MOS INTEGRATED CIRCUIT μ PD784054(A)

16-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The $\mu \mathrm{PD} 784054(\mathrm{~A})$ is a product of the $78 \mathrm{~K} / \mathrm{IV}$ series, and based on the $\mu \mathrm{PD} 784044(\mathrm{~A})$ with the real-time output function and two units of timers/counters deleted and a standby function invalid mode provided. A stricter quality assurance program applies to the μ PD784054(A) compared to the μ PD784054 (standard model).

The μ PD784054(A) is provided with many peripheral hardware functions such as ROM, RAM, I/O port, 10-bit resolution A/D converter, timer, serial interface, and interrupt functions, in addition to a high-speed, high-performance CPU.

Moreover, a flash memory model, μ PD78F4046 ${ }^{\text {Note }}$, that can operate on the same supply voltage as the mask ROM model, and many development tools are under development.

Note Use for functional evaluation only.

The functions are described in detail in the following User's Manuals. Be sure to read these manuals when designing your system.

μ PD784054 User's Manual - Hardware : U11719E
78K/IV Series User's Manual - Instruction : U10905E

FEATURES

- Higher reliability compared to the μ PD784054
- Minimum instruction execution time : 160 ns (with $12.5-\mathrm{MHz}$ internal clock) $\cdots \mu$ PD784054(A) 200 ns (with $10-\mathrm{MHz}$ internal clock) $\cdots \mu \mathrm{PD} 784054(\mathrm{~A} 1),(\mathrm{A} 2)$
- I/O port
: 64 lines
- Timer
: 16-bit timer $\times 3$ units
- A/D converter : 10-bit resolution $\times 16$ channels
- Serial interface UART/IOE (3-wire serial I/O) : 2 channels
- Watchdog timer : 1 channel
- Standby function HALT/STOP/IDLE/standby function invalid mode
- Supply voltage : VDD $=4.5$ to 5.5 V

APPLICATION FIELDS

Automotive appliances, etc.

In this document, in addition to the μ PD784054(A), the μ PD784054(A1) and 784054(A2) are also explained. However, unless otherwise specified, the μ PD784054(A) is treated as the representative model throughout this document.

ORDERING INFORMATION

Part Number	Package	Internal ROM (bytes)	Internal RAM (bytes)
μ PD784054GC(A)-×××-3B9	$80-$ pin plastic QFP $(14 \times 14 \mathrm{~mm})$	32 K	1024
μ PD784054GC(A1)-×××-3B9	$80-$ pin plastic QFP $(14 \times 14 \mathrm{~mm})$	32 K	1024
μ PD784054GC(A2)-×××-3B9	$80-$ pin plastic QFP $(14 \times 14 \mathrm{~mm})$	32 K	1024

Remark $x \times x$ indicates ROM code suffix.

QUALITY GRADE

Special

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

Differences between μ PD784054 and μ PD784054(A)

Item	μ Part Number	μ PD78484054
Quality grade	Standard	Special
Operating ambient temperature (TA)	-10 to $+70^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$
Operating frequency	8 to 32 MHz	8 to 25 MHz
Minimum instruction execution time	125 ns (with $16-\mathrm{MHz}$ internal clock)	160 ns (with $12.5-\mathrm{MHz}$ internal clock)
DC characteristics	Vod supply current differs.	
AC characteristics	Bus timing and serial operation differ.	
A/D converter characteristics	Conversion time and sampling time differ.	

Differences between μ PD784054(A), 784054(A1) and 784054(A2)

Part Number	μ PD784054(A)	μ PD784054(A1)	μ PD784054(A2)
Operating ambient temperature (T_{A})	-40 to $+85^{\circ} \mathrm{C}$	-40 to $+110{ }^{\circ} \mathrm{C}$	-40 to $+125{ }^{\circ} \mathrm{C}$
Operating frequency	8 to 25 MHz	8 to 20 MHz	
Minimum instruction execution time	160 ns (with $12.5-\mathrm{MHz}$ internal clock)	200 ns (with $10-\mathrm{MHz}$ internal clock)	
DC characteristics	Analog pin input leakage current, VDD supply current and data retention current differ.		
AC characteristics	Bus timing and serial operation differ.		
A/D converter characteristics	AV REF current and A/D converter data retention current differ.		

Product Development of 78K/IV Series

\square
:-----:

ASSP models

```
------------
--------------
```

For DC converter control

Software servo control, internal analog circuit for VCR, improved timer

FUNCTION LIST

Note The pins with ancillary functions are included in the I/O pins.

CONTENTS

1. DIFFERENCES BETWEEN μ PD784054(A) AND μ PD784044(A), 784046(A) 7
2. PIN CONFIGURATION (Top View) 8
3. SYSTEM CONFIGURATION EXAMPLE 10
4. BLOCK DIAGRAM 11
5. PIN FUNCTIONS 12
5.1 Port Pins 12
5.2 Pins Other Than Port Pins 14
5.3 I/O Circuits of Pins and Processing of Unused Pins 16
6. CPU ARCHITECTURE 18
6.1 Memory Space 18
6.2 CPU Registers 20
6.2.1 General-purpose registers 20
6.2.2 Control registers 21
6.2.3 Special function registers (SFRs) 22
7. PERIPHERAL HARDWARE FUNCTIONS 27
7.1 Ports 27
7.2 Clock Generation Circuit 28
7.3 Timer 30
7.4 A/D Converter 32
7.5 Serial Interface 33
7.5.1 Asynchronous serial interface/3-wire serial I/O (UART/IOE) 34
7.6 Edge Detection Circuit 36
7.7 Watchdog Timer 36
8. INTERRUPT FUNCTION 37
8.1 Interrupt Source 37
8.2 Vectored Interrupt 39
8.3 Context Switching 40
8.4 Macro Service 41
9. LOCAL BUS INTERFACE 44
9.1 Memory Expansion 45
9.2 Memory Space 46
9.3 Programmable Wait 46
9.4 Bus Sizing Function 46
10. STANDBY FUNCTION 47
11. RESET FUNCTION 48
12. INSTRUCTION SET 49
13. ELECTRICAL SPECIFICATIONS 54
14. PACKAGE DRAWING 77
15. RECOMMENDED SOLDERING CONDITIONS 78
APPENDIX A. DEVELOPMENT TOOLS 79
APPENDIX B. RELATED DOCUMENTS 82

1. DIFFERENCES BETWEEN μ PD784054(A) AND μ PD784044(A), 784046(A)

Table 1-1 shows the differences between the μ PD784054(A) and μ PD784044(A), 784046(A).

Table 1-1. Differences between μ PD784054(A) and μ PD784044(A), 784046(A)

Part Number Item	$\mu \mathrm{PD} 784054(\mathrm{~A})$	$\mu \mathrm{PD} 784044(\mathrm{~A})$	$\mu \mathrm{PD} 784046$ (A)
Internal ROM	32K bytes (mask ROM)		64K bytes (mask ROM)
Internal RAM	1024 bytes		2048 bytes
Port 1	P10-P12	P10-P13	
Real-time output port	None	4 bits $\times 1$	
Timer/counter	16-bit timer $\times 3$ units	16-bit timer/counter $\times 2$ units 16 -bit timer $\times 3$ units	
Standby function	HALT/STOP/IDLE/ standby function invalid mode	HALT/STOP/IDLE mode	
MODE1 pin	Provided	Not provided	
Interrupt hardware source	23	27	

2. PIN CONFIGURATION (Top View)

- 80 -pin plastic QFP ($14 \times 14 \mathrm{~mm}$)
μ PD784054GC(A)- $-\times x \times-3 B 9$, 784054GC(A1)- $-\times x-3 B 9$, 784054GC(A2)- $-\times x \times-3 B 9$

Cautions 1. Directly connect the MODE pin to Vss.
2. Usually, directly connect the MODE1 pin to Vss.

A16-A19	: Address Bus	P40-P47	: Port4
AD0-AD15	: Address/Data Bus	P50-P57	: Port5
ANIO-ANI15	: Analog Input	P60-P63	: Port6
ASCK, ASCK2	: Asynchronous Serial Clock	P70-P77	: Port7
ASTB	: Address Strobe	P80-P87	: Port8
AVdd	: Analog Power Supply	P90-P94	: Port9
$A V_{\text {ref }}$: Analog Reference Voltage	$\overline{\mathrm{RD}}$: Read Strobe
AVss	: Analog Ground	RESET	: Reset
BWD	: Bus Width Definition	RxD, RxD2	: Receive Data
CLKOUT	: Clock Out	$\overline{\text { SCK1, }}$, ${ }^{\text {SKK2 }}$: Serial Clock
HWR	: High Address Write Strobe	SI1, SI2	: Serial Input
INTP0-INTP6	: Interrupt from Peripherals	SO1, SO2	Serial Output
LWR	: Low Address Write Strobe	TO00-TO03, TO10, TO11	Timer Output
MODE, MODE1	: Mode	TxD, TxD2	: Transmit Data
NMI	: Non-maskable Interrupt	Vdd	: Power Supply
P00-P03	: Port0	Vss	: Ground
P10-P12	: Port1	WAIT	: Wait
P20-P27	: Port2	X1, X2	: Crystal
P30-P37	: Port3		

3. SYSTEM CONFIGURATION EXAMPLE

4. BLOCK DIAGRAM

5. PIN FUNCTIONS

5.1 Port Pins (1/2)

Pin Name	I/O	Shared by:	Function
P00-P03	I/O	-	Port 0 (PO): - 4-bit I/O port - Can be set in input/output mode bit-wise. - Pins in input mode can all be connected to pull-up resistors at once via software.
P10-P12	1/O	-	Port 1 (P1): - 3-bit I/O port - Can be set in input/output mode bit-wise.
P20	Input	NMI	Port 2 (P2): \quad Input only
P21	I/O	INTP0/TO00	Port 2 (P2): - 8-bit I/O port
P22		INTP1/TO01	
P23		INTP2/TO02	
P24		INTP3/TO03	
P25		INTP4	
P26		INTP5	
P27		INTP6	
P30	1/0	TO10	Port 3 (P3): - 8-bit I/O port - Can be set in input/output mode bit-wise.
P31		TO11	
P32		RxD/SI1	
P33		TxD/SO1	
P34		ASCK/SCK1	
P35		RxD2/SI2	
P36		TxD2/SO2	
P37		ASCK2/SCK2	
P40-P47	I/O	AD0-AD7	Port 4 (P4): - 8-bit I/O port - Can be set in input/output mode bit-wise. - Pins in input mode can all be connected to pull-up resistors at once via software.
P50-P57	I/O	AD8-AD15	Port 5 (P5): - 8-bit I/O port - Can be set in input/output mode bit-wise. - Pins in input mode can all be connected to pull-up resistors at once via software.
P60-P63	I/O	A16-A19	Port 6 (P6): - 4-bit I/O port - Can be set in input/output mode bit-wise. - Pins in input mode can all be connected to pull-up resistors at once via software.

5.1 Port Pins (2/2)

Pin Name	I/O	Shared by:	Function
P70-P77	Input	ANIO-ANI7	Port 7 (P7): - 8-bit input port
P80-P87	Input	ANI8-ANI15	Port 8 (P8): - 8-bit input port
P90	I/O	$\overline{\mathrm{RD}}$	Port 9 (P9): - 5-bit I/O port - Can be set in input/output mode bit-wise. - Pins in input mode can all be connected to pull-up resistors at once via software.
P91		$\overline{\text { LWR }}$	
P92		HWR	
P93		ASTB	
P94		WAIT	

5.2 Pins Other Than Port Pins (1/2)

Pin Name	1/O	Shared by:		Function
NMI	Input	P20	Non-maskable interrupt request input	
INTP0		P21/TO00	External interrupt request input	Capture trigger signal of CC00
INTP1		P22/TO01		Capture trigger signal of CC01
INTP2		P23/TO02		Capture trigger signal of CC02
INTP3		P24/TO03		Capture trigger signal of CC03
INTP4		P25		Conversion start trigger input of A/D converter
INTP5		P26		-
INTP6		P27		
TO00	Output	P21/INTP0	Timer output	
TO01		P22/INTP1		
TO02		P23/INTP2		
TO03		P24/INTP3		
TO10		P30		
TO11		P31		
RxD	Input	P32/SI1	Serial data input (UART0)	
RxD2		P35/SI2	Serial data input (UART2)	
TxD	Output	P33/SO1	Serial data output (UART0)	
TxD2		P36/SO2	Serial data output (UART2)	
ASCK	Input	P34/SCK1	Baud rate clock input (UART0)	
ASCK2		P37/SCK2	Baud rate clock input (UART2)	
SI1	Input	P32/RxD	Serial data input (3-wire serial I/O1)	
SI2		P35/RxD2	Serial data input (3-wire serial I/O2)	
SO1	Output	P33/TxD	Serial data output (3-wire serial I/O1)	
SO2		P36/TxD2	Serial data output (3-wire serial I/O2)	
$\overline{\text { SCK1 }}$	1/O	P34/ASCK	Serial clock input/output (3-wire serial I/O1)	
SCK2		P37/ASCK2	Serial clock input/output (3-wire serial I/O2)	
AD0-AD7	1/0	P40-P47	Lower multiplexed address/data bus when external memory is connected	
AD8-AD15 ${ }^{\text {Note }}$	1/O	P50-P57	- When 8 -bit bus is specified Higher address bus when external memory is connected - When external 16 -bit bus is specified Higher multiplexed address/data bus when external memory is connected	
A16-A19 ${ }^{\text {Note }}$	Output	P60-P63	Higher address bus when external memory is connected	
$\overline{\mathrm{RD}}$	Output	P90	Read strobe to external memory	
$\overline{\text { LWR }}$	Output	P91	- When external 8-bit bus is specified Write strobe to external memory - When external 16 -bit bus is specified Write strobe to external memory located at lower position	
$\overline{\text { HWR }}$		P92	Write strobe to external memory located at higher position when external 16 -bit bus is specified	
ASTB	Output	P93	Timing signal output to externally latch address information output from AD0 through AD15 pins to access external memory	

Note The number of pins used as address bus pins differs depending on the external address space (refer to 9. LOCAL BUS INTERFACE).

5.2 Pins Other Than Port Pins (2/2)

Pin Name	I/O	Shared by:	Function
WAIT	Input	P94	Inserts wait.
BWD	Input	-	Sets bus width.
MODE	Input	-	Directly connect this pin to Vss (this pin specifies test mode of IC).
MODE1	Input	-	Specifies standby function invalid mode. Usually, connect this pin to Vss.
CLKOUT	Output	-	Clock output. Outputs low level during IDLE mode and STOP mode. Otherwise, always outputs $\mathrm{fxx}_{\mathrm{x}}$ (oscillation frequency).
X1	Input	-	Connect crystal for system clock oscillation (clock can be also input to X1).
X2	-	-	
RESET	Input	-	Chip reset
ANIO-ANI7	Input	P70-P77	Analog voltage input for A/D converter
ANI8-ANI15		P80-P87	
AVref	-	-	Reference voltage for A/D converter
AVdo		-	Positive power supply for A/D converter
AVss		-	GND for A/D converter
Vdo		-	Positive power supply
Vss		-	GND

5.3 I/O Circuits of Pins and Processing of Unused Pins

Table 5-1 shows the I/O circuit type of each pin and recommended processing of the unused pins. For the I/O circuit type, refer to Figure 5-1.

Table 5-1. I/O Circuit Type of Each Pin and Recommended Processing of Unused Pins

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00-P03	5-A	I/O	Input: Individually connect to VdD or Vss via resistor.
P10-P12	5		Output: Leave unconnected.
P20/NMI	2	Input	Connect to Vss.
P21/INTP0/TO00	8	I/O	Input: Individually connect to VdD or Vss via resistor.
P22/INTP1/TO01			Output: Leave unconnected.
P23/INTP2/TO02			
P24/INTP3/TO03			
P25/INTP4			
P26/INTP5			
P27/INTP6			
P30/TO10	5		
P31/TO11			
P32/RxD/SI1			
P33/TxD/SO1			
P34/ASCK/SCK1	8		
P35/RxD2/SI2	5		
P36/TxD2/SO2			
P37/ASCK2/SCK2	8		
P40/AD0-P47/AD7	5-A		
P50/AD8-P57/AD15			
P60/A16-P63/A19			
P70/ANI0-P77/ANI7	9	Input	Connect to Vss.
P80/ANI8-P87/ANI15			
P90/RD	5-A	1/0	Input: Individually connect to VdD or Vss via resistor.
P91/LWR			Output: Leave unconnected.
P92/ $/$ HWR			
P93/ASTB			
P94/WAIT			
MODE,MODE1	1	Input	Directly connect to Vss.
RESET	2		-
CLKOUT	3	Output	Leave unconnected.
AVref	-	-	Connect to Vss.
AVss			
AVDD			Connect to Vid.

Remark The circuit type numbers are serial in the 78 K series but are not always so with some models (because some models are not provided with particular circuits).

Figure 5-1. I/O Circuits of Pins
Scher 1

6. CPU ARCHITECTURE

6.1 Memory Space

A 1M-byte memory space can be accessed. The mapping of the internal data area (special function registers and internal RAM) can be selected by using the LOCATION instruction. The LOCATION instruction must be always executed after the reset signal has been deasserted, and must not be used more than once.
(1) When LOCATION 0 instruction is executed

- Internal memory

The internal data area and internal ROM area are mapped as follows:

```
Internal data area : 0FB00H through 0FFFFH
Internal ROM area: 00000H through 07FFFH
```

- External memory

The external memory is accessed in the external memory expansion mode.

(2) When LOCATION OFH instruction is executed

- Internal memory

The internal data area and internal ROM area are mapped as follows:

```
Internal data area : 0FB0OH through FFFFFFH
Internal ROM area: 00000H through 07FFFH
```

- External memory

The external memory is accessed in the external memory expansion mode.

Figure 6-1. Memory Map

Notes 1. Accessed in the external memory expansion mode.
2. Base area or entry area by reset or interrupt. The internal RAM is not reset.

6.2 CPU Registers

6.2.1 General-purpose registers

Sixteen 8-bit general-purpose registers are provided. Two 8-bit general-purpose registers can be used in pairs as a 16-bit general-purpose register. Of the 16 -bit registers, four can be used with an 8 -bit register for address expansion as 24 -bit address specification registers.

Eight banks of register sets are available which can be selected by software or context switching function.
The general-purpose registers except the $\mathrm{V}, \mathrm{U}, \mathrm{T}$, and W registers for address expansion are mapped to the internal RAM.

Figure 6-2. General-Purpose Register Format

Caution R4, R5, R6, R7, RP2, and RP3 can be used as X, A, C, B, AX, and BC registers, respectively, by setting the RSS bit of the PSW to 1 . However, use this function only when using a $78 \mathrm{~K} / \mathrm{III}$ series program.

6.2.2 Control registers

(1) Program counter (PC)

This is a 20-bit program counter. Its contents are automatically updated as the program is executed.

Figure 6-3. Program Counter (PC) Format

(2) Program status word (PSW)

This register retains the status of the CPU and its contents are automatically updated as the program is executed.

Figure 6-4. Program Status Word (PSW) Format

Note This flag is provided so that the μ PD784054(A) maintains compatibility with the $78 \mathrm{~K} / \mathrm{III}$ series. Be sure to clear this flag to 0 when using $78 \mathrm{~K} / \mathrm{III}$ series software.

(3) Stack pointer (SP)

This is a 24 -bit pointer that holds the first address of the stack.
Be sure to write 0 to the high-order 4 bits of this pointer.

Figure 6-5. Stack Pointer (SP) Format

SP

23	20			
0	0	0	0	0

6.2.3 Special function registers (SFRs)

The special function registers are registers to which special functions are assigned, and include the mode registers and control registers of the internal peripheral hardware. These registers are mapped to a 256-byte space of addresses 0FFOOH through OFFFFH ${ }^{\text {Note }}$.

Note When the LOCATION 0 instruction is executed. FFFOOH through FFFFFH when the LOCATION OFH instruction is executed.

Caution Do not access an address in this area to which no SFR is allocated. If an address to which no SFR is allocated is accessed by mistake, the μ PD784054(A) may be deadlocked. The deadlock status can be cleared only by inputting the reset signal.

Table 6-1 lists the special function registers. The meanings of the symbols in this table are as follows:

- Symbol \qquad Symbol indicating an SFR. These symbols are reserved for an NEC's assembler (RA78K4). With a C compiler (CC78K4), they can be used as sfr variables by using the \#pragma sfr directive.
- R/W \qquad Indicates whether the corresponding SFR can be read/written.

R/W : Read/write
R : Read only
W : Write only

- Bit units for manipulation.... Indicates bit units in which the corresponding SFR can be manipulated. SFRs that can be manipulated in 16-bit units can be written as operand sfrp. Specify the even addresses of these SFRs when specifying an address. SFRs that can be manipulated bit-wise can be written in bit manipulation instructions.
- On reset \qquad Indicates the status of each register when the $\overline{\text { RESET }}$ signal is input.

Table 6-1. Special Function Register List (1/4)

Address ${ }^{\text {Note } 1}$	Special Function Register (SFR) Name	Symbol	R/W	Bit units for manipulation			On reset
				1 bit	8 bits	16 bits	
0FF00H	Port 0	P0	R/W	\bigcirc	\bigcirc	-	Undefined
0FF01H	Port 1	P1		\bigcirc	\bigcirc	-	
0FF02H	Port 2	P2	Note 2	\bigcirc	\bigcirc	-	
0FF03H	Port 3	P3	R/W	\bigcirc	\bigcirc	-	
0FF04H	Port 4	P4		\bigcirc	\bigcirc	-	
0FF05H	Port 5	P5		\bigcirc	\bigcirc	-	
0FF06H	Port 6	P6		\bigcirc	\bigcirc	-	
0FF07H	Port 7	P7	R	\bigcirc	\bigcirc	-	
0FF08H	Port 8	P8		\bigcirc	\bigcirc	-	
0FF09H	Port 9	P9	R/W	\bigcirc	\bigcirc	-	
OFF10H	Timer register 0	TM0	R	-	-	\bigcirc	0000H
0FF11H							
0FF12H	Capture/compare register 00	CC00	R/W	-	-	\bigcirc	Undefined
0FF13H							
0FF14H	Capture/compare register 01	CC01		-	-	\bigcirc	
0FF15H							
0FF16H	Capture/compare register 02	CC02		-	-	\bigcirc	
0FF17H							
0FF18H	Capture/compare register 03	CC03		-	-	\bigcirc	
0FF19H							
0FF1AH	Timer register 1	TM1	R	-	-	\bigcirc	0000H
0FF1BH							
0FF1CH	Compare register 10	CM10	R/W	-	-	\bigcirc	Undefined
0FF1DH							
0FF1EH	Compare register 11	CM11		-	-	\bigcirc	
0FF1FH							
0FF20H	Port 0 mode register	PMO		\bigcirc	\bigcirc	-	FFH
0FF21H	Port 1 mode register	PM1		\bigcirc	\bigcirc	-	
0FF22H	Port 2 mode register	PM2 ${ }^{\text {Note } 3}$		\bigcirc	\bigcirc	-	
0FF23H	Port 3 mode register	PM3		\bigcirc	\bigcirc	-	
0FF24H	Port 4 mode register	PM4		\bigcirc	\bigcirc	-	
0FF25H	Port 5 mode register	PM5		\bigcirc	\bigcirc	-	
0FF26H	Port 6 mode register	PM6		\bigcirc	\bigcirc	-	
0FF29H	Port 9 mode register	PM9		\bigcirc	\bigcirc	-	
0FF2FH	Port read control register	PRDC		\bigcirc	\bigcirc	-	OOH
0FF30H	Timer unit mode register 0	TUM0		\bigcirc	\bigcirc	-	
0FF31H	Timer mode control register	TMC		\bigcirc	\bigcirc	-	

Notes 1. When the LOCATION 0 instruction is executed. Add "F0000H" to this value when the LOCATION 0FH instruction is executed.
2. Bit 0 of $P 2$ can only be read. Bits 1 through 7 can be read/written.
3. Bit 0 of $P M 2$ is fixed to " 1 " by hardware.

Table 6-1. Special Function Register List (2/4)

Address ${ }^{\text {Note } 1}$	Special Function Register (SFR) Name	Symbol	R/W	Bit units for manipulation			On reset
				1 bit	8 bits	16 bits	
0FF32H	Timer output control register 0	TOC0	R/W	\bigcirc	\bigcirc	-	00H
0FF33H	Timer output control register 1	TOC1		\bigcirc	\bigcirc	-	
0FF37H	Timer mode control register 4	TMC4		\bigcirc	\bigcirc	-	
0FF38H	Prescaler mode register	PRM		-	\bigcirc	-	
0FF3AH	Prescaler mode register 4	PRM4		-	\bigcirc	-	
0FF3BH	Noise protection control register	NPC		\bigcirc	\bigcirc	-	
0FF3CH	External interrupt mode register 0	INTM0		\bigcirc	\bigcirc	-	
0FF3DH	External interrupt mode register 1	INTM1		\bigcirc	\bigcirc	-	
0FF3EH	Interrupt valid edge flag register 1	IEF1		\bigcirc	\bigcirc	-	Undefined
0FF3FH	Interrupt valid edge flag register 2	IEF2		\bigcirc	\bigcirc	-	
0FF42H	Port 2 mode control register	PMC2 ${ }^{\text {Note } 2}$		\bigcirc	\bigcirc	-	OOH
0FF43H	Port 3 mode control register	PMC3		\bigcirc	\bigcirc	-	
0FF49H	Port 9 mode control register	PMC9		\bigcirc	\bigcirc	-	
0FF4EH	Pull-up resistor option register L	PUOL		\bigcirc	\bigcirc	-	
0FF4FH	Pull-up resistor option register H	PUOH		\bigcirc	\bigcirc	-	
0FF60H	Timer register 4	TM4	R	-	-	\bigcirc	0000H
0FF61H							
0FF62H	Compare register 40	CM40	R/W	-	-	\bigcirc	Undefined
0FF63H							
0FF64H	Compare register 41	CM41		-	-	\bigcirc	
0FF65H							
0FF6EH	A/D converter mode register	ADM		\bigcirc	\bigcirc	-	00H
0FF70H	A/D conversion result register 0	ADCR0	R	-	-	\bigcirc	Undefined
0FF71H							
0FF71H	A/D conversion result register 0 H	ADCROH		-	\bigcirc	-	
0FF72H	A/D conversion result register 1	ADCR1		-	-	\bigcirc	
0FF73H							
0FF73H	A/D conversion result register 1 H	ADCR1H		-	\bigcirc	-	
0FF74H	A/D conversion result register 2	ADCR2		-	-	\bigcirc	
0FF75H							
0FF75H	A/D conversion result register 2 H	ADCR2H		-	\bigcirc	-	
0FF76H	A/D conversion result register 3	ADCR3		-	-	\bigcirc	
0FF77H							
0FF77H	A/D conversion result register 3H	ADCR3H		-	\bigcirc	-	
0FF78H	A/D conversion result register 4	ADCR4		-	-	\bigcirc	
0FF79H							
0FF79H	A/D conversion result register 4 H	ADCR4H		-	\bigcirc	-	

Notes 1. When the LOCATION 0 instruction is executed. Add "F0000H" to this value when the LOCATION OFH instruction is executed.
2. Bits 0 , and 5 through 7 of PMC2 are fixed to "0" by hardware.

Table 6-1. Special Function Register List (3/4)

Address ${ }^{\text {Note } 1}$	Special Function Register (SFR) Name	Symbol	R/W	Bit units for manipulation			On reset
				1 bit	8 bits	16 bits	
0FF7AH	A/D conversion result register 5	ADCR5	R	-	-	\bigcirc	Undefined
0FF7BH							
0FF7BH	A/D conversion result register 5 H	ADCR5H		-	\bigcirc	-	
0FF7CH	A/D conversion result register 6	ADCR6		-	-	\bigcirc	
0FF7DH							
0FF7DH	A/D conversion result register 6H	ADCR6H		-	\bigcirc	-	
0FF7EH	A/D conversion result register 7	ADCR7		-	-	\bigcirc	
0FF7FH							
0FF7FH	A/D conversion result register 7H	ADCR7H		-	\bigcirc	-	
0FF84H	Clocked serial interface mode register 1	CSIM1	R/W	\bigcirc	\bigcirc	-	OOH
0FF85H	Clocked serial interface mode register 2	CSIM2		\bigcirc	\bigcirc	-	
0FF88H	Asynchronous serial interface mode register	ASIM		\bigcirc	\bigcirc	-	
0 FF 89 H	Asynchronous serial interface mode register 2	ASIM2		\bigcirc	\bigcirc	-	
0FF8AH	Asynchronous serial interface status register	ASIS	R	\bigcirc	\bigcirc	-	
0FF8BH	Asynchronous serial interface status register 2	ASIS2		\bigcirc	\bigcirc	-	
0FF8CH	Serial receive buffer: UART0	RXB		-	\bigcirc	-	Undefined
	Serial transmit shift register: UART0	TXS	W	-	\bigcirc	-	
	Serial shift register: IOE1	SIO1	R/W	-	\bigcirc	-	
0FF8DH	Serial receive buffer: UART2	RXB2	R	-	\bigcirc	-	
	Serial transmit shift register: UART2	TXS2	W	-	\bigcirc	-	
	Serial shift register: IOE2	SIO2	R/W	-	\bigcirc	-	
0FF90H	Baud rate generator control register	BRGC		-	\bigcirc	-	OOH
0FF91H	Baud rate generator control register 2	BRGC2		-	\bigcirc	-	
0FFA8H	In-service priority register	ISPR	R	\bigcirc	\bigcirc	-	
OFFAAH	Interrupt mode control register	IMC	R/W	\bigcirc	\bigcirc	-	80 H
OFFACH	Interrupt mask register OL	MKOL		\bigcirc	\bigcirc	-	FFH
OFFACH	Interrupt mask register 0	MKO		-	-	\bigcirc	FFFFH
OFFADH							
OFFADH	Interrupt mask register OH	MKOH		\bigcirc	\bigcirc	-	FFH
OFFAEH	Interrupt mask register 1L	MK1L		\bigcirc	\bigcirc	-	
OFFAEH	Interrupt mask register 1	MK1		-	-	\bigcirc	FFFFH
OFFAFH							
OFFAFH	Interrupt mask register 1H	MK1H		\bigcirc	\bigcirc	-	FFH
OFFCOH	Standby control registerNote 2	STBC		-	\bigcirc	-	30 H
OFFC2H	Watchdog timer mode register ${ }^{\text {Note } 2}$	WDM		-	\bigcirc	-	OOH
0 FFC 4 H	Memory expansion mode register	MM		\bigcirc	\bigcirc	-	2 H
0FFC7H	Programmable wait control register 1	PWC1		-	\bigcirc	-	AAH

Notes 1. When the LOCATION 0 instruction is executed. Add "F0000H" to this value when the LOCATION 0FH instruction is executed.
2. These registers can be written only by using dedicated instructions MOV STBC, \#byte and MOV WDM, \#byte, and cannot be written by any other instructions.

Table 6-1. Special Function Register List (4/4)

Address ${ }^{\text {Note } 1}$	Special Function Register (SFR) Name	Symbol	R/W	Bit units for manipulation			On reset
				1 bit	8 bits	16 bits	
0FFC8H	Programmable wait control register 2	PWC2	R/W	-	-	\bigcirc	AAAAH
0FFC9H							
OFFCAH	Bus width specification register	BW		-	-	\bigcirc	Note 2
OFFCBH							
OFFCFH	Oscillation stabilization time specification register	OSTS		-	\bigcirc	-	OOH
OFFDOHOFFDFH	External SFR area	-		\bigcirc	\bigcirc	-	Undefined
OFFEOH	Interrupt control register (INTOVO)	OVIC0		\bigcirc	\bigcirc	-	43H
0FFE1H	Interrupt control register (INTOV1)	OVIC1		\bigcirc	\bigcirc	-	
0FFE2H	Interrupt control register (INTOV4)	OVIC4		\bigcirc	\bigcirc	-	
0FFE3H	Interrupt control register (INTP0)	PIC0		\bigcirc	\bigcirc	-	
0FFE4H	Interrupt control register (INTP1)	PIC1		\bigcirc	\bigcirc	-	
0FFE5H	Interrupt control register (INTP2)	PIC2		\bigcirc	\bigcirc	-	
0FFE6H	Interrupt control register (INTP3)	PIC3		\bigcirc	\bigcirc	-	
0FFE7H	Interrupt control register (INTP4)	PIC4		\bigcirc	\bigcirc	-	
0FFE8H	Interrupt control register (INTP5)	PIC5		\bigcirc	\bigcirc	-	
OFFE9H	Interrupt control register (INTP6)	PIC6		\bigcirc	\bigcirc	-	
OFFEAH	Interrupt control register (INTCM10)	CMIC10		\bigcirc	\bigcirc	-	
OFFEBH	Interrupt control register (INTCM11)	CMIC11		\bigcirc	\bigcirc	-	
OFFFOH	Interrupt control register (INTCM40)	CMIC40		\bigcirc	\bigcirc	-	
0FFF1H	Interrupt control register (INTCM41)	CMIC41		\bigcirc	\bigcirc	-	
0FFF2H	Interrupt control register (INTSER)	SERIC		\bigcirc	\bigcirc	-	
0FFF3H	Interrupt control register (INTSR)	SRIC		\bigcirc	\bigcirc	-	
	Interrupt control register (INTCSI1)	CSIIC1		\bigcirc	\bigcirc	-	
0FFF4H	Interrupt control register (INTST)	STIC		\bigcirc	\bigcirc	-	
0FFF5 ${ }^{\text {H }}$	Interrupt control register (INTSER2)	SERIC2		\bigcirc	\bigcirc	-	
0FFF6H	Interrupt control register (INTSR2)	SRIC2		\bigcirc	\bigcirc	-	
	Interrupt control register (INTCSI2)	CSIIC2		\bigcirc	\bigcirc	-	
0FFF7H	Interrupt control register (INTST2)	STIC2		\bigcirc	\bigcirc	-	
0FFF8H	Interrupt control register (INTAD)	ADIC		\bigcirc	\bigcirc	-	

Notes 1. When the LOCATION 0 instruction is executed. Add "FOOOOH" to this value when the LOCATION 0FH instruction is executed.
2. The value of this register differs on reset depending on the setting of the BWD pin.
$B W D=0: 0000 \mathrm{H}$
$B W D=1: 00 F F H$

7. PERIPHERAL HARDWARE FUNCTIONS

7.1 Ports

The μ PD784054(A) has the ports shown in Figure 7-1. These ports can be used for various control operations. The function of each port is shown in Table 7-1. Ports 0,4 through 6, and 9 can be connected to an internal pull-up resistor via software when they are set in the input mode.

Figure 7-1. Port Configuration

Table 7-1. Port Function

Port Name	Pin Name	Function	Specification of Pull-Up Resistor by Software
Port 0	P00-P03	Can be set in input or output mode bit-wise.	All pins in input mode
Port 1	P10-P12		-
Port 2	P20-P27	Can be set in input or output mode bit-wise (however, P 20 is input-only).	
Port 3	P30-P37	Can be set in input or output mode bit-wise.	
Port 4	P40-P47		All pins in input mode
Port 5	P50-P57		
Port 6	P60-P63		
Port 7	P70-P77	Input port	-
Port 8	P80-P87		
Port 9	P90-P94	Can be set in input or output mode bit-wise.	All pins in input mode

7.2 Clock Generation Circuit

The clock generation circuit generates and controls the internal system clock (CLK) to be supplied to the CPU. Figure 7-2 shows the configuration of this circuit.

Figure 7-2. Block Diagram of Clock Generation Circuit

Remark $\mathrm{fxx}_{\mathrm{x}}$: crystal/ceramic oscillation frequency
fx : external clock frequency
fclk : internal system clock frequency

Figure 7-3. Example of Using Oscillation Circuit
(1) Crystal/ceramic oscillation

(2) External clock input
(a) EXTC bit of OSTS = 1

(b) EXTC bit of OSTS $=0$

Caution When using the clock oscillation circuit, wire the portion enclosed by the dotted line in the above figure as follows to avoid adverse effects of wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with other signal lines.
- Do not route the wiring in the vicinity of lines through which a high alternating current flows.
- Always keep the ground point of the capacitor of the oscillation circuit at the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not extract signals from the oscillation circuit.

7.3 Timer

The μ PD784054(A) has three 16 -bit timer units.
Because a total of 11 interrupt requests are supported, the timer units can be used as 11-channel timers.

Table 7-2. Timer Function

Name		Timer 0	Timer 1	Timer 4
Operation mode	Interval timer	4ch	2ch	2ch
Function	Timer output	4ch	2ch	-
	Toggle output	\bigcirc	\bigcirc	-
	Set/reset output	\bigcirc	\bigcirc	-
	Overflow interrupt	\bigcirc	\bigcirc	\bigcirc
	Number of interrupt requests	5	3	3

Figure 7-4. Block Diagram of Timer

Timer 0

Prescaler: fclk/4, fclk/8, fclk/16, fclk/32, fclk/64

Timer 1

Prescaler: fclk/8, fclk/16, fclk/32, fclk/64, fclk/128

Timer 4

Prescaler: fclk/4, fclk/8, fclk/16, fclk/32, fclk/64

7.4 A/D Converter

The μ PD784054(A) has an analog-to-digital (A/D) converter with 16 multiplexed analog input pins (ANIO through ANI15). This converter is of successive approximation type.

The result of conversion is stored to and retained in 10-bit A/D conversion result registers (ADCR0 through ADCR7). Therefore, high-speed, high-accuracy conversion can be performed (conversion time: about $13.5 \mu \mathrm{~s}$: fclk $=12.5 \mathrm{MHz}$).

The A/D conversion operation can be started in the following modes:

- Hardware start: Conversion is started by trigger input (INTP4).
- Software start : Conversion is started by setting a bit of the A/D converter mode register (ADM).

The A/D converter operates in the following modes:

- Scan mode : Sequentially selects two or more analog input pins to obtain data to be converted from all the pins.
- Select mode : Selects only one analog input pin to obtain successive conversion values.

The above modes and stopping the conversion are specified by ADM.
When the result of conversion is transferred to ADCRn ($n=0$ to 7), interrupt request INTAD is generated. By using this interrupt request and by using macro service, the converted value can be successively transferred to memory.

Figure 7-5. Block Diagram of A/D Converter

7.5 Serial Interface

The $\mu \mathrm{PD} 784054(\mathrm{~A})$ is provided with two independent serial interface channels.

- Asynchronous serial interface $($ UART $) / 3$-wire serial I/O $(I O E) \times 2$

By using these serial interface channels, communication with an external device and local communication within a system can be performed at the same time (refer to Figure 7-6).

Figure 7-6. Example of Serial Interface

Note Handshake line

7.5.1 Asynchronous serial interface/3-wire serial I/O (UART/IOE)

Two serial interface channels from which asynchronous serial interface mode and three-wire serial I/O mode can be selected are provided.

(1) Asynchronous serial interface mode

In this mode, 1-byte data following a start bit is transferred or received.
The internal baud rate generator allows communication in a wide range of baud rates.
The clock input to the ASCK pin can also be divided to define a baud rate.
The baud rate generator can also set a baud rate conforming to the MIDI standard (31.25 kbps).

Figure 7-7. Block Diagram in Asynchronous Serial Interface Mode

Remark fclk: internal system clock

$$
\mathrm{n}=0 \text { to } 11
$$

$$
m=16 \text { to } 30
$$

(2) 3-wire serial I/O mode

This mode is to start transmission when the master device makes a serial clock active and to communicate 1-byte data in synchronization with this clock.
The interface in this mode communicates with devices that have conventional clocked serial interface. Basically, communication is performed by using three lines: serial clock ($\overline{\mathrm{SCK}}$) and two serial data (SI and SO) lines. To connect two or more devices, a handshake line is necessary.

Figure 7-8. Block Diagram in 3-Wire Serial I/O Mode

Remark fclk: internal system clock
$\mathrm{n}=0$ to 11
$\mathrm{m}=1,16$ to 30

7.6 Edge Detection Circuit

The interrupt input pins (NMI and INTP0 through INTP6) input not only interrupt requests but also trigger signals of the internal hardware. Because all the interrupts and internal hardware operate by detecting specific edges of the input signals, a function to detect edges is provided. In addition, a noise rejection function is also provided to prevent detection of a wrong edge due to noise.

Pin	Detectable Edge	Noise Rejected by:
NMI	Either rising or falling edge	Analog delay
INTP0-INTP6	Either rising or falling edge, or both edges	Clock samplingNote

Note A sampling clock can be selected.

7.7 Watchdog Timer

A watchdog timer is provided to detect a hang-up of the CPU. This watchdog timer generates a non-maskable interrupt unless it is cleared by software within a specified interval time. Once the watchdog timer has been enable to operate, its operation cannot be stopped by software. Moreover, it can be specified whether the interrupt by the watchdog timer or the interrupt from the NMI pin takes precedence.

Figure 7-9. Block Diagram of Watchdog Timer

8. INTERRUPT FUNCTION

The three types of interrupt processing shown in Table 8-1 can be selected.

Table 8-1. Interrupt Request Processing

Processing Mode	Processed by:	Processing	Contents of PC and PSW
Vectored interrupt	Software	Branches to and executes processing routine (any processing contents).	Saves and restores to/from stack.
		Automatically selects register bank, and branches to and executes processing routine (any processing contents).	Saves or restores to/from fixed area in register bank.
Macro service	Firmware	Executes data transfer between memory and I/O (any processing contents).	Retained

8.1 Interrupt Source

As interrupt sources, twenty-three sources listed in Table 8-2, BRK instruction execution, and operand error are available.

Four priority levels of interrupt processing can be selected, so that nesting during interrupt processing and the levels of interrupt requests that are generated at the same time can be controlled. However, nesting always advances with macro service (i.e., nesting is not kept pending).

The default priority is the priority (fixed) of the processing for the interrupt requests that have occurred at the same time and have the same priority level (refer to Table 8-2).

Table 8-2. Interrupt Sources

Type	Default Priority	Source		Internal/ External	Macro Service
		Name	Trigger		
Software	-	BRK instruction	Execution of instruction	-	-
		BRKCS instruction			
		Operand error	If result of exclusive OR of operands byte and $\overline{\text { byte }}$ is not FFH when MOV STBC, \#byte, MOV WDM, \#byte, or LOCATION instruction is executed		
Nonmaskable	-	NMI	Detection of pin input edge	External	
		INTWDT	Overflow of watchdog timer	Internal	
Maskable	0 (highest)	INTOV0	Overflow of timer 0		\bigcirc
	1	INTOV1	Overflow of timer 1		
	2	INTOV4	Overflow of timer 4		
	3	INTP0	Detection of pin input edge (CC00 capture trigger)	External	
		INTCC00	Generation of TM0-CC00 coincidence signal	Internal	
	4	INTP1	Detection of pin input edge (CC01 capture trigger)	External	
		INTCC01	Generation of TM0-CC01 coincidence signal	Internal	
	5	INTP2	Detection of pin input edge (CC02 capture trigger)	External	
		INTCC02	Generation of TM0-CC02 coincidence signal	Internal	
	6	INTP3	Detection of pin input edge (CC03 capture trigger)	External	
		INTCC03	Generation of TM0-CC03 coincidence signal	Internal	
	7	INTP4	Detection of pin input edge (A/D converter conversion start trigger)	External	
	8	INTP5	Detection of pin input edge		
	9	INTP6	Detection of pin input edge		
	10	INTCM10	Generation of TM1-CM10 coincidence signal	Internal	
	11	INTCM11	Generation of TM1-CM11 coincidence signal		
	12	INTCM40	Generation of TM4-CM40 coincidence signal		
	13	INTCM41	Generation of TM4-CM41 coincidence signal		
	14	INTSER	Occurrence of UARTO reception error		
	15	INTSR	End of UART0 reception		
		INTCSI1	End of 3-wire serial I/O1 transfer		
	16	INTST	End of UARTO transfer		
	17	INTSER2	Occurrence of UART2 reception error		
	18	INTSR2	End of UART2 reception		
		INTCSI2	End of 3-wire serial I/O2 transfer		
	19	INTST2	End of UART2 transfer		
	20 (lowest)	INTAD	End of A/D converter conversion (transfer to ADCR)		

8.2 Vectored Interrupt

Execution branches to a processing routine by using the memory contents of the vector table address corresponding to an interrupt source as the branch destination address.

The following operations are performed so that the CPU processes the interrupt:

- On branch : Saves status of CPU (contents of PC and PSW) to stack
- On returning : Restores status of CPU from stack

Execution is returned from the processing routine to the main routine by the RETI instruction. The branch destination address must be in a range of 0 to FFFFH.

Table 8-3. Vector Table Address

Interrupt Source	Vector Table Address	Interrupt Source	Vector Table Address
BRK instruction	003EH	INTP5	0016H
Operand error	003CH	INTP6	0018H
NMI	0002H	INTCM10	001AH
INTWDT	0004H	INTCM11	001 CH
INTOV0	0006H	INTCM40	0026H
INTOV1	0008H	INTCM41	0028H
INTOV4	000AH	INTSER	002AH
INTP0	000CH	INTSR	002CH
INTCC00		INTCSI1	
INTP1	000EH	INTST	002EH
INTCC01		INTSER2	0030H
INTP2	0010H	INTSR2	0032H
INTCC02		INTCSI2	
INTP3	0012H	INTST2	0034H
INTCC03		INTAD	0036H
INTP4	0014H		

8.3 Context Switching

A specific register bank is selected by hardware when an interrupt request is generated or when the BRKCS instruction is executed.

Execution branches to the vector address stored in advance to the selected register bank, and the current contents of the program counter (PC) and program status word (PSW) are stacked to the register bank.

The branch destination address must be in a range of 0 to FFFFH.

Figure 8-1. Context Switching Operation When Interrupt Request Is Generated

8.4 Macro Service

The μ PD784054(A) has a total of seven types of macro service. Each macro service is outlined below.
(1) Counter mode: EVTCNT

- Operation (a) Increments or decrements an 8-bit macro service counter (MSC).
(b) A vectored interrupt request is generated when the value of MSC reaches 0 .

- Application example: Event counter, measurement of number of times of capture
(2) Block transfer mode: BLKTRS
- Operation (a) Transfers block data between the buffer and an SFR specified by the SFR pointer (SFR.PTR).
(b) The transfer source and destination can be an SFR or buffer. The length of the data to be transferred can be byte or word.
(c) The number of times data is to be transferred (block size) is specified by MSC.
(d) MSC is auto-decremented (-1) each time the macro service has been executed.
(e) When the value of MSC has reached 0 , a vectored interrupt request is generated.

- Application example: Data transfer/reception of serial interface
(3) Block transfer mode (with memory pointer): BLKTRS-P
- Operation This is the block transfer mode in (2) with a memory pointer (MEM.PTR) appended. The appended buffer area of MEM.PTR can be freely set on the memory space.

Remark MEMP is auto-incremented (+1: byte data transfer/+2: word data transfer) each time the macro service has been executed.

Internal bus

- Application example: Same as (2)
(4) Data differential mode: DTADIF
- Operation (a) Calculates the difference between the contents of the SFR specified by SFR pointer (SFR.PTR) (current value) and the contents of the SFR loaded to the last data buffer (LDB).
(b) Stores the result of the calculation to a predetermined buffer area.
(c) Stores the contents of the current value of SFR to LDB.
(d) The number of times the data is to be transferred (block size) is specified by MSC. The value of MSC is auto-decremented (-1) each time the macro service has been executed.
(e) When the value of MSC has reached 0 , a vectored interrupt request is generated.

Remark The differential calculation can be performed only an SFR of 16-bit configuration.

- Application example: Measurement of period and pulse width by capture register of timer 0
(5) Data differential mode (with memory pointer): DTADIF-P
- Operation This is the data differential mode in (4) with a memory pointer (MEM.PTR) appended. The appended MEM.PTR can set a buffer area to which the differential data is to be stored on the memory space freely.

Remarks 1. The differential calculation can be performed only an SFR of 16-bit configuration.
2. The buffer is specified by the result of an operation between MEM.PTR and MSC ${ }^{\text {Note }}$. The value of MEM.PTR is not updated after the data has been transferred.

Note MEM.PTR $-($ MSC $\times 2)+2$

- Application example: Same as (4)

(6) CPU monitoring mode0: SFLF0

- Operation (a) Checks the internal operation of the CPU.
(b) When the blocks are operating normally, the value given by subtracting 10 from the initial value is transferred to the SFR specified by the SFR pointer (SFR.PTR).
- Application example: Used for self checking of the CPU during normal operation.
(7) CPU monitoring mode1: SELF1
- Operation (a) Checks the internal operation of the CPU.
(b) When the blocks are operating normally, the value given by subtracting 8 from the initial value is transferred to the SFR specified by the SFR pointer (SFR.PTR).
- Application example: Used for self checking of the CPU during normal operation.

9. LOCAL BUS INTERFACE

The μ PD784054(A) can be connected to an external memory or I/O (memory mapped I/O), supporting a 1 M byte memory space (refer to Figure 9-1).

Figure 9-1. Example of Local Bus Interface (with external 8-bit bus specified)

9.1 Memory Expansion

The external program memory or data memory can be expanded from 256 bytes up to 1 M bytes in seven steps.

When an external device is connected, the address/data bus and read/write strobe signals are controlled by using ports 4 through 6 and P90 through P93 pins. The functions of these ports and pins are set by the memory expansion mode register (MM).

Table 9-1. Setting of Pin Function

Memory Expansion Mode Register	Pin Function			
	Port 4	Port 5	Port 6	
MM0-MM3	P40-P47	P50-P57	P60-P63	P90-P93
Port mode	General-purpose port			
External memory expansion mode	AD0-AD7	AD8 to AD15 are set stepwise. Rest of pins can be used as general-purpose port pins.	A16 through A19 are set stepwise. Rest of pins can be used as general-purpose port pins.	$\begin{aligned} & \text { P90 }: \overline{\mathrm{RD}} \\ & \text { P91 }: \overline{\mathrm{LWR}} \\ & \text { P92 }: \overline{\mathrm{HWR}} \\ & \text { P93 }: \overline{\mathrm{ASTB}} \end{aligned}$

Remark AD8 through AD15 are used as address bus.

The number of pins of ports 5 and 6 that are used as address bus pins can be changed according to the size of the external memory connected (external address space), so that the external memory can be expanded stepwise. The pins not used as address bus pins can be used as general-purpose I/O port pins (refer to Table $\mathbf{9 - 2)}$. The external address space can be set in seven steps by MM.

Table 9-2. Operations of Ports 5 and 6 (in external memory expansion mode)

Port 5								Port 6				External address space
P50	P51	P52	P53	P54	P55	P56	P57	P60	P61	P62	P63	
General-purpose port												256 bytes or less ${ }^{\text {Note }}$
AD8	AD9											1 K bytes or less ${ }^{\text {Note }}$
			AD11									4 K bytes or less ${ }^{\text {Note }}$
					AD13							16K bytes or less ${ }^{\text {Note }}$
							AD15					64 K bytes or less
								A16	A17			256 K bytes or less
										A18	A19	1M bytes or less

Note When the external 16-bit bus is specified, do not set MM such that the external address space is of this size.

Caution When the external 16-bit bus is specified, set MM such that all the pins of port 5 (P 50 through P57) are used as AD pins (AD8 through AD15).

9.2 Memory Space

The 1 M -byte memory space is divided into the following eight spaces of logical addresses. Each space can be controlled by using the programmable wait function and bus sizing function.

Figure 9-2. Memory Space

FFFFFH	512K bytes
$\begin{aligned} & 80000 \mathrm{H} \\ & \text { 7FFFFH } \end{aligned}$	
	256K bytes
40000 H	
	128K bytes
$\begin{aligned} & 20000 \mathrm{H} \\ & \text { 1FFFFH } \end{aligned}$	
	64 K bytes
$\begin{aligned} & 10000 \mathrm{H} \\ & \text { OFFFFH } \end{aligned}$	
	16K bytes
$\begin{aligned} & 0 \mathrm{COOOH} \\ & \text { OBFFFH } \end{aligned}$	
	16K bytes
$\begin{aligned} & 08000 \mathrm{H} \\ & 07 \mathrm{FFFH} \end{aligned}$	
	16K bytes
$\begin{aligned} & 04000 \mathrm{H} \\ & 03 F F F H \end{aligned}$	
	16K bytes
00000 H	

9.3 Programmable Wait

A wait state can be inserted to each of the eight memory spaces while the $\overline{R D}, \overline{L W R}$, and $\overline{H W R}$ signals are active. Even if memories with different access times are connected, therefore, the overall efficiency of the system is not degraded.

In addition, an address wait function that extends the active period of the ASTB signal is also available to extend the address decode time (this function can be set to all the spaces).

9.4 Bus Sizing Function

The μ PD784054(A) can change the external data bus width between 8 and 16 bits when an external device is connected. Even if the memory space is divided by eight, the bus width of each memory space can be specified independently.

10. STANDBY FUNCTION

The μ PD784054(A) has the following standby function modes that reduce the power consumption of the chip.

- HALT mode
- IDLE mode
- STOP mode
: This mode stops the operating clock of the CPU. It can reduce the average power consumption through intermittent operation by combination of a normal operation and this mode.
: This mode stops the entire system with the operation of the oscillation circuit continuing. Normal program operation can be restored from this mode with the power consumption close to that in the STOP mode and time equivalent to that in the HALT mode.
: This mode stops the oscillator and stops all the internal operations of the chip to minimize the power consumption to the level of only leakage current.
- Standby function invalid mode : This mode makes the standby function (HALT/IDLE/STOP modes) invalid by asserting the MODE1 pin high. This mode is useful when the standby mode must not be used because of the application.

These modes are programmable.
Macro service can be started from the HALT mode.

Figure 10-1. Standby Status Transition

Note Only unmasked interrupt request

Remark Only external input of NMI is valid. The watchdog timer cannot be used to release the standby mode (STOP/HALT/IDLE).

11. RESET FUNCTION

When a low level is input to the $\overline{\text { RESET }}$ pin, the internal hardware is initialized (reset status). When the $\overline{R E S E T}$ signal goes high, the following data is set to the program counter (PC).

- Low-order 8 bits of PC : contents of address 0000 H
- Middle 8 bits of PC : contents of address 0001 H
- High-order 4 bits of PC: 0

Program execution is started from the set contents of the PC. Therefore, the contents of the PC are assumed as a branch destination address, and the program can be reset and started from any address.

Set the contents of each register by program as necessary.
To prevent malfunctioning due to noise, a noise rejection circuit is provided to the $\overline{R E S E T}$ input circuit. This noise rejection circuit is a sampling circuit with analog delay.

Figure 11-1. Accepting Reset

Keep the RESET signal active until the oscillation stabilization time (about 40 ms) elapses when executing a reset operation on power application or when releasing the STOP mode by reset.

Figure 11-2. Reset Operation on Power Application

12. INSTRUCTION SET

(1) 8-bit instructions ((): combination realized by writing A as r)

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, SHR, SHL, ROR4, ROL4, DBNZ, PUSH, POP, MOVM, XCHM, CMPME, CMPMNE, CMPMNC, CMPMC, MOVBK, XCHBK, CMPBKE, CMPBKNE, CMPBKNC, CMPBKC, CHKL, CHKLA

Table 12-1. Instructions for 8-Bit Addressing

2nd Operand 1st Operand	\#byte	A	r^{\prime}	saddr saddr'	sfr	laddr16 !!addr24	mem [saddrp] [\%saddrg]	r3 PSWL PSWH	[WHL+] [WHL-]	n	None ${ }^{\text {Note } 2}$
A	(MOV) ADD Note 1	$\begin{aligned} & \hline(\mathrm{MOV}) \\ & (\mathrm{XCH}) \\ & (\mathrm{ADD})^{\text {Note } 1} \end{aligned}$	$\begin{aligned} & \hline \mathrm{MOV} \\ & \mathrm{XCH} \\ & (\mathrm{ADD})^{\text {Note } 1} \end{aligned}$	$\begin{aligned} & (\mathrm{MOV})^{\text {Note } 6} \\ & (\mathrm{XCH})^{\text {Note } 6} \\ & (\mathrm{ADD})^{\text {Note } 1,6} \end{aligned}$	$\begin{aligned} & \hline \text { MOV } \\ & (\mathrm{XCH}) \\ & (\mathrm{ADD})^{\text {Note } 1} \end{aligned}$	$\begin{aligned} & \text { (MOV) } \\ & (\mathrm{XCH}) \\ & \text { ADDNote } 1 \end{aligned}$	MOV XCH ADDNote 1	MOV	$\begin{array}{\|l\|} \hline(\mathrm{MOV}) \\ (\mathrm{XCH}) \\ (\mathrm{ADD})^{\text {Note } 1} \end{array}$		
r	MOV ADD ${ }^{\text {Note } 1}$	$\begin{aligned} & (\mathrm{MOV}) \\ & (\mathrm{XCH}) \\ & (\mathrm{ADD})^{\text {Note } 1} \end{aligned}$	MOV XCH ADD ${ }^{\text {Note } 1}$	$\begin{aligned} & \text { MOV } \\ & \text { XCH } \\ & \text { ADD } \end{aligned}$	MOV XCH ADD ${ }^{\text {Note }} 1$	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{XCH} \end{aligned}$				$\mathrm{ROR}^{\text {Note } 3}$	MULU DIVUW INC DEC
saddr	MOV ADD ${ }^{\text {Note } 1}$	$\begin{array}{\|l\|} \hline(\mathrm{MOV})^{\text {Note } 6} \\ (\mathrm{ADD})^{\text {Note } 1} \end{array}$	MOV ADD ${ }^{\text {Note }} 1$	$\begin{aligned} & \text { MOV } \\ & \text { XCH } \\ & \text { ADD } 1 \text { Note } 1 \end{aligned}$							INC DEC DBNZ
sfr	MOV ADD ${ }^{\text {Note } 1}$	$\begin{aligned} & \text { MOV } \\ & \text { (ADD) Note } 1 \end{aligned}$	MOV ADD ${ }^{\text {Note } 1}$								PUSH POP CHKL CHKLA
!addr16 !!addr24	MOV	(MOV) ADDNote 1	MOV								
mem [saddrp] [\%saddrg]		MOV ADDNote 1									
mem3											$\begin{aligned} & \hline \text { ROR4 } \\ & \text { ROL4 } \end{aligned}$
r3 PSWL PSWH	MOV	MOV									
B, C											DBNZ
STBC, WDM	MOV										
$\begin{aligned} & {[\text { TDE }+]} \\ & {[T D E-]} \end{aligned}$		(MOV) (ADD) Note 1 MOVM ${ }^{\text {Note } 4}$							MOVBK ${ }^{\text {Note }} 5$		

Notes 1. ADDC, SUB, SUBC, AND, OR, XOR, and CMP are the same as ADD.
2. Either the second operand is not used, or the second operand is not an operand address.
3. ROL, RORC, ROLC, SHR, and SHL are the same as ROR.
4. XCHM, CMPME, CMPMNE, CMPMNC, and CMPMC are the same as MOVM.
5. XCHBK, CMPBKE, CMPBKNE, CMPBKNC, and CMPBKC are the same as MOVBK.
6. If saddr is saddr2 in this combination, some instructions have a short code length.
(2) 16-bit instructions ((): combination realized by writing $A X$ as rp)

MOVW, XCHW, ADDW, SUBW, CMPW, MULUW, MULW, DIVUX, INCW, DECW, SHRW, SHLW, PUSH, POP, ADDWG, SUBWG, PUSHU, POPU, MOVTBLW, MACW, MACSW, SACW

Table 12-2. Instructions for 16-Bit Addressing

2nd Operand 1st Operand	\#word	AX	$\begin{aligned} & \text { rp } \\ & \text { rp' } \end{aligned}$	saddrp saddrp'	sfrp	!addr16 !!addr24	mem [saddrp] [\%saddrg]	[WHL+]	byte	n	None ${ }^{\text {Note } 2}$
AX	(MOVW) ADDW ${ }^{\text {Note }} 1$	(MOVW) (XCHW) $(A D D W)^{\text {Note } 1}$	(MOVW) (XCHW) (ADDW) ${ }^{\text {Note } 1}$	(MOVW) ${ }^{\text {Note } 3}$ $(\mathrm{XCHW})^{\text {Note } 3}$ $(A D D W)^{\text {Note 1, }} 3$	MOVW (XCHW) (ADDW) ${ }^{\text {Note } 1}$	$\begin{aligned} & \text { (MOVW) } \\ & \text { XCHW } \end{aligned}$	MOVW XCHW	$\begin{aligned} & \text { (MOVW) } \\ & (\mathrm{XCHW}) \end{aligned}$			
rp	MOVW ADDW ${ }^{\text {Note }} 1$	$\begin{aligned} & \text { (MOVW) } \\ & (\text { XCHW }) \\ & (\text { ADDW })^{\text {Note } 1} \end{aligned}$	MOVW XCHW ADDW ${ }^{\text {Note }} 1$	MOVW XCHW ADDW ${ }^{\text {Note }} 1$	MOVW XCHW ADDW ${ }^{\text {Note }} 1$	MOVW				$\begin{aligned} & \text { SHRW } \\ & \text { SHLW } \end{aligned}$	MULW ${ }^{\text {Note }} 4$ INCW DECW
saddrp	MOVW ADDWNote 1	$\begin{aligned} & (\text { MOVW })^{\text {Note } 3} \\ & (\text { ADDW })^{\text {Note } ~} 1 \end{aligned}$	MOVW ADDW ${ }^{\text {Note }} 1$	MOVW XCHW ADDW ${ }^{\text {Note }} 1$							INCW DECW
sfrp	MOVW ADDW ${ }^{\text {Note } 1}$	MOVW (ADDW) ${ }^{\text {Note } 1}$	MOVW ADDW ${ }^{\text {Note }} 1$								$\begin{aligned} & \text { PUSH } \\ & \text { POP } \end{aligned}$
!addr16 !!addr24	MOVW	(MOVW)	MOVW						MOVTBLW		
mem [saddrp] [\%saddrg]		MOVW									
PSW											$\begin{aligned} & \text { PUSH } \\ & \text { POP } \end{aligned}$
SP	ADDWG SUBWG										
post											$\begin{aligned} & \text { PUSH } \\ & \text { POP } \\ & \text { PUSHU } \\ & \text { POPU } \end{aligned}$
[TDE+]		(MOVW)						SACW			
byte											MACW MACSW

Notes 1. SUBW and CMPW are the same as ADDW.
2. Either the second operand is not used, or the second operand is not an operand address.
3. If saddrp is saddrp2 in this combination, some instructions have a short code length.
4. MULUW and DIVUX are the same as MULW.
(3) 24-bit instructions ((): combination realized by writing WHL as rg) MOVG, ADDG, SUBG, INCG, DECG, PUSH, POP

Table 12-3. Instructions for 24-Bit Addressing

2nd Operand 1st Operand	\#mm24	WHL	rg rg'	saddrg	!!addr24	mem1	[\%saddrg]	SP	None

Note Either the second operand is not used, or the second operand is not an operand address.
(4) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BCLR, BFSET

Table 12-4. Addressing of Bit Manipulation Instructions

2nd Operand	CY	saddr.bit sfr.bit A.bit X.bit	/saddr.bit /sfr.bit /A.bit IX.bit	None

Note Either the second operand is not used, or the second operand is not an operand address.
(5) Call/return/branch instructions

CALL, CALLF, CALLT, BRK, RET, RETI, RETB, RETCS, RETCSB, BRKCS, BR, BNZ, BNE, BZ, BE, BNC, BNL, BC, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, BH, BF, BT, BTCLR, BFSET, DBNZ

Table 12-5. Addressing for Call/Return/Branch Instructions

Operand of instruction address	\$addr20	\$!addr20	!addr16	!!addr20	rp	rg	[rp]	[rg]	!addr11	[addr5]	RBn	None
Basic instruction	$\begin{aligned} & \mathrm{BC}^{\text {Note }} \\ & \mathrm{BR} \end{aligned}$	$\begin{aligned} & \hline \text { CALL } \\ & \text { BR } \end{aligned}$	CALL BR RETCS RETCSB	CALL BR	CALL BR	CALL BR	CALL BR	CALL BR	CALLF	CALLT	BRKCS	BRK RET RETI RETB
Compound instruction	BF BT BTCLR BFSET DBNZ											

Note BNZ, BNE, BZ, BE, BNC, BNL, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, and BH are the same as BC.
(6) Other instructions

ADJBA, ADJBS, CVTBW, LOCATION, SEL, NOT, EI, DI, SWRS
13. ELECTRICAL SPECIFICATIONS
(1) Electrical specifications of μ PD784054(A) (1/6)

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions		Ratings	Unit
Supply voltage	VDD			-0.5 to +7.0	V
	AVDD			-0.5 to $\mathrm{V}_{\text {DD }}+0.5$	V
	AVss			-0.5 to +0.5	V
Input voltage	V_{1}	Note 1		-0.5 to $V_{D D}+0.5 \leq 7.0$	V
Output voltage	Vo			-0.5 to $\mathrm{V}_{\text {dD }}+0.5$	V
Low-level output current	lol	All output pins		15	mA
		Total of all output pins		150	mA
High-level output current	IOH	All output pins		-10	mA
		Total of all output pins		-100	mA
Analog input voltage	VIAN	Note 2	$A V_{D D}>V_{D D}$	-0.5 to $V_{D D}+0.5$	V
			$V_{D D} \geq A V_{D D}$	-0.5 to AVDD +0.5	
A/D converter reference input voltage	$A V_{\text {ref }}$		$A V_{D D}>V_{\text {DD }}$	-0.5 to V DD +0.5	V
			$V_{\text {DD }} \geq$ AV ${ }_{\text {DD }}$	-0.5 to $A V_{\text {dd }}+0.5$	
Operating temperature	TA			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

Notes 1. Pins other than the pins in Note 2.
2. Pins P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15

Caution If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of the product may be impaired. The absolute maximum ratings are values that may physically damage the product(s). Be sure to use the product(s) within the ratings.

Recommended Operating Conditions

Oscillation Frequency	T_{A}	$V_{D D}$
$8 \mathrm{MHz} \leq \mathrm{fxx} \leq 25 \mathrm{MHz}$	-40 to $+85^{\circ} \mathrm{C}$	4.5 to 5.5 V

Capacitance $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Vss}=\mathrm{VdD}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cl_{1}	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz} \\ & 0 \mathrm{~V} \text { except measured pins } \end{aligned}$			10	pF
Output capacitance	Co				10	pF
I/O capacitance	Cıo				10	pF

(1) Electrical specifications of μ PD784054(A) (2/6)

Oscillation Circuit Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to 5.5 V , Vss $=0 \mathrm{~V}$)

Resonator	Recommended Circuit	Item	MIN.	MAX.	Unit
Ceramic resonator or crystal resonator		Oscillation frequency (fxx)	8	25	MHz
External clock		X1 input frequency (fx)	8	25	MHz
		X1 input rise, fall time	0	5	ns
		X1 input high-, low-level width	20	105	ns

Note When the EXTC bit of the oscillation stabilization time specification register (OSTS) $=0$. Input the reverse phase clock of the pin X1 to the pin X2 when the EXTC bit $=1$.

Caution When using a system clock oscillation circuit, wire the portion enclosed by the dotted line in the diagram above as follows to prevent adverse influence from wiring capacitance:

- Keep the wiring length as short as possible.
- Do not cross the wiring with any other signal lines. Do not route the wiring in the vicinity of a line through which a high alternating current flows.
- Always keep the ground potential for the capacitor in the oscillation circuit at the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not extract any signal from the oscillation circuit.
(1) Electrical specifications of μ PD784054(A) (3/6)

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V , Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Low-level input voltage	VIL			0		0.8	V
High-level input voltage	$\mathrm{V}_{\mathbf{H} 1}$	Note 1		2.2		VDD	V
	V_{1+2}	Note 2		0.8 VDD		V ${ }_{\text {d }}$	
Low-level output voltage	Vol	loL $=2.0 \mathrm{~mA}$				0.45	V
High-level output voltage	Vон	Іон $=-400 \mu \mathrm{~A}$		VDD - 1.0			V
Input leakage current	ILI	Note 3	$0 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}$			± 10	$\mu \mathrm{A}$
Analog pin input leakage current	Ilian	Note 4	$0 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{AV} \mathrm{VDD}$			± 1	$\mu \mathrm{A}$
Output leakage current	ILo	$0 \mathrm{~V} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\text {o }}$				± 10	$\mu \mathrm{A}$
Vod supply current	Ido1	Operating mo	($f x x=25 \mathrm{MHz}$)		40	70	mA
	Ido2	HALT mode ($(f x x=25 \mathrm{MHz})$		25	50	mA
	IdD3	IDLE mode (f	(xx = 25 MHz)		10	20	mA
Data retention voltage	Voddr	STOP mode		2.5			V
Data retention current	Iddor	STOP mode	VDdor $=2.5 \mathrm{~V}$		2	15	$\mu \mathrm{A}$
			$V_{\text {dDD }}=5 \mathrm{~V} \pm 10 \%$		15	50	$\mu \mathrm{A}$
Pull-up resistor	RL			15	40	80	$k \Omega$

Notes 1. Pins other than pins in Note 2
2. P20/NMI, P21/INTP0/TO00, P22/INTP1/TO01, P23/INTP2/TO02, P24/INTP3/TO03, P25/INTP4, P26/ INTP5, P27/INTP6, P34/ASCK/SCK1, P37/ASCK2/SCK2, X1, X2, RESET
3. Input and I/O pins (except X1 and X2, and P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15 used as analog inputs)
4. Pins P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15 (pins used as analog input, only during the nonsampling operation)

(1) Electrical specifications of μ PD784054(A) (4/6)

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85{ }^{\circ} \mathrm{C}, \mathrm{Vdd}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

Read/write operation

Parameter	Symbol	Expression	MIN.	MAX.	Unit
System clock cycle time	tcyk		80	250	ns
Address setup time (vs. ASTB \downarrow)	tsast	(0.5 + a) T-20	20		ns
Address hold time (vs. ASTB \downarrow)	thsta	0.5T-20	20		ns
ASTB high-level width	twsth	(0.5 + a) T-17	23		ns
Address $\rightarrow \overline{\mathrm{RD}} \downarrow$ delay time	tdar	($1+\mathrm{a}$) T-15	65		ns
$\overline{\mathrm{RD}} \downarrow \rightarrow$ address float time	trra			0	ns
Address \rightarrow data input time	toald	$(2.5+a+n) T-56$		144	ns
$\overline{\mathrm{RD}} \downarrow \rightarrow$ data input time	torio	$(1.5+n) T-48$		72	ns
ASTB $\downarrow \rightarrow \overline{\mathrm{RD}} \downarrow$ delay time	tostr	0.5T-16	24		ns
Data hold time (vs. $\overline{\mathrm{RD}} \uparrow$)	thrio		0		ns
$\overline{\mathrm{RD}} \uparrow \rightarrow$ address active time	tdra	0.5T-14	26		ns
$\overline{\mathrm{RD}}$ low-level width	twri	$(1.5+n) T-30$	90		ns
Address \rightarrow LWR, HWR \downarrow delay time	tdaw	($1+\mathrm{a}$) T-15	65		ns
$\overline{\text { LWR, HWR } \downarrow \rightarrow \text { data output time }}$	towod			15	ns
ASTB $\downarrow \rightarrow \overline{\mathrm{LWR}}$, HWR \downarrow delay time	tostw	0.5T-16	24		ns
Data setup time (vs. LWR, HWR \uparrow)	tsodw	$(1.5+n) T-25$	95		ns
Data hold time (vs. LWR, HWR \uparrow)	thwod	0.5T-14	26		ns
LWR, HWR $\uparrow \rightarrow$ ASTB \uparrow delay time	towst	1.5T-15	105		ns
LWR, HWR low-level width	twwL	$(1.5+n) T-36$	84		ns
Address $\rightarrow \overline{\text { WAIT }} \downarrow$ input time	tdawt	($2+\mathrm{a}$) T-50		110	ns
ASTB $\downarrow \rightarrow$ WAIT \downarrow input time	tostwt	1.5T-40		80	ns
ASTB $\downarrow \rightarrow$ WAIT hold time	thstwt	$(1.5+n) T+5$	125		ns
ASTB $\downarrow \rightarrow \overline{\text { WAIT }} \uparrow$ delay time	tostwth	$(1.5+n) T-40$		$160^{\text {Note }}$	ns
RD $\downarrow \rightarrow$ WAIT \downarrow input time	torwt	T-40		40	ns
$\overline{\mathrm{RD}} \downarrow \rightarrow \overline{\text { WAIT }}$ hold time	thrwt	$(1+n) T+5$	85		ns
$\overline{\mathrm{RD}} \downarrow \rightarrow \overline{\mathrm{WAIT}} \uparrow$ delay time	torwth	$(1+n) T-40$		$120^{\text {Note }}$	ns
$\overline{\text { LWR, }}$, $\mathrm{HWR} \downarrow \rightarrow$ WAIT \downarrow input time	towwt	T-40		40	ns
$\overline{\text { LWR }}$, $\overline{\text { HWR }} \downarrow \rightarrow \overline{\text { WAIT }}$ hold time	thwwt	$(1+n) T+5$	85		ns
$\overline{\text { LWR }, ~} \overline{\text { HWR }} \downarrow \rightarrow \overline{\text { WAIT }} \uparrow$ delay time	towwth	$(1+n) T-40$		$120^{\text {Note }}$	ns

Note Specification when an external wait is inserted

Remarks 1. $\mathrm{T}=$ tçk $=1$ /fclk (fclk is internal system clock frequency)
2. $\mathrm{a}=1$ when an address wait is inserted, otherwise, 0 .
3. n indicates the number of the wait cycles by specifying the external wait pins ($\overline{\mathrm{WAIT}}$) or programmable wait control registers 1,2 (PWC1, PWC2). ($\mathrm{n} \geq 0 . \mathrm{n} \geq 1$ for tostwth, tDRwth, towwth).
4. Calculate values in the expression column with the system clock cycle time to be used because these values depend on the system clock cycle time ($\mathrm{tcyk}=\mathrm{T}$). The values in the above expression column are calculated based on $\mathrm{T}=80 \mathrm{~ns}$.
(1) Electrical specifications of μ PD784054(A) (5/6)

Serial Operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V , $\mathrm{V} \mathrm{ss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	MAX.	Unit
Serial clock cycle time	tcysk	$\overline{\text { SCK1 }}$, $\overline{\text { SCK2 }}$ output	BRG	Tsft		ns
		SCK1, $\overline{\text { SCK2 }}$ input	External clock	640		ns
Serial clock low-level width	twskL	$\overline{\text { SCK1 }}$, SCK2 output	BRG	0.5Tsft-40		ns
		$\overline{\text { SCK1 }}$, $\overline{\text { SCK2 }}$ input	External clock	280		ns
Serial clock high-level width	twskH	SCK1, $\overline{\text { SCK2 }}$ output	BRG	0.5TsFT-40		ns
		$\overline{\text { SCK1 }}$, $\overline{\text { SCK2 }}$ input	External clock	280		ns
SI1, SI2 setup time (vs. $\overline{\text { SCK1 }}, \overline{\text { SCK2 }} \uparrow$)	tsssk			80		ns
SI1, SI2 hold time (vs. SCK1, SCK2 \uparrow)	thssk			80		ns
$\overline{\text { SCK1 }}, \overline{\text { SCK2 }} \downarrow \rightarrow$ SO1, SO2 output delay time	tdsbsk	$\mathrm{R}=1 \mathrm{k} \Omega, \mathrm{C}=100 \mathrm{pF}$		0	150	ns

Remarks 1. Tsft is a value set in software. The minimum value is tcyk $\times 8$.
2. tcyk $=1 /$ fclk (fclk is internal system clock frequency)

Other Operations ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{V} \mathrm{Dd}=4.5$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
NMI high, low-level width	twnif, twnil		10		$\mu \mathrm{~s}$
INTP0-INTP6 high, low-level width	twith, twitL		4		tcysmp
$\overline{\text { RESET }}$ high, low-level width	twrsh, twrsL		10		$\mu \mathrm{~s}$

Remarks 1. tcysmp is a sampling clock set in the noise protection control register (NPC) in software.
When NIn $=0$, tcysmp $=$ tcyk
When NIn $=1$, tcysmp $=$ tcyk $\times 4$
2. tcyk $=1 /$ fclk (fclk is internal system clock frequency)
3. NIn: Bit n of NPC ($n=0-6$)

AC Timing Test Point

(1) Electrical specifications of μ PD784054(A) (6/6)

AD Converter Characteristics $\left(T_{A}=-40\right.$ to $+85^{\circ} \mathrm{C}$, $\mathrm{VdD}=4.5$ to 5.5 V , V ss $=\mathrm{AVss}=0 \mathrm{~V}$,

$$
\left.V_{D D}-0.5 \mathrm{~V} \leq A V_{D D} \leq V_{D D}\right)
$$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution				10			bit
Total errorNote		$4.5 \mathrm{~V} \leq \mathrm{AV}_{\text {ReF }} \leq \mathrm{AV} \mathrm{V}_{\text {do }}$				± 0.5	\%FSR
		$3.4 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }}<4.5 \mathrm{~V}$				± 0.7	\%FSR
Quantization error						$\pm 1 / 2$	LSB
Conversion time	tconv	$80 \mathrm{~ns} \leq$	tcyk $\leq 250 \mathrm{~ns}$	169			tcyk
Sampling time	tsamp	$80 \mathrm{~ns} \leq$	tcyk $\leq 250 \mathrm{~ns}$	20			tcyk
Zero-scale error ${ }^{\text {Note }}$		$4.5 \mathrm{~V} \leq \mathrm{AV}_{\text {ReF }} \leq \mathrm{AV} \mathrm{V}_{\text {d }}$			± 1.5	± 3.5	LSB
		$3.4 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.5 \mathrm{~V}$			± 1.5	± 4.5	LSB
Full-scale error ${ }^{\text {Note }}$		$4.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq \mathrm{AV}$ DD			± 1.5	± 3.5	LSB
		$3.4 \mathrm{~V} \leq \mathrm{AV}_{\text {reF }}<4.5 \mathrm{~V}$			± 1.5	± 4.5	LSB
Nonlinearity error ${ }^{\text {Note }}$		$4.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq \mathrm{AV} \mathrm{VDD}$			± 1.5	± 2.5	LSB
		$3.4 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.5 \mathrm{~V}$			± 1.5	± 4.5	LSB
Analog input voltage	Vian			-0.3		AVref+0.3	V
A/D converter reference input voltage	$\mathrm{AV}_{\text {ref }}$			3.4		AVDD	V
AVref current	Alref				1.0	3.0	mA
AVDD supply current	Aldo				2.0	6.0	mA
A/D converter data retention	Aldodr	STOP	$A V_{\text {dDd }}=2.5 \mathrm{~V}$		2	10	$\mu \mathrm{A}$
current		mode	$A V_{\text {dDD }}=5 \mathrm{~V} \pm 10 \%$		10	50	$\mu \mathrm{A}$

Note The quantization error is excluded.

Remark tcyk $=1 /$ fclk (fclk is internal system clock frequency).
(2) Electrical specifications of μ PD784054(A1) (1/6)

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol		Conditions	Ratings	Unit
Supply voltage	VdD			-0.5 to +7.0	V
	AVdo			-0.5 to V DD +0.5	V
	$A V_{s s}$			-0.5 to +0.5	V
Input voltage	V_{1}	Note 1		-0.5 to $V_{\text {DD }}+0.5 \leq 7.0$	V
Output voltage	Vo			-0.5 to $\mathrm{V}_{\text {do }}+0.5$	V
Low-level output current	IoL	All output pins		15	mA
		Total of all output pins		150	mA
High-level output current	Іон	All output pins		-10	mA
		Total of all output pins		-100	mA
Analog input voltage	$V_{\text {Ian }}$	Note 2	$A V_{D D}>V_{D D}$	-0.5 to $V_{D D}+0.5$	V
			$V_{D D} \geq$ AVDD	-0.5 to AVDD +0.5	
A/D converter reference input voltage	$\mathrm{AV}_{\text {ReF }}$		$A V_{D D}>V_{D D}$	-0.5 to $V_{D D}+0.5$	V
			$V_{\text {DD }} \geq$ AV ${ }_{\text {D }}$	-0.5 to AV DD +0.5	
Operating temperature	TA			-40 to +110	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

Notes 1. Pins other than the pins in Note 2.
2. Pins P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15

Caution If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of the product may be impaired. The absolute maximum ratings are values that may physically damage the product(s). Be sure to use the product(s) within the ratings.

Recommended Operating Conditions

Oscillation Frequency	T_{A}	VDD
$8 \mathrm{MHz} \leq \mathrm{fxx} \leq 20 \mathrm{MHz}$	-40 to $+110{ }^{\circ} \mathrm{C}$	4.5 to 5.5 V

Capacitance $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, $\left.\mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cl_{1}	$f=1 \mathrm{MHz}$ 0 V except measured pins			10	pF
Output capacitance	Co				10	pF
I/O capacitance	Cıo				10	pF

(2) Electrical specifications of μ PD784054(A1) (2/6)

Oscillation Circuit Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+110{ }^{\circ} \mathrm{C}$, $\mathrm{VDD}=4.5$ to 5.5 V , Vss $=0 \mathrm{~V}$)

Resonator	Recommended Circuit	Item	MIN.	MAX.	Unit	
Ceramic resonator or crystal resonator						

Note When the EXTC bit of the oscillation stabilization time specification register (OSTS) $=0$. Input the reverse phase clock of the pin X1 to the pin X2 when the EXTC bit $=1$.

Caution When using a system clock oscillation circuit, wire the portion enclosed by the dotted line in the diagram above as follows to prevent adverse influence from wiring capacitance:

- Keep the wiring length as short as possible.
- Do not cross the wiring with any other signal lines. Do not route the wiring in the vicinity of a line through which a high alternating current flows.
- Always keep the ground potential for the capacitor in the oscillation circuit at the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not extract any signal from the oscillation circuit.
(2) Electrical specifications of μ PD784054(A1) (3/6)

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+110^{\circ} \mathrm{C}, \mathrm{VdD}=4.5$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Low-level input voltage	VIL			0		0.8	V
High-level input voltage	$\mathrm{V}_{\mathbf{H} 1}$	Note 1		2.2		VDD	V
	$\mathrm{V}_{\mathbf{1 H 2}}$	Note 2		0.8 VDD		V ${ }_{\text {d }}$	
Low-level output voltage	Vol	$\mathrm{loL}=2.0 \mathrm{~mA}$				0.45	V
High-level output voltage	Vон	Іон $=-400 \mu \mathrm{~A}$		VDD - 1.0			V
Input leakage current	ILI	Note 3	$0 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}$			± 10	$\mu \mathrm{A}$
Analog pin input leakage current	Ilian	Note 4	$0 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{AV} \mathrm{VDD}$			± 2	$\mu \mathrm{A}$
Output leakage current	ILo	$0 \mathrm{~V} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\mathrm{DD}}$				± 10	$\mu \mathrm{A}$
VDD supply current	Ido1	Operating mode ($f x x=20 \mathrm{MHz}$)			30	60	mA
	Ido2	HALT mode ($\mathrm{fxx}=20 \mathrm{MHz}$)			15	30	mA
	IdD3	IDLE mode (fxx = 20 MHz)			10	20	mA
Data retention voltage	Voddr	STOP mode		2.5			V
Data retention current	Iddor	STOP mode	VDdor $=2.5 \mathrm{~V}$		2	100	$\mu \mathrm{A}$
			Vddor $=5 \mathrm{~V} \pm 10 \%$		15	1000	$\mu \mathrm{A}$
Pull-up resistor	RL			15	40	80	$k \Omega$

Notes 1. Pins other than pins in Note 2
2. P20/NMI, P21/INTP0/TO00, P22/INTP1/TO01, P23/INTP2/TO02, P24/INTP3/TO03, P25/INTP4, P26/ INTP5, P27/INTP6, P34/ASCK/SCK1, P37/ASCK2/SCK2, X1, X2, RESET
3. Input and I/O pins (except X1 and X2, and P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15 used as analog inputs)
4. Pins P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15 (pins used as analog input, only during the nonsampling operation)
(2) Electrical specifications of μ PD784054(A1) (4/6)

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+110^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to 5.5 V , V ss $=0 \mathrm{~V}$)

Read/write operation

Parameter	Symbol	Expression	MIN.	MAX.	Unit
System clock cycle time	toyk		100	250	ns
Address setup time (vs. ASTB \downarrow)	tsast	(0.5 + a) T-20	30		ns
Address hold time (vs. ASTB \downarrow)	thsta	0.5T-20	30		ns
ASTB high-level width	twsth	(0.5 + a) T-17	33		ns
Address \rightarrow RD \downarrow delay time	tdar	$(1+a) T-15$	85		ns
$\overline{\mathrm{RD}} \downarrow \rightarrow$ address float time	trra			0	ns
Address \rightarrow data input time	tdaid	$(2.5+a+n) T-56$		194	ns
$\overline{\mathrm{RD}} \downarrow \rightarrow$ data input time	torid	$(1.5+n) T-53$		97	ns
ASTB $\downarrow \rightarrow \overline{\mathrm{RD}} \downarrow$ delay time	tostr	0.5T-16	34		ns
Data hold time (vs. $\overline{\mathrm{RD}} \uparrow$)	thrid		0		ns
$\overline{\mathrm{RD}} \uparrow \rightarrow$ address active time	tora	0.5T-14	36		ns
RD low-level width	twrl	$(1.5+n) T-30$	120		ns
Address \rightarrow LWR, HWR \downarrow delay time	tdaw	(1 + a) T-15	85		ns
LWR, HWR $\downarrow \rightarrow$ data output time	towod			15	ns
ASTB $\downarrow \rightarrow$ LWR, HWR \downarrow delay time	tostw	0.5T-16	34		ns
Data setup time (vs. LWR, HWR \uparrow)	tsodw	$(1.5+n) T-25$	125		ns
Data hold time (vs. $\overline{\text { LWR }}, \overline{\mathrm{HWR}} \uparrow$)	thwod	0.5T-14	36		ns
$\overline{\text { LWR, }}$ HWR $\uparrow \rightarrow$ ASTB \uparrow delay time	towst	1.5T-15	135		ns
LWR, HWR low-level width	tww	$(1.5+n) T-36$	114		ns
Address \rightarrow WAIT \downarrow input time	toawt	(2 + a) T-50		150	ns
ASTB $\downarrow \rightarrow$ WAIT \downarrow input time	tostwt	1.5T-40		110	ns
ASTB $\downarrow \rightarrow$ WAIT hold time	thstwt	$(1.5+n) T+5$	155		ns
ASTB $\downarrow \rightarrow$ WAIT \uparrow delay time	tostwth	$(1.5+n) T-40$		$210^{\text {Note }}$	ns
RD $\downarrow \rightarrow$ WAIT \downarrow input time	torwt	T-40		60	ns
RD $\downarrow \rightarrow$ WAIT hold time	thrwt	$(1+n) T+5$	105		ns
$\overline{\mathrm{RD}} \downarrow \rightarrow \overline{\mathrm{WAIT}} \uparrow$ delay time	torwth	$(1+n) T-40$		$160{ }^{\text {Note }}$	ns
$\overline{\text { LWR, }}$, $\overline{W W R} \downarrow \rightarrow$ WAIT \downarrow input time	towwt	T-40		60	ns
$\overline{\text { LWR, }} \overline{\text { HWR }} \downarrow \rightarrow \overline{\text { WAIT }}$ hold time	thwwt	$(1+n) T+5$	105		ns
$\overline{\text { LWR }, ~} \overline{\text { HWR }} \downarrow \rightarrow \overline{\text { WAIT }} \uparrow$ delay time	towwth	$(1+n) T-40$		$160{ }^{\text {Note }}$	ns

Note Specification when an external wait is inserted

Remarks 1. $\mathrm{T}=\mathrm{tcyk}=1 / \mathrm{fcLk}$ (fclk is internal system clock frequency)
2. $\mathrm{a}=1$ when an address wait is inserted, otherwise, 0 .
3. n indicates the number of the wait cycles by specifying the external wait pins ($\overline{\mathrm{WAIT}}$) or programmable wait control registers 1,2 (PWC1, PWC2). ($\mathrm{n} \geq 0 . \mathrm{n} \geq 1$ for tostwth, tDRwth, towwth).
4. Calculate values in the expression column with the system clock cycle time to be used because these values depend on the system clock cycle time ($\mathrm{tcyk}=\mathrm{T}$). The values in the above expression column are calculated based on $\mathrm{T}=100 \mathrm{~ns}$.
(2) Electrical specifications of μ PD784054(A1) (5/6)

Serial Operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+110{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{dD}}=4.5$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	MAX.	Unit
Serial clock cycle time	tcysk	$\overline{\text { SCK1 }}$, $\overline{\text { SCK2 }}$ output	BRG	Tsft		ns
		SCK1, $\overline{\text { SCK2 }}$ input	External clock	800		ns
Serial clock low-level width	twskL	$\overline{\text { SCK1 }}$, $\overline{\text { SCK2 }}$ output	BRG	0.5Tsft-40		ns
		SCK1, $\overline{\text { SCK2 }}$ input	External clock	360		ns
Serial clock high-level width	twskH	$\overline{\text { SCK1 }}$, $\overline{\text { SCK2 }}$ output	BRG	0.5Tsft-40		ns
		$\overline{\text { SCK1 }}$, $\overline{\text { SCK } 2}$ input	External clock	360		ns
SI1, SI2 setup time (vs. $\overline{\mathrm{SCK} 1}, \overline{\mathrm{SCK}} \uparrow$)	tsssk			80		ns
SI1, SI2 hold time (vs. $\overline{\text { SCK1 }}, \overline{\text { SCK2 }} \uparrow$)	thssk			80		ns
$\overline{\overline{\text { SCK1}}, ~} \overline{\mathrm{SCK} 2} \downarrow \rightarrow \mathrm{SO} 1, \mathrm{SO} 2$ output delay time	tosbsk	$\mathrm{R}=1 \mathrm{k} \Omega, \mathrm{C}=100 \mathrm{pF}$		0	150	ns

Remarks 1. Tsft is a value set in software. The minimum value is tcyk $\times 8$.
2. tcyk $=1 /$ fclk (fclk is internal system clock frequency)

Other Operations $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+110^{\circ} \mathrm{C}$, Vdd $=4.5$ to 5.5 V , Vss $\left.=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
NMI high, low-level width	twniн, twnil		10		$\mu \mathrm{~s}$
INTP0-INTP6 high, low-level width	twith, twitl		4		tcysmp
$\overline{\text { RESET }}$ high, low-level width	twrsh, twrsL		10		$\mu \mathrm{~s}$

Remarks 1. tcysmp is a sampling clock set in the noise protection control register (NPC) in software.
When NIn $=0$, tcysmp $=$ tcyk
When NIn $=1$, tcysmp $=$ tcyk $\times 4$
2. tcyk $=1 /$ fclk (fclk is internal system clock frequency)
3. NIn: Bit n of NPC ($n=0-6$)

AC Timing Test Point

(2) Electrical specifications of μ PD784054(A1) (6/6)

AD Converter Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+110{ }^{\circ} \mathrm{C}$, $\mathrm{VdD}=4.5$ to 5.5 V , $\mathrm{V} s \mathrm{~s}=\mathrm{AV} s \mathrm{~s}=0 \mathrm{~V}$, $\left.V_{D D}-0.5 \mathrm{~V} \leq A V_{D D} \leq V_{D D}\right)$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution				10			bit
Total error ${ }^{\text {Note }}$		$4.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq \mathrm{AV} \mathrm{VDD}^{\text {d }}$				± 0.5	\%FSR
		$3.4 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.5 \mathrm{~V}$				± 0.7	\%FSR
Quantization error						$\pm 1 / 2$	LSB
Conversion time	tconv			169			tcrk
Sampling time	tsamp			20			tork
Zero-scale errorNote		$4.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq \mathrm{AV} \mathrm{VDD}^{\text {d }}$			± 1.5	± 3.5	LSB
		$3.4 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.5 \mathrm{~V}$			± 1.5	± 4.5	LSB
Full-scale error ${ }^{\text {Note }}$		$4.5 \mathrm{~V} \leq \mathrm{AV}_{\text {reF }} \leq \mathrm{AV} \mathrm{V}_{\mathrm{DD}}$			± 1.5	± 3.5	LSB
		$3.4 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.5 \mathrm{~V}$			± 1.5	± 4.5	LSB
Nonlinearity error ${ }^{\text {Note }}$		$4.5 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq \mathrm{AV} \mathrm{VDD}^{\text {d }}$			± 1.5	± 2.5	LSB
		$3.4 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.5 \mathrm{~V}$			± 1.5	± 4.5	LSB
Analog input voltage	Vian			-0.3		AVref+0.3	V
A/D converter reference input voltage	AVref			3.4		AVdo	V
AVref current	Aligef				3.0	4.0	mA
AVDD supply current	Aldo				2.0	6.0	mA
A/D converter data retention	Alddor	STOP	$\mathrm{A} \mathrm{V}_{\text {dDd }}=2.5 \mathrm{~V}$		2	100	$\mu \mathrm{A}$
			AVDDDR $=5 \mathrm{~V} \pm 10 \%$		10	1000	$\mu \mathrm{A}$

Note The quantization error is excluded.

Remark tcyk $=1 /$ fclk (fclk is internal system clock frequency).
(3) Electrical specifications of μ PD784054(A2) (1/6)

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol		Conditions	Ratings	Unit
Supply voltage	VdD			-0.5 to +7.0	V
	AVdo			-0.5 to V DD +0.5	V
	$A V_{s s}$			-0.5 to +0.5	V
Input voltage	V_{1}	Note 1		-0.5 to $V_{\text {DD }}+0.5 \leq 7.0$	V
Output voltage	Vo			-0.5 to $\mathrm{V}_{\text {do }}+0.5$	V
Low-level output current	IoL	All output pins		15	mA
		Total of all output pins		150	mA
High-level output current	Іон	All output pins		-10	mA
		Total of all output pins		-100	mA
Analog input voltage	$V_{\text {Ian }}$	Note 2	$A V_{D D}>V_{D D}$	-0.5 to $V_{D D}+0.5$	V
			$V_{D D} \geq$ AVDD	-0.5 to AVDD +0.5	
A/D converter reference input voltage	$\mathrm{AV}_{\text {ReF }}$		$A V_{D D}>V_{D D}$	-0.5 to $V_{D D}+0.5$	V
			$V_{\text {DD }} \geq$ AV ${ }_{\text {D }}$	-0.5 to AVDD +0.5	
Operating temperature	TA			-40 to +125	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

Notes 1. Pins other than the pins in Note 2.
2. Pins P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15

Caution If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of the product may be impaired. The absolute maximum ratings are values that may physically damage the product(s). Be sure to use the product(s) within the ratings.

Recommended Operating Conditions

Oscillation Frequency	T_{A}	VDD
$8 \mathrm{MHz} \leq \mathrm{fxx} \leq 20 \mathrm{MHz}$	-40 to $+125{ }^{\circ} \mathrm{C}$	4.5 to 5.5 V

Capacitance $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, $\left.\mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cl_{1}	$f=1 \mathrm{MHz}$ 0 V except measured pins			10	pF
Output capacitance	Co				10	pF
I/O capacitance	Cıo				10	pF

(3) Electrical specifications of μ PD784054(A2) (2/6)

Oscillation Circuit Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}$, $\mathrm{Vdd}=4.5$ to 5.5 V , Vss $=0 \mathrm{~V}$)

Resonator	Recommended Circuit	Item	MIN.	MAX.	Unit	
Ceramic resonator or crystal resonator						

Note When the EXTC bit of the oscillation stabilization time specification register (OSTS) $=0$. Input the reverse phase clock of the pin X1 to the pin X2 when the EXTC bit $=1$.

Caution When using a system clock oscillation circuit, wire the portion enclosed by the dotted line in the diagram above as follows to prevent adverse influence from wiring capacitance:

- Keep the wiring length as short as possible.
- Do not cross the wiring with any other signal lines. Do not route the wiring in the vicinity of a line through which a high alternating current flows.
- Always keep the ground potential for the capacitor in the oscillation circuit at the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not extract any signal from the oscillation circuit.

(3) Electrical specifications of μ PD784054(A2) (3/6)

DC Characteristics $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+125^{\circ} \mathrm{C}, \mathrm{VdD}=4.5$ to $\left.5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Low-level input voltage	VIL			0		0.8	V
High-level input voltage	$\mathrm{V}_{\mathrm{H} 1}$	Note 1		2.2		VDD	V
	V_{1+2}	Note 2		0.8 VDD		VDD	
Low-level output voltage	Vol	$\mathrm{loL}=2.0 \mathrm{~mA}$				0.45	V
High-level output voltage	Vон	Іон $=-400 \mu$		VDD-1.0			V
Input leakage current	lL	Note 3	$0 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}$			± 10	$\mu \mathrm{A}$
Analog pin input leakage current	Ilian	Note 4	$0 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{A} \mathrm{V}_{\mathrm{DD}}$			± 2	$\mu \mathrm{A}$
Output leakage current	ILo	$0 \mathrm{~V} \leq \mathrm{Vo} \leq \mathrm{V}$				± 10	$\mu \mathrm{A}$
VDD supply current	Iod1	Operating m	de (fxx = 20 MHz)		30	60	mA
	Idod 2	HALT mode	xx $=20 \mathrm{MHz}$)		15	30	mA
	Ido3	IDLE mode ((xx = 20 MHz)		10	20	mA
Data retention voltage	Voddr	STOP mode		2.5			V
Data retention current	Iddor	STOP mode	VDDDR $=2.5 \mathrm{~V}$		2	100	$\mu \mathrm{A}$
			VDDDR $=5 \mathrm{~V} \pm 10 \%$		15	1000	$\mu \mathrm{A}$
Pull-up resistor	R			15	40	80	k Ω

Notes 1. Pins other than pins in Note 2
2. P20/NMI, P21/INTP0/TO00, P22/INTP1/TO01, P23/INTP2/TO02, P24/INTP3/TO03, P25/INTP4, P26/ INTP5, P27/INTP6, P34/ASCK/SCK1, P37/ASCK2/SCK2, X1, X2, RESET
3. Input and I/O pins (except X1 and X2, and P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15 used as analog inputs)
4. Pins P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15 (pins used as analog input, only during the nonsampling operation)
(3) Electrical specifications of μ PD784054(A2) (4/6)

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}$, $\mathrm{V} D \mathrm{DD}=4.5$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}$)

Read/write operation

Parameter	Symbol	Expression	MIN.	MAX.	Unit
System clock cycle time	toyk		100	250	ns
Address setup time (vs. ASTB \downarrow)	tsast	(0.5 + a) T-20	30		ns
Address hold time (vs. ASTB \downarrow)	thsta	0.5T-20	30		ns
ASTB high-level width	twsth	(0.5 + a) T-17	33		ns
Address $\rightarrow \overline{\mathrm{RD}} \downarrow$ delay time	tdar	($1+\mathrm{a}$) T-15	85		ns
$\overline{\mathrm{RD}} \downarrow \rightarrow$ address float time	trra			0	ns
Address \rightarrow data input time	toaid	$(2.5+\mathrm{a}+\mathrm{n}) \mathrm{T}-56$		194	ns
$\overline{\mathrm{RD}} \downarrow \rightarrow$ data input time	tDRID	$(1.5+n) T-53$		97	ns
ASTB $\downarrow \rightarrow \overline{\mathrm{RD}} \downarrow$ delay time	tostr	0.5T-16	34		ns
Data hold time (vs. $\overline{\mathrm{RD}} \uparrow$)	thrid		0		ns
$\overline{\mathrm{RD}} \uparrow \rightarrow$ address active time	tora	0.5T-14	36		ns
$\overline{\mathrm{RD}}$ low-level width	twrL	$(1.5+n) T-30$	120		ns
Address $\rightarrow \overline{\mathrm{LWR}}, \overline{\mathrm{HWR}} \downarrow$ delay time	tdaw	($1+\mathrm{a}$) T-15	85		ns
$\overline{\text { LWR, }} \overline{\text { HWR }} \downarrow \rightarrow$ data output time	towod			15	ns
ASTB $\downarrow \rightarrow \overline{\mathrm{LWR}}, \overline{\mathrm{HWR}} \downarrow$ delay time	tostw	0.5T-16	34		ns
Data setup time (vs. $\overline{\text { LWR }}, \overline{\text { HWR } \uparrow \text {) }}$	tsodw	(1.5 + n) T-25	125		ns
Data hold time (vs. $\overline{\text { LWR }}, \overline{\mathrm{HWR} \uparrow \text {) }}$	thwod	0.5T-14	36		ns
$\overline{\text { LWR, }} \overline{\text { HWR } \uparrow \rightarrow \text { ASTB } \uparrow \text { delay time }}$	towst	1.5T-15	135		ns
$\overline{\text { LWR, }}$ HWR low-level width	twwL	$(1.5+n) T-36$	114		ns
Address $\rightarrow \overline{\text { WAIT }} \downarrow$ input time	toawt	(2+a) T-50		150	ns
ASTB $\downarrow \rightarrow$ WAIT \downarrow input time	tostwt	1.5T-40		110	ns
ASTB $\downarrow \rightarrow \overline{\text { WAIT }}$ hold time	thstwt	$(1.5+n) T+5$	155		ns
ASTB $\downarrow \rightarrow \overline{\text { WAIT }} \uparrow$ delay time	tostwth	$(1.5+n) T-40$		$210^{\text {Note }}$	ns
$\overline{\mathrm{RD}} \downarrow \rightarrow \overline{\mathrm{WAIT}} \downarrow$ input time	torwt	T-40		60	ns
$\overline{\mathrm{RD}} \downarrow \rightarrow \overline{\text { WAIT }}$ hold time	thrwt	$(1+n) T+5$	105		ns
$\overline{\mathrm{RD}} \downarrow \rightarrow \overline{\mathrm{WAIT}} \uparrow$ delay time	torwth	($1+n$) T-40		$160^{\text {Note }}$	ns
$\overline{\text { LWR, }} \overline{\text { HWR }} \downarrow \rightarrow \overline{\text { WAIT }} \downarrow$ input time	towwt	T-40		60	ns
$\overline{\text { LWR, }}$ HWR $\downarrow \rightarrow$ WAIT hold time	thwwt	$(1+n) T+5$	105		ns
$\overline{\mathrm{LWR}}, \overline{\mathrm{HWR}} \downarrow \rightarrow \overline{\mathrm{WAIT} \uparrow}$ delay time	towwth	$(1+n) T-40$		$160^{\text {Note }}$	ns

Note Specification when an external wait is inserted

Remarks 1. $\mathrm{T}=\mathrm{tcyk}=1 / \mathrm{fcLk}$ (fclk is internal system clock frequency)
2. $\mathrm{a}=1$ when an address wait is inserted, otherwise, 0 .
3. n indicates the number of the wait cycles by specifying the external wait pins ($\overline{\mathrm{WAIT}}$) or programmable wait control registers 1,2 (PWC1, PWC2). ($\mathrm{n} \geq 0 . \mathrm{n} \geq 1$ for tostwth, tDRwth, towwth).
4. Calculate values in the expression column with the system clock cycle time to be used because these values depend on the system clock cycle time ($\mathrm{tcyk}=\mathrm{T}$). The values in the above expression column are calculated based on $\mathrm{T}=100 \mathrm{~ns}$.
(3) Electrical specifications of μ PD784054(A2) (5/6)

Serial Operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+125{ }^{\circ} \mathrm{C}, \mathrm{VdD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	MAX.	Unit
Serial clock cycle time	tcysk	$\overline{\text { SCK1 }}$, $\overline{\text { SCK2 }}$ output	BRG	Tsft		ns
		$\overline{\text { SCK1 }}$, $\overline{\text { SCK2 } 2}$ input	External clock	800		ns
Serial clock low-level width	twskL	SCK1, SCK2 output	BRG	0.5 Tsft $^{\text {4 }} 0$		ns
		$\overline{\text { SCK1, }}$, $\overline{\text { SCK2 }}$ input	External clock	360		ns
Serial clock high-level width	twskh	SCK1, SCK2 output	BRG	0.5Tsft-40		ns
		$\overline{\text { SCK1, }}$, $\overline{\text { SCK2 }}$ input	External clock	360		ns
SI1, SI2 setup time (vs. SCK1, SCK2 \uparrow)	tsssk			80		ns
SII, SI2 hold time (vs. SCK1, $\overline{\text { SCK } 2} \uparrow$)	thssk			80		ns
$\begin{aligned} & \hline \overline{\text { SCK1 }}, \overline{\text { SCK2 }} \downarrow \rightarrow \text { SO1, SO2 } \\ & \text { output delay time } \end{aligned}$	tosbsk	$\mathrm{R}=1 \mathrm{k} \Omega, \mathrm{C}=100 \mathrm{p}$		0	150	ns

Remarks 1. Tsft is a value set in software. The minimum value is tcyk $\times 8$.
2. tcyk $=1 /$ fclk (fclk is internal system clock frequency)

Other Operations ($\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}$, $\mathrm{VdD}=4.5$ to 5.5 V , Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
NMI high, low-level width	twniн, twnil		10		$\mu \mathrm{~s}$
INTP0-INTP6 high, low-level width	twith, twitL		4		tcysmp
RESET high, low-level width	twrsh, twrsL		10		$\mu \mathrm{~s}$

Remarks 1. tcysmp is a sampling clock set in the noise protection control register (NPC) in software.
When NIn $=0$, tcysmp $=$ tcyk
When NIn $=1$, tcysmp $=$ tcyk $\times 4$
2. tcyk $=1 /$ fclk (fclk is internal system clock frequency)
3. NIn: Bit n of NPC ($n=0-6$)

AC Timing Test Point

(3) Electrical specifications of μ PD784054(A2) (6/6)

AD Converter Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+125{ }^{\circ} \mathrm{C}$, $\mathrm{VdD}=4.5$ to 5.5 V , $\mathrm{V} s \mathrm{ss}=\mathrm{AV} s \mathrm{~s}=0 \mathrm{~V}$, $\left.V_{D D}-0.5 \mathrm{~V} \leq A V_{D D} \leq V_{D D}\right)$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution				10			bit
Total errorNote		$4.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq \mathrm{A} \mathrm{V}_{\mathrm{DD}}$				± 0.5	\%FSR
		$3.4 \mathrm{~V} \leq \mathrm{AV}_{\text {reF }}<4.5 \mathrm{~V}$				± 0.7	\%FSR
Quantization error						$\pm 1 / 2$	LSB
Conversion time	toonv			169			tcyk
Sampling time	tsamp			20			tcyk
Zero-scale errorNote		$4.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq \mathrm{AV} \mathrm{VDD}$			± 1.5	± 3.5	LSB
		$3.4 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }}<4.5 \mathrm{~V}$			± 1.5	± 4.5	LSB
Full-scale error ${ }^{\text {Note }}$		$4.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq \mathrm{AV} \mathrm{VdD}^{\text {d }}$			± 1.5	± 3.5	LSB
		$3.4 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }}<4.5 \mathrm{~V}$			± 1.5	± 4.5	LSB
Nonlinearity errorNote		$4.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq \mathrm{AV} \mathrm{VDD}^{\text {d }}$			± 1.5	± 2.5	LSB
		$3.4 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.5 \mathrm{~V}$			± 1.5	± 4.5	LSB
Analog input voltage	Vian			-0.3		AVref+0.3	V
A/D converter reference input voltage	AVref			3.4		AVDD	V
AVref current	Alref				3.0	4.0	mA
AVDD supply current	Aldo				2.0	6.0	mA
A/D converter data retention	Aldodr	STOP	$\mathrm{A} \mathrm{V}_{\text {dodr }}=2.5 \mathrm{~V}$		2	100	$\mu \mathrm{A}$
			$A V_{\text {dddr }}=5 \mathrm{~V} \pm 10 \%$		10	1000	$\mu \mathrm{A}$

Note The quantization error is excluded.

Remark tcyk $=1 /$ fclk (fclk is internal system clock frequency).

Read Operation (8 bits)

Write Operation (8 bits)

Read Operation (16 bits)

Write Operation (16 bits)

Serial Operation

Interrupt Input Timing

Reset Input Timing

14. PACKAGE DRAWING

80 PIN PLASTIC QFP (14x14)

NOTE
Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	17.2 ± 0.4	0.677 ± 0.016
B	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
C	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
D	17.2 ± 0.4	0.677 ± 0.016
F	0.825	0.032
G	0.825	0.032
H	0.30 ± 0.10	$0.012_{-0.005}^{+0.004}$
I	0.13	0.005
J	$0.65($ T.P. $)$	$0.026($ T.P. $)$
K	1.6 ± 0.2	0.063 ± 0.008
L	0.8 ± 0.2	$0.031_{-0.008}^{+0.009}$
M	$0.15_{-0.05}^{+0.10}$	$0.006_{-0.003}^{+0.004}$
N	0.10	0.004
P	2.7 ± 0.1	$0.106_{-0}^{+0.005}$
Q	0.1 ± 0.1	0.004 ± 0.004
R	$5^{\circ} \pm 5^{\circ}$	$5^{\circ} \pm 5^{\circ}$
S	3.0 MAX.	0.119 MAX.
		S80GC-65-3B9-5

Remark The package dimensions and materials of ES versions are the same as those of mass-production versions.

15. RECOMMENDED SOLDERING CONDITIONS

These products should be soldered and mounted under the conditions recommended below.
For details of soldering conditions, refer to the information document Semiconductor Device Mounting Technology Manual (C10535E).

For soldering methods and conditions other than those recommended, please contact your NEC representative.

Table 15-1. Surface-Mount Type Soldering Conditions

```
\muPD784054GC(A)-×xx-3B9 : 80-pin plastic QFP (14 }\times14\textrm{mm}
\muPD784054GC(A1)-×××-3B9 : 80-pin plastic QFP (14 }\times14\textrm{mm}
\muPD784054GC(A2)-×××-3B9 : 80-pin plastic QFP (14 }\times14\textrm{mm}
```

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235{ }^{\circ} \mathrm{C}$, Time: 30 sec. max. $\left(210{ }^{\circ} \mathrm{C} \mathrm{min),}\right.$. Number of times: 3 max.	IR35-00-3
Partial heating	Pin temperature: $300{ }^{\circ} \mathrm{C}$ max., 3 sec. max. (per side of device)	-

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for developing systems using the μ PD784054(A).
Refer to (5) Cautions when the development tools are used

(1) Language processing software

RA78K4	$78 \mathrm{~K} / \mathrm{IV}$ series common assembler package
CC78K4	$78 \mathrm{~K} /$ IV series common C compiler package
DF784046	Device file commonly used with the μ PD784046 subseries
CC78K4-L	$78 \mathrm{~K} / \mathrm{IV}$ series common C compiler library source file

(2) Flash memory writing tools

Flashpro II (Part number: FL-PR2)	Dedicated flash programmer for microcomputers incorporating flash memory
FA-80GC	Adapter for flash memory writing

(3) Debugging tools

- When using the IE-78K4-NS in-circuit emulator

IE78K4-NS	Note
IE-70000-MC-PS-B	Power supply unit for IE-78K4-NS
IE-70000-98-IF-CNote	Interface adapter necessary when a PC-9800 series computer (except notebook-type personal computer) is used as host machine
IE-70000-CD-IFNote	PC card and interface cable necessary when a PC-9800 series notebook-type personal computer is used as host machine
IE-70000-PC-IF-CNote	Interface adapter necessary when an IBM PC/AT host machine
IE-784046-NS-EM1 a compatible machine is used as	
NP-80GC	Emulation board for emulating the μ PD784054(A) subseries
EV-9200GC-80	Emulation probe for 80-pin plastic QFP (GC-3B9 type)
ID78K4-NSNote	Socket to be mounted on the board of the target system for 80-pin plastic QFP (GC-3B9 type)
SM78K4	Integrated debugger for IE-78K4-NS
DF784046	$78 K / I V$ series common system simulator

Note Under development

- When using the IE-784000-R in-circuit emulator

IE-784000-R	78K/IV series common in-circuit emulator
IE-70000-98-IF-B IE-70000-98-IF-CNote	Interface adapter necessary when a PC-9800 series computer (except notebook-type personal computer) is used as host machine
IE-70000-98N-IF	Interface adapter and cable necessary when a PC-9800 series notebook-type personal computer is used as host machine
IE-70000-PC-IF-B IE-70000-PC-IF-CNote	Interface adapter necessary when an IBM PC/AT or a compatible machine is used as host machine
IE-78000-R-SV3	Interface adapter and cable necessary when an EWS is used as host machine
IE-784000-R-EM	78K/IV series common emulation board
IE-784046-NS-EM1 Note IE-784046-R-EM1	Emulation board for emulating the μ PD784054(A) IE78K4-R-EX2Note
Emulation probe conversion board necessary when the IE-784046-NS-EM1 is used in	
the IE-784000-R. Not necessary when the IE-784046-R-EM1 is used.	

Note Under development

(4) Real-time OS

RX78K/IV	Real-time OS for 78K/IV series
MX78K4	OS for 78K/IV series

(5) Cautions when the development tools are used

- The ID-78K4-NS, ID78K4, and SM78K4 are used in combination with the DF784046.
- The CC78K4 and RX78K/IV are used in combination with the RA78K4 and DF784046.
- Flashpro II, FA-80GC, and NP-80GC are product of Naito Densei Machida Mfg. Co., Ltd. (TEL: (044)8223813). Contact an NEC distributor when purchasing these products.
- Host machines and OSs compatible with the software are as follows:

Host Machine [OS]	PC	EWS
Software	PC-9800 Series [Windows ${ }^{\top M}$] IBM PC/AT and compatible machines [Japanese/English Windows]	HP9000 series $700^{\text {TM }}$ [HP-UX ${ }^{\text {TM }}$] SPARCstation ${ }^{\text {TM }}$ [SunOS ${ }^{\text {TM }}$] NEWS ${ }^{\text {™ }}$ (RISC) [NEWS-OS ${ }^{\top M}$]
RA78K4	$\bigcirc{ }^{\text {Note }}$	\bigcirc
CC78K4	$\bigcirc{ }^{\text {Note }}$	\bigcirc
ID78K4-NS	\bigcirc	-
ID78K4	\bigcirc	\bigcirc
SM78K4	\bigcirc	-
RX78K/IV	$\bigcirc{ }^{\text {Note }}$	\bigcirc
MX78K4	$\bigcirc{ }^{\text {Note }}$	\bigcirc

Note DOS based software

APPENDIX B. RELATED DOCUMENTS

Device-related documents

Document	Document No.	
	Japanese	English
μ PD784054(A) Data Sheet	U13122J	This document
μ PD78F4046 Preliminary Product Information	U11447J	U11447E
μ PD784054 User's Manual - Hardware	U11719J	U11719E
μ PD784054 Special Function Register Table	U11113J	-
$78 K / I V$ Series User's Manual - Instruction	U10905J	U10905E
$78 K / I V ~ S e r i e s ~ I n s t r u c t i o n ~ T a b l e ~$	U10594J	-
$78 K / I V$ Series Instruction Set	U10595J	-
$78 K / I V$ Series Application Note - Software Basics	U10095J	U10095E

Development tool-related documents (User's Manuals)

Document		Document No.	
		Japanese	English
RA78K4 Assembler Package	Operation	U11334J	U11334E
	Language	U11162J	U11162E
RA78K4 Structured Assembler Preprocessor		U11743J	U11743E
CC78K4 C Compiler	Operation	U11572J	U11572E
	Language	EEU-961	U11571E
CC78K Series Library Source File		U12322J	-
IE-78K4-NS		On preparation	Planned
IE-784000-R		U12903J	EEU-1534
IE-784046-NS-EM1		Planned	Planned
IE-784046-R-EM1		U11677J	U11677E
EP-78230		EEU-985	EEU-1515
SM78K4 System Simulator Windows Based	Reference	U10093J	U10093E
SM78K Series System Simulator	External Part User Open Interface Specifications	U10092J	U10092E
ID78K4-NS Integrated Debugger	Reference	U12796J	U12796E
ID78K4 Integrated Debugger Windows Based	Reference	U10440J	U10440E
ID78K4 Integrated Debugger HP-UX, SunOS, NEWS-OS Based	Reference	U11960J	U11960E

Caution The contents of the above related documents are subject to change without notice. Be sure to use the latest edition of the document when designing your system.

Embedded software-related documents (User's Manuals)

Document		Document No.	
		Japanese	English
78K/IV Series Real-Time OS	Fundamental	U10603J	U10603E
	Installation	U10604J	U10604E
	Debugger	U10364J	-
78K/IV Series OS MX78K4	Fundamental	U11779J	-

Other documents

Document	Document No.	
	Japanese	English
IC Package Manual	C10943X	C10535E
Semiconductor Device Mounting Technology Manual	C10535J	C11531E
Quality Grades on NEC Semiconductor Devices	C11531J	C10983E
NEC Semiconductor Device Reliability and Quality Control	C10983J	C11892E
Guide to Prevent Damages for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892J	-
Semiconductor Quality/Reliability Handbook	C12769J	-
Microcontroller-Related Product Guide - Third Parties	U11416J	-

Caution The contents of the above related documents are subject to change without notice. Be sure to use the latest edition of the document when designing your system.

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
800-366-9782
Fax: 408-588-6130
800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH NEC Electronics Hong Kong Ltd.
Benelux Office Hong Kong

Eindhoven, The Netherlands Tel: 2886-9318
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-67 5899
NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951
NEC do Brasil S.A.
Cumbica-Guarulhos-SP, Brasil
Tel: 011-6465-6810
Fax: 011-6465-6829

IEBus is a trademark of NEC Corporation.
 Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
 PC/AT is a trademark of IBM Corporation.
 HP9000 Series 700 and HP-UX are trademarks of Hewlett-Packard Company.
 SPARCstation is a trademark of SPARC International, Inc.
 SunOS is a trademark of Sun Microsystems, Inc.
 NEWS and NEWS-OS are trademarks of Sony Corporation.

Some of related document may be preliminary, but is not marked as such. Please keep this in mind as you refer to this information

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

