

MOS INTEGRATED CIRCUITS

 μ PD789121A(A1),122A(A1),124A(A1),131A(A1),132A(A1),134A(A1), 121A(A2),122A(A2),124A(A2),131A(A2),132A(A2),134A(A2)

8-BIT SINGLE-CHIP MICROCONTROLLERS

The μ PD789121A(A1), 789122A(A1), 789124A(A1), PD789121A(A2), 789122A(A2), and 789124A(A2) (μ PD78912xA(A1), 78912xA(A2) hereafter) are μ PD789124A Subseries products of the 78K/0S Series.

The μ PD789131A(A1), 789132A(A1), 789134A(A1), PD789131A(A2), 789132A(A2), and 789134A(A2) (μ PD78913xA(A1), 78913xA(A2) hereafter) are μ PD789134A Subseries products of the 78K/0S Series.

Besides an 8-bit CPU, these microcontrollers incorporate a variety of hardware such as I/O ports, timers, a serial interface, A/D converters, and interrupt control.

A stricter quality assurance program (called special grade in NEC's grade classification) is applied to the (A1) and (A2) products compared to the μ PD78912xA and 78913xA, which are classified as standard grade.

In addition, a flash memory version (μ PD78F9136A) that can operate within the same power supply voltage range as the mask ROM version, and a range of development tools are also being prepared.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

μPD789104A, 789114A, 789124A, 789134A Subseries User's Manual: U14643E 78K/0S Series User's Manual Instruction: U11047E

FEATURES

• On-chip multiplier: 8 bits × 8 bits = 16 bits

ROM and RAM sizes

ltem Part Number	Program Memory (ROM)	Data Memory (Internal High-Speed RAM)	Package
μPD789121A(A1), 789131A(A1), 789121A(A2), 789131A(A2)	2 Kbytes	256 bytes	30-pin plastic
μPD789122A(A1), 789132A(A1), 789122A(A2), 789132A(A2)	4 Kbytes		SSOP (7.62 mm (300))
μPD789124A(A1), 789134A(A1), 789124A(A2), 789134A(A2)	8 Kbytes		(7.02 11111 (300))

- · Built-in RC oscillator
- Minimum instruction execution time can be changed from high-speed (0.5 μ s) to low-speed (2.0 μ s) (@ 4.0-MHz operation with system clock)
- I/O ports: 20
- Serial interface: 1 channel: Switchable between 3-wire serial I/O and UART modes
- 8-bit resolution A/D converter: 4 channels (μPD78912xA(A1), 78912xA(A2))
- 10-bit resolution A/D converter: 4 channels (μPD78913xA(A1), 78913xA(A2))
- Timers: 3 channels
 - 16-bit timer: 1 channel
 - 8-bit timer/event counter: 1 channel
 - · Watchdog timer: 1 channel
- Power supply voltage: VDD = 4.5 to 5.5 V

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

APPLICATIONS

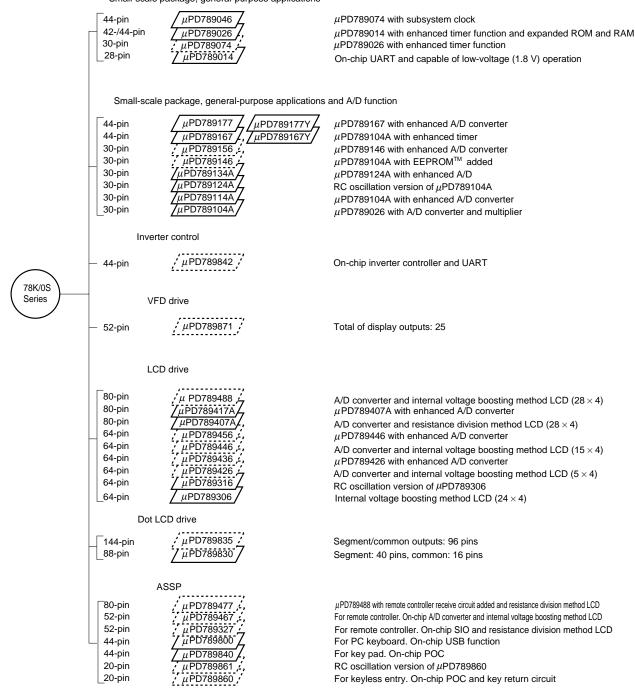
Cleaners, washing machines, and refrigerators

ORDERING INFORMATION

Part Number	Package	Quality grade
μPD789121AMC(A1)-×××-5A4	30-pin plastic SSOP (7.62 mm (300))	Special
μPD789122AMC(A1)-xxx-5A4	30-pin plastic SSOP (7.62 mm (300))	Special
μPD789124AMC(A1)-×××-5A4	30-pin plastic SSOP (7.62 mm (300))	Special
μ PD789131AMC(A1)-xxx-5A4	30-pin plastic SSOP (7.62 mm (300))	Special
μ PD789132AMC(A1)-xxx-5A4	30-pin plastic SSOP (7.62 mm (300))	Special
μPD789134AMC(A1)-×××-5A4	30-pin plastic SSOP (7.62 mm (300))	Special
μ PD789121AMC(A2)-xxx-5A4	30-pin plastic SSOP (7.62 mm (300))	Special
μ PD789122AMC(A2)- \times \times -5A4	30-pin plastic SSOP (7.62 mm (300))	Special
μ PD789124AMC(A2)- \times \times -5A4	30-pin plastic SSOP (7.62 mm (300))	Special
μPD789131AMC(A2)-×××-5A4	30-pin plastic SSOP (7.62 mm (300))	Special
μ PD789132AMC(A2)- \times \times -5A4	30-pin plastic SSOP (7.62 mm (300))	Special
μPD789134AMC(A2)-×××-5A4	30-pin plastic SSOP (7.62 mm (300))	Special

Remark ××× indicates ROM code suffix.

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.



78K/0S SERIES LINEUP

The products in the 78K/0S Series are listed below. The names enclosed in boxes are subseries names.

Small-scale package, general-purpose applications

The major functional differences among the subseries are listed below.

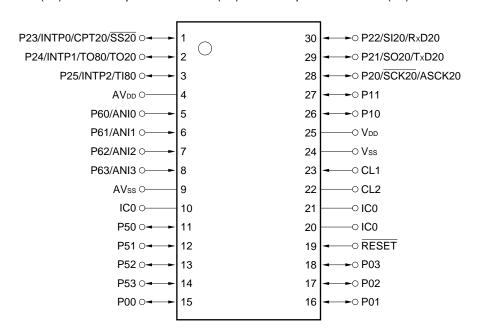
		nai differences	among	1110 30	DOCTIO	are no		J VV .	ı	Ī	1	1
	Function										V _{DD}	
\	_	ROM	8-Bit	16-Bit	Watch	WDT	8-Bit	10-Bit	Serial Interface	I/O		Remark
Subseries	s Name	Capacity					A/D	A/D			MIN	
											Value	
Small scale,	μPD789046	16 K	1 ch	1 ch	1 ch	1 ch	_	_	1 ch (UART: 1 ch)	34	1.8 V	_
general-	μPD789026	4 K to 16 K			-							
purpose	μPD789074	2 K to 8 K								24		
applica- tions	μPD789014	2 K to 4 K	2 ch	-						22		
Small-	μPD789177	16 K to 24 K	3 ch	1 ch	1 ch		_	8 ch	1 ch (UART: 1 ch)	31		-
scale, general-	μPD789167						8 ch	_				
purpose	μPD789156	8 K to 16 K	1 ch		_		-	4 ch		20		On-chip
applica- tions +	μPD789146						4 ch	_				EEPROM
A/D	μPD789134A	2 K to 8 K						4 ch				RC oscillation
function	μPD789124A						4 ch	_				version
	μPD789114A						_	4 ch				_
	μPD789104A						4 ch	_				
Inverter	μPD789842	8 K to 16 K	3 ch	Note	1 ch	1 ch	8 ch	_	1 ch (UART: 1 ch)	30	4.0 V	_
control	•								, , ,			
VFD drive	μPD789871	4 K to 8 K	3 ch	-	1 ch	1 ch	_	-	1 ch	33	2.7 V	_
LCD drive	μPD789488	32 K	3 ch	1 ch	1 ch	1 ch	_	8 ch	2 ch (UART: 1 ch)	45	1.8 V	_
	μPD789417A	12 K to 24 K						7 ch	1 ch (UART: 1 ch)	43		
	μPD789407A						7 ch	-				
	μPD789456	12 K to 16 K	2 ch				_	6 ch		30		
	μPD789446						6 ch	_				
	μPD789436						_	6 ch		40		
	μPD789426						6 ch	-				
	μPD789316	8 K to 16 K					-		2 ch (UART: 1 ch)	23		RC oscillation version
	μPD789306											-
Dot LCD	μPD789835	24 K to 60 K	6 ch	_	1 ch	1 ch	3 ch	_	1 ch (UART: 1 ch)	28	1.8 V	-
drive	μPD789830	24 K	1 ch	1 ch			_			30	2.7 V	
ASSP	μPD789477	24 K	3 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch (UART: 1 ch)	45	1.8 V	On-chip
	μPD789467	4 K to 24 K	2 ch	_			1 ch		_	18		LCD
	μPD789327						_		1 ch	21		
	μPD789800	8 K			_				2 ch (USB: 1 ch)	31	4.0 V	-
	μPD789840						4 ch		1 ch	29	2.8 V	
	μPD789861	4 K					-		-	14	1.8 V	RC oscillation version, on- chip EEPROM
	μPD789860											On-chip EEPROM

Note 10-bit timer: 1 channel

OVERVIEW OF FUNCTIONS

Item		μPD789121A(A1) μPD789131A(A1) μPD789121A(A2) μPD789131A(A2)	μPD789122A(A1) μPD789132A(A1) μPD789122A(A2) μPD789132A(A2)	μPD789124A(A1) μPD789134A(A1) μPD789124A(A2) μPD789134A(A2)				
Internal memory	ROM	2 Kbytes	4 Kbytes	8 Kbytes				
	High-speed RAM	256 bytes	256 bytes					
Oscillator		RC Oscillator						
Minimum instruction	execution time	0.5/2.0 μs (@ 4.0-MHz ope	eration with system clock)					
General-purpose reg	isters	8 bits × 8 registers						
Instruction set		16-bit operationsBit manipulations (set, r	reset, and test)					
Multiplier		8 bits \times 8 bits = 16 bits						
I/O ports		Total: 20 • CMOS input: 4 • CMOS I/O: 12 • N-ch open-drain (12-V withstand voltage): 4						
A/D converters		 8-bit resolution × 4 channels (μPD78912xA(A1), 78912xA(A2)) 10-bit resolution × 4 channels (μPD78913xA(A1), 78913xA(A2)) 						
Serial interface		Switchable between 3-wire serial I/O and UART modes						
Timer		16-bit timer: 1 channel 8-bit timer/event counter: 1 channel Watchdog timer: 1 channel						
Timer output		1 output (16-bit/8-bit timer alternate function)						
Vectored interrupt	Maskable	Maskable Internal: 6, External: 3						
sources Non-maskable Internal: 1								
Power supply voltage		V _{DD} = 4.5 to 5.5 V						
Operating ambient to	emperature	 T_A = -40 to +110°C (μPD78912xA(A1), 78913xA(A1)) T_A = -40 to +125°C (μPD78912xA(A2), 78913xA(A2)) 						
Package		30-pin plastic SSOP (7.62 mm (300))						

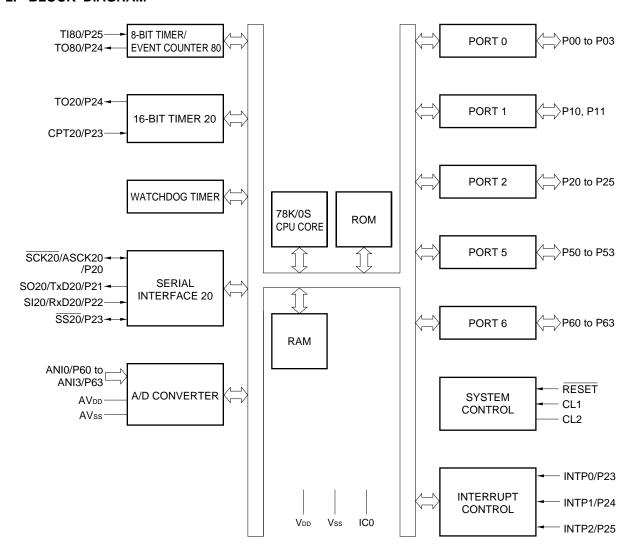
CONTENTS


1.	PIN CONFIGURATION (TOP VIEW)	7
2.	BLOCK DIAGRAM	8
3.	PIN FUNCTIONS	9 9 10 11
4.	MEMORY SPACE	13
5.	PERIPHERAL HARDWARE FUNCTIONS 5.1 Ports 5.2 Clock Generator 5.3 Timer 5.4 A/D Converter 5.5 Serial Interface 20 5.6 Multiplier	14 14 15 17 18
6.	INTERRUPT FUNCTION	20
7.	STANDBY FUNCTION	22
8.	RESET FUNCTION	22
9.	MASK OPTION	22
10.	INSTRUCTION SET OVERVIEW	23
11.	ELECTRICAL SPECIFICATIONS	30
12.	EXAMPLE OF RC OSCILLATOR FREQUENCY CHARACTERISTICS (REFERENCE VALUES)	41
13.	PACKAGE DRAWING	43
14.	RECOMMENDED SOLDERING CONDITIONS	44
ΑP	PENDIX A DEVELOPMENT TOOLS	45
ΔΡ	PENDIX B RELATED DOCUMENTS	47

1. PIN CONFIGURATION (TOP VIEW)

• 30-pin plastic SSOP (7.62 mm (300))

μPD789121AMC(A1)-xxx-5A4 μPD789122AMC(A1)-xxx-5A4 μPD789131AMC(A1)-xxx-5A4 μPD789131AMC(A1)-xxx-5A4 μPD789131AMC(A2)-xxx-5A4 μPD789122AMC(A2)-xxx-5A4 μPD789124AMC(A2)-xxx-5A4 μPD789131AMC(A2)-xxx-5A4 μPD789131AMC(A2)-xxx-5A4 μPD789131AMC(A2)-xxx-5A4 μPD789131AMC(A2)-xxx-5A4 μPD789134AMC(A2)-xxx-5A4



Cautions 1. Connect the IC0 (Internally Connected) pin directly to Vss.

- 2. Connect the AVDD pin to VDD.
- 3. Connect the AVss pin to Vss.

ANI0 to ANI3:	Analog Input	RESET:	Reset
ASCK20:	Asynchronous Serial Input	RxD20:	Receive Data
AV _{DD} :	Analog Power Supply	SCK20:	Serial Clock Input/Output
AVss:	Analog Ground	SI20:	Serial Data Input
CL1, CL2:	RC Oscillator	SO20:	Serial Data Output
CPT20:	Capture Trigger Input	SO20:	Serial Data Output
IC0:	Internally Connected	SS20:	Chip Select Input
INTP0 to INTP2:	Interrupt from Peripherals	TI80:	Timer Input
P00 to P03:	Port0	TO20, TO80:	Timer Output
P10, P11:	Port1	TxD20:	Transmit Data
P20 to P25:	Port2	V _{DD} :	Power Supply
P50 to P53:	Port5	Vss:	Ground
P60 to P63:	Port6		

2. BLOCK DIAGRAM

Remark The internal ROM capacity varies depending on the product.

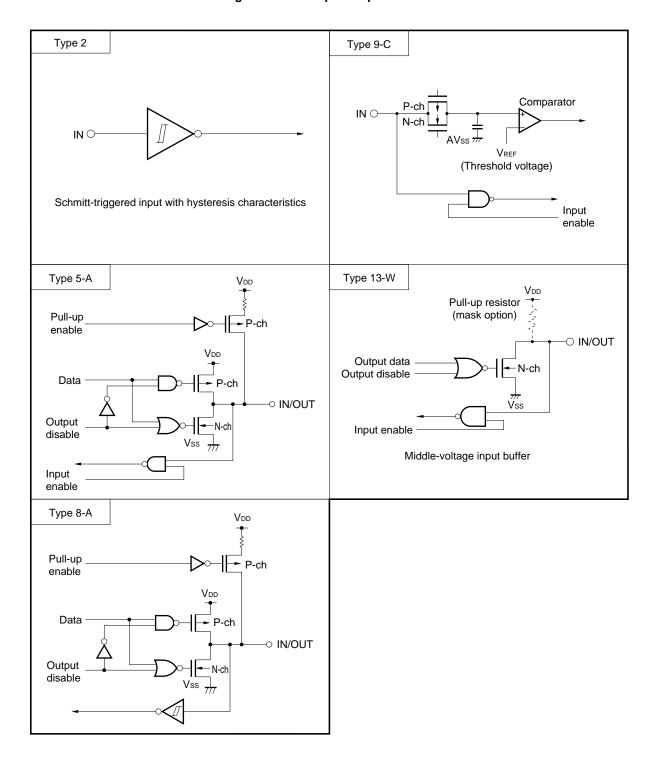
3. PIN FUNCTIONS

3.1 Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
P00 to P03	I/O	Port 0 4-bit input/output port Input/output can be specified in 1-bit units When used as an input port, an on-chip pull-up resistor can be specified by means of software.	Input	-
P10, P11	I/O	Port 1 2-bit input/output port Input/output can be specified in 1-bit units When used as an input port, an on-chip pull-up resistor can be specified by means of software.	Input	-
P20	I/O	Port 2	Input	SCK20/ASCK20
P21		6-bit input/output port		SO20/TxD20
P22		Input/output can be specified in 1-bit units		SI20/RxD20
P23		When used as an input port, an on-chip pull-up resistor can be specified by means of software.		INTP0/CPT20 /SS20
P24				INTP1/TO80/TO20
P25				INTP2/TI80
P50 to P53	I/O	Port 5 4-bit N-ch open-drain input/output port Input/output can be specified in 1-bit units An on-chip pull-up resistor can be specified by the mask option.	Input	-
P60 to P63	Input	Port 6 4-bit input-only port	Input	ANI0 to ANI3

3.2 Non-Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	External interrupt request input for which the valid edge	Input	P23/CPT20/SS20
INTP1		(rising edge, falling edge, or both rising and falling edges) can		P24/TO80/TO20
INTP2		be specified		P25/TI80
SI20	Input	Serial interface serial data input	Input	P22/RxD20
SO20	Output	Serial interface serial data output	Input	P21/TxD20
SCK20	I/O	Serial interface serial clock input/output	Input	P20/ASCK20
ASCK20	Input	Serial clock input for asynchronous serial interface	Input	P20/SCK20
SS20	Input	Chip select input for serial interface	Input	P23/CPT20/INTP0
RxD20	Input	Serial data input for asynchronous serial interface	Input	P22/SI20
TxD20	Output	Serial data output for asynchronous serial interface	Input	P21/SO20
TI80	Input	External count clock input to 8-bit timer/event counter 80	Input	P25/INTP2
TO80	Output	8-bit timer/event counter 80 output	Input	P24/INTP1/TO20
TO20	Output	16-bit timer 20 output	Input	P24/INTP1/TO80
CPT20	Input	Capture edge input	Input	P23/INTP0/SS20
ANI0 to ANI3	Input	A/D converter analog input	Input	P60 to P63
AVDD	-	A/D converter analog power supply	-	_
AVss	-	A/D converter ground potential	-	_
CL1	Input	Connected to resistor (R) or capacitor (C)	-	_
CL2	-		-	_
RESET	Input	System reset input	Input	-
Vdd	-	Positive power supply	_	-
Vss	-	Ground potential	-	-
IC0	-	Internally connected. Connect directly to Vss.	-	-


3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the input/output circuit configuration of each type, refer to Figure 3-1.

Table 3-1. Types of Pin Input/Output Circuits

Pin Name	Input/Output Circuit Type	I/O	Recommended Connection of Unused Pins
P00 to P03	5-A	I/O	Input: Independently connect to VDD or Vss via a resistor.
P10, P11			Output: Leave open
P20/SCK20/ASCK20	8-A		
P21/SO20/TxD20			
P22/SI20/RxD20			
P23/INTP0/CPT20/SS20			Input: Independently connect to Vss via a resistor.
P24/INTP1/TO80/TO20			Output: Leave open
P25/INTP2/TI80			
P50 to P53	13-W		Input: Independently connect to VDD via a resistor. Output: Leave open
P60/ANI0 to P63/ANI3	9-C	Input	Connect directly to V _{DD} or V _{SS} .
AV _{DD}	_	-	Connect to VDD.
AVss			Connect to Vss.
RESET	2	Input	-
IC0	-	_	Connect directly to Vss.

Figure 3-1. Pin Input/Output Circuits

4. MEMORY SPACE

Figure 4-1 shows the memory map of the μ PD78912xA(A1), 78913xA(A1), 78912xA(A2), and 78913xA(A2).

FFFFH Special function registers 256×8 bits FF00H **FEFFH** Internal high-speed RAM 256×8 bits FE00H FDFFH Reserved Data memory space n n n n H<u>n n n n H + 1</u> n n n n HProgram area 0080H Program memory Internal ROM^{Note} 007FH space CALLT table area 0040H 003FH Program area 0016H 0015H Vector table area 0000H $0\ 0\ 0\ 0\ H$

Figure 4-1. Memory Map

Note The internal ROM capacity depends on the product. (See the following table).

Part Number	Last Address of Internal ROM nnnnH
μPD789121A(A1), 789131A(A1), 789121A(A2), 789131A(A2)	07FFH
μPD789122A(A1), 789132A(A1), 789122A(A2), 789132A(A2)	0FFFH
μPD789124A(A1), 789134A(A1), 789124A(A2), 789134A(A2)	1FFFH

5. PERIPHERAL HARDWARE FUNCTIONS

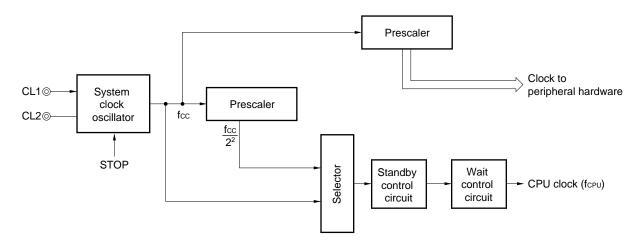
5.1 Ports

The following three types of I/O ports are available:

CMOS Input (port 6):	4	
• CMOS input/output (ports 0 to 2):	12	
• N-ch open-drain input/output (port 5):	4	
Total:	20	

Table 5-1. Port Functions

Port Name	Pin Name	Function
Port 0	P00 to P03	Input/output port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by means of software.
Port 1	P10, P11	Input/output port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by means of software.
Port 2	P20 to P25	Input/output port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by means of software.
Port 5	P50 to P53	N-channel open-drain input/output port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by the mask option.
Port 6	P60 to P63	Input-only port


5.2 Clock Generator

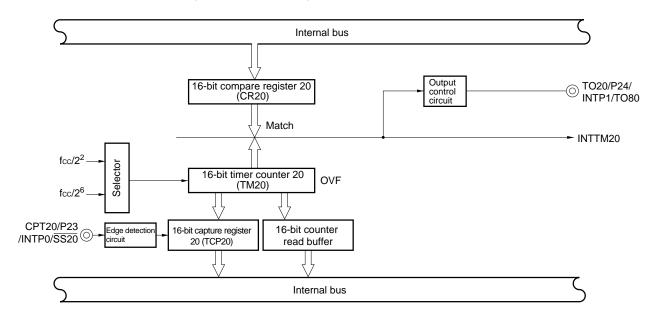
An on-chip system clock generator is provided.

The minimum instruction execution time can be changed.

• 0.5 μ s/2.0 μ s (@ 4.0-MHz operation with system clock)

Figure 5-1. Clock Generator Block Diagram

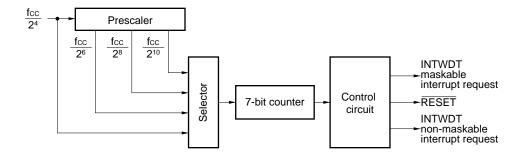
5.3 Timer


Three on-chip timers are provided.

16-bit timer 20: 1 channel
8-bit timer/event counter 80: 1 channel
Watchdog timer: 1 channel

Table 5-2. Timer Operation

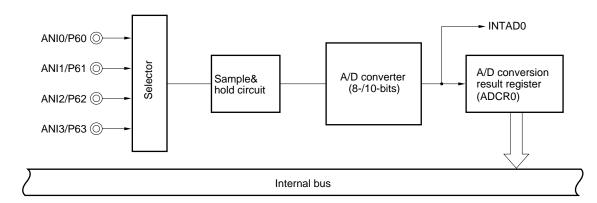
		16-Bit Timer 20	8-Bit Timer/Event Counter 80	Watchdog Timer
Operation mode	Interval timer	-	1 channel	1 channel
	External event counter	I	1 channel	-
Function	Timer output	1 output	1 output	-
	PWM output	_	1 output	-
	Square wave output	_	1 output	-
	Capture	1 input	-	-
	Interrupt request	1	1	1


Figure 5-2. Block Diagram of 16-Bit Timer 20 (TM20)

Internal bus 8-bit compare register 80 (CR80) Match ► INTTM80 fcc Selector 8-bit timer counter 80 OVF TO80/P24/ Output $fcc/2^3$ (TM80) control circuit INTP1/TO20 TI80/P25/ ① Clear INTP2 Internal bus

Figure 5-3. Block Diagram of 8-Bit Timer/Event Counter 80 (TM80)

Figure 5-4. Watchdog Timer Block Diagram

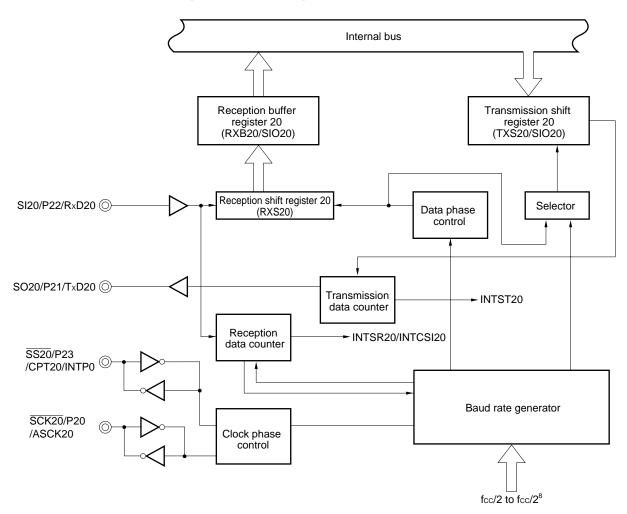

5.4 A/D Converter

The conversion resolution of the A/D converter differs depending on the product as shown below.

8-bit A/D converter × 4 channels
μPD789121A(A1), 789122A(A1), 789124A(A1), 789121A(A2), 789122A(A2), 789124A(A2)
 10-bit A/D converter × 4 channels
μPD789131A(A1), 789132A(A1), 789134A(A1), 789131A(A2), 789132A(A2), 789134A(A2)

A/D conversion can be only started by software.

Figure 5-5. A/D Converter Block Diagram


5.5 Serial Interface 20

A one-channel serial interface is incorporated.

Serial interface 20 has following three modes:

- Operation stop mode: Power consumption can be reduced.
- · Asynchronous serial interface (UART) mode: A dedicated baud rate generator is incorporated.
- 3-wire serial I/O mode:
 A function to select the clock phase or data phase is incorporated.

Figure 5-6. Block Diagram of Serial Interface 20

5.6 Multiplier

The calculation of 8 bits \times 8 bits = 16 bits can be performed.

Internal bus Multiplication data register A0 (MRA0) Multiplication data register B0 (MRB0) Multiplier 16-bit multiplication result storing register (MUL0) Internal bus

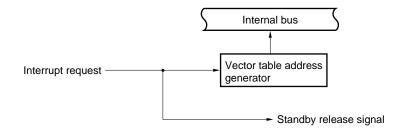
Figure 5-7. Multiplier Block Diagram

6. INTERRUPT FUNCTION

A total of 10 interrupt sources are provided, divided into the following two types.

 Non-maskable interrupts: 1 source • Maskable interrupts: 9 sources

Table 6-1. Interrupt Source List


			Interrupt Source		Vector	Basic
Interrupt Type	Priority ^{Note 1}	Name	Trigger	Internal/External	Table Address	Configuration Type ^{Note 2}
Non-maskable	-	INTWDT	Watchdog timer overflow (with watchdog timer mode 1 selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Watchdog timer overflow (with the interval timer mode selected)			(B)
	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1			H8000	
	3	INTP2			000AH	
	4	INTSR20	End of serial interface 20 UART reception	Internal	000CH	(B)
		INTCSI20	End of serial interface 20 3-wire SIO transfer reception			
	5	INTST20	End of serial interface 20 UART transmission		000EH	
	6	INTTM80	Generation of matching signal of 8-bit timer/event counter 80		0010H	
	7	INTTM20	Generation of matching signal of 16-bit timer 20		0012H	
	8	INTAD0	A/D conversion completion signal		0014H	

- Notes 1. Priority is the priority order when several maskable interrupt requests are generated at the same time. 0 is the highest order and 8 is the lowest order.
 - 2. Basic configuration types (A), (B), and (C) correspond to (A), (B), and (C) in Figure 6-1.

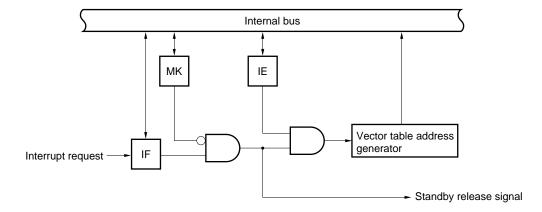
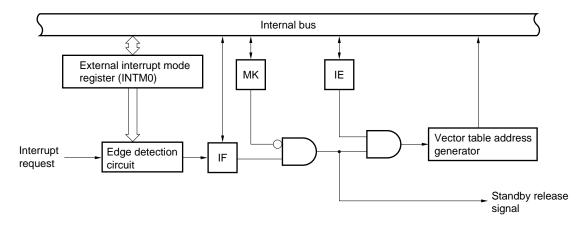

Remark As the interrupt source of the watchdog timer (INTWDT), either a non-maskable interrupt or a maskable interrupt (internal) can be selected.

Figure 6-1. Basic Configuration of Interrupt Function


(A) Internal non-maskable interrupt

(B) Internal maskable interrupt

(C) External maskable interrupt

IF: Interrupt request flag Interrupt enable flag IE: MK: Interrupt mask flag

7. STANDBY FUNCTION

The following two standby functions are available for further reduction of system current consumption.

• HALT mode: In this mode, the CPU operation clock is stopped. The average current consumption can be reduced by intermittent operation by combining this mode with the normal operation mode.

• STOP mode: In this mode, oscillation of the system clock is stopped. All the operations performed on the system clock are suspended, resulting in extremely small power consumption.

System clock operation

Interrupt request

STOP mode

System clock oscillation stopped

System clock oscillation stopped

System clock oscillation stopped

System clock oscillation maintained

Figure 7-1. Standby Function

8. RESET FUNCTION

The following two reset methods are available.

- External reset by RESET signal input
- Internal reset by watchdog timer runaway time detection

9. MASK OPTION

The μ PD78912×A(A1), 78913×A(A1), 78912×A(A2), and 78913×A(A2) have the following mask options.

Mask options for P50 to P53

An on-chip pull-up resistor can be selected in bit units.

- <1> Specifies on-chip pull-up resistor.
- <2> Does not specify on-chip pull-up resistor.

10. INSTRUCTION SET OVERVIEW

The instruction set for the μ PD78912×A(A1), 78913×A(A1), 78912×A(A2), and 78913×A(A2) is listed later.

10.1 Conventions

10.1.1 Operand identifiers and description methods

Operands are described in the "Operand" column of each instruction in accordance with the description method of the instruction operand identifier (refer to the assembler specifications for detail). When there are two or more description methods, select one of them. Alphabetic letters in capitals and the symbols, #, !, \$, and [], are keywords and must be described as they are. Each symbol has the following meaning.

- #: Immediate data specification
- Relative address specification
- !: Absolute address specification
- []: Indirect address specification

In the case of immediate data, describe an appropriate numeric value or a label. When using a label, be sure to describe the #,!, \$, or [] symbols.

For operand register identifiers, r and rp, either function names (X, A, C, etc.) or absolute names (names in parentheses in the table below, R0, R1, R2, etc.) can be used for description.

Table 10-1. Operand Identifiers and Description Methods

Identifier	Description Method
r rp sfr	X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7), AX (RP0), BC (RP1), DE (RP2), HL (RP3) Special function register symbol
saddr saddrp	FE20H to FF1FH immediate data or label (even address only)
addr16 addr5	0000H to FFFFH immediate data or label (Only even addresses for 16-bit data transfer instructions) 0040H to 007FH immediate data or label (even address only)
word byte bit	16-bit immediate data or label 8-bit immediate data or label 3-bit immediate data or label

10.1.2 Descriptions of the operation field

A: A register; 8-bit accumulator

X: X register

B: B register

C: C register

D: D register

E: E register

H: H register L: L register

AX: AX register pair; 16-bit accumulator

BC: BC register pair DE: DE register pair HL: HL register pair PC: Program counter SP: Stack pointer

PSW: Program status word

CY: Carry flag

AC: Auxiliary carry flag

Z: Zero flag

IE: Interrupt request enable flag

NMIS: Non-maskable interrupt servicing flag

Memory contents indicated by address or register contents in parentheses ():

XH, XL: Higher 8 bits and lower 8 bits of 16-bit register

۸: Logical product (AND) Logical sum (OR) v: Exclusive OR Inverted data

addr16: 16-bit immediate data or label

Signed 8-bit data (displacement value) jdisp8:

10.1.3 Description of the flag operation field

(Blank): Not affected 0: Cleared to 0 1: Set to 1

×: Set/cleared according to the result Previously saved value is restored R:

10.2 Operations

Mnemonic	Operand	Byte	Clock	Operation	Flag
					Z AC CY
MOV	r, #byte	3	6	$r \leftarrow \text{byte}$	
	saddr , #byte	3	6	(addr) ← byte	
	sfr, #byte	3	6	sfr ← byte	
	A, r	1 2	4	$A \leftarrow r$	
	r, A	1 2	4	$r \leftarrow A$	
	A, saddr	2	4	A ← (saddr)	
	saddr, A	2	4	(saddr) ← A	
	A, sfr	2	4	A ← sfr	
	sfr, A	2	4	sfr ← A	
	A, !addr16	3	8	A ← (addr16)	
	!addr16, A	3	8	(addr16) ← A	
	PSW, #byte	3	6	PSW ← byte	× × ×
P	A, PSW	2	4	$A \leftarrow PSW$	
	PSW, A	2	4	PSW ← A	× × ×
	A, [DE]	1	6	$A \leftarrow (DE)$	
	[DE], A	1	6	(DE) ← A	
	A, [HL]	1	6	$A \leftarrow (HL)$	
	[HL], A	1	6	(HL) ← A	
	A, [HL + byte]	2	6	A ← (HL + byte)	
	[HL + byte], A	2	6	(HL + byte) ← A	
XCH	A, X	1	4	$A \leftrightarrow X$	
	A, r	2 2	6	A ↔ r	
	A, saddr	2	6	A ↔ (saddr)	
	A, sfr	2	6	$A \leftrightarrow (sfr)$	
	A, [DE]	1	8	$A \leftrightarrow (DE)$	
	A, [HL]	1	8	$A \leftrightarrow (HL)$	
	A, [HL + byte]	2	8	A ↔ (HL + byte)	
MOVW	rp, #word	3	6	$rp \leftarrow word$	
	AX, saddrp	2	6	$AX \leftarrow (saddrp)$	
	saddrp, AX	2	8	(saddrp) ← AX	
	AX, rp	³ 1	4	$AX \leftarrow rp$	
	rp, AX	³ 1	4	$rp \leftarrow AX$	
XCHW	AX, rp	³ 1	8	AX ↔ rp	

Notes 1. Except r = A

2. Except r = A or X

3. Only when rp = BC, DE, HL

Remark One instruction clock cycle is one cycle of the CPU clock (fcpu), selected by the processor clock control register (PCC).

Mnemonic	Operand	Byte	Clock	Operation	Flag
					Z AC CY
ADD	A, #byte	2	4	A, CY ← A + byte	x x x
	saddr, #byte	3	6	(saddr), $CY \leftarrow$ (saddr) + byte	× × ×
	A, r	2	4	$A,CY \leftarrow A + r$	× × ×
	A, saddr	2	4	A, CY ← A + (saddr)	× × ×
	A, !addr16	3	8	A, CY ← A + (addr16)	× × ×
	A, [HL]	1	6	A, CY ← A + (HL)	× × ×
	A, [HL + byte]	2	6	A, CY ← A + (HL + byte)	× × ×
ADDC	A, #byte	2	4	A, CY ← A + byte + CY	× × ×
	saddr, #byte	3	6	(saddr), $CY \leftarrow$ (saddr) + byte + CY	× × ×
	A, r	2	4	$A, CY \leftarrow A + r + CY$	× × ×
	A, saddr	2	4	A, CY ← A + (saddr) + CY	× × ×
	A, !addr16	3	8	A, CY ← A + (addr16) + CY	× × ×
	A, [HL]	1	6	$A, CY \leftarrow A + (HL) + CY$	× × ×
	A, [HL + byte]	2	6	A, CY ← A + (HL + byte) + CY	× × ×
SUB	A, #byte	2	4	A, CY ← A − byte	× × ×
COD	saddr, #byte	3	6	(saddr), $CY \leftarrow$ (saddr) – byte	× × ×
	A, r	2	4	$A, CY \leftarrow A - r$	× × ×
	A, saddr	2	4	A, CY ← A − (saddr)	× × ×
	A, !addr16	3	8	A, CY ← A − (addr16)	× × ×
	A, [HL]	1	6	$A, CY \leftarrow A - (HL)$	× × ×
	A, [HL + byte]	2	6	$A, CY \leftarrow A - (HL + byte)$	× × ×
SUBC	A, #byte	2	4	$A, CY \leftarrow A - byte - CY$	× × ×
	saddr, #byte	3	6	$(saddr),CY \leftarrow (saddr) - byte - CY$	× × ×
	A, r	2	4	$A, CY \leftarrow A - r - CY$	× × ×
	A, saddr	2	4	$A, CY \leftarrow A - (saddr) - CY$	× × ×
	A, !addr16	3	8	$A, CY \leftarrow A - (addr16) - CY$	× × ×
	A, [HL]	1	6	$A, CY \leftarrow A - (HL) - CY$	× × ×
	A, [HL + byte]	2	6	$A, CY \leftarrow A - (HL + byte) - CY$	× × ×
AND	A, #byte	2	4	$A \leftarrow A \wedge byte$	×
	saddr, #byte	3	6	$(saddr) \leftarrow (saddr) \wedge byte$	×
	A, r	2	4	$A \leftarrow A \wedge r$	×
	A, saddr	2	4	$A \leftarrow A \land (saddr)$	×
	A, !addr16	3	8	$A \leftarrow A \wedge (addr16)$	×
	A, [HL]	1	6	$A \leftarrow A \wedge (HL)$	×
	A, [HL + byte]	2	6	A ← A ∧ (HL + byte)	×

Remark One instruction clock cycle is one cycle of the CPU clock (fcpu), selected by the processor clock control register (PCC).

Mnemonic	Operand	Byte	Clock	Operation	Flag
					Z AC CY
OR	A, #byte	2	4	$A \leftarrow A \lor byte$	×
	saddr, #byte	3	6	(saddr) ← (saddr) ∨ byte	×
	A, r	2	4	$A \leftarrow A \lor r$	×
	A, saddr	2	4	$A \leftarrow A \lor (saddr)$	×
	A, !addr16	3	8	$A \leftarrow A \lor (addr16)$	×
	A, [HL]	1	6	$A \leftarrow A \lor (HL)$	×
	A, [HL + byte]	2	6	$A \leftarrow A \lor (HL + byte)$	×
XOR	A, #byte	2	4	$A \leftarrow A \nabla$ byte	×
	saddr, #byte	3	6	(saddr) ← (saddr) ▽ byte	×
	A, r	2	4	$A \leftarrow A \nabla r$	×
	A, saddr	2	4	$A \leftarrow A \forall (saddr)$	×
	A, !addr16	3	8	A ← A ▽ (addr16)	×
	A, [HL]	1	6	$A \leftarrow A \forall (HL)$	×
	A, [HL + byte]	2	6	A ← A ▽ (HL + byte)	×
CMP	A, #byte	2	4	A – byte	x x x
	saddr, #byte	3	6	(saddr) - byte	× × ×
	A, r	2	4	A – r	x x x
	A, saddr	2	4	A – (saddr)	x x x
	A, !addr16	3	8	A – (addr16)	x x x
	A, [HL]	1	6	A – (HL)	x x x
	A, [HL + byte]	2	6	A – (HL + byte)	x x x
ADDW	AX, #word	3	6	$AX, CY \leftarrow AX + word$	x x x
SUBW	AX, #word	3	6	$AX, CY \leftarrow AX - word$	x x x
CMPW	AX, #word	3	6	AX – word	x x x
INC	r	2	4	r ← r + 1	× ×
	saddr	2	4	(saddr) ← (saddr) + 1	x x
DEC	r	2	4	r ← r − 1	× ×
	saddr	2	4	(saddr) ← (saddr) − 1	× ×
INCW	rp	1	4	rp ← rp + 1	
DECW	rp	1	4	rp ← rp − 1	
ROR	A, 1	1	2	$(CY, A_7 \leftarrow A_0, A_{m-1} \leftarrow A_m) \times 1$	×
ROL	A, 1	1	2	$(CY, A_0 \leftarrow A_7, A_{m+1} \leftarrow A_m) \times 1$	×
RORC	A, 1	1	2	$(CY \leftarrow A_0,A_7 \leftarrow CY,A_{m-1} \leftarrow A_m) \times 1$	×
ROLC	A, 1	1	2	$(CY \leftarrow A_7, A_0 \leftarrow CY, A_{m+1} \leftarrow A_m) \times 1$	×

Remark One instruction clock cycle is one cycle of the CPU clock (fcpu), selected by the processor clock control register (PCC).

Mnemonic	Operand	Byte	Clock	Operation	F	ag
					Z	AC CY
SET1	saddr. bit	3	6	(saddr. bit) ← 1		
	sfr. bit	3	6	sfr. bit ← 1		
	A. bit	2	4	A. bit ← 1		
	PSW. bit	3	6	PSW. bit ← 1	×	× ×
	[HL]. bit	2	10	(HL) . bit ← 1		
CLR1	saddr. bit	3	6	(saddr. bit) ← 0		
	sfr. bit	3	6	sfr. bit ← 0		
	A. bit	2	4	A. bit ← 0		
	PSW. bit	3	6	PSW. bit ← 0	×	× ×
	[HL]. bit	2	10	(HL) . bit ← 0		
SET1	CY	1	2	CY ← 1		1
CLR1	CY	1	2	CY ← 0		0
NOT1	CY	1	2	$CY \leftarrow \overline{CY}$		×
CALL	!addr16	3	6	$(SP-1) \leftarrow (PC+3)$ H, $(SP-2) \leftarrow (PC+3)$ L, PC \leftarrow addr16, SP \leftarrow SP -2		
CALLT	[addr5]	1	8	$(SP-1) \leftarrow (PC+1)_{H}, (SP-2) \leftarrow (PC+1)_{L},$ $PC_{H} \leftarrow (00000000, addr5+1),$ $PC_{L} \leftarrow (00000000, addr5),$ $SP \leftarrow SP-2$		
RET		1	6	$PC_H \leftarrow (SP + 1), PC_L \leftarrow (SP),$ $SP \leftarrow SP + 2$		
RETI		1	8	$\begin{aligned} & PCH \leftarrow (SP+1), PCL \leftarrow (SP), \\ & PSW \leftarrow (SP+2), SP \leftarrow SP+3, \\ & NMIS \leftarrow 0 \end{aligned}$	R	R R
PUSH	PSW	1	2	(SP − 1) ← PSW, SP ← SP − 1		
	гр	1	4	$(SP-1) \leftarrow rpH, (SP-2) \leftarrow rpL,$ $SP \leftarrow SP-2$		
POP	PSW	1	4	PSW ← (SP), SP ← SP + 1	R	R R
	гр	1	6	$rpH \leftarrow (SP + 1), rpL \leftarrow (SP),$ $SP \leftarrow SP + 2$		
MOVW	SP, AX	2	8	$SP \leftarrow AX$		
	AX, SP	2	6	$AX \leftarrow SP$		
BR	!addr16	3	6	PC ← addr16		
	\$addr16	2	6	PC ← PC + 2 + jdisp8		
	AX	1	6	$PCH \leftarrow A, PCL \leftarrow X$		

Remark One instruction clock cycle is one cycle of the CPU clock (fcpu), selected by the processor clock control register (PCC).

Mnemonic	Operand	Byte	Clock	Operation	Flag
					Z AC CY
ВС	\$addr16	2	6	PC ← PC + 2 + jdisp8 if CY = 1	
BNC	\$addr16	2	6	PC ← PC + 2 + jdisp8 if CY = 0	
BZ	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 1$	
BNZ	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 0$	
ВТ	saddr. bit, \$addr16	4	10	PC ← PC + 4 + jdisp8 if (saddr. bit) = 1	
	sfr. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8 \text{ if sfr. bit} = 1$	
	A. bit , \$addr16	3	8	$PC \leftarrow PC + 3 + jdisp8 \text{ if A. bit} = 1$	
	PSW. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8 \text{ if PSW. bit} = 1$	
BF	saddr. bit, \$addr16	4	10	PC ← PC + 4 + jdisp8 if (saddr. bit) = 0	
	sfr. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8 \text{ if sfr. bit} = 0$	
	A. bit, \$addr16	3	8	$PC \leftarrow PC + 3 + jdisp8 \text{ if A. bit} = 0$	
	PSW. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8 \text{ if PSW. bit} = 0$	
DBNZ	B, \$addr16	2	6	$B \leftarrow B - 1$, then PC \leftarrow PC + 2 + jdisp8 if B \neq 0	
	C, \$addr16	2	6	$C \leftarrow C - 1$, then $PC \leftarrow PC + 2 + jdisp8 if C \neq 0$	
	saddr, \$addr16	3	8	$(saddr) \leftarrow (saddr) - 1$, then $PC \leftarrow PC + 3 + jdisp8 if(saddr) \neq 0$	
NOP		1	2	No Operation	
EI		3	6	IE ← 1(Enable Interrupt)	
DI		3	6	IE ← 0(Disable Interrupt)	
HALT		1	2	Set HALT Mode	
STOP		1	2	Set STOP Mode	

Remark One instruction clock cycle is one cycle of the CPU clock (fcpu), selected by the processor clock control register (PCC).

11. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol		Conditions	Ratings	Unit		
Supply voltage	Vdd, AVdd	V _{DD} = AV _{DD}		-0.3 to +6.5	V		
Input voltage	VI1	Pins other tha	Pins other than P50 to P53		Pins other than P50 to P53		V
	Vı2	P50 to P53	With N-ch open drain	-0.3 to +13	V		
			With an on-chip pull-up resistor	-0.3 to VDD + 0.3	V		
Output voltage	Vo			-0.3 to V _{DD} + 0.3	V		
Output current, high	Іон	Per pin	μPD78912xA(A1),	-4	mA		
		Total for all pi	78913xA(A1)	-14	mA		
		Per pin	μPD78912xA(A2),	-2	mA		
		Total for all pi	78913xA(A2)	-6	mA		
Output current, low	lol	Per pin	μPD78912xA(A1),	5	mA		
		Total for all pi	78913xA(A1)	80	mA		
		Per pin	μPD78912xA(A2),	2	mA		
		Total for all pi	78913xA(A2)	40	mA		
Operating ambient temperature	TA	μPD78912xA((A1), 78913xA(A1)	-40 to +110	°C		
		μPD78912xA(μPD78912xA(A2), 78913xA(A2)		°C		
Storage temperature	T _{stg}			-65 to +150	°C		

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

System Clock Oscillator Characteristics

 $(V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, T_A = -40 \text{ to } +110^{\circ}\text{C} (\mu PD78912xA(A1), 78913xA(A1)),$

-40 to +125°C (μ PD78912xA(A2), 78913xA(A2)))

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
RC resonator	CL1 CL2	Oscillation frequency (fcc) ^{Note}		2.0		4.0	MHz
External clock	CL1 CL2	CL1 input frequency (fcc) ^{Note 1}		1.0		5.0	MHz
	OPEN	CL1 input high-/low-level width (txH, txL)		85		500	ns

- Notes 1. Indicates only oscillator characteristics. Refer to AC characteristics for instruction execution time.
 - 2. Time required to stabilize oscillation after a reset or STOP mode release. Use the resonator that stabilizes oscillation during the oscillation wait time.
- Cautions 1. When using the system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - · Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - . Do not route the wiring near a signal line through which a high fluctuating current flows.
 - · Always make the ground point of the oscillator capacitor the same potential as Vss.
 - . Do not ground the capacitor to a ground pattern through which a high current flows.
 - · Do not fetch signals from the oscillator.
 - 2. Construct the oscillator with R, C devices that are guaranteed to operate under the following temparature conditions.

 μ PD78912xA(A1), 78913xA(A1) : T_A = 110°C μ PD78912xA(A2), 78913xA(A2) : T_A = 125°C

DC Characteristics (VDD = 4.5 to 5.5 V, $T_A = -40$ to +110°C (μ PD78912xA(A1), 78913xA(A1)),

 $-40 \text{ to } +125^{\circ}\text{C} (\mu\text{PD78912xA(A2)}, 78913xA(A2))) (1/2)$

Parameter	Symbol	-1.	Conditions	UPD10912XA(A	MIN.	TYP.	MAX.	Unit
Output current, high	Іон	Per pin	μPD78912xA	.(A1).	1		-1	mA
	.511	Total for all pins	78913xA(A1)	. ,			-7	mA
		Per pin	μPD78912xA(A2),				-1	mA
		Total for all pins	78913xA(A2)				-3	mA
Output current, low	Іоь	Per pin	μPD78912xA	A(A1),			1.6	mA
		Total for all pins	78913xA(A1)				40	mA
		Per pin	μPD78912xA	(A2),			1.6	mA
		Total for all pins	78913xA(A2)				20	mA
Input voltage, high	V _{IH1}	Pins other than d	escribed below		0.7 V _{DD}		V _{DD}	V
	V _{IH2}	P50 to P53	With N-ch op	en drain	0.7 V _{DD}		10	V
			With on-chip	pull-up resistor	0.7 V _{DD}		V _{DD}	>
	VIH3	RESET, P20 to P	25		0.8 V _{DD}		V _{DD}	٧
	V _{IH4}	CL1, CL2			V _{DD} -0.1		V _{DD}	V
Input voltage, low	V _{IL1}	Pins other than described below			0		0.3 V _{DD}	٧
	V _{IL2}	P50 to P53			0		0.3 V _{DD}	V
	VIL3	RESET, P20 to P25			0		0.2 V _{DD}	V
	VIL4	CL1, CL2			0		0.1	V
Output voltage, high	V _{OH1}	Iон = −1 mA			V _{DD} -2.0			V
	V _{OH2}	Іон = -100 μΑ	_		V _{DD} -1.0			V
Output voltage, low	V _{OL1}	Pins other than	IoL = 1.6 mA				2.0	V
		P50 to P53	$I_{OL} = 400 \mu A$				1.0	V
	V _{OL2}	P50 to P53	IoL = 1.6 mA	_			1.0	V
Input leakage current, high	ILIH1	Pins other than C P50 to P53	L1, CL2, or	VIN = VDD			10	μΑ
	ILIH2	CL1, CL2					20	μΑ
	Ішнз	P50 to P53 (N-ch	open drain)	V _{IN} = 10 V			80	μΑ
Input leakage current, low	ILIL1	Pins other than C P50 to P53	L1, CL2, or	Vin = 0 V			-10	μΑ
	ILIL2	CL1, CL2					-20	μΑ
	Ішз	P50 to P53 (N-ch	open drain)				-10 ^{Note}	μΑ
Output leakage current, high	Ісон	Vout = Vdd					10	μΑ
Output leakage current, low	ILOL	Vout = 0 V					-10	μΑ

Note When pull-up resistors are not connected to P50 to P53 (specified by the mask option) and when port 5 is in input mode, a low-level input leakage current of -60 μ A (MAX.) flows only for 1 cycle time after a read instruction has been executed to port 5.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

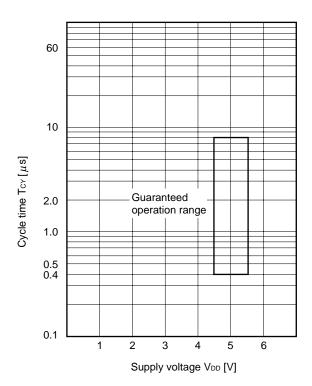
DC Characteristics (V_{DD} = 4.5 to 5.5 V, $T_A = -40$ to +110°C (μ PD78912xA(A1), 78913xA(A1)),

 $-40 \text{ to } +125^{\circ}\text{C} (\mu\text{PD78912xA(A2)}, 78913xA(A2))) (2/2)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Software pull-up resistor	R ₁	V _{IN} = 0 V, for pins other than P50 to P53	50	100	300	kΩ
Mask option pull-up resistor	R ₂	V _{IN} = 0 V, P50 to P53	10	30	100	kΩ
Power supply current	DD1 ^{Note 1}	5.0-MHz crystal oscillation operating mode (C1 = C2 = 22pF) Note 3		1.8	8.0	mA
	DD2 Note 1	5.0-MHz crystal oscillation HALT mode (C1 = C2 = 22pF) Note 3		0.8	5.0	mA
	IDD3 ^{Note 1}	STOP mode		0.1	1000	μΑ
	DD4 Note 2	5.0-MHz crystal oscillation A/D operating mode (C1 = C2 = 22pF) Note 3		3.0	10	mA

- Notes 1. The current flowing to the ports (including the current flowing through an on-chip pull-up resistor) and AVDD current are not included.
 - 2. The current flowing to the ports (including the current flowing through an on-chip pull-up resistor) is not
 - 3. High-speed mode operation (when processor clock control register (PCC) is set to 00H.)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.


AC Characteristics

(1) Basic operation (VDD = 4.5 to 5.5 V, $T_A = -40$ to +110°C (μ PD78912xA(A1), 78913xA(A1)),

 $-40 \text{ to } +125^{\circ}\text{C} (\mu\text{PD78912xA(A2)}, 78913xA(A2)))$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time (minimum instruction execution time)	Тсч		0.4		8	μs
TI80 input high-/low-level width	tтін, tті∟		0.1			μs
TI80 input frequency	fтı		0		4	MHz
Interrupt input high- /low-level width	tinth,	INTP0 to INTP2	10			μs
RESET low-level width	trsL		10			μs
CPT20 input high- /low-level width	tcpн, tcpL		10			μs

Tcy vs Vdd

(2) Serial interface (VDD = 4.5 to 5.5 V, $T_A = -40$ to +110°C (μ PD78912xA(A1), 78913xA(A1)), $-40 \text{ to } +125^{\circ}\text{C} (\mu PD78912xA(A2), 78913xA(A2)))$

(i) 3-wire serial I/O mode (SCK20...Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK20 cycle time	tkcy1		800			ns
SCK20 high-/low-	tkH1,		tkcy1/2 - 50			ns
SI20 setup time (to SCK20↑)	tsıkı		150			ns
SI20 hold time (from SCK20↑)	tksi1		400			ns
SO20 output delay time from SCK20↓	tkso1	R = 1 k Ω , C = 100 pF ^{Note}	0		250	ns

Note R and C are the load resistance and load capacitance of the SO output line.

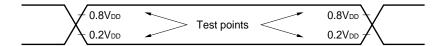
(ii) 3-wire serial I/O mode (SCK20...External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK20 cycle time	tkcy2		800			ns
SCK20 high-/low-	tkH2,		400			ns
SI2 <u>0 setup</u> time (to SCK20↑)	tsik2		100			ns
SI20 hold time (from SCK20↑)	tksi2		400			ns
SO20 output delay time from SCK20↓	tkso2	$R = 1 \text{ k}\Omega, C = 100 \text{ pF}^{\text{Note}}$	0		300	ns
SO20 setup time (for SS20↓ when SS20 is used)	tkas2				120	ns
SO20 disable time (for SS20↑ when SS20 is used)	tKDS2				240	ns

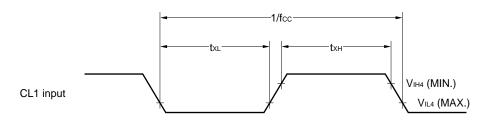
Note R and C are the load resistance and load capacitance of the SO output line.

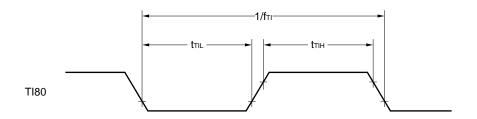
(iii) UART mode (Dedicated baud rate generator output)

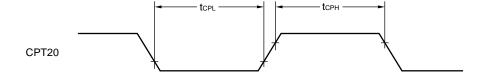
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					78125	bps

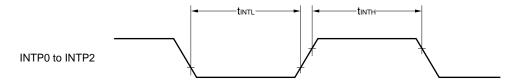


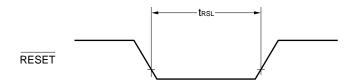
(iv) UART mode (external clock input)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK20 cycle time	tксүз		800			ns
ASCK20 high-/low- level width	tкнз, tкLз		400			ns
Transfer rate					39063	bps
ASCK20 rise/fall time	tr, tr				1	μs

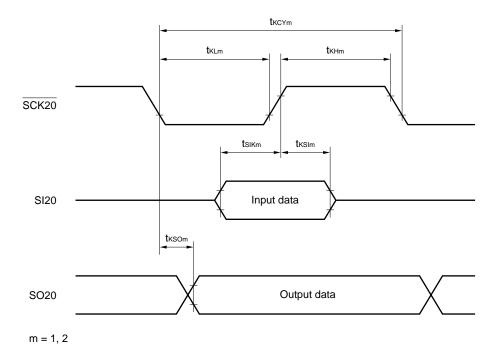

AC Timing Test Points (excluding CL1 input)


Clock Timing

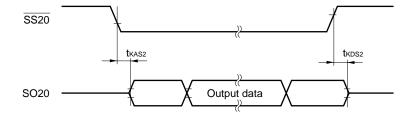

TI Timing


Capture Input Timing

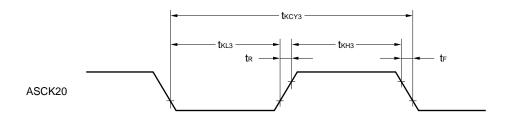
Interrupt Input Timing



RESET Input Timing



Serial Transfer Timing


3-wire serial I/O mode:

3-wire serial I/O mode (when \$\overline{SS20}\$ is used):

UART mode (external clock input):

8-Bit A/D Converter Characteristics (µPD78912xA(A1), 78912xA(A2) only)

 $(AVDD = VDD = 4.5 \text{ to } 5.5 \text{ V}, AVSS = VSS = 0 \text{ V}, TA = -40 \text{ to } +110^{\circ}\text{C} (\mu PD78912xA(A1)),$

-40 to +125°C (μPD78912xA(A2)))

		Q.		, ,		
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error ^{Note1,2}				±0.4	±1.0	%FSR
Conversion time	tconv		14		28	μs
Analog input voltage	VIAN		0		AVDD	V

Notes 1. Excludes quantization error (±0.2%FSR).

2. It is indicated as a ratio to the full-scale value (%FSR).

10-Bit A/D Converter Characteristics (μPD78913xA(A1), 78913xA(A2) only) $(AVDD = VDD = 4.5 \text{ to } 5.5 \text{ V}, AVSS = VSS = 0 \text{ V}, TA = -40 \text{ to } +110^{\circ}\text{C} (\mu PD78913xA(A1)),$

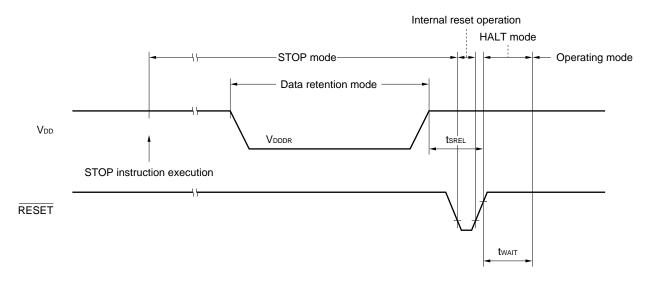
 $-40 \text{ to } +125^{\circ}\text{C} (\mu\text{PD78913xA(A2)}))$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			10	10	10	bit
Overall error ^{Note1,2}				±0.4	±0.6	%FSR
Conversion time	tconv		14		28	μs
Zero-scale error ^{Note1,2}					±0.6	%FSR
Full-scale errorNote1,2					±0.6	%FSR
Non-integral linearity error ^{Note1}	INL				±4.5	LSB
Non-differential linearity error ^{Note1}	DNL				±2.0	LSB
Analog input voltage	VIAN		0		AVDD	٧

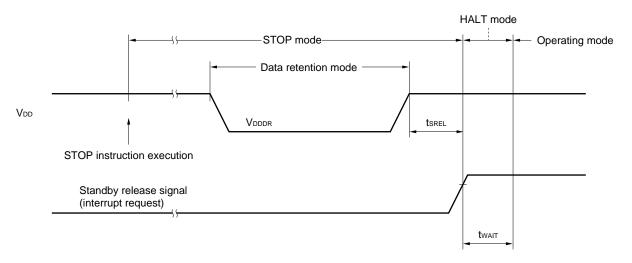
Notes 1. Excludes quantization error (±0.05%FSR).

2. It is indicated as a ratio to the full-scale value (%FSR).

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

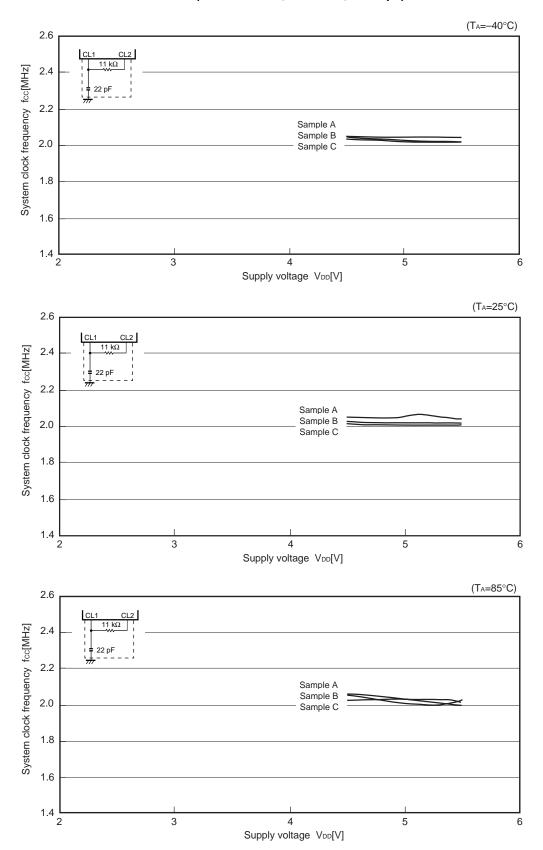

 $(T_A = -40 \text{ to } +110^{\circ}\text{C} (\mu PD78912xA(A1), 78913xA(A1)), -40 \text{ to } +125^{\circ}\text{C} (\mu PD78912xA(A2), 78913xA(A2)))$

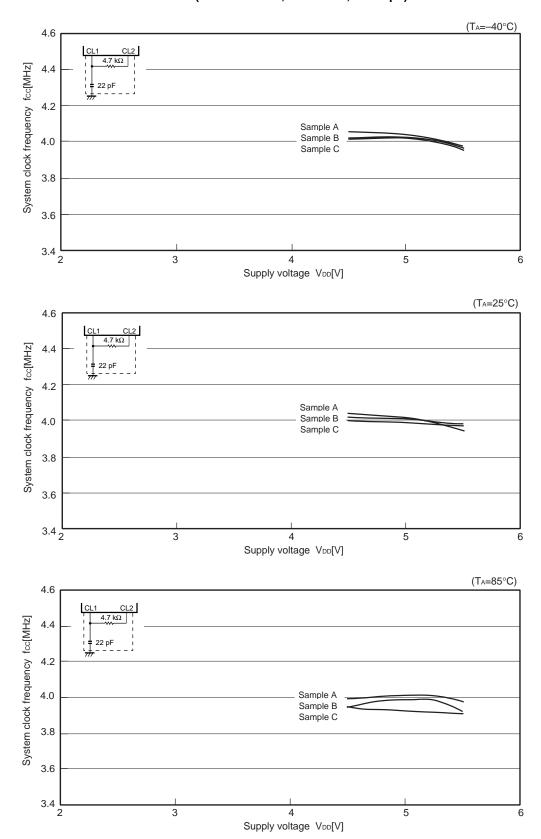
	- (())		<u> </u>	<u> </u>	
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.8		5.5	V
Release signal set time	t srel		0			μs
Oscillation	twait	Release by RESET		2 ⁷ /fcc		ms
stabilization wait time ^{Note 1}		Release by interrupt request		2 ⁷ /fcc		ms


Note The oscillation stabilization wait time is the period during which the CPU operation is stopped to avoid unstable operation at the beginning of oscillation.

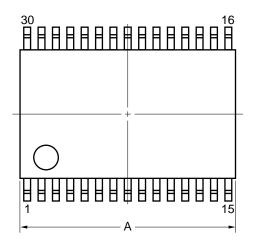
Remark fcc: System clock oscillation frequency

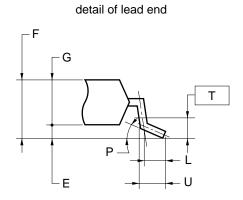
Data Retention Timing (STOP mode release by RESET)

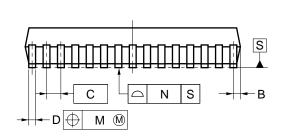

Data Retention Timing (Standby release signal: STOP mode release by interrupt signal)

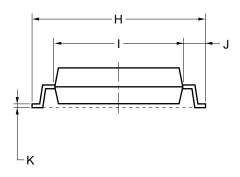

NEC

12. EXAMPLE OF RC OSCILLATOR FREQUENCY CHARACTERISTICS (REFERENCE VALUES)


fcc vs V_{DD} (RC Oscillation, R = 4.7 k Ω , C= 22 pF)






13. PACKAGE DRAWING

30-PIN PLASTIC SSOP (7.62 mm (300))

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	9.85±0.15
В	0.45 MAX.
С	0.65 (T.P.)
D	$0.24_{-0.07}^{+0.08}$
Е	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
K	0.17±0.03
L	0.5
М	0.13
N	0.10
Р	3°+5° -3°
Т	0.25
U	0.6±0.15
	S30MC-65-5A4-2

14. RECOMMENDED SOLDERING CONDITIONS

The μ PD78912xA(A1), 78913xA(A1), 78912xA(A2), and 78913xA(A2) should be soldered and mounted under the following recommended conditions.

For the details of the recommended soldering conditions, refer to the document Semiconductor Device Mounting Technology Manual (C10535E). For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Table 14-1. Surface Mounting Type Soldering Conditions

```
μPD789121AMC(A1)-xxx-5A4: 30-pin plastic SSOP (7.62 mm (300))
\muPD789122AMC(A1)-xxx-5A4: 30-pin plastic SSOP (7.62 mm (300))
μPD789124AMC(A1)-xxx-5A4: 30-pin plastic SSOP (7.62 mm (300))
\muPD789131AMC(A1)-xxx-5A4: 30-pin plastic SSOP (7.62 mm (300))
\muPD789132AMC(A1)-xxx-5A4: 30-pin plastic SSOP (7.62 mm (300))
μPD789134AMC(A1)-xxx-5A4: 30-pin plastic SSOP (7.62 mm (300))
μPD789121AMC(A2)-xxx-5A4: 30-pin plastic SSOP (7.62 mm (300))
μPD789122AMC(A2)-xxx-5A4: 30-pin plastic SSOP (7.62 mm (300))
\muPD789124AMC(A2)-xxx-5A4: 30-pin plastic SSOP (7.62 mm (300))
μPD789131AMC(A2)-xxx-5A4: 30-pin plastic SSOP (7.62 mm (300))
μPD789132AMC(A2)-xxx-5A4: 30-pin plastic SSOP (7.62 mm (300))
μPD789134AMC(A2)-xxx-5A4: 30-pin plastic SSOP (7.62 mm (300))
```

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 sec. Max. (at 210°C or higher), Count: three times or less	IR35-00-3
VPS	Package peak temperature: 215°C, Time: 40 sec. Max. (at 200°C or higher), Count: three times or less	VP15-00-3
Wave soldering	Solder bath temperature: 260°C Max., Time: 10 sec. Max., Count: once, Preheating temperature: 120°C Max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C Max., Time: 3 sec. Max. (per pin row)	-

Caution Do not use different soldering methods together (except for partial heating).

APPENDIX A DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78912xA(A1), μ PD78913xA(A1), μ PD78912xA(A2), and μ PD78913xA(A2).

Language Processing Software

RA78K0S ^{Notes 1, 2, 3}	Assembler package common to 78K/0S Series
CC78K0S ^{Notes 1, 2, 3}	C compiler package common to 78K/0S Series
DF789136 ^{Notes 1, 2, 3}	Device file for μPD789124A, 789134A Subseries

Flash Memory Writing Tools

Flashpro III	Dedicated flash programmer for on-chip flash memory
(Model number: FL-PR3 ^{Note 4} ,	
PG-FP3)	
FA-30MC ^{Note 4}	Flash memory writing adapter

Debugging Tools (1/2)

IE-78K0S-NS In-circuit emulator		
IE-70000-MC-PS-B AC adapter	Adapter used to supply power from a power outlet of 100 V AC to 240 V AC.	
IE-70000-98-IF-C Interface adapter	Adapter when PC-9800 series PC (except notebook type) is used as the IE-78K0S-NS host machine (C bus supported).	
IE-70000-CD-IF-A PC card interface	PC card and interface cable when notebook PC is used as the IE-78K0S-NS host machine (PCMCIA socket supported).	
IE-70000-PC-IF-C Interface adapter	Adapter when using an IBM PC/AT™ or compatible as the IE-78K0S-NS host machine.	
IE-70000-PCI-IF Interface adapter	Adapter when using PC that includes a PCI bus as the IE-78K0S-NS host machine.	
IE-789136-NS-EM1 Emulation board	Board for emulation of the peripheral hardware peculiar to a device. Used in combination with an in-circuit emulator.	
NP-36GS ^{Note 4}	Board used to connect the in-circuit emulator to the target system. For a 30-pin plastic SSOP (MC-5A4 type), used in combination with NGS-30.	
NGS-30 ^{Note 4} Conversion socket	Conversion socket used to connect the NP-36GS to the target system board designed to mount a 30-pin plastic SSOP (MC-5A4 type).	

Notes 1. PC-9800 series (Japanese Windows™) based

- 2. IBM PC/AT or compatibles (Japanese/English Windows) based
- 3. HP9000 series 700™ (HP-UX™), SPARCstation™ (SunOS™, Solaris™), or NEWS™ (NEWS-OS™) based.
- 4. Products made by Naito Densei Machida Mfg. Co., Ltd. (Phone: +81-44-822-3813). Contact an NEC distributor regarding the purchase of these products.

Remark RA78K0S, CC78K0S, and SM78K0S are used in combination with the DF789136.

Debugging Tools (2/2)

SM78K0S ^{Notes 1, 2}	System simulator common to 78K/0S Series
ID78K0S-NS ^{Notes 1, 2}	Integrated debugger common to 78K/0S Series
DF789136 ^{Notes 1, 2}	Device file for μPD789124A, 789134A Subseries

Real-time OS

MX78K0S ^{Notes 1, 2}	OS for 78K/0S Series

- Notes 1. PC-9800 series (Japanese Windows) based.
 - 2. IBM PC/AT or compatibles (Japanese/English Windows) based.

APPENDIX B RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Document No.
μPD789121A, 122A, 124A, 131A, 132A, 134A, 121A(A), 122A(A), 124A(A), 131A(A), 132A(A), 134A(A) Data Sheet	U14678E
μPD78F9136A Data Sheet	U14690E
μPD789121A(A1), 122A(A1), 124A(A1), 131A(A1), 132A(A1), 134A(A1), 121A(A2), 122A(A2), 124A(A2), 131A(A2), 132A(A2), 134A(A2) Data Sheet	This manual
μPD789104A, 789114A, 789124A, 789134A Subseries User's Manual	U14643E
78K/0S Series User's Manual Instruction	U11047E
78K/0, 78K/0S Series Application Note Flash Memory Write	U14458E

Documents Related to Development Tools (User's Manuals)

Document Name	Document No.	
RA78K0S Assembler Package	Operation	U11622E
	Assembly Language	U11599E
	Structured Assembly Language	U11623E
CC78K0S C Compiler	Operation	U11816E
	Language	U11817E
SM78K0S System Simulator Windows Based	Reference	U11489E
SM78K Series System Simulator	External Parts User Open Interface Specifications	U10092E
ID78K0S-NS Integrated Debugger Windows Based	Reference	U12901E
ID78K0-NS, ID78K0S-NS Integrated Debugger Ver.2.20 or Later Windows Based Operation		U14910E
IE-78K0S-NS In-circuit Emulator	U13549E	
IE-789136-NS-EM1 Emulation Board	U14363E	

Documents Related to Embedded Software (User's Manuals)

Document Name		Document No.	
78K/0S Series OS MX78K0S		Fundamental	U12938E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

Other Related Documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE Products & Packages (CD-ROM)	X13769X
Semiconductor Device Mounting Technology Manual	C10535E
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E
Guide to Microcomputer-Related Products by Third Party	_

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

[MEMO]

NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

EEPROM is a trademark of NEC Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of SONY Corporation.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- · Product release schedule
- Availability of related technical literature
- · Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Madrid Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore Tel: 65-253-8311 Fax: 65-250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Guarulhos-SP Brasil Tel: 55-11-6462-6810 Fax: 55-11-6462-6829

J00.7

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is current as of September, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- · No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- · NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- · Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- · While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).