03-3820-7112)
 - Osaka Electronic Components Division (06-244-6672)
- For third party development tools, see the 78K/0 Series Selection Guide (U11126E).
- The host machines and OSs supporting each software are as follows.

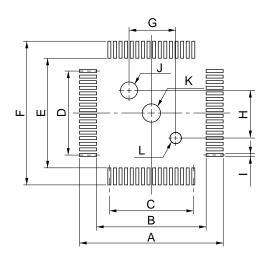

Host Machine	PC	EWS	
[OS]	PC-9800 series [Windows™]	HP9000 series 700 [™] [HP-UX [™]]	
	IBM PC/AT or compatibles	SPARCstation [™] [SunOS [™]]	
Software	[Japanese/English Windows]	NEWS™ (RISC) [NEWS-OS™]	
RA78K/0	√Note	√	
CC78K/0	\sqrt{N} ote	√	
ID78K0-NS	\checkmark	_	
ID78K0	\checkmark	√	
SM78K0	\checkmark	-	
RX78K/0	\sqrt{N} ote	√	
MX78K0	\sqrt{N} ote	√	

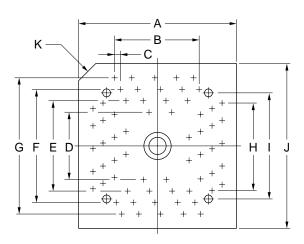
Note DOS-based software

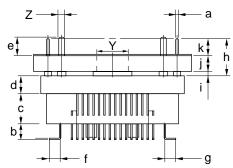
* Conversion Socket Drawing (EV-9200GC-64) and Footprints

<u>н</u> І

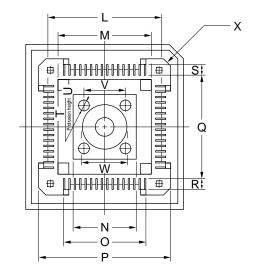
EV-9200GC-64-G0 ITEM MILLIMETERS INCHES А 18.8 0.74 В 14.1 0.555 С 14.1 0.555 D 18.8 0.74 Е 4-C 3.0 4-C 0.118 F 0.031 0.8 G 6.0 0.236 Н 15.8 0.622 Т 18.5 0.728 J 6.0 0.236 Κ 15.8 0.622 L 18.5 0.728 0.315 Μ 8.0 7.8 0.307 Ν 0 2.5 0.098 Ρ 2.0 0.079 Q 1.35 0.053 R 0.35±0.1 $0.014_{-0.005}^{+0.004}$ Ø0.091 S ¢2.3 ¢1.5 ¢0.059 Т




Figure A-2. EV-9200GC-64 Footprints (for reference only)


EV-9200GC-64-P1E

ITEM	MILLIMETERS	INCHES
A	19.5	0.768
В	14.8	0.583
С	$0.8\pm0.02 \times 15=12.0\pm0.05$	$0.031^{+0.002}_{-0.001} \!\times 0.591 \!=\! 0.472^{+0.003}_{-0.002}$
D	$0.8\pm0.02 \times 15=12.0\pm0.05$	$0.031^{+0.002}_{-0.001} \!\times 0.591 \!=\! 0.472^{+0.003}_{-0.002}$
E	14.8	0.583
F	19.5	0.768
G	6.00±0.08	0.236 ^{+0.004} -0.003
Н	6.00±0.08	$0.236^{+0.004}_{-0.003}$
I	0.5±0.02	$0.197^{+0.001}_{-0.002}$
J	¢2.36±0.03	$\phi_{0.093^{+0.001}_{-0.002}}$
К	φ2.2±0.1	$\phi 0.087^{+0.004}_{-0.005}$
L	¢1.57±0.03	Ø 0.062 ^{+0.001} -0.002


Caution Dimensions of mount pad for EV-9200 and that for targetdevice (QFP) maybe different in some parts. For the recommended mount pad dimensions for QFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGYMANUAL" (C10535E).

* Conversion Adapter Drawing (TGK-064SBW)

Figure A-3. TGK-064SBW Drawing (for reference only)

ITEM	MILLIMETERS	INCHES	ITEM	MILLIMETERS	INCHES
А	18.4	0.724	а	<i>ф</i> 0.3	<i>ф</i> 0.012
В	0.65x15=9.75	0.026x0.591=0.384	b	1.85	0.073
С	0.65	0.026	с	3.5	0.138
D	7.75	0.305	d	2.0	0.079
Е	10.15	0.400	е	3.9	0.154
F	12.55	0.494	f	1.325	0.052
G	14.95	0.589	g	1.325	0.052
н	0.65x15=9.75	0.026x0.591=0.384	h	5.9	0.232
I	11.85	0.467	i	0.8	0.031
J	18.4	0.724	j	2.4	0.094
к	C 2.0	C 0.079	k	2.7	0.106
L	12.45	0.490			TGK-064SBW-G0E
М	10.25	0.404			
Ν	7.7	0.303			
0	10.02	0.394			
Р	14.92	0.587			
Q	11.1	0.437			
R	1.45	0.057			
S	1.45	0.057			
т	4- <i>¢</i> 1.3	4- <i>ϕ</i> 0.051			
U	1.8	0.071			
V	5.0	0.197			
W	<i>\$</i> 5.3	<i>ф</i> 0.209			
Х	4-C 1.0	4-C 0.039			
Y	<i>\$</i> 3.55	<i>ф</i> 0.140			
Z	<i>ф</i> 0.9	<i>φ</i> 0.035			

Note: Product made by TOKYO ELETECH Corporation.

*

APPENDIX B. RELATED DOCUMENTS

Device Related Documents

Document Name	Document No. (English)	Document No. (Japanese)
μPD780024, 780024Y, 780034, 780034Y Subseries User's Manual	U12022E	U12022J
μPD780031Y, 780032Y, 780033Y, 780034Y Data Sheet	U12166E	U12166J
μPD78F0034Y Data Sheet	This document	U11994J
78K/0 Series User's Manual-Instruction	U12326E	U12326J
78K/0 Series Instruction Table		U10903J
78K/0 Series Instruction Set	_	U10904J
µPD780034Y Subseries Special Function Register Table	_	To be prepared

Development Tool Documents (User's Manual)

Document Name		Document No. (English)	Document No. (Japanese)
RA78K0 Assembler Package	Operation	U11802E	U11802J
	Assembly Language	U11801E	U11801J
	Structured Assembly Language	U11789E	U11789J
RA78K Series Structured Assembler Preprocessor		EEU-1402	U12323J
CC78K0 C Compiler	Operation	U11517E	U11517J
	Language	U11518E	U11518J
CC78K/0 C Compiler Application Note	Programming Know-how	EEA-1208	U13034J
CC78K Series Library Source File		U12322E	U12322J
IE-78K0-NS		To be prepared	To be prepared
IE-78001-R-A		To be prepared	To be prepared
IE-780034-NS-EM1		To be prepared	To be prepared
EP-78240		U10332E	EEU-986
EP-78012GK-R		EEU-1538	EEU-5012
SM78K0 System Simulator-Windows based	Reference	U10181E	U10181J
SM78K Series System Simulator	External Part User Open Interface Specifications	U10092E	U10092J
ID78K0-NS Integrated Debugger	Reference	To be prepared	U12900J
ID78K0 Integrated Debugger — EWS based	Reference	_	U11151J
ID78K0 Integrated Debugger — PC based	Reference	U11539E	U11539J
ID78K0 Integrated Debugger — Windows based	Guide	U11649E	U11649J

Caution The above related documents are subject to change without notice. Be sure to read the latest documents before designing.

Embedded Software Documents (User's Manual)

Document Name		Document No. (English)	Document No. (Japanese)
78K/0 Series Real-time OS	Basics	U11537E	U11537J
	Installation	U11536E	U11536J
78K/0 Series OS MX78K0	Basics	U12257E	U12257J

Other Documents

Document Name		Document No. (Japanese)
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535E	C10535J
Quality Grades on NEC Semiconductor Devices	C11531E	C11531J
NEC Semiconductor Device Reliability/Quality Control System	C10983E	C10983J
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)		C11892J
Guide to Quality Assurance for Semiconductor Devices	MEI-1202	—
Microcomputer Product Series Guide	_	U11416J

Caution The above related documents are subject to change without notice. Be sure to read the latest documents before designing.

[MEMO]

NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288	NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580	NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044 NEC Electronics Hong Kong Ltd.
NEC Electronics (Germany) GmbH Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490	NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99	Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411
NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290	NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860	NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 65-253-8311 Fax: 65-250-3583
NEC Electronics Italiana s.r.1. Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99	NEC Electronics (Germany) GmbH Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388	NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951 NEC do Brasil S.A. Cumbica-Guarulhos-SP, Brasil Tel: 011-6465-6810

Fax: 011-6465-6829

Purchase of NEC I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

FIP and IEBus are trademarks of NEC Corporation. Windows is a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries. PC/AT is a trademark of International Business Machines Corporation. HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company. SPARCstation is a trademark of SPARC International, Inc. SunOS is a trademark of Sun Microsystems, Inc. NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5