# DATA SHEET

# MOS INTEGRATED CIRCUIT $\mu$ PD78E9860A, 78E9861A

# **8-BIT SINGLE-CHIP MICROCONTROLLERS**

# DESCRIPTION

The μPD78E9860A and μPD78E9861A are μPD789860, 789861 Subseries products in the 78K/0S Series. The μPD78E9860A and μPD78E9861A incorporate EEPROM<sup>™</sup> in place of the internal ROM of the μPD789860 and μPD789861, respectively.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

μPD789860, 789861 Subseries User's Manual: U14826E 78K/0S Series Instructions User's Manual: U11047E

# FEATURES

- O Pin compatible with mask ROM product (except VPP pin)
- O On-chip EEPROM as program memory: 4 KB
- O On-chip EEPROM that can be read/written by program in RAM area: 32 bytes
- O On-chip high-speed RAM: 128 bytes
- O System clock oscillator
  - μPD78E9860A: Crystal/ceramic oscillator
  - µPD78E9861A: RC oscillator (externally attached resistor and capacitor)
- O Minimum instruction execution time
  - μPD78E9860A: 0.4 μs/1.6 μs (@ fx = 5.0 MHz operation)
  - μPD78E9861A: 2.0 μs/8.0 μs (@ fcc = 1.0 MHz operation)
- O I/O ports: 14
- O Timer: 3 channels
  - 8-bit timer/event counter: 1 channel
  - 8-bit timer: 1 channel
  - Watchdog timer: 1 channel
- O On-chip power-on-clear circuit
- O On-chip bit sequential buffer
- O Power supply voltage:  $V_{DD} = 1.8$  to 5.5 V ( $\mu$ PD78E9860A)

V<sub>DD</sub> = 1.8 to 3.6 V (μPD78E9861A)

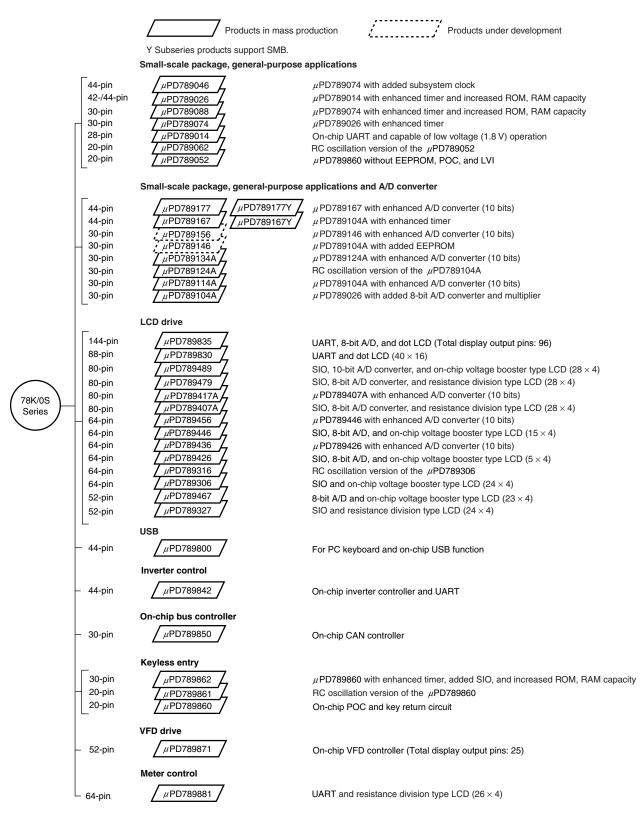
The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

# APPLICATIONS

Keyless entry and other automotive electrical equipment

In this data sheet, the oscillation frequency of the crystal/ceramic oscillator ( $\mu$ PD78E9860A) is described as fx and the oscillation frequency of the RC oscillator ( $\mu$ PD78E9861A) is described as fcc.

# **ORDERING INFORMATION**


 Part Number
 Package

 μPD78E9860AMC-5A4
 20-pin plastic SSOP (7.62 mm (300))

 μPD78E9861AMC-5A4
 20-pin plastic SSOP (7.62 mm (300))

# 78K/0S SERIES LINEUP

The products in the 78K/0S Series are listed below. The names enclosed in boxes are subseries names.



**Remark** VFD (Vacuum Fluorescent Display) is referred to as FIP<sup>™</sup> (Fluorescent Indicator Panel) in some documents, but the functions of the two are the same.

The major functional differences between the subseries are listed below.

|                      | Function   | ROM               |       |        | mer   |      | 8-Bit | 10-Bit | Serial               | I/O | VDD                   | Remarks                |
|----------------------|------------|-------------------|-------|--------|-------|------|-------|--------|----------------------|-----|-----------------------|------------------------|
|                      |            | Capacity          | 8-Bit | 16-Bit | Watch | WDT  | A/D   | A/D    | Interface            |     | MIN.                  |                        |
| Subseries            | Name       |                   |       |        |       |      |       |        |                      |     | Value                 |                        |
| Small-               | μPD789046  | 16 KB             | 1 ch  | 1 ch   | 1 ch  | 1 ch | -     | -      | 1 ch                 | 34  | 1.8 V                 | -                      |
| scale<br>package,    | μPD789026  | 4 KB to 16 KB     |       |        | -     |      |       |        | (UART: 1 ch)         |     |                       |                        |
| general-<br>purpose  | μPD789088  | 16 KB to<br>32 KB | 3 ch  |        |       |      |       |        |                      | 24  |                       |                        |
| applica-             | μPD789074  | 2 KB to 8 KB      | 1 ch  |        |       |      |       |        |                      |     |                       |                        |
| tions                | μPD789014  | 2 KB to 4 KB      | 2 ch  | -      |       |      |       |        |                      | 22  |                       |                        |
|                      | μPD789062  | 4 KB              |       |        |       |      |       |        | _                    | 14  |                       | RC oscillation version |
|                      | μPD789052  |                   |       |        |       |      |       |        |                      |     |                       | _                      |
| Small-               | μPD789177  | 16 KB to          | 3 ch  | 1 ch   | 1 ch  | 1 ch | -     | 8 ch   | 1 ch<br>(UART: 1 ch) | 31  | 1.8 V                 | _                      |
| scale                | μPD789167  | 24 KB             |       |        |       |      | 8 ch  | _      |                      |     |                       |                        |
| package,<br>general- | μPD789156  | 8 KB to           | 1 ch  |        | _     |      | -     | 4 ch   |                      | 20  |                       | On-chip                |
| purpose              | μPD789146  | 16 KB             |       |        |       |      | 4 ch  | _      |                      |     |                       | EEPROM                 |
| applica-             | μPD789134A | 2 KB to 8 KB      |       |        |       |      | -     | 4 ch   |                      |     |                       | RC oscillation         |
| tions and<br>A/D     | μPD789124A |                   |       |        |       |      | 4 ch  | _      |                      |     |                       | version                |
| converter            | μPD789114A |                   |       |        |       |      | -     | 4 ch   |                      |     |                       | _                      |
|                      | μPD789104A |                   |       |        |       |      | 4 ch  | _      |                      |     |                       |                        |
| LCD drive            | μPD789835  | 24 KB to<br>60 KB | 6 ch  | _      | 1 ch  | 1 ch | 3 ch  | -      | 1 ch<br>(UART: 1 ch) | 37  | 1.8 V <sup>Note</sup> | Dot LCD<br>supported   |
|                      | μPD789830  | 24 KB             | 1 ch  | 1 ch   |       |      | -     |        |                      | 30  | 2.7 V                 |                        |
|                      | μPD789489  | 32 KB to<br>48 KB | 3 ch  |        |       |      |       | 8 ch   | 2 ch<br>(UART: 1 ch) | 45  | 1.8 V                 | -                      |
|                      | μPD789479  | 24 KB to<br>48 KB |       |        |       |      | 8 ch  | l      |                      |     |                       |                        |
|                      | μPD789417A | 12 KB to          |       |        |       |      | -     | 7 ch   | 1 ch                 | 43  |                       |                        |
|                      | μPD789407A | 24 KB             |       |        |       |      | 7 ch  | -      | (UART: 1 ch)         |     |                       |                        |
|                      | μPD789456  | 12 KB to          | 2 ch  |        |       |      | -     | 6 ch   |                      | 30  |                       |                        |
|                      | μPD789446  | 16 KB             |       |        |       |      | 6 ch  | -      |                      |     |                       |                        |
|                      | μPD789436  |                   |       |        |       |      | -     | 6 ch   |                      | 40  |                       |                        |
|                      | µPD789426  |                   |       |        |       |      | 6 ch  | -      |                      |     |                       |                        |
|                      | μPD789316  | 8 KB to 16 KB     |       |        |       |      | -     |        | 2 ch<br>(UART: 1 ch) | 23  |                       | RC oscillation version |
|                      | μPD789306  |                   |       |        |       |      |       |        |                      |     |                       | -                      |
|                      | μPD789467  | 4 KB to 24 KB     |       | _      |       |      | 1 ch  |        | _                    | 18  |                       |                        |
|                      | μPD789327  |                   |       |        |       |      | -     |        | 1 ch                 | 21  |                       |                        |

Series for General-purpose applications and LCD drive

Note Flash memory version: 3.0 V

|                              | Function  | ROM              |       | Tir    | ner   |      | 8-Bit | 10-Bit | Serial               | I/O | VDD                     | Remarks                                       |
|------------------------------|-----------|------------------|-------|--------|-------|------|-------|--------|----------------------|-----|-------------------------|-----------------------------------------------|
| Subseries                    | Name      | Capacity         | 8-Bit | 16-Bit | Watch | WDT  | A/D   | A/D    | Interface            |     | MIN.<br>Value           |                                               |
| USB                          | μPD789800 | 8 KB             | 2 ch  |        | -     | 1 ch | -     | _      | 2 ch<br>(USB: 1 ch)  | 31  | 4.0 V                   | -                                             |
| Inverter<br>control          | μPD789842 | 8 KB to<br>16 KB | 3 ch  | Note 1 | 1 ch  | 1 ch | 8 ch  | _      | 1 ch<br>(UART: 1 ch) | 30  | 4.0 V                   | -                                             |
| On-chip<br>bus<br>controller | μPD789850 | 16 KB            | 1 ch  | 1 ch   | -     | 1 ch | 4 ch  | _      | 2 ch<br>(UART: 1 ch) | 18  | 4.0 V                   | -                                             |
| Keyless<br>entry             | μPD789861 | 4 KB             | 2 ch  | _      | _     | 1 ch | _     | _      | _                    | 14  | 1.8 V                   | RC oscillation<br>version, on-<br>chip EEPROM |
|                              | µPD789860 |                  |       |        |       |      |       |        |                      |     |                         | On-chip                                       |
|                              | μPD789862 | 16 KB            | 1 ch  | 2 ch   |       |      |       |        | 1 ch<br>(UART: 1 ch) | 22  |                         | EEPROM                                        |
| VFD<br>drive                 | μPD789871 | 4 KB to 8 KB     | 3 ch  | -      | 1 ch  | 1 ch | _     | _      | 1 ch                 | 33  | 2.7 V                   | -                                             |
| Meter<br>control             | μPD789881 | 16 KB            | 2 ch  | 1 ch   | -     | 1 ch | _     | _      | 1 ch<br>(UART: 1 ch) | 28  | 2.7 V <sup>Note 2</sup> | _                                             |

Series for ASSP

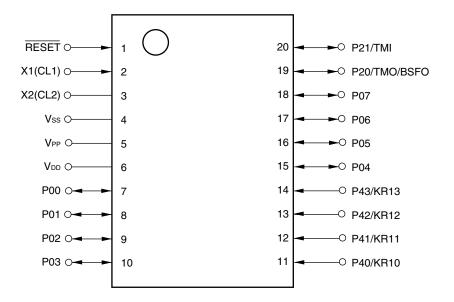
Notes 1. 10-bit timer: 1 channel

2. Flash memory version: 3.0 V

# **OVERVIEW OF FUNCTIONS**

| Item                          |                   | Part Number    | μPD78E9860A μPD78E9861A                                                                                                     |                                              |  |  |  |  |
|-------------------------------|-------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|--|--|--|
| Internal<br>memory            | Program<br>memory | EEPROM         | 4 KB                                                                                                                        |                                              |  |  |  |  |
|                               | Data memory       | High-speed RAM | 128 bytes                                                                                                                   |                                              |  |  |  |  |
|                               |                   | EEPROM         | 32 bytes                                                                                                                    |                                              |  |  |  |  |
| Oscillator                    |                   |                | Ceramic/crystal oscillator                                                                                                  | RC oscillator                                |  |  |  |  |
| Minimum                       | instruction exec  | cution time    | 0.4 μs/1.6 μs<br>(@ fx = 5.0 MHz operation)                                                                                 | 2.0 μs/8.0 μs<br>(@ fcc = 1.0 MHz operation) |  |  |  |  |
| General-p                     | urpose register   | S              | 8 bits $\times$ 8 registers                                                                                                 |                                              |  |  |  |  |
| Instructior                   | n set             |                | <ul><li>16-bit operation</li><li>Bit manipulation (set, reset, test) etc.</li></ul>                                         |                                              |  |  |  |  |
| I/O ports                     |                   |                | Total:14CMOS I/O:10CMOS input:4                                                                                             |                                              |  |  |  |  |
| Timer                         |                   |                | <ul> <li>8-bit timer/event counter: 1 channel</li> <li>8-bit timer: 1 channel</li> <li>Watchdog timer: 1 channel</li> </ul> |                                              |  |  |  |  |
| Power-on-                     | clear circuit     | POC circuit    | Generates internal reset signal according to comparison of detection voltage to power supply voltage                        |                                              |  |  |  |  |
|                               |                   | LVI circuit    | Generates interrupt request signal according to comparison of detection voltage to power supply voltage                     |                                              |  |  |  |  |
| Bit sequer                    | nce buffer        |                | 8 bits $\times$ 8 bits = 16 bits                                                                                            |                                              |  |  |  |  |
| Key returr                    | function          |                | Generates key return signal according to falling edge detection                                                             |                                              |  |  |  |  |
| Vectored i                    | nterrupt          | Maskable       | Internal: 5                                                                                                                 |                                              |  |  |  |  |
| sources                       |                   | Non-maskable   | Internal: 1, External: 1                                                                                                    |                                              |  |  |  |  |
| Power sup                     | oply voltage      |                | V <sub>DD</sub> = 1.8 to 5.5 V (μPD78E9860A)<br>V <sub>DD</sub> = 1.8 to 3.6 V (μPD78E9861A)                                |                                              |  |  |  |  |
| Operating ambient temperature |                   |                | $T_{A} = -40 \text{ to } +85^{\circ}\text{C}$                                                                               |                                              |  |  |  |  |
| Package                       |                   |                | 20-pin plastic SSOP (7.62 mm (300))                                                                                         |                                              |  |  |  |  |

# CONTENTS

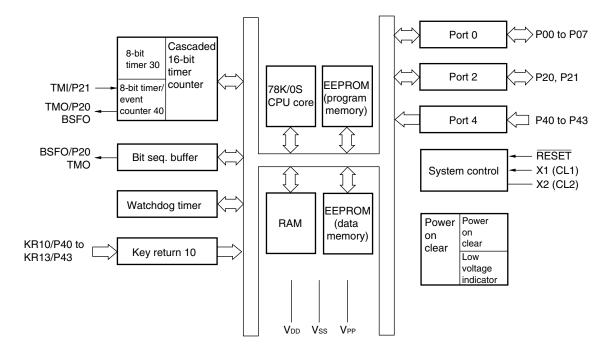

| 1. | PIN  | CONFIGURATION (TOP VIEW)                                   | 9  |
|----|------|------------------------------------------------------------|----|
| 2. | BLC  | OCK DIAGRAM                                                | 10 |
| 3. | PIN  | FUNCTIONS                                                  | 11 |
|    | 3.1  | Port Pins                                                  | 11 |
|    | 3.2  | Non-Port Pins                                              |    |
|    | 3.3  | Pin I/O Circuits and Recommended Connection of Unused Pins | 12 |
| 4. | CPL  | J ARCHITECTURE                                             | 13 |
|    | 4.1  | Memory Space                                               | 13 |
|    | 4.2  | Data Memory Addressing                                     | 14 |
|    | 4.3  | Processor Registers                                        | 15 |
| 5. | EEF  | PROM (DATA MEMORY)                                         |    |
|    | 5.1  | EEPROM Functions                                           | 18 |
|    | 5.2  | EEPROM Configuration                                       |    |
|    | 5.3  | Register That Controls EEPROM                              |    |
|    | 5.4  | Cautions for EEPROM Writing                                | 21 |
| 6. | PEF  | RIPHERAL HARDWARE FUNCTIONS                                | -  |
|    | 6.1  | Ports                                                      |    |
|    | 6.2  | Clock Generator (μPD78E9860A)                              |    |
|    | 6.3  | Clock Generator (μPD78E9861A)                              |    |
|    | 6.4  | 8-Bit Timer/Event Counter                                  |    |
|    | 6.5  | Watchdog Timer                                             |    |
|    | 6.6  | Power-on-Clear Circuits                                    |    |
|    | 6.7  | Bit Sequential Buffer                                      |    |
|    | 6.8  | Key Return Circuit                                         | 49 |
| 7. |      | ERRUPT FUNCTIONS                                           |    |
|    |      | Types of Interrupt Functions                               |    |
|    | 7.2  | Sources and Configuration of Interrupts                    |    |
|    | 7.3  | Registers That Control Interrupt Functions                 | 52 |
| 8. | STA  | NDBY FUNCTION                                              |    |
|    | 8.1  | Standby Function                                           |    |
|    | 8.2  | Register That Controls Standby Function (µPD78E9860A Only) | 56 |
| 9. | RES  | SET FUNCTION                                               | 57 |
| 10 |      | PROM (PROGRAM MEMORY)                                      |    |
|    |      | Programming Environment                                    |    |
|    |      | Communication Mode                                         |    |
|    |      | On-Board Pin Processing                                    |    |
|    | 10.4 | Connection of Adapter for EEPROM Writing                   | 66 |

| 11. INSTRUCTION SET SUMMARY                                           | 68 |
|-----------------------------------------------------------------------|----|
| 11.1 Conventions                                                      | 68 |
| 11.2 List of Operations                                               | 70 |
| 12. ELECTRICAL SPECIFICATIONS                                         | 75 |
| 13. PACKAGE DRAWING                                                   | 87 |
| 14. RECOMMENDED SOLDERING CONDITIONS                                  | 88 |
| APPENDIX A. DIFFERENCES BETWEEN EEPROM PRODUCTS AND MASK ROM PRODUCTS |    |
| APPENDIX B. DEVELOPMENT TOOLS                                         |    |
| APPENDIX C. RELATED DOCUMENTS                                         | 92 |

# 1. PIN CONFIGURATION (TOP VIEW)

NEC

20-pin plastic SSOP (7.62 mm (300))
 μPD78E9860AMC-5A4
 μPD78E9861AMC-5A4




Caution Connect the VPP pin directly to Vss.

**Remark** Pin connections in parentheses apply to the  $\mu$ PD78E9861A.

| BSFO:         | Bit Sequential Buffer Output | TMI:    | Timer Input                |
|---------------|------------------------------|---------|----------------------------|
| CL1, CL2:     | RC Oscillator                | TMO:    | Timer Output               |
| KR10 to KR13: | Key Return                   | VDD:    | Power Supply               |
| P00 to P07:   | Port 0                       | VPP:    | Programming Power Supply   |
| P20, P21:     | Port 2                       | Vss:    | Ground                     |
| P40 to P43:   | Port 4                       | X1, X2: | Crystal/Ceramic Oscillator |
| RESET:        | Reset                        |         |                            |

# 2. BLOCK DIAGRAM



**Remark** Items in parentheses apply to the  $\mu$ PD78E9861A.

# 3. PIN FUNCTIONS

# 3.1 Port Pins

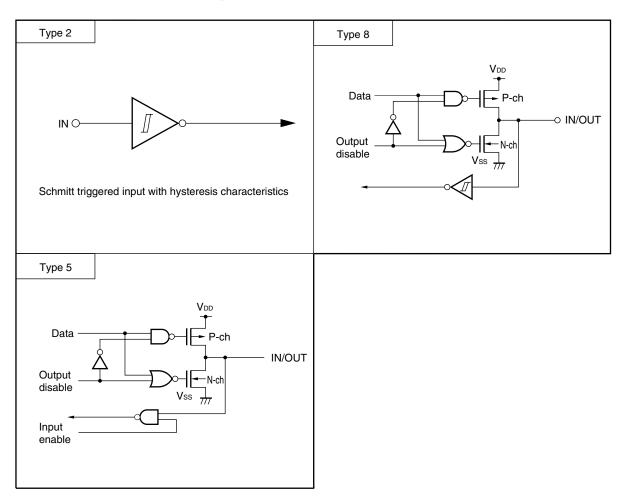
| Pin Name   | I/O   | Function                                                                  | After<br>Reset | Alternate<br>Function |
|------------|-------|---------------------------------------------------------------------------|----------------|-----------------------|
| P00 to P07 | I/O   | Port 0<br>8-bit I/O port<br>Input/output can be specified in 1-bit units. | Input          | —                     |
| P20        | I/O   | Port 2                                                                    | Input          | TMO/BSFO              |
| P21        |       | 2-bit I/O port<br>Input/output can be specified in 1-bit units.           |                | TM1                   |
| P40 to P43 | Input | Port 4<br>4-bit input-only port                                           | Input          | KR10 to KR13          |

# 3.2 Non-Port Pins

| Pin Name              | I/O    | Function                                                                                   | After<br>Reset | Alternate<br>Function |
|-----------------------|--------|--------------------------------------------------------------------------------------------|----------------|-----------------------|
| ТМІ                   | Input  | 8-bit timer (TM40) input                                                                   | Input          | P21                   |
| ТМО                   | Output | 8-bit timer (TM40) output                                                                  | Input          | P20/BSFO              |
| BSFO                  | Output | Bit sequential buffer (BSF10) output                                                       | Input          | P20/TMO               |
| KR10 to<br>KR13       | Input  | Key return input                                                                           | Input          | P40 to P43            |
| X1 <sup>Note 1</sup>  | Input  | Connecting ceramic/crystal resonator for system clock oscillation                          | _              | _                     |
| X2 <sup>Note 1</sup>  | _      |                                                                                            | —              | _                     |
| CL1 <sup>Note 2</sup> | Input  | Connecting resistor (R) and capacitor (C) for system clock oscillation                     | _              | —                     |
| CL2 <sup>Note 2</sup> | _      |                                                                                            | _              | _                     |
| RESET                 | Input  | System reset input                                                                         | Input          | _                     |
| VDD                   | —      | Positive power supply                                                                      | —              | _                     |
| Vss                   | _      | Ground potential                                                                           | _              | _                     |
| Vpp                   | _      | EEPROM programming mode setting. High-voltage application during programming write/verify. | —              | —                     |

**Notes 1.** *μ*PD78E9860A only.

**2.** μPD78E9861A only.


# 3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The I/O circuit type for each pin and recommended connections of unused pins are shown in Table 3-1. For the I/O circuit configuration of each type, refer to Figure 3-1.

# Table 3-1. Types of Pin I/O Circuits and Recommended Connection of Unused Pins

| Pin Name             | Input/Output Circuit Type | I/O | Recommended Connection of Unused Pins                                                                            |
|----------------------|---------------------------|-----|------------------------------------------------------------------------------------------------------------------|
| P00 to P07           | 5                         | I/O | Input: Independently connect to $V_{DD}$ or $V_{SS}$ via a resistor.                                             |
| P20/TMO/BSFO         | 8                         |     | Output: Leave open.                                                                                              |
| P21/TMI              |                           |     |                                                                                                                  |
| P40/KR10 to P43/KR13 | 2                         |     | Connect directly to VDD.                                                                                         |
| RESET                |                           |     | _                                                                                                                |
| Vpp                  | _                         | _   | Connect directly to Vss. Independently connect to a 10 k $\Omega$ pull-down resistor or connect directly to Vss. |

Figure 3-1. Pin Input/Output Circuits



# 4. CPU ARCHITECTURE

# 4.1 Memory Space

The  $\mu$ PD78E9860A and  $\mu$ PD78E9861A can each access a 64 KB memory space. Figure 4-1 shows the memory map.

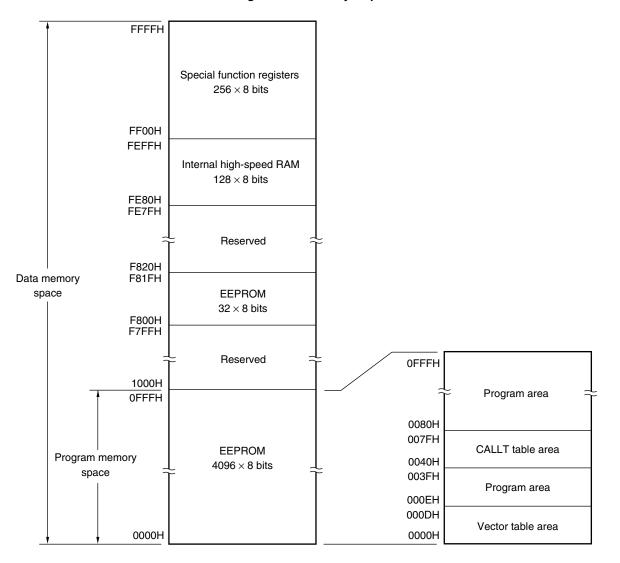
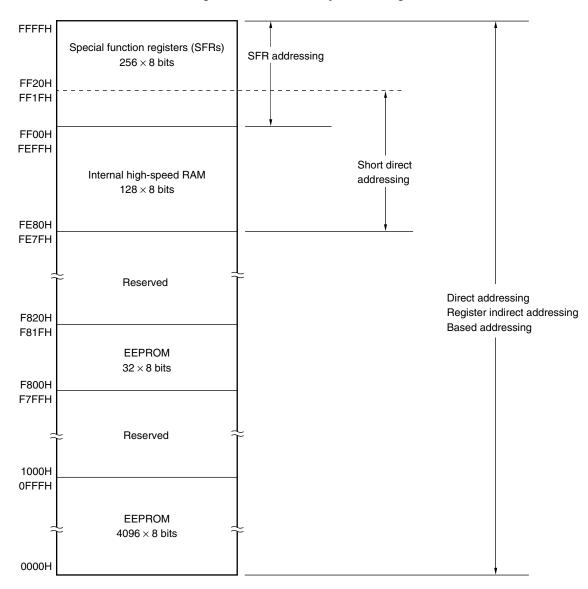




Figure 4-1. Memory Map

#### 4.2 Data Memory Addressing

The  $\mu$ PD78E9860A and  $\mu$ PD78E9861A provide ample addressing modes that take into account the manipulation of memory. Addressing peculiar to the special function registers (SFRs) and other functions is possible in on-chip data memory areas (FE80H to FFFFH) in particular. Figure 4-2 shows data memory addressing.





# 4.3 Processor Registers

#### 4.3.1 Control registers

#### (1) Program counter (PC)

The program counter is a 16-bit register that maintains address information about the program to be executed next.

#### Figure 4-3. Configuration of Program Counter

|    | 15        |      |      |      |      |     |     |     |     |     |     |     |     |     | 0   |
|----|-----------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| PC | PC15 PC14 | PC13 | PC12 | PC11 | PC10 | PC9 | PC8 | PC7 | PC6 | PC5 | PC4 | PC3 | PC2 | PC1 | PC0 |

#### (2) Program status word (PSW)

The program status word is an 8-bit register that shows the status of the CPU in terms of the results of instruction execution.

Figure 4-4. Configuration of Program Status Word

|     | 7  |   |   |    |   |   |   | 0  |
|-----|----|---|---|----|---|---|---|----|
| PSW | IE | Z | 0 | AC | 0 | 0 | 1 | CY |

#### (a) Interrupt enable flag (IE)

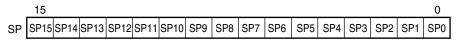
The interrupt enable flag is a flag that controls CPU interrupt request acknowledgement operations.

#### (b) Zero flag (Z)

The zero flag is a flag that is set (1) when the result of an operation is zero and that is reset (0) otherwise.

#### (c) Auxiliary carry flag (AC)

The auxiliary carry flag is a flag that is set (1) when there is a carry from bit 3 or a borrow to bit 3 as a result of an operation and that is reset (0) otherwise.


#### (d) Carry flag (CY)

The carry flag is a flag that stores an overflow or underflow when an addition or subtraction instruction is executed.

#### (3) Stack pointer (SP)

The stack pointer is a 16-bit register that maintains the starting address of the stack area of memory. Only the internal high-speed RAM area (FE80H to FEFFH) can be set as the stack area.

#### Figure 4-5. Configuration of Stack Pointer



Caution Because stack pointer contents become undefined when RESET input, be sure to initialize the SP before executing an instruction.

#### 4.3.2 General-purpose registers

The general-purpose registers consist of eight 8-bit registers (X, A, C, B, E, D, L, H).

Besides each register being usable as an 8-bit register, it is possible to pair two 8-bit registers and use them as a 16-bit register (AX, BC, DE, HL).

Moreover, in addition to function names (X, A, C, B, E, D, L, H, AX, BC, DE, HL), general-purpose registers can also be described using absolute names (R0 to R7 and RP0 to RP3).

#### Figure 4-6. Configuration of General-Purpose Registers

#### (a) Absolute names

| 16-bit processing | <br>8-bit processing |
|-------------------|----------------------|
| RP3               | R7                   |
| nro               | R6                   |
| RP2               | R5                   |
|                   | R4                   |
| RP1               | R3                   |
|                   | R2                   |
| DDO               | R1                   |
| RP0               | R0                   |
| 15 0              | 7 0                  |

#### (b) Function names

| 16-bit processing | <br>8-bit processing |
|-------------------|----------------------|
| HL                | н                    |
|                   | L                    |
| DE                | D                    |
| DE                | E                    |
| BC                | В                    |
| ВС                | С                    |
|                   | А                    |
| AX                | х                    |
| 15 0              | 7 0                  |

# 4.3.3 Special function registers (SFRs)

The special function registers are registers such as peripheral hardware mode registers and control registers that have special functions. They are mapped to the 256-byte space from FF00H to FFFFH.

Note that bits whose names are reserved words in the RA78K0S or defined in the header file sfrbit.h in the CC78K0S have their bit number encircled in each register format. Refer to each register format in **6. PERIPHERAL HARDWARE FUNCTIONS**.

| Aslahusas | Creatics Function Devictor (CFD) Name                               | Ci umb al |     | Bit Unit     | After        |                 |                       |
|-----------|---------------------------------------------------------------------|-----------|-----|--------------|--------------|-----------------|-----------------------|
| Address   | Special Function Register (SFR) Name                                | Symbol    | R/W | 1 bit        | 8 bits       | 16 bits         | Reset                 |
| FF00H     | Port 0                                                              | P0        | R/W |              | $\checkmark$ | _               | 00H                   |
| FF02H     | Port 2                                                              | P2        |     | $\checkmark$ | $\checkmark$ | _               |                       |
| FF04H     | Port 4                                                              | P4        | R   |              | $\checkmark$ | _               |                       |
| FF10H     | Bit sequential buffer 10 data register L                            | BSFRL10   | W   | _            | $\checkmark$ | $\sqrt{Note 1}$ | Undefined             |
| FF11H     | Bit sequential buffer 10 data register H                            | BSFRH10   |     | _            | $\checkmark$ |                 |                       |
| FF20H     | Port mode register 0                                                | PM0       | R/W | $\checkmark$ | $\checkmark$ | _               | FFH                   |
| FF22H     | Port mode register 2                                                | PM2       |     | $\checkmark$ | $\checkmark$ | _               |                       |
| FF42H     | Timer clock select register 2                                       | TCL2      |     | _            | $\checkmark$ | _               | 00H                   |
| FF50H     | 8-bit compare register 30                                           | CR30      | W   | _            | $\checkmark$ | _               | Undefined             |
| FF51H     | 8-bit timer counter 30                                              | ТМ30      | R   | _            | $\checkmark$ | _               | 00H                   |
| FF52H     | 8-bit timer mode control register 30                                | TMC30     | R/W | $\checkmark$ | $\checkmark$ | _               |                       |
| FF53H     | 8-bit compare register 40                                           | CR40      | W   | _            | $\checkmark$ | _               | Undefined             |
| FF54H     | 8-bit compare register H40                                          | CRH40     |     | _            | $\checkmark$ | _               |                       |
| FF55H     | 8-bit timer counter 40                                              | TM40      | R   |              | $\checkmark$ | _               | 00H                   |
| FF56H     | 8-bit timer mode control register 40                                | TMC40     | R/W | $\checkmark$ | $\checkmark$ | —               |                       |
| FF57H     | Carrier generator output control register 40                        | TCA40     | W   |              | $\checkmark$ | _               |                       |
| FF60H     | Bit sequential buffer output control register 10                    | BSFC10    | R/W |              | $\checkmark$ | _               |                       |
| FFD8H     | EEPROM write control register 10                                    | EEWC10    |     |              | $\checkmark$ | _               | 08H                   |
| FFDDH     | Power-on-clear register 1                                           | POCF1     |     | $\checkmark$ | $\checkmark$ | —               | 00H <sup>Note 2</sup> |
| FFDEH     | Low-voltage detection register 1                                    | LVIF1     |     |              | $\checkmark$ | _               | 00H                   |
| FFDFH     | Low-voltage detection level selection register 1                    | LVIS1     |     | $\checkmark$ | $\checkmark$ | —               |                       |
| FFE0H     | Interrupt request flag register 0                                   | IF0       |     | $\checkmark$ | $\checkmark$ | —               |                       |
| FFE4H     | Interrupt mask flag register 0                                      | МКО       |     | $\checkmark$ | $\checkmark$ |                 | FFH                   |
| FFF9H     | Watchdog timer mode register                                        | WDTM      |     | $\checkmark$ | $\checkmark$ | —               | 00H                   |
| FFFAH     | Oscillation stabilization time selection register <sup>Note 3</sup> | OSTS      |     |              | $\checkmark$ |                 | 04H                   |
| FFFBH     | Processor clock control register                                    | PCC       |     | $\checkmark$ | $\checkmark$ | —               | 02H                   |

#### Table 4-1. List of Special Function Registers

Notes 1. Specify address FF10H directly for 16-bit access.

2. This value is 04H only after a power-on-clear reset.

**3.** μPD78E9860A only.

# 5. EEPROM (DATA MEMORY)

# 5.1 EEPROM Functions

Besides internal high-speed RAM, the  $\mu$ PD78E9860A and  $\mu$ PD78E9861A have 32 × 8 bits of electrically erasable PROM (EEPROM) on-chip as data memory and 4096 × 8 bits of EEPROM as program memory.

This section describes the EEPROM used as data memory (for EEPROM used as program memory, refer to **10**. **EEPROM (PROGRAM MEMORY)**).

Unlike normal RAM, EEPROM can maintain its contents even if its power supply is cut. In addition, unlike EPROM, its electrical contents can be erased without using ultraviolet rays.

EEPROM operations are performed using 8-bit memory manipulation instructions.

#### 5.2 EEPROM Configuration

EEPROM consists of the EEPROM itself and a control section.

The control section consists of EEPROM write control register 10 (EEWC10) which controls EEPROM writing and a part that detects the termination of writing and generates an interrupt request signal (INTEE0).

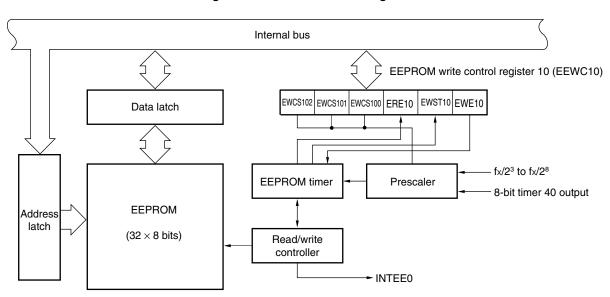



Figure 5-1. EEPROM Block Diagram

# 5.3 Register That Controls EEPROM

EEPROM is controlled by EEPROM write control register 10 (EEWC10).

EEWC10 is the register that sets the EEPROM count clock selection, and EEPROM write control.

Set EEWC10 using 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 08H.

Figure 5-2 shows the format of EEPROM write control register 10. Tables 5-1 and 5-2 show EEPROM write times.

| Symbol | 7        | 6       | 5       | 4                        | 3               | <2>           | <1>         | <0>                           | Address                       | After reset  | R/W                 |  |  |
|--------|----------|---------|---------|--------------------------|-----------------|---------------|-------------|-------------------------------|-------------------------------|--------------|---------------------|--|--|
| EEWC10 | 0        | EWCS102 | EWCS101 | EWCS100                  | 1               | ERE10         | EWST10      | EWE10                         | FFD8H                         | 08H          | R/W <sup>Note</sup> |  |  |
|        |          |         |         | ·                        |                 |               |             |                               |                               |              |                     |  |  |
|        |          |         |         |                          |                 | EEPRC         | OM timer co | unt clock s                   | election                      |              |                     |  |  |
|        | EWCS102  | EWCS101 | EWCS100 |                          | operating       | ) at fx = 5.0 | MHz         | Wher                          | operating                     | at fcc = 1.0 | MHz                 |  |  |
|        | 0        | 0       | 0       | fx/2³ (625 k             | (Hz)            |               |             | fcc/2 <sup>3</sup> (125       | 5 kHz)                        |              |                     |  |  |
|        | 0        | 0       | 1       | fx/2 <sup>4</sup> (313 k | fx/2⁴ (313 kHz) |               |             |                               | fcc/2 <sup>4</sup> (62.5 kHz) |              |                     |  |  |
|        | 0        | 1       | 0       | fx/2⁵ (156 k             | fx/2⁵ (156 kHz) |               |             |                               | fcc/2⁵ (31.3 kHz)             |              |                     |  |  |
|        | 0        | 1       | 1       | fx/2 <sup>6</sup> (78.1  | kHz)            |               |             | fcc/2 <sup>6</sup> (15.       | 6 kHz)                        |              |                     |  |  |
|        | 1        | 0       | 0       | fx/2 <sup>7</sup> (39.1  | kHz)            |               |             | fcc/2 <sup>7</sup> (7.81 kHz) |                               |              |                     |  |  |
|        | 1        | 0       | 1       | fx/2 <sup>8</sup> (19.5  | kHz)            |               |             | fcc/2 <sup>8</sup> (3.9       | 1 kHz)                        |              |                     |  |  |
|        | 1        | 1       | 0       | Output of 8-bit timer 40 |                 |               |             |                               |                               |              |                     |  |  |
|        | 1        | 1       | 1       | Setting prohibited       |                 |               |             |                               |                               |              |                     |  |  |
|        | <u>n</u> | •       |         |                          |                 |               |             |                               |                               |              |                     |  |  |
|        | FRE10    | EWE10   | Write   | Bead                     |                 |               |             | Remarks                       |                               |              |                     |  |  |

# Figure 5-2. Format of EEPROM Write Control Register 10

| ERE10 | EWE10 | Write Read         |         | Remarks                                                 |
|-------|-------|--------------------|---------|---------------------------------------------------------|
| 0     | 0     | Disabled Disabled  |         | EEPROM is in standby state (low power consumption mode) |
| 0     | 1     | Setting prohibited |         |                                                         |
| 1     | 0     | Disabled           | Enabled |                                                         |
| 1     | 1     | Enabled            | Enabled |                                                         |

| EWST10 | EEPROM write status flag                                                                          |  |  |  |  |  |  |
|--------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 0      | Not writing to EEPROM (EEPROM can be read or written. However, writing is disabled if EWE10 = 0.) |  |  |  |  |  |  |
| 1      | Writing to EEPROM (EEPROM cannot be read or written.)                                             |  |  |  |  |  |  |

Note Bit 1 is read only.

#### Caution Be sure to set bit 3 to 1 and bit 7 to 0.

- Remarks 1. fx: System clock oscillation frequency (ceramic/crystal oscillation)
  - 2. fcc: System clock oscillation frequency (RC oscillation)

| EWCS102 | EWCS101 | EWCS100 | EEPROM Timer Count Clock     | EEPROM Data Write Time <sup>Note 1</sup>                        |  |
|---------|---------|---------|------------------------------|-----------------------------------------------------------------|--|
| 0       | 0       | 0       | fx/2³ (625 kHz)              | $2^{3}/fx \times 145$ (setting prohibited) $^{Note2}$           |  |
| 0       | 0       | 1       | fx/2⁴ (313 kHz)              | $2^4/f_X \times 145$ (setting prohibited)^{Note 2}              |  |
| 0       | 1       | 0       | fx/2⁵ (156 kHz)              | $2^{5}/f_{X} \times 145$ (setting prohibited) <sup>Note 2</sup> |  |
| 0       | 1       | 1       | fx/2º (78.1 kHz)             | $2^6/f_X \times 145$ (setting prohibited)^{Note 2}              |  |
| 1       | 0       | 0       | fx/2 <sup>7</sup> (39.1 kHz) | 2 <sup>7</sup> /fx × 145 (3.71 ms)                              |  |
| 1       | 0       | 1       | fx/2 <sup>®</sup> (19.5 kHz) | $2^8/f_X \times 145~(setting~prohibited)^{Note~2}$              |  |
| 1       | 1       | 0       | Output of 8-bit timer 40     | (Output of 8-bit timer 40) $\times$ 145                         |  |
| 1       | 1       | 1       | Setting prohibited           |                                                                 |  |

# Table 5-1. EEPROM Write Time (When Operating at fx = 5.0 MHz)

**Notes 1.** Be sure to set the EEPROM write time within the range of 3.3 to 6.6 ms.

The spec values of EEPROM write time are target values in the product development stage. Since they may change after evaluation, be sure to refer to the data sheet created after evaluation when designing.

- 2. Setting is prohibited because the condition that an EEPROM write time must be between 3.3 and 6.6 ms is not satisfied.
- **Remark** fx: System clock oscillation frequency (ceramic/crystal oscillation)

|         | Table 5-2. EEPROM write Time (when Operating at fcc = 1.0 MHz) |         |                               |                                                                         |  |  |  |  |  |
|---------|----------------------------------------------------------------|---------|-------------------------------|-------------------------------------------------------------------------|--|--|--|--|--|
| EWCS102 | EWCS101                                                        | EWCS100 | EEPROM Timer Count Clock      | EEPROM Data Write Time <sup>Note 1</sup>                                |  |  |  |  |  |
| 0       | 0                                                              | 0       | fcc/2³ (12.5 kHz)             | $2^{3}/fcc \times 145$ (setting prohibited) <sup>Note 2</sup>           |  |  |  |  |  |
| 0       | 0                                                              | 1       | fcc/2⁴ (62.5 kHz)             | $2^{4}/fcc \times 145$ (setting prohibited) <sup>Note 2</sup>           |  |  |  |  |  |
| 0       | 1                                                              | 0       | fcc/2⁵ (31.3 kHz)             | 2⁵/fcc × 145 (4.64 ms)                                                  |  |  |  |  |  |
| 0       | 1                                                              | 1       | fcc/2 <sup>6</sup> (15.6 kHz) | $2^{6}/\text{fcc}\times145~(\text{setting prohibited})^{\text{Note 2}}$ |  |  |  |  |  |
| 1       | 0                                                              | 0       | fcc/2 <sup>7</sup> (7.81 kHz) | $2^{7}/fcc \times 145$ (setting prohibited) <sup>Note 2</sup>           |  |  |  |  |  |
| 1       | 0                                                              | 1       | fcc/2 <sup>°</sup> (3.91 kHz) | $2^8/f_{CC} \times 145$ (setting prohibited) <sup>Note 2</sup>          |  |  |  |  |  |
| 1       | 1                                                              | 0       | Output of 8-bit timer 40      | (Output of 8-bit timer 40) $\times$ 145                                 |  |  |  |  |  |

# Table 5-2. EEPROM Write Time (When Operating at fcc = 1.0 MHz)

**Notes 1.** Be sure to set the EEPROM write time within the range of 3.3 to 6.6 ms.

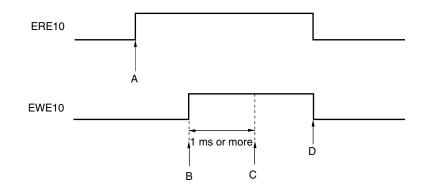
Setting prohibited

The spec values of EEPROM write time are target values in the product development stage. Since they may change after evaluation, be sure to refer to the data sheet created after evaluation when designing.

2. Setting is prohibited because the condition that an EEPROM write time must be between 3.3 and 6.6 ms is not satisfied.

Remark fcc: System clock oscillation frequency (RC oscillation)

1


1

1

# 5.4 Cautions for EEPROM Writing

The following cautions pertain to writing to EEPROM.

- (1) When fetching an instruction from EEPROM or stopping the system clock oscillator, be sure to do so after setting EEPROM to write-disabled (EWE10 = 0).
- (2) Set the count clock in a state in which the selected clock is operating (oscillating). If the selected count clock is stopped, there is no transition to the state in which writing is possible even if the clock operation is subsequently started and EEPROM is set to write-enabled (EWE10 = 1).
- (3) Be sure to set the EEPROM write time within the range of 3.3 to 6.6 ms.
- (4) When setting ERE10 and EWE10, be sure to use the following procedure. If you set these using other than the following procedure, there is no transition to the state in which writing to EEPROM is possible.
  - <1> Set ERE10 to 1 (In a state in which EWE10 = 0)
  - <2> Set EWE10 to 1 (In a state in which ERE10 = 1)
  - <3> Wait 1 ms or more using software
  - <4> Shift to state in which writing to EEPROM is possible



A (ERE10 = 1): Transition to state in which reading is possible

- B (EWE10 = 1):Set count clock before this point.
- C: Transition to state in which writing is possible
- D: When ERE10 is cleared (ERE10 = 0), EWE10 is also cleared (EWE10 = 0). Reading or writing is not possible in this state.
- (5) When performing a write to EEPROM, execute it after confirming that EWST10 = 0. If a write is executed to EEPROM when EWST10 = 1, the instruction is ignored.

# NEC

- (6) Do not execute the following operations while writing to EEPROM, as execution will cause the EEPROM cell value at that address to become undefined.
  - Turn off the power
  - Execute a reset
  - Set ERE10 to 0
  - Set EWE10 to 0
  - Switch the EEPROM timer count clock
- (7) Do not execute the following operation while writing to EEPROM after selecting system clock division for the EEPROM timer count clock, as execution will cause the EEPROM cell value at that address to become undefined.
  - Execute a STOP instruction
- (8) Do not execute the following operations while writing to EEPROM after selecting 8-bit timer 40 output for the EEPROM timer count clock, as execution will cause the EEPROM cell value at that address to become undefined.
  - Execute a STOP instruction
  - Stop 8-bit timer 40 timer output
  - Stop 8-bit timer 40 operation
- (9) Do not execute the following operations while writing to or reading from EEPROM, as execution will cause the EEPROM data read next to become undefined, and a CPU runaway could result.
  - Set ERE10 to 0
  - Execute a write to EEPROM
- (10) When not writing to or reading from EEPROM, it is possible to enter low-power consumption mode by setting ERE10 to 0. In the ERE10 = 1 state, a current of about 0.27 mA (V<sub>DD</sub> = 3.6 V) is always flowing. If an instruction to read from EEPROM is then executed, a further 0.9 mA current will flow, increasing the total current flow at this time to approximately 1.17 mA (V<sub>DD</sub> = 3.6 V).

In the ERE10 = 1, EWE10 = 1 state, a current of about 0.3 mA ( $V_{DD}$  = 3.6 V) is always flowing. If an instruction to write to EEPROM is then executed, a further 0.7 mA current will flow, and if an instruction to read from EEPROM is executed, a further 0.9 mA current will flow, increasing the total current flow at this time to approximately 1.0 mA ( $V_{DD}$  = 3.6 V) for the former case and 1.2 mA ( $V_{DD}$  = 3.6 V) for the latter (refer to **EEPROM Characteristics** in **12. ELECTRICAL SPECIFICATIONS** for details).

(11) Execution of a STOP instruction causes an automatic change to low-power consumption mode, regardless of the ERE10 and EWE10 settings. The states of ERE10 and EWE10 at the time are maintained. During the wait time following STOP mode release, a current of approximately 300  $\mu$ A (V<sub>DD</sub> = 3.6 V) flows. Executing a HALT instruction does not change the mode to low-power consumption mode.

# 6. PERIPHERAL HARDWARE FUNCTIONS

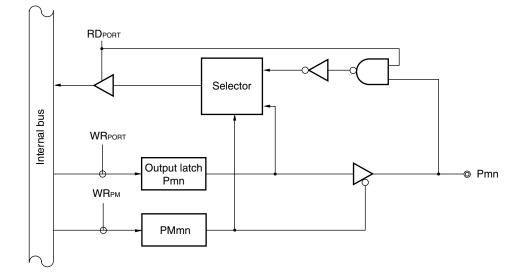
# 6.1 Ports

# 6.1.1 Port functions

The  $\mu$ PD78E9860A and  $\mu$ PD78E9861A are provided with the ports shown in Table 6-1, by which many kinds of control are possible. Moreover, these have a variety of alternate functions besides their functions as digital input/output ports. Refer to **3. PIN FUNCTIONS** for details of the alternate functions.

#### Table 6-1. Port Functions

| Name   | Pin Name   | Function                                                |
|--------|------------|---------------------------------------------------------|
| Port 0 | P00 to P07 | I/O port. Input/output can be specified in 1-bit units. |
| Port 2 | P20, P21   | I/O port. Input/output can be specified in 1-bit units. |
| Port 4 | P40 to P43 | Input-only port.                                        |


# 6.1.2 Port Configuration

A port consists of the following hardware.

#### Table 6-2. Port Configuration

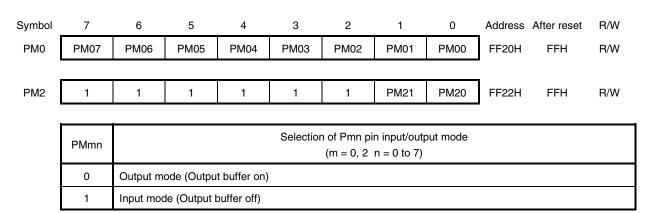
| Item             | Configuration                                    |  |  |  |  |  |
|------------------|--------------------------------------------------|--|--|--|--|--|
| Control register | Port mode register (PMm: m = 0, 2)               |  |  |  |  |  |
| Port             | Total: 14 (CMOS input/output: 10, CMOS input: 4) |  |  |  |  |  |

Figure 6-1. Basic Configuration of CMOS Port



- Caution Figure 6-1 is the basic configuration of a CMOS I/O port. The configuration varies according to the functions of alternate-function pins.
- **Remark** PMmn: Bit n of port mode register m (m = 0, 2 n = 0 to 7)
  - Pmn: Bit n of port m
  - RD: Port read signal
  - WR: Port write signal

# 6.1.3 Registers that control port functions


A port is controlled using the following registers.

• Port mode registers (PM0, PM2)

# (1) Port mode registers (PM0, PM2)

The port mode registers are registers that set the port to input or output in 1-bit units. Each port mode register can be set using a 1-bit or 8-bit memory manipulation instruction. RESET input sets these registers to FFH.

When using a port pin as an alternate-function pin, set the port mode registers and output latch as shown in Table 6-3.



#### Figure 6-2. Port Mode Register Format

# Table 6-3. Port Mode Register and Output Latch Settings When Using Alternate Functions

| Pin Name | Alternate Function | DM     | D    |     |
|----------|--------------------|--------|------|-----|
|          | Name               | I/O    | PM×× | P×× |
| P20      | ТМО                | Output | 0    | 0   |
|          | BSFO               | Output | 0    | 0   |
| P21      | ТМІ                | Input  | 1    | ×   |

**Remark** ×: don't care

PM××: Port mode register

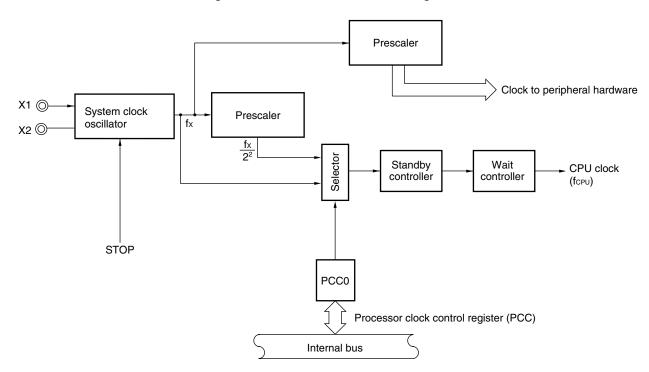
Pxx: Port output latch

#### 6.2 Clock Generator (µPD78E9860A)

The clock generator specifications differ for the  $\mu$ PD78E9860A and  $\mu$ PD78E9861A. When using the  $\mu$ PD78E9861A, refer to **6.3 Clock Generator (\muPD78E9861A)**.

#### 6.2.1 Clock generator functions

The clock generator is a circuit that generates the clocks that are provided to the CPU and peripheral hardware.


System clock oscillator (ceramic/crystal oscillation)
 Oscillates at frequency from 1.0 to 5.0 MHz. Oscillation can be stopped by executing the STOP instruction.

#### 6.2.2 Configuration of clock generator

The clock generator consists of the following hardware.

#### Table 6-4. Configuration of Clock Generator

| Item             | Configuration                          |  |  |  |
|------------------|----------------------------------------|--|--|--|
| Control register | Processor clock control register (PCC) |  |  |  |
| Oscillator       | System clock oscillator                |  |  |  |



#### Figure 6-3. Clock Generator Block Diagram

# 6.2.3 Register that controls clock generator

The clock generator is controlled by the following register.

• Processor clock control register (PCC)

#### (1) Processor clock control register (PCC)

The processor clock control register is a register that sets the CPU clock selection and division ratio. PCC can be set using a 1-bit or 8-bit memory manipulation instruction. RESET input sets this register to 02H.

#### Figure 6-4. Format of Processor Clock Control Register

| Symbol | 7 | 6 | 5 | 4 | 3 | 2 | 1    | 0 | Address After reset | R/W |
|--------|---|---|---|---|---|---|------|---|---------------------|-----|
| PCC    | 0 | 0 | 0 | 0 | 0 | 0 | PCC0 | 0 | FFFBH 02H           | R/W |

| PCC0 | CPU clock (fcpu) selection | Minimum instruction execution time: 2/fcpu |  |  |
|------|----------------------------|--------------------------------------------|--|--|
|      |                            | When operating at fx = 5.0 MHz             |  |  |
| 0    | fx                         | 0.4 <i>µ</i> s                             |  |  |
| 1    | fx/2 <sup>2</sup>          | 1.6 <i>µ</i> s                             |  |  |

Caution Be sure to set bits 0 and 2 to 7 to 0.

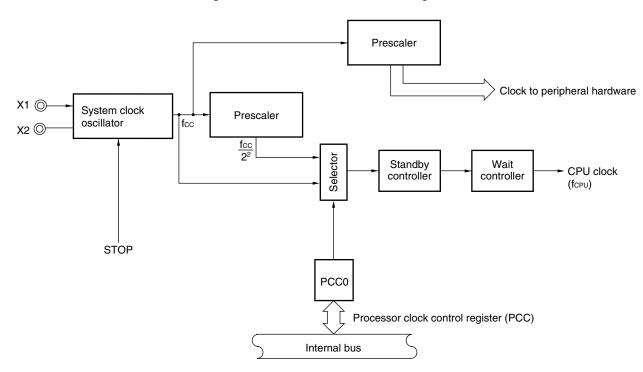
Remark fx: System clock oscillation frequency (ceramic/crystal oscillator)

# 6.3 Clock Generator (µPD78E9861A)

# 6.3.1 Clock generator functions

The clock generator is a circuit that generates the clocks that are provided to the CPU and peripheral hardware.


System clock oscillator (RC oscillation)
 Oscillates at a frequency of 1.0 MHz ±15%. Oscillation can be stopped by executing the STOP instruction.


# 6.3.2 Configuration of clock generator

The clock generator consists of the following hardware.

#### Table 6-5. Configuration of Clock Generator

| Item             | Configuration                          |  |  |  |  |
|------------------|----------------------------------------|--|--|--|--|
| Control register | Processor clock control register (PCC) |  |  |  |  |
| Oscillator       | System clock oscillator                |  |  |  |  |





# 6.3.3 Register that controls clock generator

The clock generator is controlled by the following register.

• Processor clock control register (PCC)

#### (1) Processor clock control register (PCC)

The processor clock control register is a register that sets the CPU clock selection and division ratio. PCC can be set using a 1-bit or 8-bit memory manipulation instruction. RESET input sets this register to 02H.

#### Figure 6-6. Format of Processor Clock Control Register

| Symbol | 7 | 6 | 5 | 4 | 3 | 2 | 1    | 0 | Address After re | set R/W |
|--------|---|---|---|---|---|---|------|---|------------------|---------|
| PCC    | 0 | 0 | 0 | 0 | 0 | 0 | PCC0 | 0 | FFFBH 02H        | R/W     |

| PCC0 | CPU clock (fcpu) selection | Minimum instruction execution time: 2/fcpu |  |  |
|------|----------------------------|--------------------------------------------|--|--|
|      |                            | When operating at fcc = 1.0 MHz            |  |  |
| 0    | fcc                        | 2.0 μs                                     |  |  |
| 1    | fcc/2 <sup>2</sup>         | 8.0 <i>µ</i> s                             |  |  |

Caution Be sure to set bits 0 and 2 to 7 to 0.

Remark fcc: System clock oscillation frequency (RC oscillation)

# 6.4 8-Bit Timer/Event Counter

#### 6.4.1 8-bit timer/event counter functions

The  $\mu$ PD78E9860A and 78E9861A have on chip an 8-bit timer (Timer 30) (1 channel) and an 8-bit timer/event counter (Timer 40) (1 channel). The operation modes shown in the table below are possible by means of mode register settings.

#### Table 6-6. Mode List

| Channel                                                | Timer 30     | Timer 40     |
|--------------------------------------------------------|--------------|--------------|
| Mode                                                   |              |              |
| 8-bit timer counter mode<br>(discrete mode)            | $\checkmark$ | $\checkmark$ |
| 16-bit timer counter mode<br>(cascade connection mode) |              | V            |
| Carrier generator mode                                 | -            | V            |
| PWM output mode                                        | ×            | $\checkmark$ |

# (1) 8-bit timer counter mode (discrete mode)

The following functions can be used.

- 8-bit resolution interval timer
- 8-bit resolution external event timer (Timer 40 only)
- 8-bit resolution square wave output (Timer 40 only)

# (2) 16-bit timer counter mode (cascade connection mode)

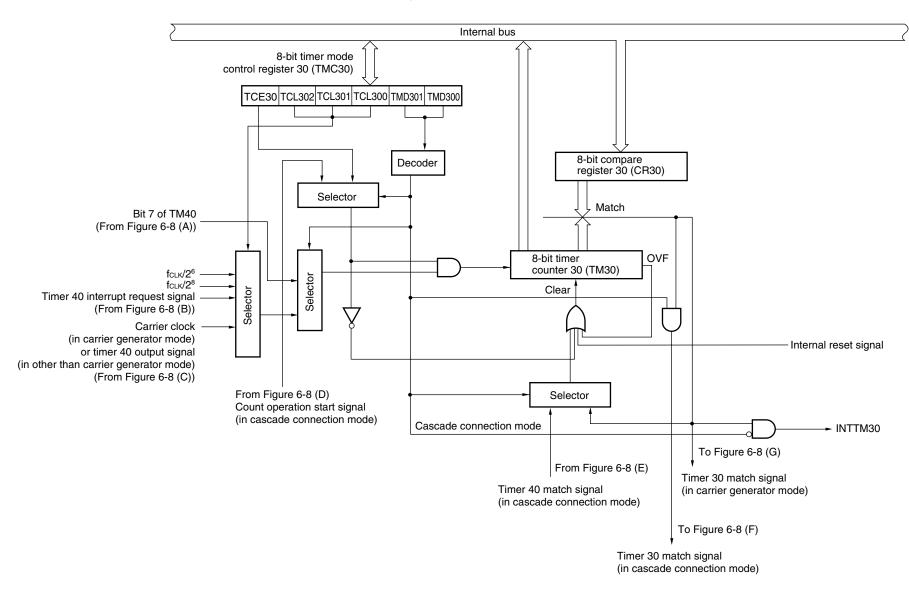
Operates as a 16-bit timer/event counter due to cascade connection. The following functions can be used.

- 16-bit resolution interval timer
- 16-bit resolution external event counter
- 16-bit resolution square wave output

#### (3) Carrier generator mode

In this mode, the carrier clock generated by timer 40 is output in the cycle set by timer 30.

# (4) PWM output mode

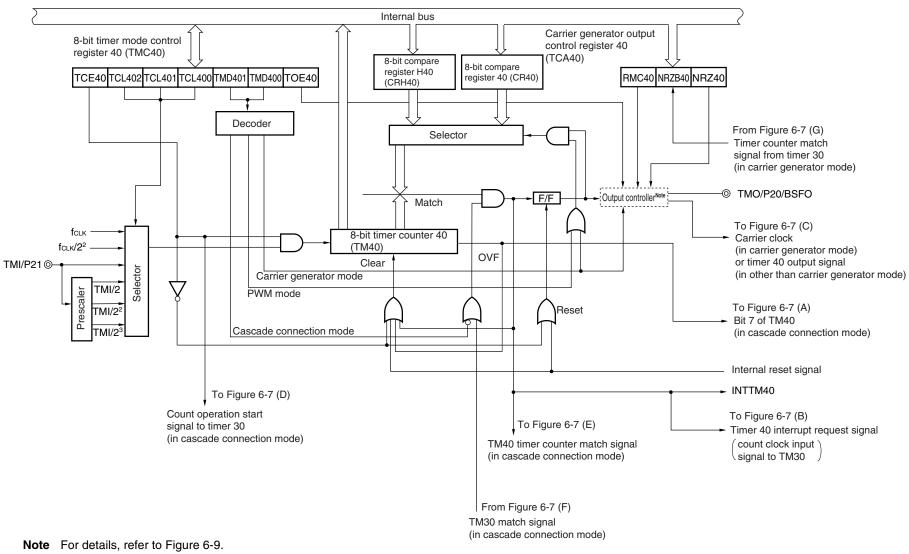

Outputs a pulse of an arbitrary duty factor set by timer 40.

# 6.4.2 8-bit timer/event counter configuration

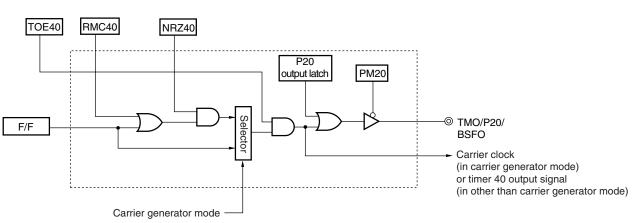
The 8-bit timer/event counter consists of the following hardware.

| Item                                  | Configuration                                                                                                                                                                                      |  |  |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Timer counter 8 bits × 2 (TM30, TM40) |                                                                                                                                                                                                    |  |  |  |
| Registers                             | Compare registers: 8 bits $\times$ 3 (CR30, CR40, CRH40)                                                                                                                                           |  |  |  |
| Timer output                          | 1 (TMO)                                                                                                                                                                                            |  |  |  |
| Control registers                     | 8-bit timer mode control register 30 (TMC30)<br>8-bit timer mode control register 40 (TMC 40)<br>Carrier generator output control register 40 (TCA40)<br>Port mode register 2 (PM2)<br>Port 2 (P2) |  |  |  |

# Table 6-7. Configuration of 8-Bit Timer/Event Counter




Remark fclk: fx or fcc


Data Sheet U16524EJ1V0DS

Z

Figure 6-8. 8-Bit Timer 40 Block



µPD78E9860A, 78E9861A



# Figure 6-9. Block Diagram of Output Controller (Timer 40)

#### (1) 8-bit compare register 30 (CR30)

This register is an 8-bit register that always compares the count value of 8-bit timer register 30 (TM30) with the value set in CR30 and generates an interrupt request (INTTM30) if they match. CR30 can be set using an 8-bit memory manipulation instruction. RESET input makes this register undefined.

#### Caution CR30 cannot be used in PWM output mode.

#### (2) 8-bit compare register 40 (CR40)

This register is an 8-bit register that always compares the count value of 8-bit timer register 40 (TM40) with the value set in CR40 and generates an interrupt request (INTTM40) if they match. In addition, when cascade-connected to TM30 and used as a 16-bit timer/event counter, an interrupt request (INTTM40) is generated only if TM30 matches with CR30 and TM40 matches with CR40 simultaneously (INTTM30 is not generated).

CR40 can be set using an 8-bit memory manipulation instruction. RESET input makes this register undefined.

#### (3) 8-bit compare register H40 (CRH40)

In carrier generator mode or PWM output mode, writing a CRH40 value sets the width of high level timer output.

CRH40 can be set using an 8-bit memory manipulation instruction.

RESET input makes this register undefined.

# (4) 8-bit timer counters 30 and 40 (TM30, TM40)

These 8-bit registers count pulse counts. Each of TM30 and TM40 can be read using an 8-bit memory manipulation instruction. RESET input sets these registers to 00H. The conditions under which TM30 and TM40 are cleared to 00H are shown next.

# (a) Discrete mode

- (i) TM30
  - Reset
  - Clearing of TCE30 (bit 7 of 8-bit timer mode control register 30 (TMC30)) to 0
  - Match of TM30 and CR30
  - TM30 count value overflow

#### (ii) TM40

- Reset
- Clearing of TCE40 (bit 7 of 8-bit timer mode control register 40 (TMC40)) to 0
- Match of TM40 and CR40
- TM40 count value overflow

# (b) Cascade connection mode (TM30, TM40 simultaneously cleared to 00H)

- Reset
- Clearing of the TCE40 flag to 0
- Simultaneous match of TM30 with CR30 and TM40 with CR40
- TM30 and TM40 count values overflow simultaneously

# (c) Carrier generator/PWM output mode (TM40 only)

- Reset
- Clearing of the TCE40 flag to 0
- Match of TM40 and CR40
- Match of TM40 and CRH40
- TM40 count value overflow

# 6.4.3 Registers that control 8-bit timer/event counter

The 8-bit timer/event counter is controlled by the following three registers.

- 8-bit timer mode control register 30 (TMC30)
- 8-bit timer mode control register 40 (TMC40)
- Carrier generator output control register 40 (TCA40)
- Port mode register 2 (PM2)

# (1) 8-bit timer mode control register 30 (TMC30)

8-bit timer mode control register 30 (TMC30) is the register that controls the setting of the timer 30 count clock and the setting of the operating mode.

TMC30 can be set using a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 00H.

#### Figure 6-10. Format of 8-Bit Timer Mode Control Register 30

| Symbol | <7>   | 6 | 5      | 4      | 3      | 2      | 1      | 0 | Address | After reset | R/W |
|--------|-------|---|--------|--------|--------|--------|--------|---|---------|-------------|-----|
| TMC30  | TCE30 | 0 | TCL302 | TCL301 | TCL300 | TMD301 | TMD300 | 0 | FF52H   | 00H         | R/W |

| TCE30 | TM30 count operation control <sup>Note 1</sup> |  |  |  |  |  |
|-------|------------------------------------------------|--|--|--|--|--|
| 0     | Clears TM30 count value and halt operation     |  |  |  |  |  |
| 1     | Starts count operation                         |  |  |  |  |  |

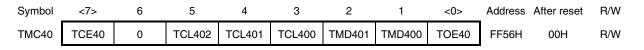
|           | TCL301  | TCL300 | Selection of timer 30 count clock                                                                          |                                           |  |  |  |
|-----------|---------|--------|------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|
| TCL302    |         |        | When operating at fx = 5.0 MHz                                                                             | When operating at $fcc = 1.0 \text{ MHz}$ |  |  |  |
| 0         | 0       | 0      | fx/2º (78.1 kHz)                                                                                           | fcc/2 <sup>6</sup> (15.6 kHz)             |  |  |  |
| 0         | 0       | 1      | fx/2 <sup>°</sup> (19.5 kHz)                                                                               | fcc/2 <sup>8</sup> (3.91 kHz)             |  |  |  |
| 0         | 1       | 0      | Timer 40 match signal                                                                                      |                                           |  |  |  |
| 0         | 1       | 1      | Carrier clock (in carrier generator mode) or timer 40 output signal (in other than carrier generator mode) |                                           |  |  |  |
| Other tha | n above |        | Setting prohibited                                                                                         |                                           |  |  |  |

| TMD301    | TMD300  | TMD401 | TMD400 | Selection of timer 30, timer 40 operating mode <sup>Note 2</sup> |
|-----------|---------|--------|--------|------------------------------------------------------------------|
| 0         | 0       | 0      | 0      | Discrete mode                                                    |
| 0         | 1       | 0      | 1      | Cascade connection mode                                          |
| 0         | 0       | 1      | 1      | Carrier generator mode                                           |
| 0         | 0       | 1      | 0      | PWM output mode                                                  |
| Other tha | n above |        |        | Setting prohibited                                               |

- Notes 1. In cascade connection mode, since count operations are controlled by TCE40 (bit 7 of TMC40), TCE30 is ignored even if it is set.
  - 2. The selection of operating mode is made by combining the two registers TMC30 and TMC40.

#### Cautions 1. Be sure to set bits 0 and 6 to 0.

- 2. In cascade connection mode, timer 40 output signal is forcibly selected for count clock.
- Remarks 1. fx: System clock oscillation frequency (ceramic/crystal oscillation)
  - 2. fcc: System clock oscillation frequency (RC oscillation)


# (2) 8-bit timer mode control register 40 (TMC40)

8-bit timer mode control register 40 (TMC40) is the register that controls the setting of the timer 40 count clock and the setting of the operating mode.

TMC40 can be set using a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 00H.

#### Figure 6-11. Format of 8-Bit Timer Mode Control Register 40



| TCE40 | TM40 count operation control <sup>Note 1</sup>                                                                                   |
|-------|----------------------------------------------------------------------------------------------------------------------------------|
| 0     | Clears TM40 count value and halt operation (in cascade connection mode, the TM30 count value is simultaneously cleared as well.) |
| 1     | Starts count operation (in cascade connection mode, the TM30 count operation is simultaneously started as well.)                 |

| TOI 400 | TCL402 TCL401 TCL400 |   | Selection of timer 40 count clock |                                    |  |  |  |  |
|---------|----------------------|---|-----------------------------------|------------------------------------|--|--|--|--|
| 10L402  |                      |   | When operating at fx = 5.0 MHz    | When operating at fcc = 1.0 MHz $$ |  |  |  |  |
| 0       | 0                    | 0 | fx (5.0 MHz)                      | fcc (1.0 MHz)                      |  |  |  |  |
| 0       | 0                    | 1 | fx/2² (1.25 MHz)                  | fcc/2 <sup>2</sup> (250 MHz)       |  |  |  |  |
| 0       | 1                    | 0 | fтмı                              |                                    |  |  |  |  |
| 0       | 1                    | 1 | fтмi/2                            |                                    |  |  |  |  |
| 1       | 0                    | 0 | fтмi/2 <sup>2</sup>               |                                    |  |  |  |  |
| 1       | 0                    | 1 | fтмi/2 <sup>3</sup>               |                                    |  |  |  |  |

| TMD301    | TMD300           | TMD401 | TMD400 | Selection of timer 30, timer 40 operating mode <sup>Note 2</sup> |
|-----------|------------------|--------|--------|------------------------------------------------------------------|
| 0         | 0                | 0      | 0      | Discrete mode                                                    |
| 0         | 1                | 0      | 1      | Cascade connection mode                                          |
| 0         | 0                | 1      | 1      | Carrier generator mode                                           |
| 0         | 0                | 1      | 0      | PWM output mode                                                  |
| Other tha | Other than above |        |        | Setting prohibited                                               |

| TOE4 | Timer output control       |
|------|----------------------------|
| 0    | Output disabled            |
| 1    | Output enabled (port mode) |

**Notes 1.** In cascade connection mode, since count operations are controlled by TCE40, TCE30 (bit 7 of TMC30) is ignored even if it is set.

2. The selection of operating mode is made by combining the two registers TMC30 and TMC40.

Remarks. 1. fx: System clock oscillation frequency (ceramic/crystal oscillation)

- 2. fcc: System clock oscillation frequency (RC oscillation)
- 3. ftml: External clock input from TMI/P21 pin

# (3) Carrier generator output control register 40 (TCA40)

This register is used to set the timer output data in the carrier generator mode. TCA40 is set using an 8-bit memory manipulation instruction. RESET input sets this register to 00H.

# Figure 6-12. Format of Carrier Generator Output Control Register 40

| Symbol | 7 | 6 | 5 | 4 | 3 | 2     | 1      | 0     | Address | After reset | R/W |
|--------|---|---|---|---|---|-------|--------|-------|---------|-------------|-----|
| TCA40  | 0 | 0 | 0 | 0 | 0 | RMC40 | NRZB40 | NRZ40 | FF57H   | 00H         | W   |

| RMC40 | Remote controller output control                                  |
|-------|-------------------------------------------------------------------|
| 0     | When NRZ40 = 1, a carrier pulse is output to the TMO/P20/BSFO pin |
| 1     | When NRZ40 = 1, a high level is output to the TMO/P20/BSFO pin    |

NRZB40 This bit stores the data that NRZ40 will output next. Data is transferred to NRZ40 upon the generation of a timer 30 match signal.

| NRZ40 | No return, zero data                                 |  |  |  |  |  |
|-------|------------------------------------------------------|--|--|--|--|--|
| 0     | A low level is output (the carrier clock is stopped) |  |  |  |  |  |
| 1     | A carrier pulse is output                            |  |  |  |  |  |

# Caution TCA40 cannot be set using a 1-bit memory manipulation instruction. Be sure to set this register using an 8-bit memory manipulation instruction.

#### (4) Port mode register 2 (PM2)

This register sets port 2 to input/output in 1-bit units.

When using the P20/TMO/BSFO pin as a timer output, set the PM20 and P20 output latch to 0.

When using the P20/TMO/BSFO pin as a timer input, set PM20 to 0. At this time, the P20 output latch can be set to 0 or 1.

PM2 can be set using a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to FFH.

#### Figure 6-13. Format of Port Mode Register 2

| Symbol | 7 | 6 | 5 | 4 | 3 | 2 | 1    | 0    | Address / | After reset | R/W |
|--------|---|---|---|---|---|---|------|------|-----------|-------------|-----|
| PM2    | 1 | 1 | 1 | 1 | 1 | 1 | PM21 | PM20 | FF22H     | FFH         | R/W |

| Ρ | PM21 | P20 pin input/output mode      |
|---|------|--------------------------------|
|   | 0    | Output mode (output buffer on) |
|   | 1    | Input mode (output buffer off) |

#### 6.5 Watchdog Timer

### 6.5.1 Watchdog timer functions

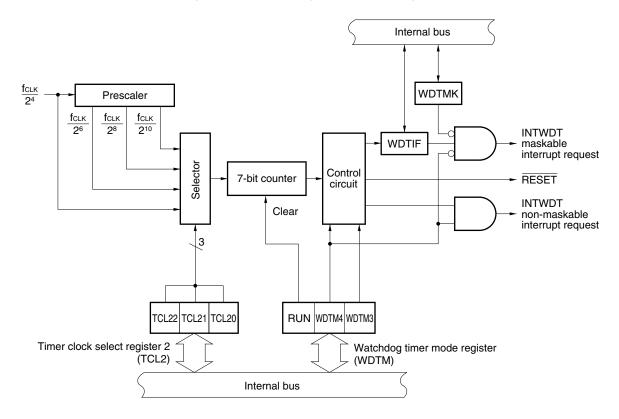
The watchdog timer has the following functions.

# (1) Watchdog timer

Detects program runaway. When runaway is detected, a non-maskable interrupt or RESET can be generated.

#### (2) Interval timer

Generates an interrupt at an arbitrary preset time interval.


#### 6.5.2 Configuration of watchdog timer

The watchdog timer consists of the following hardware. Figure 6-13 shows watchdog timer block diagram.

#### Table 6-8. Configuration of Watchdog Timer

| Item             | Configuration                        |
|------------------|--------------------------------------|
| Control register | Timer clock select register 2 (TCL2) |
|                  | Watchdog timer mode register (WDTM)  |

#### Figure 6-14. Watchdog Timer Block Diagram



Remark fclk: fx or fcc

# 6.5.3 Register that controls watchdog timer

The watchdog timer is controlled by the following two registers.

- Timer clock select register 2 (TCL2)
- Watchdog timer mode register (WDTM)

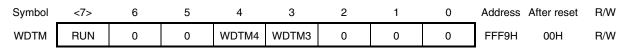
# (1) Timer clock select register 2 (TCL2)

This register sets the watchdog timer count clock. TCL2 is set with an 8-bit memory manipulation instruction. RESET input clears this register TCL2 to 00H.

| Figure 6-15. | Eormat of | Timer Clock | Salact | Ponietor 2 |
|--------------|-----------|-------------|--------|------------|
| Figure 0-15. | Format of | Timer Clock | Select | negister z |

| Symbol | 7 | 6 | 5 | 4 | 3 | <2>   | <1>   | <0>   | Address After reset | R/W |
|--------|---|---|---|---|---|-------|-------|-------|---------------------|-----|
| TCL2   | 0 | 0 | 0 | 0 | 0 | TCL22 | TCL21 | TCL20 | FF42H 00H           | R/W |

|                  |       |       | Watchdog timer co             | ount clock selection          | interval time                  |                                  |  |  |
|------------------|-------|-------|-------------------------------|-------------------------------|--------------------------------|----------------------------------|--|--|
| TCL22            | TCL21 | TCL20 | At fx = 5.0 MHz<br>operation  | At fcc = 1.0 MHz<br>operation | At fx = 5.0 MHz<br>operation   | At fcc = 1.0 MHz<br>operation    |  |  |
| 0                | 0     | 0     | fx/2 <sup>4</sup> (312.5 kHz) | fcc/2⁴ (62.5 kHz)             | 2 <sup>11</sup> / fx (410 μ s) | 2 <sup>11</sup> / fcc (2.05 ms)  |  |  |
| 0                | 1     | 0     | fx/2 <sup>6</sup> (78.1 kHz)  | fcc/2 <sup>6</sup> (15.6 kHz) | 2 <sup>13</sup> / fx (1.64 ms) | 2 <sup>13</sup> / fcc (8.19 ms)  |  |  |
| 1                | 0     | 0     | fx/2 <sup>8</sup> (19.5 kHz)  | fcc/2 <sup>8</sup> (3.91 kHz) | 2 <sup>15</sup> / fx (6.55 ms) | 2 <sup>15</sup> / fcc (32.8 ms)  |  |  |
| 1                | 1     | 0     | fx/2 <sup>10</sup> (4.88 kHz) | fcc/2 <sup>10</sup> (977 Hz)  | 2 <sup>17</sup> / fx (26.2 ms) | 2 <sup>17</sup> / fcc (131.1 ms) |  |  |
| Other than above |       |       | Setting prohibited            |                               |                                |                                  |  |  |


Remarks 1. fx: System clock oscillation frequency (ceramic/crystal oscillation)

2. fcc: System clock oscillation frequency (RC oscillation)

# (2) Watchdog timer mode register (WDTM)

This register sets the watchdog timer operating mode and enables or disables counting. WDTM can be set using a 1-bit or 8-bit memory manipulation instruction.  $\overrightarrow{\mathsf{RESET}}$  input sets this register to 00H.

#### Figure 6-16. Format of Watchdog Timer Mode Register



| RUN | Selection of watchdog timer operation <sup>Note 1</sup> |  |  |  |  |  |  |
|-----|---------------------------------------------------------|--|--|--|--|--|--|
| 0   | Count stop                                              |  |  |  |  |  |  |
| 1   | Counter is cleared and then counting starts             |  |  |  |  |  |  |

| WDTM4 | WDTM3 | Selection of watchdog timer operating mode <sup>Note 2</sup>                            |
|-------|-------|-----------------------------------------------------------------------------------------|
| 0     | 0     | Operation stop                                                                          |
| 0     | 1     | Interval timer mode (maskable interrupt generated if overflow occurs) <sup>Note 3</sup> |
| 1     | 0     | Watchdog timer mode 1 (non-maskable interrupt generated if overflow occurs)             |
| 1     | 1     | Watchdog timer mode 2 (reset operation started if overflow occurs)                      |

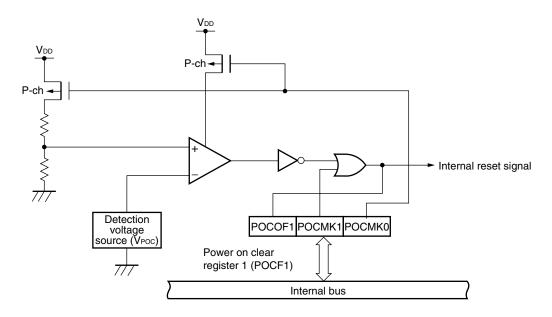
- **Notes 1.** Once RUN is set (1), it cannot be cleared (0) by software. Therefore, once a count it is started cannot be stopped by RESET input.
  - 2. Once WDTM3 and WDTM4 are set (1), they cannot only be cleared (0) by software.
  - 3. Operation as an interval timer starts at the time that RUN is set to 1.
- Cautions 1. When the watchdog timer is cleared by setting RUN to 1, the actual overflow time is at most 0.8% shorter than the time set using timer clock selection register 2.
  - 2. When using watchdog timer mode 1 or 2, set WDTM4 to 1 after confirming that TMIF4 (bit 0 of interrupt request flag register 0 (IF0)) is 0. If watchdog timer mode 1 or 2 is selected when TMIF4 is 1, a non-maskable interrupt occurs at the same time as writing terminates.

# 6.6 Power-on-Clear Circuits

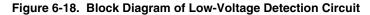
### 6.6.1 Power-on-clear circuit functions

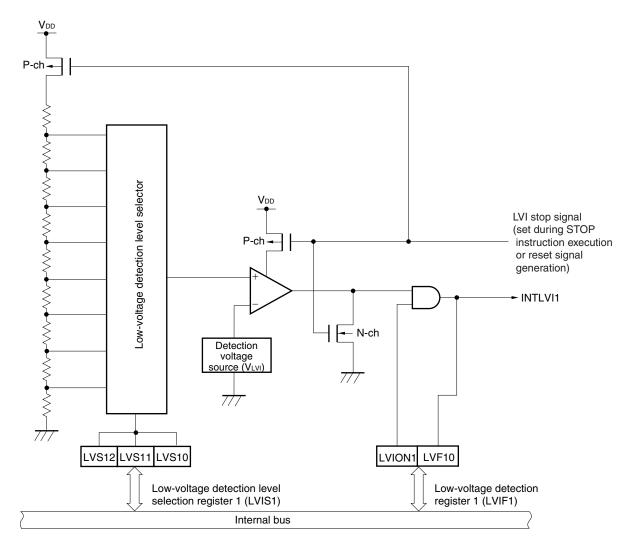
The power-on-clear circuits include the following two circuits, which have the following function.

## (1) Power-on-clear (POC) circuit


- Compares the detection voltage (VPOC) with the power supply voltage (VDD) and generates an internal reset signal if VDD < VPOC.</li>
- This circuit can operate even in STOP mode.

# (2) Low-voltage detection (LVI) circuit


- Compares the detection voltage (VLVI) to the power supply voltage (VDD) and generates an interrupt request signal (INTLVI1) if VDD < VLVI.</li>
- Eight levels of detection voltage can be selected using software.
- This circuit stops operation in STOP mode.


#### 6.6.2 Configuration of power-on-clear circuit

Figures 6-17 and 6-18 show the block diagrams of the power-on-clear circuits.



# Figure 6-17. Block Diagram of Power-on-Clear Circuit





# 6.6.3 Registers that control power-on-clear circuits

The following three registers control the power-on-clear circuits.

- Power-on-clear register 1 (POCF1)
- Low-voltage detection register 1 (LVIF1)
- Low-voltage detection level selection register 1 (LVIS1)

# (1) Power-on-clear register 1 (POCF1)

This register controls POC circuit operation. POCF1 can be set using a 1-bit or 8-bit memory manipulation instruction.

#### Figure 6-19. Format of Power-on-Clear Register 1

| Symbol | 7 | 6 | 5 | 4 | 3 | <2>    | <1>    | <0>    | Address | After reset         | R/W |
|--------|---|---|---|---|---|--------|--------|--------|---------|---------------------|-----|
| POCF1  | 0 | 0 | 0 | 0 | 0 | POCOF1 | POCMK1 | POCMK0 | FFDDH   | 00H <sup>Note</sup> | R/W |

| POCOF1 | POC output detection flag                                                                   |  |  |  |  |  |
|--------|---------------------------------------------------------------------------------------------|--|--|--|--|--|
| 0      | Non-generation of reset signal by POC or in cleared state due to a write operation to POCF1 |  |  |  |  |  |
| 1      | Generation of reset signal by POC                                                           |  |  |  |  |  |

| POCMK1 | POC reset control                         |  |  |  |  |  |
|--------|-------------------------------------------|--|--|--|--|--|
| 0      | eneration of reset signal by POC enabled  |  |  |  |  |  |
| 1      | eneration of reset signal by POC disabled |  |  |  |  |  |

| PC | ОСМКО | POC operation control |
|----|-------|-----------------------|
|    | 0     | POC operating         |
|    | 1     | POC halted            |

Note This value is 04H only after a power-on-clear reset.

# (2) Low-voltage detection register 1 (LVIF1)

This register controls the operation of the LVI circuit. LVIF1 can be set using a 1-bit or 8-bit memory manipulation instruction. RESET input sets this register to 00H.

| Symbol | <7>    | 6           | 5  | 4 | 3 | 2            | 1            | <0>   | Address | After reset | R/W                 |
|--------|--------|-------------|----|---|---|--------------|--------------|-------|---------|-------------|---------------------|
| LVIF1  | LVION1 | 0           | 0  | 0 | 0 | 0            | 0            | LVF10 | FFDEH   | 00H         | $R/W^{\text{Note}}$ |
|        |        |             |    |   |   |              |              |       |         |             |                     |
|        | LVION1 |             |    |   | Ľ | VI operatior | n enable fla | g     |         |             |                     |
|        | 0      | LVI disable | ed |   |   |              |              |       |         |             |                     |
|        | 1      | LVI enable  | d  |   |   |              |              |       |         |             |                     |

# Figure 6-20. Format of Low-Voltage Detection Register 1

| LVF10 | LVI output detection flag                                                                     |
|-------|-----------------------------------------------------------------------------------------------|
| 0     | Power supply voltage ( $V_{DD}$ ) > LVI detection voltage ( $V_{LVI}$ ) or operation disabled |
| 1     | Vdd < Vlvi                                                                                    |

**Note** Bit 0 is read only.

The program example is shown below.

Example After setting the STOP mode, an interrupt is enabled following the elapse of the operation stabilization time (for RC oscillation).

|       | SET1 | LVIMK1        |
|-------|------|---------------|
|       | STOP |               |
|       | ΜΟΥ  | A, #0BCH      |
| WAIT: |      |               |
|       | DEC  | A — 10 clocks |
|       | BNZ  | \$WAIT        |
|       |      |               |
|       | CLR1 | LVIIF1        |
|       | CLR1 | LVIMK1        |

Caution When the LVI circuit enters STOP mode, it is automatically turned off (low-current consumption mode). When STOP mode is released, it necessary to wait about 2 ms for the operation of the LVI circuit to stabilize. Because it is possible for an interrupt request signal to be generated in this stabilization period, be sure to disable any interrupts by setting LVIMK1 (bit 3 of interrupt mask flag register 0 (MK0)) (LVIMK1 = 1) before setting the STOP mode.

Because the required operation stabilization time following the release of STOP mode is  $2^7/fcc = 128 \ \mu s$  (when fcc = 1 MHz operation), it is necessary to make the program wait for 2 ms - 128  $\mu s$  (approx. 1880  $\mu s$ ). When the CPU clock is 1  $\mu s$  (when fcc = 1 MHz operation), secure the wait time by making the program loop 188 times.

Caution In the case of a ceramic/crystal oscillator, because the oscillation stabilization time following release of STOP mode is 2 ms or more, the above program wait is unnecessary.

# (3) Low-voltage detection level selection register 1 (LVIS1)

This register selects the level of the detection voltage ( $V_{LVI}$ ). LVIS1 can be set using a 1-bit or 8-bit memory manipulation instruction. RESET input sets this register to 00H.

#### Figure 6-21. Format of Low-Voltage Detection Level Selection Register 1

| Symbol | 7 | 6 | 5 | 4 | 3 | <2>   | <1>   | <0>   | Address Aft | er reset | R/W |
|--------|---|---|---|---|---|-------|-------|-------|-------------|----------|-----|
| LVIS1  | 0 | 0 | 0 | 0 | 0 | LVS12 | LVS11 | LVS10 | FFDFH       | 00H      | R/W |

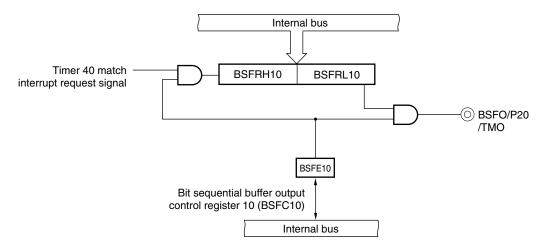
| LVS12 | LVS11 | LVS10 | Selection of detection voltage (VLVI) level <sup>Note</sup> |
|-------|-------|-------|-------------------------------------------------------------|
| 0     | 0     | 0     | VLVIO                                                       |
| 0     | 0     | 1     | VLVI1                                                       |
| 0     | 1     | 0     | VLVI2                                                       |
| 0     | 1     | 1     | VLVI3                                                       |
| 1     | 0     | 0     | VLVI4                                                       |
| 1     | 0     | 1     | VLVI5                                                       |
| 1     | 1     | 0     | VLVI6                                                       |
| 1     | 1     | 1     | Vlv17                                                       |

Note Refer to 12. ELECTRICAL SPECIFICATIONS for detection voltage specifications.

Caution When changing the detection voltage level (VLVI), an operation stabilization time of about 2 ms is required in order for the LVI output to stabilize. Do not, therefore, set the LVI circuit to operation-enable until the operation has stabilized.

### 6.7 Bit Sequential Buffer

## 6.7.1 Functions of bit sequential buffer


The  $\mu$ PD78E9860A and  $\mu$ PD78E9861A have an on-chip bit sequential buffer of 8 bits × 8 bits = 16 bits. The functions of the bit sequential buffer are shown below.

- If the value of the bit sequential buffer 10 data register (BSFRL10, BSFRH10) is shifted 1 bit to the lower side, the LSB can be output to the port at the same time.
- It is possible to write to BSFRL10 and BSFRH10 using an 8-bit or 16-bit manipulation instruction.
- Overwriting is enabled during a shift operation on the higher 8 bits only (the period in which shift clock is low level).

#### 6.7.2 Configuration of bit sequential buffer

The bit sequential buffer consists of the following hardware.

| Item             | Configuration                                             |
|------------------|-----------------------------------------------------------|
| Data register    | Bit sequential buffer: 8 bits $\times$ 8 bits = 16 bits   |
| Control register | Bit sequential buffer output control register 10 (BSFC10) |



#### Figure 6-22. Block Diagram of Bit Sequential Buffer

# 6.7.3 Register that controls the bit sequential buffer

The following register controls the bit sequential buffer.

• Bit sequential buffer output control register 10 (BSFC10)

# (1) Bit sequential buffer output control register 10 (BSFC10)

This register controls the operation of the bit sequential buffer. BSFC10 can be set using a 1-bit or 8-bit memory manipulation instruction. RESET input sets this register to 00H.

#### Figure 6-23. Format of Bit Sequential Buffer Output Control Register 10

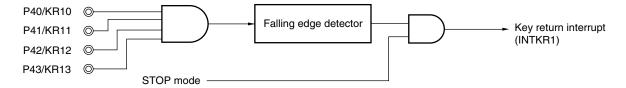
| Symbol | 7 | 6 | 5 | 4 | 3 | 2 | 1 | <0>    | Address | After reset | R/W |
|--------|---|---|---|---|---|---|---|--------|---------|-------------|-----|
| BSFC10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | BSFE10 | FF60H   | 00H         | R/W |

| BSFE10 | Bit sequential buffer operation control |
|--------|-----------------------------------------|
| 0      | Operation disabled                      |
| 1      | Operation enabled                       |

### 6.8 Key Return Circuit

## 6.8.1 Function of key return circuit

In STOP mode, this circuit generates a key return interrupt by inputting a P40/KR10 to P43/KR13 falling edge. It can be used in judging the cause of a STOP mode release in software.


# Cautions 1. The key return interrupt is a non-maskable interrupt that is effective only in STOP mode. In addition, P40/KR10 to P43/KR13 key input cannot be performed by mask control.

2. The key return signal cannot be detected even if a falling edge is generated on the other key return pins while even one of the key return pins (P40/KR10 to P43/KR13) is low.

# 6.8.2 Configuration of key return circuit

Figure 6-24 shows the block diagram of the key return circuit.

#### Figure 6-24. Block Diagram of Key Return Circuit



# 7. INTERRUPT FUNCTIONS

## 7.1 Types of Interrupt Functions

The following two types of interrupt functions are available.

#### (1) Non-maskable interrupts

A non-maskable interrupt is an interrupt that is accepted unconditionally even in a state in which interrupts are disabled. In addition, it is not subject to interrupt priority control and has a greater priority than all other interrupt requests.

A non-maskable interrupt generates the standby release signal.

Non-maskable interrupts have 1 internal interrupt source and 1 external interrupt source.

#### (2) Maskable interrupts

A maskable interrupt is an interrupt that is mask controlled. The order of priority when multiple interrupt requests are generated at the same time is determined as shown in Table 7-1. A maskable interrupt generates the standby release signal.

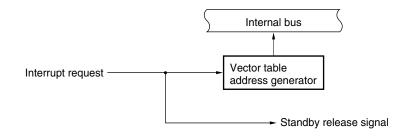
Maskable interrupts have 5 internal interrupt sources.

#### 7.2 Sources and Configuration of Interrupts

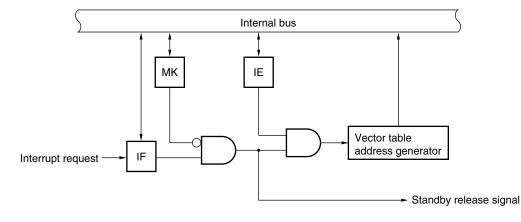
There are a total of seven sources of interrupts for non-maskable interrupts and maskable interrupts combined (see Table 7-1).

| Interrupt | Priority <sup>Note 1</sup> |         | Interrupt Source                                              | Internal/ | Vector           | Basic<br>Configuration |  |
|-----------|----------------------------|---------|---------------------------------------------------------------|-----------|------------------|------------------------|--|
| Туре      | Priority                   | Name    | Trigger                                                       | External  | Table<br>Address | Type <sup>Note 2</sup> |  |
| Non-      | _                          | INTKR1  | Key return input falling edge detected <sup>Note 3</sup>      | External  | 0002H            | (A)                    |  |
| maskable  |                            | INTWDT  | Watchdog timer overflow (with watchdog timer mode 1 selected) | Internal  | 0004H            |                        |  |
| Maskable  | 0                          | INTWDT  | Watchdog timer overflow (with interval timer mode selected)   |           |                  | (B)                    |  |
|           | 1                          | INTTM30 | 8-bit timer 30 match signal generation                        |           | 0006H            |                        |  |
|           | 2                          | INTTM40 | 8-bit timer 40 match signal generation                        |           | 0008H            |                        |  |
|           | 3                          | INTLVI1 | LVI interrupt request signal                                  |           | 000AH            |                        |  |
|           | 4                          | INTEE0  | EEPROM write termination signal                               |           | 000CH            |                        |  |

#### Table 7-1. List of Interrupt Sources


**Notes 1**. The priority is the priority order when several maskable interrupt requests are generated at the same time. 0 is the highest and 4 is the lowest.

- 2. Basic configuration type (A) and (B) correspond to (A) and (B) in Figure 7-1.
- 3. Only in STOP mode. Interrupt request signals are not generated other than in STOP mode.


Remark Only one of watchdog timer interrupt sources (INTWDT), non-maskable or maskable, can be chosen.

## Figure 7-1. Basic Configuration of Interrupt Functions

# (A) External/internal non-maskable interrupt



# (B) Internal maskable interrupt



IF: Interrupt request flag

IE: Interrupt enable flag

MK: Interrupt mask flag

#### 7.3 Registers That Control Interrupt Functions

The following three registers control the interrupt functions.

- Interrupt request flag register 0 (IF0)
- Interrupt mask flag register 0 (MK0)
- Program status word (PSW)

Table 7-2 shows the names of the interrupt request flag and interrupt mask flag for each interrupt request.

| Interrupt Request Signal Name | Interrupt Request Flag | Interrupt Mask Flag |
|-------------------------------|------------------------|---------------------|
| INTWDT                        | TMIF4                  | ТММК4               |
| INTTM30                       | TMIF30                 | ТММК30              |
| INTTM40                       | TMIF40                 | ТММК40              |
| INTLVI                        | LVIIF1                 | LVIMK1              |
| INTEE0                        | EEIF0                  | EEMK0               |

Table 7-2. Flags for Interrupt Request Signal Names

#### (1) Interrupt request flag register 0 (IF0)

The interrupt request flag is a flag that is set (1) by the generation of a corresponding interrupt request or the execution of an instruction and that is cleared (0) by executing an instruction when an interrupt request is acknowledged or RESET is input.

IF0 can be set using a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 00H.

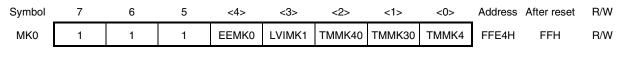
#### Figure 7-2. Format of Interrupt Request Flag Register 0

| Symbol | 7 | 6 | 5 | <4>   | <3>    | <2>    | <1>    | <0>   | Address A | fter reset | R/W |
|--------|---|---|---|-------|--------|--------|--------|-------|-----------|------------|-----|
| IF0    | 0 | 0 | 0 | EEIF0 | LVIIF1 | TMIF40 | TMIF30 | TMIF4 | FFE0H     | 00H        | R/W |

| ××IF× | Interrupt request flag                                      |
|-------|-------------------------------------------------------------|
| 0     | Interrupt request signal has not been generated             |
| 1     | Interrupt request signal generated; interrupt request state |

#### Cautions 1. Be sure to set bits 5 to 7 to 0.

2. The TMIF4 flag can be read or written only when the watchdog timer is being used as an interval timer. Set the TMIF4 flag to 0 when using it in watchdog timer mode 1 or 2.


# (2) Interrupt mask flag register 0 (MK0)

The interrupt mask flag is a flag that sets the servicing of the corresponding maskable interrupt to enabled or disabled.

MK0 can be set using a 1-bit or 8-bit memory manipulation instruction.

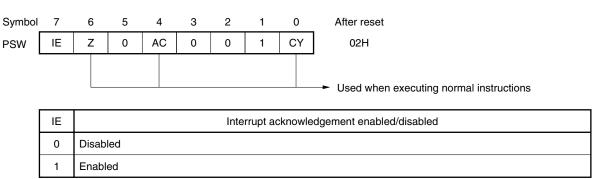
RESET input sets this register to FFH.

#### Figure 7-3. Format of Interrupt Mask Flag Register 0



| ××MK× | Interrupt servicing control  |
|-------|------------------------------|
| 0     | Interrupt servicing enabled  |
| 1     | Interrupt servicing disabled |

#### Cautions 1. Be sure to set bits 5 to 7 to 1.


2. The TMMK4 flag can be read or written only when the watchdog timer is being used as an interval timer. Set the TMMK4 flag to 0 when using it in watchdog timer mode 1 or 2.

#### (3) Program status word (PSW)

The program status word is a register that maintains the current state with respect to the result of instruction execution or an interrupt request. The IE flag, which sets maskable interrupts to enabled or disabled, is mapped to it.

Besides manipulation of reading or writing in 8-bit units, manipulation by bit manipulation instructions and dedicated instructions (EI, DI) is also possible. When a vector interrupt is acknowledged, the PSW is automatically saved in the stack and the IE flag is reset (0).

RESET input sets the PSW to 02H.



# Figure 7-4. Configuration of Program Status Word

# 8. STANDBY FUNCTION

#### 8.1 Standby Function

The standby function is a function for decreasing the system's power consumption. Two standby modes available: HALT mode and STOP mode.

Set the HALT mode using the HALT instruction and the STOP mode using the STOP instruction.

#### (1) HALT mode

In this mode, the CPU operation clock is stopped. Average power consumption can be reduced by intermittent operation combining this mode with the normal operation mode.

#### (2) STOP mode

In this mode, oscillation of the system clock is stopped. All the operations performed on the system clock are suspended, resulting in extremely small power consumption.

# Caution When switching to STOP mode, be sure to execute the STOP instruction after stopping peripheral hardware operations.

| Item                      |      | HALT Mode Operating State                                             |
|---------------------------|------|-----------------------------------------------------------------------|
| System clock              |      | System clock oscillation is enabled<br>Clock supply to CPU is stopped |
| CPU                       |      | Operation stopped                                                     |
| EEPROM                    |      | Operation enabled <sup>Note</sup>                                     |
| Ports (output latch)      |      | Maintain state before HALT mode was set                               |
| 8-bit timer/event counter | TM30 | Operation enabled                                                     |
|                           | TM40 | Operation enabled                                                     |
| Watchdog timer            |      | Operation enabled                                                     |
| Power-on-clear circuit    | POC  | Operation enabled                                                     |
|                           | LVI  | Operation enabled                                                     |
| Bit sequential buffer     |      | Operation enabled                                                     |
| Key return circuit        |      | Operation stopped                                                     |

## Table 8-1. HALT Mode Operating States

**Note** HALT mode can be set after executing a write instruction.

# Table 8-2. STOP Mode Operating States

| Item                      |      | STOP Mode Operating State                                             |  |  |  |  |
|---------------------------|------|-----------------------------------------------------------------------|--|--|--|--|
| 5                         |      | System clock oscillation is stopped<br>Clock supply to CPU is stopped |  |  |  |  |
| CPU                       |      | Operation stopped                                                     |  |  |  |  |
| EEPROM                    |      | Operation stopped                                                     |  |  |  |  |
| Ports (output latch)      |      | Maintain state at time STOP mode was set                              |  |  |  |  |
| 8-bit timer/event counter | ТМ30 | Operation enabled <sup>Note 1</sup>                                   |  |  |  |  |
|                           | TM40 | Operation enabled <sup>Note 2</sup>                                   |  |  |  |  |
| Watchdog timer            |      | Operation stopped                                                     |  |  |  |  |
| Power-on-clear circuit    | POC  | Operation enabled                                                     |  |  |  |  |
|                           | LVI  | Operation stopped                                                     |  |  |  |  |
| Bit sequential buffer     |      | Operation enabled <sup>Note 3</sup>                                   |  |  |  |  |
| Key return circuit        |      | Operation enabled                                                     |  |  |  |  |

**Notes 1.** Operation is enabled only when cascade connected with TM40 (external clock selected for count clock).

- 2. Operation is enabled only when external clock is selected for count clock.
- **3.** Operation is enabled only when external clock is selected for TM40 count clock and INTTM40 is generated.

# 8.2 Register That Controls Standby Function (µPD78E9860A Only)<sup>Note</sup>

The wait time from releasing STOP mode using an interrupt request until oscillation stabilizes is controlled by the oscillation stabilization time selection register (OSTS).

OSTS can be set using an 8-bit memory manipulation instruction.

RESET input sets this register to 04H. Note that after RESET input the oscillation stabilization time is not  $2^{17}$ /fx but  $2^{15}$ /fx.

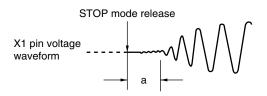

**Note** There is no OSTS in the  $\mu$ PD78E9861A. The oscillation stabilization time of the  $\mu$ PD78E9861A is fixed at  $2^{7}$ /fcc.

Figure 8-1. Format of Oscillation Stabilization Time Selection Register

| Symbol | 7 | 6 | 5 | 4 | 3 | 2     | 1     | 0     | Address After reset | R/W |
|--------|---|---|---|---|---|-------|-------|-------|---------------------|-----|
| OSTS   | 0 | 0 | 0 | 0 | 0 | OSTS2 | OSTS1 | OSTS0 | FFFAH 04H           | R/W |

| OSTS2     | OSTS1            | OSTS0 | Selection of oscillation stabilization time |
|-----------|------------------|-------|---------------------------------------------|
| 0         | 1                | 0     | 2 <sup>15</sup> /fx (6.55 ms)               |
| 1         | 0                | 0     | 2 <sup>17</sup> /fx (26.2 ms)               |
| Other tha | Other than above |       | Setting prohibited                          |

Caution For a ceramic/crystal oscillator, the wait time when STOP mode is released does not include the time until clock oscillation begins after **RESET** input or interrupt generation releases STOP mode (a in the figure below).

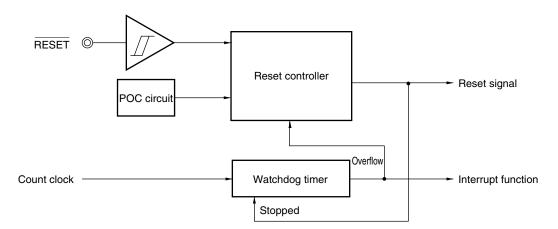


- Remarks 1. fx: System clock oscillation frequency (ceramic/crystal oscillator)
  - **2.** The parenthesized values apply to operation at fx = 5.0 MHz.

# 9. RESET FUNCTION

Reset signals are generated by the following three methods.

- (1) External reset by RESET signal input
- (2) Internal reset by watchdog timer runaway time detection
- (3) Internal reset by comparison of POC circuit power supply voltage and detection voltage


An internal reset does not differ functionally from an external reset and both begin program execution at the address written in addresses 0000H and 0001H according to RESET input.

If a low level is input to the RESET pin, a watchdog timer overflow occurs, or the POC circuit detects voltage, a reset occurs and each hardware item enters the state shown in Table 9-1. In addition, during reset input or during the time of oscillation stabilization immediately after reset release, each pin is in a state of high impedance.

If a high level is input to the RESET pin, the reset is released and program execution begins after the oscillation stabilization time elapses. In addition, for a reset by a watchdog timer overflow, the reset is released automatically after reset and program execution begins after the oscillation stabilization time elapses.

### Cautions 1. When performing an external reset, input a low level to the RESET pin for at least 10 $\mu$ s.

2. When releasing STOP mode using a reset, the contents at the time of STOP mode are maintained during reset input. However, port pins become high impedance.





# Table 9-1. States of Hardware After Reset

|                                        | Hardware                                                     | State After Reset           |
|----------------------------------------|--------------------------------------------------------------|-----------------------------|
| Program counter (PC) <sup>Note 1</sup> | Contents of reset vector<br>table (0000H, 0001H)<br>are set. |                             |
| Stack pointer (SP)                     | Undefined                                                    |                             |
| Program status word (PSW               | )                                                            | 02H                         |
| EEPROM (EEWC10)                        |                                                              | 08H                         |
| RAM                                    | Data memory                                                  | Undefined <sup>Note 2</sup> |
|                                        | General-purpose registers                                    | Undefined <sup>Note 2</sup> |
| Ports (P0, P2) (Output latch           | es)                                                          | 00H                         |
| Port mode registers (PM0, I            | FFH                                                          |                             |
| Processor clock control reg            | 02H                                                          |                             |
| Oscillation stabilization time         | 04H                                                          |                             |
| 8-bit timer/event counter              | Timer counters (TM30, TM40)                                  | 00H                         |
|                                        | Compare registers (CR30, CR40, CRH40)                        | Undefined                   |
|                                        | Mode control registers (TMC30, TMC40)                        | 00H                         |
|                                        | Carrier generator output control register (TCA40)            | 00H                         |
| Watchdog timer                         | Timer clock select register 2 (TCL2)                         | 00H                         |
|                                        | Mode register (WDTM)                                         | 00H                         |
| Power-on-clear circuit                 | Power-on-clear register (POCF1)                              | 00H <sup>Note 4</sup>       |
|                                        | Low-voltage detection register (LVIF1)                       | 00H                         |
|                                        | Low-voltage detection level selection register (LVIS1)       | 00H                         |
| Bit sequential buffer                  | Data registers (BSFRL10, BSFRH10)                            | Undefined                   |
|                                        | Output control register (BSFC10)                             | 00H                         |
| Interrupts                             | Request flag register (IF0)                                  | 00H                         |
|                                        | Mask flag register (MK0)                                     | FFH                         |

- **Notes 1.** Among the hardware, only the contents of the PC are in an undefined state during reset input and during an oscillation stabilization time wait. For all other hardware, the state is the same as the state after a reset.
  - 2. The state after a reset in standby mode is maintained.
  - **3.** *μ*PD78E9860A only.
  - 4. This value is 04H only after a power-on-clear reset.

# 10. EEPROM (PROGRAM MEMORY)

The on-chip program memory in the  $\mu$ PD78E9860A and 78E9861A is EEPROM.

This chapter describes the functions of the EEPROM incorporated in the program memory area. For the EEPROM incorporated in data memory, see **5. EEPROM (DATA MEMORY)**.

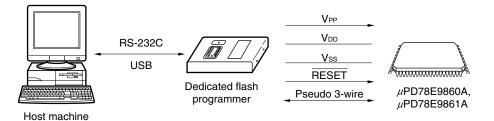
EEPROM can be written with the  $\mu$ PD78E9860A and 78E9861A mounted on the target system (on-board). Connect the dedicated flash writer (Flashpro III (part no. FL-PR3, PG-FP3)/Flashpro IV (part no. FL-PR4, PG-FP4)) to the host machine and target system to write to EEPROM.

Remark FL-PR3 and FL-PR4 are products of Naito Densei Machida Mfg. Co., Ltd (TEL +81-45-475-4191).

Programming using EEPROM has the following advantages.

- Software can be modified after the microcontroller is solder-mounted on the target system.
- Distinguishing software facilities small-quantity, varied model production
- · Easy data adjustment when starting mass production

#### **10.1 Programming Environment**


The following shows the environment required for  $\mu$ PD78E9860A, 78E9861A EEPROM programming.

When Flashpro III (part no. FL-PR3, PG-FP3) or Flashpro IV (part no. FL-PR4, PG-FP4) is used as a dedicated flash programmer, a host machine is required to control the dedicated flash programmer. Communication between the host machine and flash programmer is performed via RS-232C/USB (Rev. 1.1).

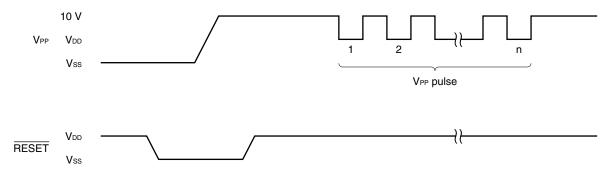
For details, refer to the manuals for Flashpro III/Flashpro IV.

Remark USB is supported by Flashpro IV only.

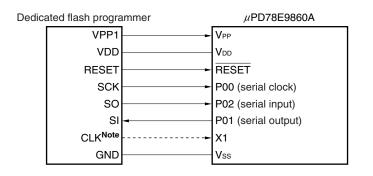




# 10.2 Communication Mode

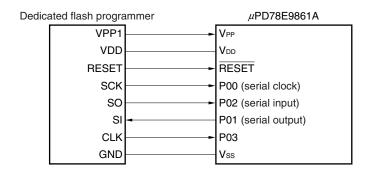

Use the communication mode shown in Table 10-1 to perform communication between the dedicated flash programmer and  $\mu$ PD78E9860A, 78E9861A.

| Communication<br>Mode |                              |                    | TYPE Setting <sup>№</sup>               | Pins Used                    | Number of |                                                                                 |            |
|-----------------------|------------------------------|--------------------|-----------------------------------------|------------------------------|-----------|---------------------------------------------------------------------------------|------------|
|                       | COMM                         | SIO Clock          | CPU CLOCK <sup>Note 1</sup>             |                              | Multiple  |                                                                                 | VPP Pulses |
|                       | PORT                         |                    | In Flashpro                             | On Target Board              | Rate      |                                                                                 |            |
| Pseudo 3-wire         | Port A<br>(Pseudo-3<br>wire) | 100 Hz to<br>1 kHz | 1, 2, 4, 5<br>MHz <sup>Notes 2, 3</sup> | 1 to 5 MHz <sup>Note 2</sup> | 1.0       | P02 (serial data input)<br>P01 (serial data output)<br>P00 (serial clock input) | 12         |


#### Table 10-1. Communication Mode List

- **Notes 1.** Be sure to use In Flashpro (system clock is supplied from a dedicated flash programmer) with the  $\mu$ PD78E9861A.
  - 2. The possible setting range differs depending on the voltage.
  - 3. 2 or 4 MHz only with Flashpro III






# Figure 10-3. Example of Connection with Dedicated Flash Programmer



#### (a) Pseudo 3-wire ( $\mu$ PD78E9860A)





- **Note** When supplying the system clock from a dedicated flash programmer, connect the CLK and X1 pins and cut off the resonator on the board. When using the clock oscillated by the on-board resonator, do not connect the CLK pin.
- Caution The V<sub>DD</sub> pin, if already connected to the power supply, must be connected to the VDD pin of the dedicated flash programmer. When using the power supply connected to the VDD pin, supply voltage before starting programming.

If Flashpro III (part no. FL-PR3, PG-FP3)/Flashpro IV (part no. FL-PR4, PG-FP4) is used as a dedicated flash programmer, the following signals are generated for the  $\mu$ PD78E9860A, 78E9861A. For details, refer to the manual of Flashpro III/Flashpro IV.

| Signal Name | I/O    | Pin Function                              | Pin Name          | Pseudo 3-Wire |
|-------------|--------|-------------------------------------------|-------------------|---------------|
| VPP1        | Output | Write voltage                             | Vpp               | Ø             |
| VPP2        | -      | _                                         | _                 | ×             |
| VDD         | I/O    | VDD voltage generation/voltage monitoring | VDD               | ONote         |
| GND         | -      | Ground                                    | Vss               | 0             |
| CLK         | Output | Clock output                              | X1 (μPD78E9860A)  | 0             |
|             |        |                                           | P03 (µPD78E9861A) | Ŭ             |
| RESET       | Output | Reset signal                              | RESET             | 0             |
| SI          | Input  | Receive signal                            | P01               | 0             |
| SO          | Output | Transmit signal                           | P02               | 0             |
| SCK         | Output | Transfer clock                            | P00               | 0             |
| HS          | Input  | Handshake signal                          | _                 | ×             |

Note VDD voltage must be supplied before programming is started.

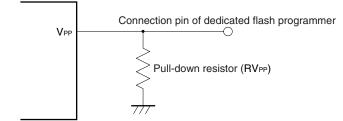
- **Remark** ©: Pin must be connected.
  - $\bigcirc$ : If the signal is supplied on the target board, pin does not need to be connected.
  - $\times$ : Pin does not need to be connected.

#### 10.3 On-Board Pin Processing

When performing programming on the target system, provide a connector on the target system to connect the dedicated flash programmer.

An on-board function that allows switching between normal operation mode and EEPROM programming mode may be required in some cases.

<VPP pin>


In normal operation mode, input 0 V to the VPP pin. In EEPROM programming mode, a write voltage of 10.0 V (TYP.) is supplied to the VPP pin, so perform either of the following.

- (1) Connect a pull-down resistor  $RV_{PP} = 10 k\Omega$  to the VPP pin.
- (2) Use the jumper on the board to switch the VPP pin input to either the programmer or directly to GND.

A VPP pin connection example is shown below.



#### μ**PD78E9860A, 78E9861A**



<Serial interface pins>

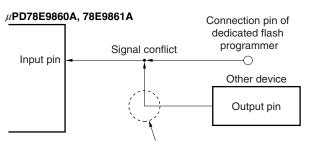
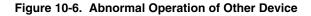
The following shows the pins used by the serial interface.

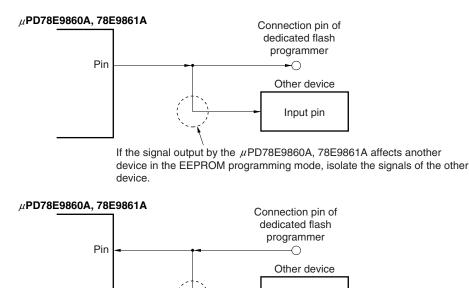
| Serial Interface | Pins Used     |
|------------------|---------------|
| Pseudo 3-wire    | P02, P01, P00 |

When connecting the dedicated flash programmer to a serial interface pin that is connected to another device onboard, signal conflict or abnormal operation of the other device may occur. Care must therefore be taken with such connections.

# (1) Signal conflict

If the dedicated flash programmer (output) is connected to a serial interface pin (input) that is connected to another device (output), a signal conflict occurs. To prevent this, isolate the connection with the other device or set the other device to the output high impedance status.



Figure 10-5. Signal Conflict (Input Pin of Serial Interface)

In the EEPROM programming mode, the signal output by another device and the signal sent by the dedicated flash programmer conflict; therefore, isolate the signal of the other device.

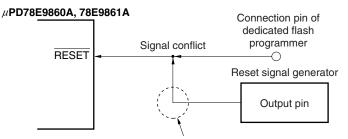
#### (2) Abnormal operation of other device

If the dedicated flash programmer (output or input) is connected to a serial interface pin (input or output) that is connected to another device (input), a signal is output to the device, and this may cause an abnormal operation. To prevent this abnormal operation, isolate the connection with the other device or set so that the signals input to the other device are ignored.





If the signal output by the dedicated flash programmer affects another device in the EEPROM programming mode, isolate the signals of the other device.


Input pin

## <RESET pin>

If the reset signal of the dedicated flash programmer is connected to the RESET pin connected to the reset signal generator on-board, a signal conflict occurs. To prevent this, isolate the connection with the reset signal generator.

If the reset signal is input from the user system in the EEPROM programming mode, a normal programming operation cannot be performed. Therefore, do not input other than reset signals from the dedicated flash programmer.





The signal output by the reset signal generator and the signal output from the dedicated flash programmer conflict in the EEPROM programming mode, so isolate the signal of the reset signal generator.

<Port pins>

When the  $\mu$ PD78E9860A and 78E9861A enter the EEPROM programming mode, all the pins other than those that communicate with the flash programmer are in the same status as immediately after reset.

If the external device does not recognize initial statuses such as the output high impedance status, therefore, connect the external device to  $V_{DD}$  or  $V_{SS}$  via a resistor.

<Oscillator>

In μPD78E9860A

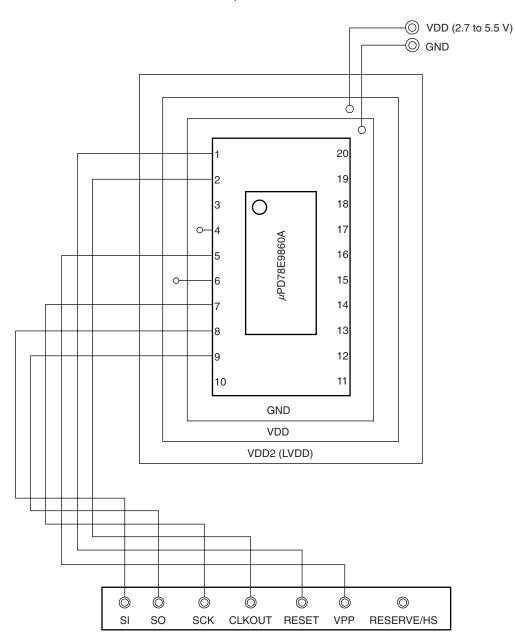
When using the on-board clock, connect X1 and X2 as required in the normal operation mode.

When using the clock output of the flash programmer, connect it directly to X1, disconnecting the main resonator on-board, and leave the X2 pin open.

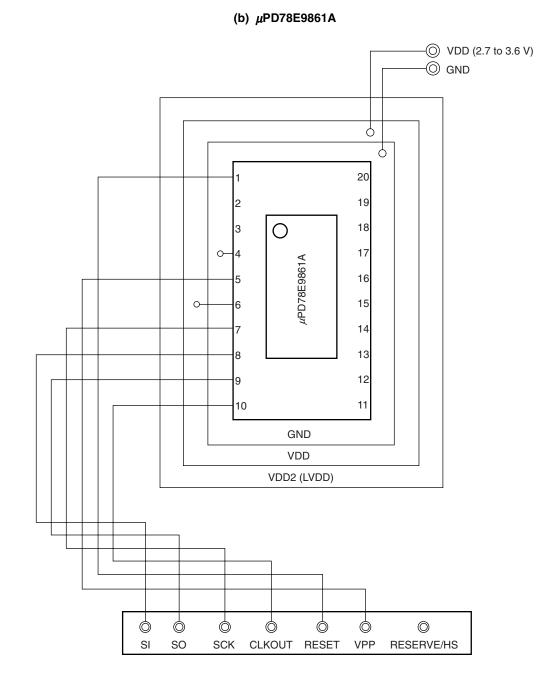
#### • In μPD78E9861A

Connect CL1 and CL2 as required in the normal operation mode, and connect the clock output of the flash programmer to the P03 pin.

#### <Power supply>


To use the power output from the flash programmer, connect the  $V_{DD}$  pin to VDD of the flash programmer, and the Vss pin to GND of the flash programmer.

To use the on-board power supply, make connections that accord with the normal operation mode. However, because the voltage is monitored by the flash programmer, be sure to connect VDD of the flash programmer.


# 10.4 Connection of Adapter for EEPROM Writing

The following figures show the examples of recommended connection when the adapter for EEPROM writing is used.

## Figure 10-8. Wiring Example for EEPROM Writing Adapter with Pseudo 3-Wire (1/2)



#### (a) μPD78E9860A



# Figure 10-8. Wiring Example for EEPROM Writing Adapter with Pseudo 3-Wire (2/2)

# **11. INSTRUCTION SET SUMMARY**

This section lists the  $\mu$ PD78E9860A and  $\mu$ PD78E9861A instruction set.

#### 11.1 Conventions

#### 11.1.1 Operand identifiers and description methods

Operands are described in the Operand column of each instruction in accordance with the description method of the instruction operand identifier (refer to the assembler specifications for details). When there are two or more description methods, select one of them. Alphabetic letters in capitals and symbols, #, !, \$ and [] are keywords and must be described as they are. Each symbol has the following meaning.

- #: Immediate data specification
- \$: Relative address specification
- !: Absolute address specification
- []:Indirect address specification

In the case of immediate data, describe an appropriate numeric value or a label. When using a label, be sure to describe the #, !, \$, [] and symbols.

For operand register identifiers, r and rp, either function names (X, A, C, etc.) or absolute names (names in parentheses in the table below, R0, R1, R2, etc.) can be used for description.

| Identifier | Description Method                                                    |
|------------|-----------------------------------------------------------------------|
| r          | X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7)        |
| rp         | AX (RP0), BC (RP1), DE (RP2), HL (RP3)                                |
| sfr        | Special function register symbol                                      |
| saddr      | FE20H to FF1FH immediate data or label                                |
| saddrp     | FE20H to FF1FH immediate data or label (Even numbered addresses only) |
| addr16     | 0000H to FFFFH immediate data or label                                |
|            | (Even numbered addresses only if a 16-bit data transfer instruction)  |
| addr5      | 0040H to 007FH immediate data or label (Even numbered addresses only) |
| word       | 16-bit immediate data or label                                        |
| byte       | 8-bit immediate data or label                                         |
| bit        | 3-bit immediate data or label                                         |

#### Table 11-1. Operand Identifiers Forms and Description Methods

Remark Refer to Table 4-1 List of Special Function Registers for special function register symbols.

## 11.1.2 Explanation of operation column

- A: A register; 8-bit accumulator
- X: X register
- B: B register
- C: C register
- D: D register
- E: E register
- H: H register
- L: L register
- AX: AX register pair; 16-bit accumulator
- BC: BC register pair
- DE: DE register pair
- HL: HL register pair
- PC: Program counter
- SP: Stack pointer
- PSW: Program status word
- CY: Carry flag
- AC: Auxiliary carry flag
- Z: Zero flag
- IE: Interrupt request enable flag
- NMIS: Non-maskable interrupt processing flag
- (): Contents of memory represented by contents of register or address in parentheses
- $X_{H},\,X_{L}:\;\;$  Higher 8 bits and lower 8 bits of 16-bit register
- ∧: Logical product (AND)
- √: Logical sum (OR)
- $\forall$ : Exclusive logical sum (exclusive OR)
- : Inverted data
- addr16: 16-bit immediate data or label
- jdisp8: Signed 8-bit data (displacement value)

## 11.1.3 Explanation of flags column

- (blank): No change
- 0: Cleared to 0
- 1: Set to 1
- $\times:$  Set or cleared according to result
- R: Previously saved value is stored

# 11.2 List of Operations

|          | Quant                    | Datas | Clock | Operation                             | Flags   |
|----------|--------------------------|-------|-------|---------------------------------------|---------|
| Mnemonic | Operand                  | Bytes |       |                                       | Z AC CY |
| MOV      | r. #byte                 | 3     | 6     | r ← byte                              |         |
|          | saddr, #byte             | 3     | 6     | $(saddr) \leftarrow byte$             |         |
|          | sfr, #byte               | 3     | 6     | $sfr \leftarrow byte$                 |         |
|          | A, r <sup>Note 1</sup>   | 2     | 4     | $A \leftarrow r$                      |         |
|          | r, A <sup>Note 1</sup>   | 2     | 4     | $r \leftarrow A$                      |         |
|          | A, saddr                 | 2     | 4     | $A \leftarrow (saddr)$                |         |
|          | saddr, A                 | 2     | 4     | $(saddr) \leftarrow A$                |         |
|          | A, sfr                   | 2     | 4     | $A \leftarrow sfr$                    |         |
|          | sfr, A                   | 2     | 4     | $sfr \leftarrow A$                    |         |
|          | A, !addr16               | 3     | 8     | $A \leftarrow (addr16)$               |         |
|          | !addr16, A               | 3     | 8     | $(addr16) \leftarrow A$               |         |
|          | PSW, #byte               | 3     | 6     | $PSW \leftarrow byte$                 | × × ×   |
|          | A, PSW                   | 2     | 4     | $A \leftarrow PSW$                    |         |
|          | PSW, A                   | 2     | 4     | $PSW \gets A$                         | × × ×   |
|          | A, [DE]                  | 1     | 6     | $A \leftarrow (DE)$                   |         |
|          | [DE], A                  | 1     | 6     | $(DE) \leftarrow A$                   |         |
|          | A, [HL]                  | 1     | 6     | $A \leftarrow (HL)$                   |         |
|          | [HL], A                  | 1     | 6     | $(HL) \gets A$                        |         |
|          | A, [HL + byte]           | 2     | 6     | $A \gets (HL + byte)$                 |         |
|          | [HL + byte], A           | 2     | 6     | $(HL + byte) \leftarrow A$            |         |
| ХСН      | A, X                     | 1     | 4     | $A \longleftrightarrow X$             |         |
|          | A, r <sup>Note 2</sup>   | 2     | 6     | $A \leftarrow \rightarrow r$          |         |
|          | A, saddr                 | 2     | 6     | $A \longleftrightarrow (saddr)$       |         |
|          | A, sfr                   | 2     | 6     | $A \longleftrightarrow (sfr)$         |         |
|          | A, [DE]                  | 1     | 8     | $A \longleftrightarrow (\mathsf{DE)}$ |         |
|          | A, [HL]                  | 1     | 8     | $A \longleftrightarrow (HL)$          |         |
|          | A, [HL + byte]           | 2     | 8     | $A \leftarrow \rightarrow (HL+byte)$  |         |
| MOVW     | rp, #word                | 3     | 6     | $rp \leftarrow word$                  |         |
|          | AX, saddrp               | 2     | 6     | $AX \leftarrow (saddrp)$              |         |
|          | saddrp, AX               | 2     | 8     | $(saddrp) \leftarrow AX$              |         |
|          | AX, rp <sup>Note 3</sup> | 1     | 4     | $AX \leftarrow rp$                    |         |
|          | rp, AX <sup>Note 3</sup> | 1     | 4     | $rp \leftarrow AX$                    |         |

Notes 1. Except r = A

**2.** Except r = A, X

**3.** Only when rp = BC, DE, HL

**Remark** One clock of an instruction is one clock of the CPU clock (fcPu) selected using the processor clock control register (PCC).

| Masaasia | Onevend                | Dutes | Clock | Operation                                    | Flags   |
|----------|------------------------|-------|-------|----------------------------------------------|---------|
| Mnemonic | Operand                | Bytes |       |                                              | Z AC CY |
| XCHW     | AX, rp <sup>Note</sup> | 1     | 8     | $AX \leftarrow \rightarrow rp$               |         |
| ADD      | A, #byte               | 2     | 4     | A, CY $\leftarrow$ A + byte                  | × × ×   |
|          | saddr, #byte           | 3     | 6     | (saddr), CY $\leftarrow$ (saddr) + byte      | × × ×   |
|          | A, r                   | 2     | 4     | A, CY $\leftarrow$ A + r                     | × × ×   |
|          | A, saddr               | 2     | 4     | A, CY $\leftarrow$ A + (saddr)               | × × ×   |
|          | A, !addr16             | 3     | 8     | A, CY $\leftarrow$ A + (addr16)              | × × ×   |
|          | A, [HL]                | 1     | 6     | A, CY $\leftarrow$ A + (HL)                  | × × ×   |
|          | A, [HL + byte]         | 2     | 6     | A, CY $\leftarrow$ A + (HL + byte)           | × × ×   |
| ADDC     | A, #byte               | 2     | 4     | A, CY $\leftarrow$ A + byte + CY             | × × ×   |
|          | saddr, #byte           | 3     | 6     | (saddr), CY $\leftarrow$ (saddr) + byte + CY | × × ×   |
|          | A, r                   | 2     | 4     | $A,CY \leftarrow A + r + CY$                 | × × ×   |
|          | A, saddr               | 2     | 4     | A, CY $\leftarrow$ A+ (saddr) + CY           | × × ×   |
|          | A, !addr16             | 3     | 8     | A, CY $\leftarrow$ A+ (addr16) +CY           | × × ×   |
|          | A, [HL]                | 1     | 6     | $A,CY \gets A + (HL) + CY$                   | × × ×   |
|          | A, [HL + byte]         | 2     | 6     | A, CY $\leftarrow$ A+ (HL + byte) + CY       | × × ×   |
| SUB      | A, #byte               | 2     | 4     | A, CY $\leftarrow$ A – byte                  | × × ×   |
|          | saddr, #byte           | 3     | 6     | (saddr), CY $\leftarrow$ (saddr) – byte      | × × ×   |
|          | A, r                   | 2     | 4     | A, CY $\leftarrow$ A – r                     | × × ×   |
|          | A, saddr               | 2     | 4     | A, CY $\leftarrow$ A – (saddr)               | × × ×   |
|          | A, !addr16             | 3     | 8     | A, CY $\leftarrow$ A – (addr16)              | × × ×   |
|          | A, [HL]                | 1     | 6     | A, CY $\leftarrow$ A – (HL)                  | × × ×   |
|          | A, [HL + byte]         | 2     | 6     | A, CY $\leftarrow$ A – (HL + byte)           | × × ×   |
| SUBC     | A, #byte               | 2     | 4     | A, CY $\leftarrow$ A – byte – CY             | × × ×   |
|          | saddr, #byte           | 3     | 6     | (saddr), CY $\leftarrow$ (saddr) – byte – CY | × × ×   |
|          | A, r                   | 2     | 4     | $A,CY\leftarrowA-r-CY$                       | × × ×   |
|          | A, saddr               | 2     | 4     | A, CY $\leftarrow$ A – (saddr) – CY          | × × ×   |
|          | A, !addr16             | 3     | 8     | A, CY $\leftarrow$ A – (addr16) – CY         | × × ×   |
|          | A, [HL]                | 1     | 6     | $A,CY\leftarrowA-(HL)-CY$                    | × × ×   |
|          | A, [HL + byte]         | 2     | 6     | A, CY $\leftarrow$ A – (HL + byte) – CY      | × × ×   |

**Note** Only when rp = BC, DE, HL

**Remark** One clock of an instruction is one clock of the CPU clock (fcPu) selected using the processor clock control register (PCC).

| Mnemonic | Operand        | Bytes | Clock | Operation                               | Flags |      |        |
|----------|----------------|-------|-------|-----------------------------------------|-------|------|--------|
|          |                |       |       |                                         |       | AC ( | YC     |
| AND      | A, #byte       | 2     | 4     | $A \leftarrow A \land byte$             | ×     |      |        |
|          | saddr, #byte   | 3     | 6     | $(saddr) \leftarrow (saddr) \land byte$ | ×     |      |        |
|          | A, r           | 2     | 4     | $A \leftarrow A \land r$                | ×     |      |        |
|          | A, saddr       | 2     | 4     | $A \leftarrow A \land (saddr)$          | ×     |      |        |
|          | A, !addr16     | 3     | 8     | $A \leftarrow A \land (addr16)$         | ×     |      |        |
|          | A, [HL]        | 1     | 6     | $A \leftarrow A \land (HL)$             | ×     |      |        |
|          | A, [HL + byte] | 2     | 6     | $A \leftarrow A \land (HL + byte)$      | ×     |      |        |
| OR       | A, #byte       | 2     | 4     | $A \leftarrow A \lor byte$              | ×     |      |        |
|          | saddr, #byte   | 3     | 6     | $(saddr) \leftarrow (saddr) \lor byte$  | ×     |      |        |
|          | A, r           | 2     | 4     | $A \leftarrow A \lor r$                 | ×     |      |        |
|          | A, saddr       | 2     | 4     | $A \leftarrow A \lor (saddr)$           | ×     |      |        |
|          | A, !addr16     | 3     | 8     | $A \leftarrow A \lor (addr16)$          | ×     |      |        |
|          | A, [HL]        | 1     | 6     | $A \leftarrow A \lor (HL)$              | ×     |      |        |
|          | A, [HL + byte] | 2     | 6     | $A \leftarrow A \lor (HL + byte)$       | ×     |      |        |
| XOR      | A, #byte       | 2     | 4     | $A \leftarrow A \lor byte$              | ×     |      |        |
|          | saddr, #byte   | 3     | 6     | $(saddr) \leftarrow (saddr) \lor byte$  | ×     |      |        |
|          | A, r           | 2     | 4     | $A \leftarrow A \lor r$                 | ×     |      |        |
|          | A, saddr       | 2     | 4     | $A \leftarrow A \lor (saddr)$           | ×     |      |        |
|          | A, !addr16     | 3     | 8     | $A \leftarrow A \lor (addr16)$          | ×     |      |        |
|          | A, [HL]        | 1     | 6     | $A \leftarrow A \lor (HL)$              | ×     |      |        |
|          | A, [HL + byte] | 2     | 6     | $A \leftarrow A \lor (HL + byte)$       | ×     |      |        |
| CMP      | A, #byte       | 2     | 4     | A – byte                                | ×     | ×    | ×      |
|          | saddr, #byte   | 3     | 6     | (saddr) – byte                          | ×     | ×    | ×      |
|          | A, r           | 2     | 4     | A – r                                   | ×     | ×    | ×      |
|          | A, saddr       | 2     | 4     | A – (saddr)                             | ×     | ×    | ×      |
|          | A, !addr16     | 3     | 8     | A – (addr16)                            | ×     | ×    | ×      |
|          | A, [HL]        | 1     | 6     | A – (HL)                                | ×     | ×    | ×      |
|          | A, [HL + byte] | 2     | 6     | A – (HL + byte)                         | ×     | ×    | ×      |
| ADDW     | AX, #word      | 3     | 6     | $AX, CY \leftarrow AX + word$           |       |      | ×      |
| SUBW     | AX, #word      | 3     | 6     | AX, CY $\leftarrow$ AX – word           | ×     | ×    | ×      |
| CMPW     | AX, #word      | 3     | 6     | AX – word                               |       |      | ×      |
| INC      | r              | 2     | 4     | r ← r + 1                               |       | ×    | $\neg$ |
|          | saddr          | 2     | 4     | $(saddr) \leftarrow (saddr) + 1$        |       | ×    | ┫      |
| DEC      | r              | 2     | 4     | $r \leftarrow r - 1$                    |       | ×    | $\neg$ |
|          | saddr          | 2     | 4     | $(saddr) \leftarrow (saddr) - 1$        |       | ×    | ┨      |

**Remark** One clock of an instruction is one clock of the CPU clock (fcPU) selected using the processor clock control register (PCC).

| Masassia | Onevrend  | Dutas | Cleak | Orașețian                                                                                                                                                                             |   | Flage | 3  |
|----------|-----------|-------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------|----|
| Mnemonic | Operand   | Bytes | Clock | Operation                                                                                                                                                                             | Z | AC    | C١ |
| INCW     | rp        | 1     | 4     | $rp \leftarrow rp + 1$                                                                                                                                                                |   |       |    |
| DECW     | rp        | 1     | 4     | $rp \leftarrow rp - 1$                                                                                                                                                                |   |       |    |
| ROR      | A, 1      | 1     | 2     | $(CY, A_7 \leftarrow A_0, A_{m-1} \leftarrow A_m) \times 1$                                                                                                                           |   |       | ×  |
| ROL      | A, 1      | 1     | 2     | $(CY, A_0 \leftarrow A_7, A_{m+1} \leftarrow A_m) \times 1$                                                                                                                           |   |       | ×  |
| RORC     | A, 1      | 1     | 2     | $(CY \leftarrow A_0, A_7 \leftarrow CY, A_{m-1} \leftarrow A_m) \times 1$                                                                                                             |   |       | ×  |
| ROLC     | A, 1      | 1     | 2     | $(CY \leftarrow A_7,A_0 \leftarrow CY,A_{m+1} \leftarrow A_m) \times 1$                                                                                                               |   |       | ×  |
| SET1     | saddr.bit | 3     | 6     | $(saddr.bit) \leftarrow 1$                                                                                                                                                            |   |       |    |
|          | sfr.bit   | 3     | 6     | sfr.bit ← 1                                                                                                                                                                           |   |       |    |
|          | A.bit     | 2     | 4     | A.bit $\leftarrow$ 1                                                                                                                                                                  |   |       |    |
|          | PSW.bit   | 3     | 6     | $PSW.bit \gets 1$                                                                                                                                                                     | × | ×     | ×  |
|          | [HL].bit  | 2     | 10    | (HL).bit ← 1                                                                                                                                                                          |   |       |    |
| CLR1     | saddr.bit | 3     | 6     | $(saddr.bit) \leftarrow 0$                                                                                                                                                            |   |       |    |
|          | sfr.bit   | 3     | 6     | sfr.bit ← 0                                                                                                                                                                           |   |       |    |
|          | A.bit     | 2     | 4     | A.bit ← 0                                                                                                                                                                             |   |       |    |
|          | PSW.bit   | 3     | 6     | PSW.bit ← 0                                                                                                                                                                           | × | ×     | ×  |
|          | [HL].bit  | 2     | 10    | (HL).bit $\leftarrow 0$                                                                                                                                                               |   |       |    |
| SET1     | CY        | 1     | 2     | CY ← 1                                                                                                                                                                                |   |       | 1  |
| CLR1     | CY        | 1     | 2     | $CY \leftarrow 0$                                                                                                                                                                     |   |       | 0  |
| NOT1     | CY        | 1     | 2     | $CY \leftarrow \overline{CY}$                                                                                                                                                         |   |       | ×  |
| CALL     | !addr16   | 3     | 6     | $(SP - 1) \leftarrow (PC + 3)_{H}, (SP - 2) \leftarrow (PC + 3)_{L},$<br>$PC \leftarrow addr16, SP \leftarrow SP - 2$                                                                 |   |       |    |
| CALLT    | [addr5]   | 1     | 8     | $(SP - 1) \leftarrow (PC + 1)_{H}, (SP - 2) \leftarrow (PC + 1)_{L},$<br>$PC_{H} \leftarrow (00000000, addr5 + 1)$<br>$PC_{L} \leftarrow (00000000, addr5)$<br>$SP \leftarrow SP - 2$ |   |       |    |
| RET      |           | 1     | 6     | $\begin{array}{l} PCH \leftarrow (SP+1),  PCL \leftarrow (SP), \\ SP \leftarrow SP+2 \end{array}$                                                                                     |   |       |    |
| RETI     |           | 1     | 8     | $\begin{array}{l} PC_{H} \leftarrow (SP+1),  PC_{L} \leftarrow (SP), \\ PSW \leftarrow (SP+2),  SP \leftarrow SP+3, \\ NMIS \leftarrow 0 \end{array}$                                 | R | R     | R  |
| PUSH     | PSW       | 1     | 2     | $(SP - 1) \leftarrow PSW, SP \leftarrow SP - 1$                                                                                                                                       |   |       |    |
|          | rp        | 1     | 4     | $(SP - 1) \leftarrow rp_H, (SP - 2) \leftarrow rp_L,$<br>$SP \leftarrow SP - 2$                                                                                                       |   |       |    |
| POP      | PSW       | 1     | 4     | $PSW \leftarrow (SP),  SP \leftarrow SP + 1$                                                                                                                                          | R | R     | F  |
|          | rp        | 1     | 6     | $rp_{H} \leftarrow (SP + 1), rp_{L} \leftarrow (SP),$<br>$SP \leftarrow SP + 2$                                                                                                       |   |       |    |
| MOVW     | SP, AX    | 2     | 8     | $SP \leftarrow AX$                                                                                                                                                                    |   |       |    |
|          | AX, SP    | 2     | 6     | $AX \leftarrow SP$                                                                                                                                                                    |   |       |    |

**Remark** One clock of an instruction is one clock of the CPU clock (fcPu) selected using the processor clock control register (PCC).

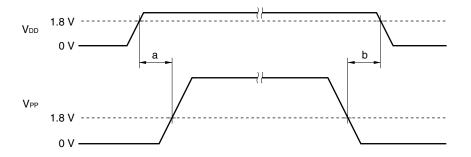
| N 4      | Onevend              | Dutes | Cleak | Onerstien                                                                                      | Flags   |
|----------|----------------------|-------|-------|------------------------------------------------------------------------------------------------|---------|
| Mnemonic | Operand              | Bytes | Clock | Operation                                                                                      | Z AC CY |
| BR       | !addr16              | 3     | 6     | $PC \leftarrow addr16$                                                                         |         |
|          | \$addr16             | 2     | 6     | $PC \leftarrow PC + 2 + jdisp8$                                                                |         |
|          | AX                   | 1     | 6     | $PC_{H} \leftarrow A,  PC_{L} \leftarrow X$                                                    |         |
| BC       | \$addr16             | 2     | 6     | $PC \leftarrow PC + 2 + jdisp8$ if $CY = 1$                                                    |         |
| BNC      | \$addr16             | 2     | 6     | $PC \leftarrow PC + 2 + jdisp8$ if $CY = 0$                                                    |         |
| BZ       | \$addr16             | 2     | 6     | $PC \leftarrow PC + 2 + jdisp8$ if $Z = 1$                                                     |         |
| BNZ      | \$addr16             | 2     | 6     | $PC \leftarrow PC + 2 + jdisp8$ if $Z = 0$                                                     |         |
| BT       | saddr.bit, \$saddr16 | 4     | 10    | $PC \leftarrow PC + 4 + jdisp8$<br>if (saddr. bit) = 1                                         |         |
|          | sfr.bit, \$addr16    | 4     | 10    | $PC \leftarrow PC + 4 + jdisp8$ if sfr. bit = 1                                                |         |
|          | A.bit, \$saddr16     | 3     | 8     | $PC \leftarrow PC + 3 + jdisp8$ if A. bit = 1                                                  |         |
|          | PSW.bit \$addr16     | 4     | 10    | $PC \leftarrow PC + 4 + jdisp8$ if PSW. bit = 1                                                |         |
| BF       | saddr.bit, \$addr16  | 4     | 10    | $PC \leftarrow PC + 4 + jdisp8$<br>if (saddr. bit) = 0                                         |         |
|          | sfr.bit, \$addr16    | 4     | 10    | $PC \leftarrow PC + 4 + jdisp8$ if sfr. bit = 0                                                |         |
|          | A.bit, \$addr16      | 3     | 8     | $PC \leftarrow PC + 3 + jdisp8$ if A. bit = 0                                                  |         |
|          | PSW.bit, \$addr16    | 4     | 10    | $PC \leftarrow PC + 4 + jdisp8$ if PSW. bit = 0                                                |         |
| DBNZ     | B, \$addr16          | 2     | 6     | $B \leftarrow B - 1$ , then<br>PC $\leftarrow$ PC + 2 + jdisp8 if $B \neq 0$                   |         |
|          | C, \$addr16          | 2     | 6     | $C \leftarrow C - 1$ , then<br>PC $\leftarrow$ PC + 2 + jdisp8 if C $\neq 0$                   |         |
|          | saddr, \$addr16      | 3     | 8     | $(saddr) \leftarrow (saddr) - 1$ , then<br>PC $\leftarrow$ PC + 3 + jdisp8 if (saddr) $\neq 0$ |         |
| NOP      |                      | 1     | 2     | No Operation                                                                                   |         |
| EI       |                      | 3     | 6     | $IE \leftarrow 1$ (Enable Interrupt)                                                           |         |
| DI       |                      | 3     | 6     | $IE \leftarrow 0$ (Disable Interrupt)                                                          |         |
| HALT     |                      | 1     | 2     | Set HALT Mode                                                                                  |         |
| STOP     |                      | 1     | 2     | Set Stop Mode                                                                                  |         |

**Remark** One clock of an instruction is one clock of the CPU clock (fcPu) selected using the processor clock control register (PCC).

#### **12. ELECTRICAL SPECIFICATIONS**

#### Absolute Maximum Ratings (T<sub>A</sub> = 25°C)

| Parameter                     | Symbol | Conditions        | Ratings           | Unit |
|-------------------------------|--------|-------------------|-------------------|------|
| Supply voltage                | VDD    |                   | -0.3 to +6.5      | V    |
|                               | VPP    | Note              | -0.3 to +10.5     | V    |
| Input voltage                 | Vı     |                   | -0.3 to VDD + 0.3 | V    |
| Output voltage                | Vo     |                   | -0.3 to VDD + 0.3 | V    |
| Output current, high          | Іон    | Per pin           | -10               | mA   |
|                               |        | Total of all pins | -30               | mA   |
| Output current, low           | lo∟    | Per pin           | 30                | mA   |
|                               |        | Total of all pins | 80                | mA   |
| Operating ambient temperature | TA     |                   | -40 to +85        | °C   |
| Storage temperature           | Tstg   |                   | -40 to +125       | °C   |


**Note** Make sure that the following conditions of the VPP voltage application timing are satisfied when the EEPROM (program memory) is written.

• When supply voltage rises

VPP must exceed V<sub>DD</sub> 10  $\mu$ s or more after V<sub>DD</sub> has reached the lower-limit value (1.8 V) of the operating voltage range (see a in the figure below).

• When supply voltage drops

V<sub>DD</sub> must be lowered 10  $\mu$ s or more after V<sub>PP</sub> falls below the lower-limit value (1.8 V) of the operating voltage range of V<sub>DD</sub> (see b in the figure below).



- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum rating are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions the ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

System Clock Oscillator Characteristics

#### Ceramic or crystal oscillation (µPD78E9860A)

| $(T_A = -40 \text{ to } +8)$ | 5°C, VDD = | 1.8 to | 5.5 V) |
|------------------------------|------------|--------|--------|
|------------------------------|------------|--------|--------|

| Resonator         | Recommended Circuit                                                                                     | Parameter                                           | Conditions                                             | MIN. | TYP. | MAX. | Unit |
|-------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|------|------|------|------|
| Ceramic resonator | $\begin{array}{c c} V_{SS} & X2 & X1 \\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $ | Oscillation frequency<br>(fx) <sup>Note 1</sup>     | V <sub>DD</sub> = Oscillation<br>voltage range         | 1.0  |      | 5.0  | MHz  |
|                   |                                                                                                         | Oscillation<br>stabilization time <sup>Note 2</sup> | After VDD reaches<br>oscillation voltage<br>range MIN. |      |      | 4    | ms   |
| Crystal resonator | tal resonator                                                                                           | Oscillation frequency<br>(fx) <sup>Note 1</sup>     |                                                        | 1.0  |      | 5.0  | MHz  |
|                   |                                                                                                         | Oscillation<br>stabilization time <sup>Note 2</sup> |                                                        |      |      | 30   | ms   |
| External clock    |                                                                                                         | X1 input frequency<br>(fx) <sup>Note 1</sup>        |                                                        | 1.0  |      | 5.0  | MHz  |
|                   |                                                                                                         | X1 input high-/low-<br>level width(txн,tx∟)         |                                                        | 85   |      | 500  | ns   |

Notes. 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.2. Time required to stabilize oscillation after reset or STOP mode release.

Caution When using a ceramic or crystal oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross with other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- **Remark** For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

#### RC oscillation (µPD78E9861A)

| $(T_A = -40 t)$ | o +85°C, | $V_{DD} = 1$ | .8 to | 3.6 V) |
|-----------------|----------|--------------|-------|--------|
|-----------------|----------|--------------|-------|--------|

| Resonator      | Recommended Circuit | Parameter                                           | Conditions                                     | MIN. | TYP. | MAX. | Unit |
|----------------|---------------------|-----------------------------------------------------|------------------------------------------------|------|------|------|------|
| RC oscillator  |                     | Oscillation frequency<br>(fcc) <sup>Notes 1,2</sup> | V <sub>DD</sub> = Oscillation<br>voltage range | 0.85 |      | 1.15 | MHz  |
| External clock | CL1 CL2             | CL1 input frequency<br>(fcc) <sup>Note 1</sup>      |                                                | 1.0  |      | 5.0  | MHz  |
|                |                     | CL1 input high-/low-<br>level width (txн,tx∟)       |                                                | 85   |      | 500  | ns   |

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2. Variations due to external resistance and external capacitance are not included.

Caution When using an RC oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross with other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

## DC Characteristics ( $\mu$ PD78E9860A) (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 1.8 to 5.5 V)

| Parameter                    | Symbol           | Con             | Conditions                                  |                       | TYP. | MAX.               | Unit |
|------------------------------|------------------|-----------------|---------------------------------------------|-----------------------|------|--------------------|------|
| Output current, low          | lol              | Per pin         |                                             |                       |      | 3                  | mA   |
|                              |                  | All pins        |                                             |                       |      | 7.5                | mA   |
| Output current, high         | Іон              | Per pin         |                                             |                       |      | -0.75              | mA   |
|                              |                  | All pins        |                                             |                       |      | -7.5               | mA   |
| Input voltage, high          | VIH1             | P00 to P07      | $2.7 \leq V_{\text{DD}} \leq 5.5 \text{ V}$ | 0.7V <sub>DD</sub>    |      | VDD                | V    |
|                              |                  |                 | $1.8 \leq V_{\text{DD}} < 2.7 \text{ V}$    | 0.9V <sub>DD</sub>    |      | VDD                | V    |
|                              | VIH2             | RESET, P20,     | $2.7 \leq V_{\text{DD}} \leq 5.5 \text{ V}$ | 0.8V <sub>DD</sub>    |      | VDD                | V    |
|                              |                  | P21, P40 to P43 | $1.8 \leq V_{\text{DD}} < 2.7 \text{ V}$    | 0.9V <sub>DD</sub>    |      | VDD                | V    |
|                              | Vінз             | X1, X2          | •                                           | Vdd - 0.1             |      | VDD                | V    |
| Input voltage, low           | VIL1             | P00 to P07      | $2.7 \leq V_{\text{DD}} \leq 5.5 \text{ V}$ | 0                     |      | 0.3V <sub>DD</sub> | V    |
|                              |                  |                 | $1.8 \leq V_{\text{DD}} < 2.7 \text{ V}$    | 0                     |      | 0.1VDD             | V    |
|                              | VIL2             | RESET, P20,     | $2.7 \leq V_{\text{DD}} \leq 5.5 \text{ V}$ | 0                     |      | 0.2V <sub>DD</sub> | V    |
|                              |                  | P21, P40 to P43 | $1.8 \leq V_{\text{DD}} < 2.7 \text{ V}$    | 0                     |      | 0.1V <sub>DD</sub> | V    |
|                              | VIL3             | X1, X2          |                                             | 0                     |      | 0.1                | V    |
| Output voltage, high         | V <sub>OH1</sub> | P00 to P07,     | Іон = -100 µА                               | V <sub>DD</sub> - 0.5 |      |                    | V    |
|                              | Vон2             | P20, P21        | Іон = –500 <i>µ</i> А                       | $V_{\text{DD}} - 0.7$ |      |                    | V    |
| Output voltage, low          | VOL1             | P00 to P07,     | Iol = 400 μA                                |                       |      | 0.5                | V    |
|                              | Vol2             | P20, P21        | IoL = 2 mA                                  |                       |      | 0.7                | V    |
| Input leakage current, high  | Ілні             | VI = VDD        | Pins other than X1, X2                      |                       |      | 3                  | μA   |
|                              | ILIH2            | ]               | X1, X2                                      |                       |      | 20                 | μA   |
| Input leakage current, low   | ILIL1            | Vi = 0 V        | Pins other than X1, X2                      |                       |      | -3                 | μA   |
|                              | ILIL2            | 1               | X1, X2                                      |                       |      | -20                | μA   |
| Output leakage current, high | Ігон             | Vo = Vdd        | •                                           |                       |      | 3                  | μA   |
| Output leakage current, low  | ILOL             | Vo = 0 V        |                                             |                       |      | -3                 | μA   |

**Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

## DC Characteristics ( $\mu$ PD78E9861A) (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 1.8 to 3.6 V)

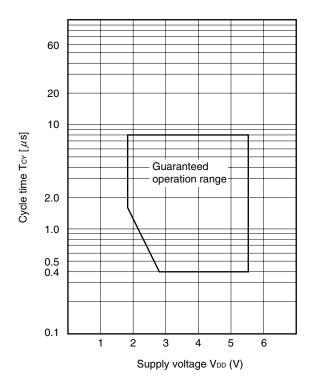
| Parameter                    | Symbol | Con             | Conditions                                  |                    | TYP. | MAX.   | Unit |
|------------------------------|--------|-----------------|---------------------------------------------|--------------------|------|--------|------|
| Output current, low          | lol    | Per pin         |                                             |                    |      | 2      | mA   |
|                              |        | All pins        |                                             |                    |      | 5.0    | mA   |
| Output current, high         | Іон    | Per pin         |                                             |                    |      | -0.5   | mA   |
|                              |        | All pins        |                                             |                    |      | -5.0   | mA   |
| Input voltage, high          | VIH1   | P00 to P07      | $2.7 \leq V_{\text{DD}} \leq 3.6 ~\text{V}$ | 0.7V <sub>DD</sub> |      | VDD    | V    |
|                              |        |                 | $1.8 \leq V_{\text{DD}} < 2.7 \text{ V}$    | 0.9V <sub>DD</sub> |      | VDD    | V    |
|                              | VIH2   | RESET, P20,     | $2.7 \leq V_{\text{DD}} \leq 3.6 ~\text{V}$ | 0.8VDD             |      | VDD    | V    |
|                              |        | P21, P40 to P43 | $1.8 \leq V_{\text{DD}} < 2.7 \text{ V}$    | 0.9V <sub>DD</sub> |      | VDD    | V    |
|                              | Vінз   | CL1, CL2        |                                             | Vdd - 0.1          |      | VDD    | V    |
| Input voltage, low           | VIL1   | P00 to P07      | $2.7 \leq V_{\text{DD}} \leq 3.6 \text{ V}$ | 0                  |      | 0.3VDD | V    |
|                              |        |                 | $1.8 \leq V_{\text{DD}} < 2.7 \text{ V}$    | 0                  |      | 0.1VDD | V    |
|                              | VIL2   | RESET, P20,     | $2.7 \leq V_{\text{DD}} \leq 3.6 \text{ V}$ | 0                  |      | 0.2VDD | V    |
|                              |        | P21, P40 to P43 | $1.8 \leq V_{\text{DD}} < 2.7 \text{ V}$    | 0                  |      | 0.1VDD | V    |
|                              | VIL3   | CL1, CL2        |                                             | 0                  |      | 0.1    | V    |
| Output voltage, high         | Vон1   | P00 to P07,     | Іон = -100 <i>µ</i> А                       | Vdd - 0.5          |      |        | V    |
|                              | Vон2   | P20, P21        | Іон = -500 <i>µ</i> А                       | Vdd - 0.7          |      |        | V    |
| Output voltage, low          | Vol1   | P00 to P07,     | Ιοι = 400 μΑ                                |                    |      | 0.5    | V    |
|                              | VOL2   | P20, P21        | IoL = 2 mA                                  |                    |      | 0.7    | V    |
| Input leakage current, high  | Ішні   | VI = VDD        | Pins other than<br>CL1, CL2                 |                    |      | 3      | μA   |
|                              | ILIH2  |                 | CL1, CL2                                    |                    |      | 20     | μA   |
| Input leakage current, low   | ILIL1  | V1 = 0 V        | Pins other than<br>CL1, CL2                 |                    |      | -3     | μA   |
|                              | ILIL2  | 1               | CL1, CL2                                    |                    |      | -20    | μA   |
| Output leakage current, high | Ігон   | Vo = Vdd        |                                             |                    |      | 3      | μA   |
| Output leakage current, low  | ILOL   | Vo = 0 V        |                                             |                    |      | -3     | μA   |

**Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

| Parameter                                                                           | Symbol | Conditions                                                                                      |                                                                                      | MIN. | TYP. | TYP. MAX. UI |    |  |  |
|-------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------|------|--------------|----|--|--|
| Power supply current <sup>Note</sup><br>Ceramic/crystal oscillation:<br>μPD78E9860A | Idd1   | 5.0 MHz<br>crystal oscillation operating<br>mode (EEPROM halted)<br>$C_1 = C_2 = 22 \text{ pF}$ | $V_{\text{DD}}=3.0~V\pm10\%$                                                         |      | 2.5  | 5.0          | mA |  |  |
|                                                                                     | Idd2   | 5.0 MHz<br>crystal oscillation operating<br>mode (EEPROM halted)<br>$C_1 = C_2 = 22 \text{ pF}$ | $V_{\text{DD}}=3.0~V\pm10\%$                                                         |      | 3.0  | 6.0          | mA |  |  |
| IDD3                                                                                | Idd3   | 4.19 MHz<br>crystal oscillation HALT mode<br>(EEPROM halted)<br>$C_1 = C_2 = 22 \text{ pF}$     | $V_{\text{DD}}=3.0~V\pm10\%$                                                         |      | 1.6  | 3.2          | mA |  |  |
|                                                                                     | IDD4   | STOP mode<br>(POC operating)                                                                    | $V_{\text{DD}} = 5.0 \text{ V}$ $T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}$ |      | 1.2  | 4.0          | μA |  |  |
|                                                                                     |        |                                                                                                 | $V_{DD} = 3.0 \text{ V} \pm 10\%$<br>T <sub>A</sub> = -40 to +85°C                   |      | 1.0  | 2.5          | μA |  |  |
|                                                                                     |        |                                                                                                 | $V_{DD} = 5.0 \text{ V}$ $T_{A} = -20 \text{ to } +75^{\circ}\text{C}$               |      |      | 3.0          | μΑ |  |  |
|                                                                                     |        |                                                                                                 | $V_{DD} = 3.0 \text{ V} \pm 10\%$<br>T <sub>A</sub> = -20 to +75°C                   |      | 1.0  | 2.0          | μΑ |  |  |
|                                                                                     | Idd5   | STOP mode<br>(POC operation halted)                                                             | $V_{\text{DD}} = 5.0 \text{ V}$ $T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}$ |      |      | 3.0          | μΑ |  |  |
|                                                                                     |        |                                                                                                 | $V_{DD} = 3.0 \text{ V} \pm 10\%$<br>T <sub>A</sub> = -40 to +85°C                   |      |      | 1.5          | μA |  |  |
|                                                                                     |        |                                                                                                 | $V_{DD} = 5.0 V$<br>$T_A = 25^{\circ}C$                                              |      |      | 0.9          | μΑ |  |  |
| Power supply current <sup>Note</sup><br>RC oscillation:<br>μPD78E9861A              | Idd1   | 1.0 MHz<br>RC oscillation operating mode<br>(EEPROM halted)<br>R = 24 k $\Omega$ , C = 30 pF    | $V_{\text{DD}}=3.0~V\pm10\%$                                                         |      | 0.8  | 1.6          | mA |  |  |
|                                                                                     | Idd2   | 1.0 MHz<br>RC oscillation operating mode<br>(EEPROM halted)<br>R = 24 k $\Omega$ , C = 30 pF    | $V_{\text{DD}}=3.0~V\pm10\%$                                                         |      | 1.0  | 2.0          | mA |  |  |
|                                                                                     | Idd3   | 1.0 MHz<br>RC oscillation HALT mode<br>(EEPROM halted)<br>R = 24 k $\Omega$ , C = 30 pF         | $V_{\text{DD}}=3.0~V\pm10\%$                                                         |      | 0.7  | 1.4          | mA |  |  |
|                                                                                     | IDD4   | STOP mode<br>(POC operating)                                                                    | $V_{DD} = 3.0 V \pm 10\%$<br>T <sub>A</sub> = -40 to +85°C                           |      | 1.0  | 2.5          | μΑ |  |  |
|                                                                                     |        |                                                                                                 | $V_{DD} = 3.0 \text{ V} \pm 10\%$<br>T <sub>A</sub> = -20 to +75°C                   |      | 1.0  | 2.0          | μA |  |  |
|                                                                                     | Idd5   | STOP mode<br>(POC operation halted)                                                             | $V_{\text{DD}}=3.0~V\pm10\%$                                                         |      |      | 1.5          | μΑ |  |  |

### DC Characteristics (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 1.8 to 5.5 V (µPD78E9860A), V<sub>DD</sub> = 1.8 to 3.6 V (µPD78E9861A))

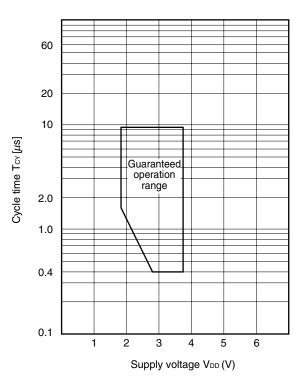
- **Note** Port current (including current flowing in on-chip pull-up resistors) is not included. This current will be further added to when writing to or reading from EEPROM (data memory). For the specific current values, refer to **EEPROM (Data Memory) Characteristics**.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.


## **AC Characteristics**

## (1) Basic operation

### (a) $\mu$ PD78E9860A (T<sub>A</sub> = -40 to +85 °C, V<sub>DD</sub> = 1.8 to 5.5 V)

| Parameter                                    | Symbol | Conditions                                  | MIN. | TYP. | MAX. | Unit |
|----------------------------------------------|--------|---------------------------------------------|------|------|------|------|
| Cycle time<br>(minimum instruction execution | Тсү    | $2.7 \leq V_{\text{DD}} \leq 5.5 \text{ V}$ | 0.4  |      | 8    | μs   |
| time)<br>Ceramic/crystal oscillation         |        | $1.8 \leq V_{\text{DD}} < 2.7 \text{ V}$    | 1.6  |      | 8    | μs   |
| TMI input<br>input frequency                 | fтı    | $2.7 \leq V_{\text{DD}} \leq 5.5 \text{ V}$ | 0    |      | 4.0  | MHz  |
|                                              |        | $1.8 \leq V_{\text{DD}} < 2.7 \text{ V}$    | 0    |      | 500  | kHz  |
| тмі                                          | tтıн,  | $2.7 \leq V_{\text{DD}} \leq 5.5 \text{ V}$ | 0.1  |      |      | μs   |
| high-/low-level width                        | t⊤ı∟   | $1.8 \leq V_{\text{DD}} < 2.7 \text{ V}$    | 1.0  |      |      | μs   |
| Key return input pin<br>low-level width      | tĸĸı∟  | KR10 to KR13                                | 10   |      |      | μs   |
| RESET<br>low-level width                     | tRs∟   |                                             | 10   |      |      | μs   |

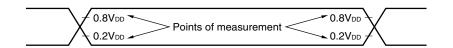

### TCY vs. VDD (System Clock: Ceramic/Crystal Oscillation)



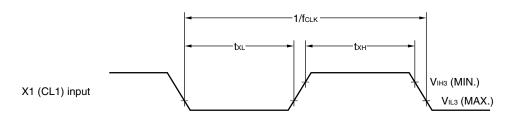
| Parameter                                    | Symbol | Conditions                                  | MIN. | TYP. | MAX. | Unit |
|----------------------------------------------|--------|---------------------------------------------|------|------|------|------|
| Cycle time<br>(minimum instruction execution | Тсү    | $2.7 \leq V_{\text{DD}} \leq 3.6 \text{ V}$ | 0.4  |      | 9.42 | μs   |
| time)<br>RC oscillation                      |        | $1.8 \leq V_{\text{DD}} < 2.7 \text{ V}$    | 1.6  |      | 9.42 | μs   |
| TMI input                                    | fтı    | $2.7 \leq V_{\text{DD}} \leq 3.6 \text{ V}$ | 0    |      | 4.0  | MHz  |
| input frequency                              |        | $1.8 \leq V_{\text{DD}} < 2.7 \text{ V}$    | 0    |      | 500  | kHz  |
| ТМІ                                          | tтıн,  | $2.7 \leq V_{\text{DD}} \leq 3.6 \text{ V}$ | 0.1  |      |      | μs   |
| high-/low-level width                        | t⊤ı∟   | $1.8 \leq V_{\text{DD}} < 2.7 \text{ V}$    | 1.0  |      |      | μs   |
| Key return input pin<br>low-level width      | tkril  | KR10 to KR13                                | 10   |      |      | μs   |
| RESET<br>low-level width                     | trs∟   |                                             | 10   |      |      | μs   |

(b)  $\mu$ PD78E9861A (T<sub>A</sub> = -40 to +85 °C, V<sub>DD</sub> = 1.8 to 3.6 V)



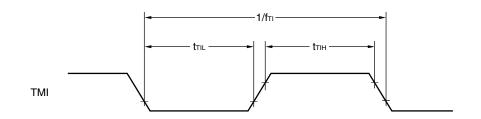



| (2) RC frequency oscillation characteristics ( $T_A = -40$ to $+85^{\circ}C$ , $V_{DD} = 1.8$ to | 3.6 V) |
|--------------------------------------------------------------------------------------------------|--------|
|--------------------------------------------------------------------------------------------------|--------|

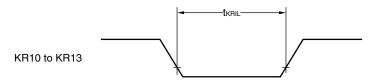

| Parameter                             | Symbol | Conditions           | MIN. | TYP. | MAX. | Unit |
|---------------------------------------|--------|----------------------|------|------|------|------|
| Oscillation frequency <sup>Note</sup> | fcc    | R = 24 kΩ, C = 30 pF | 0.85 | 1.00 | 1.15 | MHz  |

Note Variations due to external resistance and external capacitance are not included.

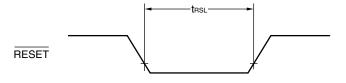
## AC Timing Measurement Points (Excluding X1 Input)




**Clock Timing** 




Remark fclk: fx or fcc


### **TMI** Timing



## **Key Return Input Timing**



## **RESET** Input Timing



#### **Power-on-Clear Circuit Characteristics**

### (1) POC

(a) DC characteristics (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 1.8 to 5.5 V ( $\mu$ PD78E9860A), V<sub>DD</sub> = 1.8 to 3.6 V ( $\mu$ PD78E9861A))

| Parameter         | Symbol | Conditions                             | MIN.   | TYP.   | MAX. | Unit |
|-------------------|--------|----------------------------------------|--------|--------|------|------|
| Detection voltage | VPOC   | Response time <sup>Note 1</sup> : 2 ms | Note 2 | Note 2 | 2.0  | V    |

- **Notes 1.** Time from detecting voltage until output reverses and time until stable operation after transition from halted state to operating state.
  - 2. Note that the POC detection voltage may be lower than the operating voltage range of these products.

#### (b) AC characteristics ( $T_A = -40$ to $+85^{\circ}C$ )

| Parameter       | Symbol | Conditions                                                                                           | MIN. | TYP. | MAX. | Unit |
|-----------------|--------|------------------------------------------------------------------------------------------------------|------|------|------|------|
| Power rise time | TPth1  | $V_{\text{DD}}:0\rightarrow 1.8~V$                                                                   | 0.01 |      | 100  | ms   |
|                 | TPth2  | $\begin{array}{l} V_{\text{DD}}: 0 \rightarrow 1.8 \; V \\ T_{\text{A}} = +25^{\circ} C \end{array}$ | 10   |      |      | μs   |

(2) LVI

(a) DC characteristics (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 1.8 to 5.5 V ( $\mu$ PD78E9860A), V<sub>DD</sub> = 1.8 to 3.6 V ( $\mu$ PD78E9861A))

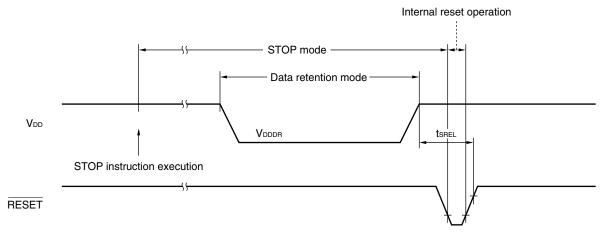
| Parameter              | Symbol | Conditions MIN.                        |        | TYP.   | MAX. | Unit |
|------------------------|--------|----------------------------------------|--------|--------|------|------|
| LVI7 detection voltage | VLVI7  | Response time <sup>Note 1</sup> : 2 ms | 2.4    | 2.6    | 2.8  | V    |
| LVI6 detection voltage | VLVI6  | Response time <sup>Note 1</sup> : 2 ms |        | Note 2 |      | V    |
| LVI5 detection voltage | VLVI5  | Response time <sup>Note 1</sup> : 2 ms | Note 2 |        |      | V    |
| LVI4 detection voltage | VLVI4  | Response time <sup>Note 1</sup> : 2 ms |        | Note 2 |      | V    |
| LVI3 detection voltage | VLVI3  | Response time <sup>Note 1</sup> : 2 ms |        | Note 2 |      | V    |
| LVI2 detection voltage | VLVI2  | Response time <sup>Note 1</sup> : 2 ms |        | Note 2 |      | V    |
| LVI1 detection voltage | VLVI1  | Response time <sup>Note 1</sup> : 2 ms |        | Note 2 |      | V    |
| LVI0 detection voltage | VLVIO  | Response time <sup>Note 1</sup> : 2 ms | Note 3 | 2.0    | 2.2  | V    |

**Notes 1.** Time from detecting voltage until output reverses and time until stable operation after transition from halted state to operating state

2. Relative relationship:  $V_{LV17} > V_{LV16} > V_{LV15} > V_{LV14} > V_{LV13} > V_{LV12} > V_{LV11} > V_{LV10}$ 

3. VPOC < VLVIO

# EEPROM (Data Memory) Characteristics (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 1.8 to 5.5 V ( $\mu$ PD78E9860A), V<sub>DD</sub> = 1.8 to 3.6 V ( $\mu$ PD78E9861A))


| Parameter                  | Symbol | Conditions   | MIN. | TYP. | MAX. | Unit            |
|----------------------------|--------|--------------|------|------|------|-----------------|
| Write time <sup>Note</sup> |        |              | 3.3  |      | 6.6  | ms              |
| Number of overwrites       |        | Per 32 bytes |      |      | 10   | 10,000<br>times |
|                            |        | Per 4 KB     |      |      | 100  | times           |

**Note** Write time =  $T \times 145$  (T = time of 1 clock cycle selected by EWCS100 to EWCS102)

#### Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (T<sub>A</sub> = -40 to +85°C)

| Parameter                   | Symbol | Conditions                | MIN. | TYP. | MAX. | Unit |
|-----------------------------|--------|---------------------------|------|------|------|------|
| Data retention power supply | VDDDR  | μPD78E9860A               | 1.8  |      | 5.5  | V    |
| voltage                     |        | μPD78E9861A               | 1.8  |      | 3.6  | V    |
| Release signal set time     | tsrel  | STOP release by RESET pin | 10   |      |      | μs   |

#### Data Retention Timing (STOP mode release by RESET)



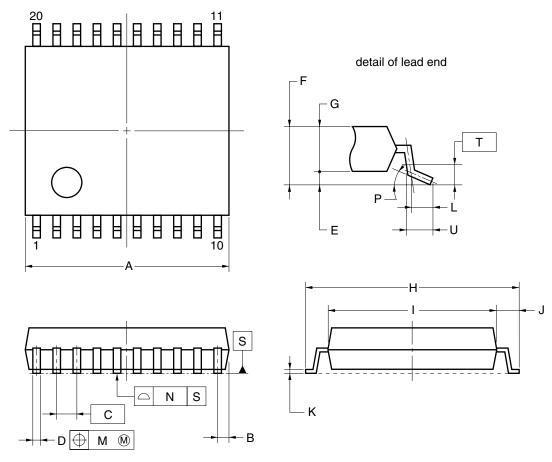
#### **Oscillation Stabilization Wait Time**

#### (a) Ceramic/crystal oscillator (T<sub>A</sub> = -40 to 85°C, V<sub>DD</sub> = 1.8 to 5.5 V) ( $\mu$ PD78E9860A)

| Parameter                               | Symbol | Conditions                                    | MIN. | TYP.                | MAX. | Unit |
|-----------------------------------------|--------|-----------------------------------------------|------|---------------------|------|------|
| Oscillation wait time <sup>Note 1</sup> |        | STOP release by RESET or reset release by POC |      | 2 <sup>15</sup> /fx |      | S    |
|                                         |        | Release by interrupt                          |      | Note 2              |      | S    |

**Notes 1.** Time required to stabilize oscillation after a reset or STOP mode release.

 2<sup>15</sup>/fx or 2<sup>17</sup>/fx can be selected using bits 0 to 2 of the oscillation stabilization time selection register (OSTS0 to OSTS2).


#### (b) RC oscillation (T<sub>A</sub> = -40 to $+85^{\circ}$ C, V<sub>DD</sub> = 1.8 to 3.6 V) ( $\mu$ PD78E9861A)

| Parameter                             | Symbol | Conditions                                    | MIN. | TYP.                | MAX. | Unit |
|---------------------------------------|--------|-----------------------------------------------|------|---------------------|------|------|
| Oscillation wait time <sup>Note</sup> |        | STOP release by RESET or reset release by POC |      | 2 <sup>7</sup> /fcc |      | S    |
|                                       |        | Release by interrupt                          |      | 2 <sup>7</sup> /fcc |      | s    |

**Note** Time required to stabilize oscillation after a reset or STOP mode release.

## **13. PACKAGE DRAWING**

## 20-PIN PLASTIC SSOP (7.62 mm (300))



#### NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

| ITEM | MILLIMETERS                   |
|------|-------------------------------|
| A    | 6.65±0.15                     |
| В    | 0.475 MAX.                    |
| С    | 0.65 (T.P.)                   |
| D    | $0.24\substack{+0.08\\-0.07}$ |
| Е    | 0.1±0.05                      |
| F    | 1.3±0.1                       |
| G    | 1.2                           |
| Н    | 8.1±0.2                       |
| I    | 6.1±0.2                       |
| J    | 1.0±0.2                       |
| К    | 0.17±0.03                     |
| L    | 0.5                           |
| М    | 0.13                          |
| Ν    | 0.10                          |
| Р    | 3° <sup>+5°</sup> 3°          |
| Т    | 0.25                          |
| U    | 0.6±0.15                      |
|      | S20MC-65-5A4-2                |

## 14. RECOMMENDED SOLDERING CONDITIONS

The  $\mu$ PD78E9860A and 78E9861A should be soldered and mounted under the following recommended conditions.

For details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales representative.

#### Table 14-1. Surface Mounting Type Soldering Conditions

## μPD78E9860AMC-5A4:20-pin plastic SSOP (7.62 mm (300)) μPD78E9861AMC-5A4:20-pin plastic SSOP (7.62 mm (300))

| Soldering Method | Soldering Conditions                                                                                                                                                                                                                | Recommended<br>Condition Symbol |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Infrared reflow  | Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less, Exposure limit: 3 days <sup>Note</sup> (after that, prebake at 125°C for 10 hours)                                           | IR35-103-2                      |
| VPS              | Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less, Exposure limit: 3 days <sup>Note</sup> (after that, prebake at 125°C for 10 hours)                                           | VP15-103-2                      |
| Wave soldering   | Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once,<br>Preheating temperature: 120°C max. (package surface temperature), Exposure<br>limit: 3 days <sup>Note</sup> (after that, prebake at 125°C for 10 hours) | WS60-103-1                      |
| Partial heating  | Pin temperature: 300°C max. Time: 3 seconds max. (per pin row)                                                                                                                                                                      |                                 |

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

#### Caution Do not use different soldering method together (except for partial heating).

#### APPENDIX A. DIFFERENCES BETWEEN EEPROM PRODUCTS AND MASK ROM PRODUCTS

The  $\mu$ PD78E9860A replaces the internal ROM of the  $\mu$ PD789860 with EEPROM. The  $\mu$ PD78E9861A replaces the internal ROM of the  $\mu$ PD789861 with EEPROM. The differences between the  $\mu$ PD78E9860A, 78E9861A and the mask ROM versions are shown in Table A-1.

|                                            |                   | Part Number                       | EEPROM                                          | 1 Versions          | Mask RO                                                                    | M Versions          |
|--------------------------------------------|-------------------|-----------------------------------|-------------------------------------------------|---------------------|----------------------------------------------------------------------------|---------------------|
| Item                                       |                   |                                   | μPD78E9860A                                     | μPD78E9861A         | μPD789860                                                                  | μPD789861           |
| Internal<br>memory                         | Program<br>memory | ROM<br>structure                  | EEPROM                                          |                     | Mask ROM                                                                   |                     |
|                                            |                   | ROM<br>capacity                   | 4 KB                                            |                     |                                                                            |                     |
|                                            | Data<br>memory    | High-speed<br>RAM                 | 128 bytes                                       |                     |                                                                            |                     |
|                                            |                   | EEPROM                            | 32 bytes                                        |                     |                                                                            |                     |
| System cl                                  | ock               |                                   | Ceramic/crystal oscillation                     | RC oscillation      | Ceramic/crystal oscillation                                                | RC oscillation      |
| IC pin                                     | C pin             |                                   | Not provided                                    |                     | Provided                                                                   |                     |
| VPP pin                                    |                   |                                   | Provided                                        |                     | Not provided                                                               |                     |
| P40 to P43 pull-up resistor by mask option |                   |                                   | Not provided                                    |                     | Provided                                                                   |                     |
| POC circu                                  | it selection by   | mask option                       | Not provided                                    |                     | Provided                                                                   |                     |
| STOP mo                                    |                   | wait time after<br>RESET or reset | 2 <sup>15</sup> /fx                             | 2 <sup>7</sup> /fcc | Can select 2 <sup>15</sup> /fx<br>or 2 <sup>17</sup> /fx by mask<br>option | 2 <sup>7</sup> /fcc |
| Electrical                                 | specifications    |                                   | Varies depending on EEPROM or mask ROM version. |                     |                                                                            |                     |

Caution There are differences in noise immunity and noise radiation between the EEPROM and mask ROM versions. When pre-producing an application set with the EEPROM version and then massproducing it with the mask ROM version, be sure to conduct sufficient evaluations for the commercial samples (not engineering samples) of the mask ROM version.

## APPENDIX B. DEVELOPMENT TOOLS

The following development tools are available for system development using the  $\mu$ PD78E9860A and  $\mu$ PD78E9861A.

## Software Package

| SP78K0S <sup>Notes 1, 2</sup> | OS for 78K/0S Series |
|-------------------------------|----------------------|
|-------------------------------|----------------------|

#### Language Processing Software

| RA78K0S <sup>Notes 1, 2, 3</sup>   | Assembler package common to 78K/0S Series        |
|------------------------------------|--------------------------------------------------|
| CC78K0S <sup>Notes 1, 2, 3</sup>   | C compiler package common to 78K/0S Series       |
| CC78K0S-L <sup>Notes 1, 2, 3</sup> | C compiler source file common to 78K/0S Series   |
| DF789861 <sup>Notes 1, 2, 3</sup>  | Device file for $\mu$ PD789860, 789861 Subseries |

#### **EEPROM (Program Memory) Writing Tools**

| Flashpro III (FL-PR3 <sup>Note 4</sup> , PG-FP3)<br>Flashpro IV (FL-PR4 <sup>Note 4</sup> , PG-FP4) | Flash programmer dedicated to microcontrollers with on-chip flash memory (EEPROM) |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| FA-20MC <sup>Note 4</sup>                                                                           | Flash memory (EEPROM) writing adapter for 20-pin plastic SSOP (MC-5A4 type)       |

#### **Debugging Tools**

| IE-78K0S-NS<br>In-circuit emulator     | In-circuit emulator used to debug hardware and software when developing an application system using the 78K/0S Series. It corresponds to the integrated debugger (ID78K0S-NS). It is used in combination with an AC adapter, emulation probe, and interface adapter for connecting to a host machine. |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IE-78K0S-NS-A In-circuit emulator      | In-circuit emulator with enhanced functions of the IE-78K0S-NS. The debug function is further enhanced by adding a coverage function and enhancing the tracer and timer functions.                                                                                                                    |
| IE-70000-MC-PS-B AC adapter            | Adapter for providing power from a 100 to 240 V AC                                                                                                                                                                                                                                                    |
| IE-70000-98-IF-C<br>Interface adapter  | Adapter required when using a PC-9800 series (except a notebook type) as the IE-<br>78K0S-NS host machine (C bus supported)                                                                                                                                                                           |
| IE-70000-CD-IF-A<br>PC card interface  | PC card and interface cable required when using a notebook type as the IE-78K0S-NS host machine (PCMCIA socket supported)                                                                                                                                                                             |
| IE-70000-PC-IF-C<br>Interface adapter  | Adapter required when using an IBM PC/AT <sup>™</sup> or compatibles as the IE-78K0S-NS host machine (ISA bus supported)                                                                                                                                                                              |
| IE-70000-PCI-IF-A<br>Interface adapter | Adapter that is needed when using a personal computer in which a PCI bus is implemented as the IE-78K0S-NS host machine                                                                                                                                                                               |
| IE-789860-NS-EM1<br>Emulation board    | Board for emulating the peripheral hardware of a device. It is used in combination with the in-circuit emulator.                                                                                                                                                                                      |
| NP-20MC<br>Emulation probe             | Probe to connect a target system to the in-circuit emulator. It is for a 20-pin plastic SSOP (MC-5A4 type).                                                                                                                                                                                           |
| SM78K0S <sup>Notes 1, 2</sup>          | System emulator common to 78K/0S Series                                                                                                                                                                                                                                                               |
| ID78K0S-NS <sup>Notes 1, 2</sup>       | Integrated debugger common to 78K/0S Series                                                                                                                                                                                                                                                           |
| DF789861 <sup>Notes 1, 2</sup>         | Device file for $\mu$ PD789860, 789861 Subseries                                                                                                                                                                                                                                                      |
|                                        |                                                                                                                                                                                                                                                                                                       |

## Notes 1. PC-9800 Series (Japanese Windows<sup>™</sup>) based

- 2. IBM PC/AT compatibles (Japanese/English Windows) based
- 3. HP9000 series 700<sup>™</sup> (HP-UX<sup>™</sup>) based, SPARCstation<sup>™</sup> (SunOS<sup>™</sup>, Solaris<sup>™</sup>) based
- 4. Products of Naito Densei Machida Mfg. Co., Ltd. (+81-45-475-4191).

Remark The RA78K0S, CC78K0S, ID78K0S-NS, and SM78K0S are used in combination with the DF789861.

## APPENDIX C. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

#### **Documents Related to Devices**

| Document Name                             | Document No.  |
|-------------------------------------------|---------------|
| μPD78E9860A, 78E9861A Data Sheet          | This document |
| μPD789860, 789861 Data Sheet              | U13917E       |
| μPD789860, 789861 Subseries User's Manual | U14826E       |
| 78K/0S Series Instructions User's Manual  | U11047E       |

#### Documents Related to Development Software Tools (User's Manuals)

| Document Name                                       |                                                 | Document No. |
|-----------------------------------------------------|-------------------------------------------------|--------------|
| RA78K0S Assembler Package                           | Operation                                       | U14876E      |
|                                                     | Language                                        | U14877E      |
|                                                     | Structured Assembly Language                    | U11623E      |
| CC78K0S C Compiler                                  | Operation                                       | U14871E      |
|                                                     | Language                                        | U14872E      |
| SM78K Series System Simulator Ver. 2.30 or Later    | Operation (Windows Based)                       | U15373E      |
|                                                     | External Part User Open Interface Specification | U15802E      |
| ID78K Series Integrated Debugger Ver. 2.30 or Later | Operation (Windows Based)                       | U15185E      |
| Project Manager Ver. 3.12 or Later (Windows Based)  |                                                 | U14610E      |

## Documents Related to Development Hardware Tools (User's Manuals)

| Document Name                     | Document No.   |
|-----------------------------------|----------------|
| IE-78K0S-NS In-Circuit Emulator   | U13549E        |
| IE-78K0S-NS-A In-Circuit Emulator | U15207E        |
| IE-789860-NS-EM1 Emulation Board  | To be prepared |

#### Documents Related to EEPROM (Program Memory) Writing

| Document Name                                | Document No. |
|----------------------------------------------|--------------|
| PG-FP3 Flash Memory Programmer User's Manual | U13502E      |
| PG-FP4 Flash Memory Programmer User's Manual | U15260E      |

## **Other Related Documents**

| Document Name                                                                      | Document No. |
|------------------------------------------------------------------------------------|--------------|
| SEMICONDUCTOR SELECTION GUIDE - Products and Packages -                            | X13769X      |
| Semiconductor Device Mounting Technology Manual                                    | C10535E      |
| Quality Grades on NEC Semiconductor Devices                                        | C11531E      |
| NEC Semiconductor Device Reliability/Quality Control System                        | C10983E      |
| Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD) | C11892E      |

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

## NOTES FOR CMOS DEVICES -

## **①** PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

### Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

## ② HANDLING OF UNUSED INPUT PINS FOR CMOS

#### Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

## **③** STATUS BEFORE INITIALIZATION OF MOS DEVICES

#### Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

EEPROM and FIP are trademarks of NEC Electronics Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 Series 700 and HP-UX are trademarks of Hewlett Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

# **Regional Information**

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

#### NEC Electronics America, Inc. (U.S.) • Filiale Italiana

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

## NEC Electronics (Europe) GmbH Duesseldorf, Germany

Tel: 0211-65 03 01 Fax: 0211-65 03 327

- Sucursal en España Madrid, Spain Tel: 091-504 27 87 Fax: 091-504 28 60
- Succursale Française Vélizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

Filiale Italiana Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

- Branch The Netherlands Eindhoven, The Netherlands Tel: 040-244 58 45 Fax: 040-244 45 80
- Tyskland Filial Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388
- United Kingdom Branch Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Shanghai, Ltd. Shanghai, P.R. China Tel: 021-6841-1138 Fax: 021-6841-1137

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC Electronics Singapore Pte. Ltd. Novena Square, Singapore Tel: 6253-8311 Fax: 6250-3583

- The information in this document is current as of December, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).