MOS INTEGRATED CIRCUIT
 $\mu \mathrm{PD} 78076 \mathrm{Y}, 78078 \mathrm{Y}$

8-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The $\mu \mathrm{PD} 78076 \mathrm{Y}$ and 78078 Y add the $\mathrm{I}^{2} \mathrm{C}$ bus control function to the $\mu \mathrm{PD} 78076$ and 78078 , and are suitable for application in AV products.

Besides a high-speed, high-performance CPU, these microcontrollers have internal ROM, RAM, I/O ports, 8 -bit resolution A/D converter, 8-bit resolution D/A converter, timer, serial interface, real-time output port, interrupt control, and various other peripheral hardware.

A one-time PROM version and an EPROM version (common name: μ PD78P078Y), both of which can operate in the same power supply voltage range as the mask ROM version, and various development tools are also available.

The details of the functions are described in the following user's manuals. Be sure to read them before designing. μ PD78078, 78078Y Subseries User's Manual: U10641E
78K/0 Series User's Manual - Instructions: U12326E

FEATURES

- Internal high-capacity ROM and RAM

	Program Memory (ROM)	Data Memory			Package
		Internal High-Speed RAM	Internal Buffer RAM	Internal Expansion RAM	
$\mu \mathrm{PD} 78076 \mathrm{Y}$	48 Kbytes	1024 bytes	32 bytes	1024 bytes	100-pin plastic QFP ($14 \times 20 \mathrm{~mm}$, resin thickness 2.7 mm)
$\mu \mathrm{PD} 78078 \mathrm{Y}$	60 Kbytes				100-pin plastic LQFPNote $(14 \times 14 \mathrm{~mm}$, resin thickness 1.40 mm)

Note Under development

- External memory expansion space: 64 Kbytes
- Minimum instruction execution time can be changed from high-speed ($0.4 \mu \mathrm{~s}$) to ultra-low-speed ($122 \mu \mathrm{~s}$)
- I/O ports: 88 (N-ch open-drain: 8)
- 8-bit resolution A/D converter: 8 channels
- 8 -bit resolution D/A converter: 2 channels
- Serial interface: 3 channels
- 3-wire serial I/O, 2-wire serial I/O, and $I^{2} \mathrm{C}$ bus mode: 1 channel
- 3-wire serial I/O mode: 1 channel
- 3-wire serial I/O and UART mode: 1 channel
- Timer: 7 channels
- Supply voltage: VDD $=1.8$ to 5.5 V

APPLICATIONS

Cellular phones, cordless telephones, $A V$ equipment, etc.

ORDERING INFORMATION

Part Number
Package

```
\muPD78076YGF-×××-3BA 100-pin plastic QFP (14 × 20 mm, resin thickness 2.7 mm)
\muPD78076YGC-×××-8EUNote 100-pin plastic LQFP (fine pitch) (14 × 14 mm, resin thickness 1.40 mm}
\muPD78078YGF-xxx-3BA 100-pin plastic QFP (14 × 20 mm, resin thickness 2.7 mm)
\muPD78078YGC-×xx-8EUNote 100-pin plastic LQFP (fine pitch) (14 × 14 mm, resin thickness 1.40 mm)
```

Note Under development

Remark $\times x \times$ indicates the ROM code suffix.

^ 78K/0 SERIES DEVELOPMENT

These products are a further development in the 78K/0 Series. The designations appearing inside the boxes are subseries names.

Note Under development

The major functional differences among the Y subseries are shown below.

Subseries Name Function		ROM Capacity	Serial Interface		1/0	VDD MIN. Value	
Control	$\mu \mathrm{PD} 78078 \mathrm{Y}$	48 K to 60 K	3 -wire/2-wire/ ${ }^{2} \mathrm{C}$ $: 1 \mathrm{ch}$ 3 -wire with automatic transmit/receive function $: 1 \mathrm{ch}$ 3 -wire/UART $: 1 \mathrm{ch}$		88	1.8 V	
	$\mu \mathrm{PD} 78070 \mathrm{AY}$	-			61	2.7 V	
	μ PD780018AY	48 K to 60 K	3-wire with automatic transmit/receive function $: 1 \mathrm{ch}$ Time division 3-wire $: 1 \mathrm{ch}$ $1^{2} \mathrm{C}$ bus (supports Multimaster) $: 1 \mathrm{ch}$		88		
	$\mu \mathrm{PD} 780058 \mathrm{Y}$	24 K to 60 K	3 -wire/2-wire// ${ }^{2} \mathrm{C}$ $: 1 \mathrm{ch}$ 3 -wire with automatic transmit/receive function $: 1 \mathrm{ch}$ 3 -wire/time division UART $: 1 \mathrm{ch}$		68	1.8 V	
	$\mu \mathrm{PD} 78058 \mathrm{FY}$	48 K to 60 K	3 -wire $/ 2$-wire $/{ }^{2} \mathrm{C}$ $: 1 \mathrm{ch}$ 3 -wire with automatic transmit/receive function $: 1 \mathrm{ch}$ 3 -wire/UART $: 1 \mathrm{ch}$ UART		69	2.7 V	
	$\mu \mathrm{PD78054Y}$	16 K to 60 K			2.0 V		
	μ PD780034Y	8 K to 32 K	UART $: 1 \mathrm{ch}$ 3 -wire $: 1 \mathrm{ch}$ $\mathrm{I}^{2} \mathrm{C}$ bus (supports Multimaster) $: 1 \mathrm{ch}$			51	1.8 V
	μ PD780024Y						
	$\mu \mathrm{PD} 78018 \mathrm{FY}$	8 K to 60 K	3-wire/2-wire/ $/{ }^{2} \mathrm{C} / \mathrm{SBI} / /^{2} \mathrm{C}$ 3 -wire with automatic transmit/receive function	$\begin{aligned} & : 1 \mathrm{ch} \\ & : 1 \mathrm{ch} \end{aligned}$	53		
	μ PD78014Y	8 K to 32K	3-wire $/ 2$-wire/SBI// ${ }^{2} \mathrm{C}$ 3 -wire with automatic transmit/receive function	$\begin{aligned} & : 1 \mathrm{ch} \\ & : 1 \mathrm{ch} \end{aligned}$		2.7 V	
	μ PD78002Y	8 K to 16 K	3 -wire/2-wire/SBI// ${ }^{2} \mathrm{C}$: 1 ch			
LCD driving	$\mu \mathrm{PD780308Y}$	48 K to 60 K	3 -wire $/ 2$-wire $/{ }^{2} \mathrm{C}$ 3 -wire/time division UART 3 -wire	$\begin{aligned} & \hline: 1 \mathrm{ch} \\ & : 1 \mathrm{ch} \\ & : 1 \mathrm{ch} \\ & \hline \end{aligned}$	57	2.0 V	
	$\mu \mathrm{PD} 78064 \mathrm{Y}$	16 K to 32 K	3-wire/2-wire/l²C 3-wire/UART	$\begin{aligned} & : 1 \mathrm{ch} \\ & : 1 \mathrm{ch} \end{aligned}$			

Remark Functions except serial interface are common to subseries without Y suffix.

OVERVIEW OF FUNCTION

Part Number Item		μ PD78076Y	$\mu \mathrm{PD} 78078 \mathrm{Y}$
Internal memory	ROM	48 Kbytes	60 Kbytes
	High-speed RAM	1024 bytes	
	Buffer RAM	32 bytes	
	Expansion RAM	1024 bytes	
Memory space		64 Kbytes	
General-purpose registers		8 bits $\times 32$ registers (8 bits	anks)
Minimum instruction execution		On-chip minimum instruction	variable function
	When main system clock selected	$0.4 \mu \mathrm{~s} / 0.8 \mu \mathrm{~s} / 1.6 \mu \mathrm{~s} / 3.2 \mu \mathrm{~s} / 6$	$5.0-\mathrm{MHz}$ operation)
	When subsystem clock selected	$122 \mu \mathrm{~s}$ (at $32.768-\mathrm{kHz}$ opera	
Instruction set		- 16-bit operation - Multiply/divide (8 bits $\times 8$ b - Bit manipulate (set, reset, - BCD adjust, etc.	ts) ration)
I/O ports		Total $: 88$ - CMOS input $: 2$ - CMOS I/O $: 78$ - N-ch open-drain I/O $: 8$	
A/D converter		- 8 -bit resolution $\times 8$ channel	
D/A converter		- 8 -bit resolution $\times 2$ channel	
Serial interface		- 3-wire serial I/O/2-wire ser -3-wire serial I/O mode (up to 32-byte automatic - 3-wire serial I/O/UART mod	de selectable : 1 channel ive function is provided) : 1 channel : 1 channel
Timer		- 16-bit timer/event counter : - 8-bit timer/event counter - Watch timer - Watchdog timer	
Timer output		5 (14-bit PWM output $\times 1,8$	$\times 2)$
Clock output		- $19.5 \mathrm{kHz}, 39.1 \mathrm{kHz}, 78.1 \mathrm{k}$ 5.0 MHz (@ 5.0-MHz oper - 32.768 kHz (@ 32.768-kHz	$3 \mathrm{kHz}, 625 \mathrm{kHz}, 1.25 \mathrm{MHz}, 2.5 \mathrm{MHz}$ ystem clock) subsystem clock)
Buzzer output		$1.2 \mathrm{kHz}, 2.4 \mathrm{kHz}, 4.9 \mathrm{kHz}, 9$	Hz operation with main system clock)
Vectored interrupt sources	Maskable	Internal: 15, External: 7	
	Non-maskable	Internal: 1	
	Software	1	
Test input		Internal: 1, External: 1	
Supply voltage		$\mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V	
Package		- 100-pin plastic QFP ($14 \times$ - 100-pin plastic LQFP (fine	kness 2.7 mm) mm , resin thickness 1.40 mm) Note

Note Under development

CONTENTS

1. PIN CONFIGURATION (TOP VIEW) 7
2. BLOCK DIAGRAM 10
3. PIN FUNCTIONS 11
3.1 Port Pins 11
3.2 Non-port Pins 13
3.3 Pin I/O Circuits and Recommended Connection of Unused Pins 15
4. MEMORY SPACE 19
5. PERIPHERAL HARDWARE FUNCTIONS 20
5.1 Ports 20
5.2 Clock Generator 21
5.3 Timer/Event Counter 21
5.4 Clock Output Control Circuit 25
5.5 Buzzer Output Control Circuit 25
5.6 A/D Converter 26
5.7 D/A Converter 26
5.8 Serial Interfaces 27
5.9 Real-Time Output Port 29
6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS 30
6.1 Interrupt Functions 30
6.2 Test Functions 33
7. EXTERNAL DEVICE EXPANSION FUNCTIONS 34
8. STANDBY FUNCTION 34
9. RESET FUNCTION 35
10. INSTRUCTION SET 36
11. ELECTRICAL SPECIFICATIONS 38
12. CHARACTERISTIC CURVES (REFERENCE VALUE) 67
13. PACKAGE DRAWINGS 72
14. RECOMMENDED SOLDERING CONDITIONS 74
APPENDIX A. DEVELOPMENT TOOLS 75
APPENDIX B. RELATED DOCUMENTS 78

1. PIN CONFIGURATION (TOP VIEW)

- 100-pin plastic QFP ($14 \times 20 \mathrm{~mm}$, resin thickness 2.7 mm) μ PD78076YGF-xxx-3BA, 78078YGF-xxx-3BA

Cautions 1. Connect IC (internally connected) pin directly to Vss.
2. Connect AVdd pin to Vdd.
3. Connect AVss pin to Vss.

- 100-pin plastic LQFP (fine pitch) ($14 \times 14 \mathrm{~mm}$, resin thickness 1.40 mm) μ PD78076YGC-8EU ${ }^{\text {Note }}, 78078 \mathrm{YGC}-8 E U^{\text {Note }}$

Note Under development

Cautions 1. Connect IC (internally connected) pin directly to Vss.
2. Connect AVdd pin to Vdd.
3. Connect AVss pin to Vss.

A0 to A15	Address Bus	P120 to P127	Port12
AD0 to AD7	Address/Data Bus	P130, P131	Port13
ANI0 to ANI7	Analog Input	PCL	Programmable Clock
ANO0, ANO1	Analog Output	$\overline{\mathrm{RD}}$	Read Strobe
ASCK	Asynchronous Serial Clock	RESET	Reset
ASTB	Address Strobe	RTP0 to RTP7	Real-Time Output Port
AVdo	Analog Power Supply	RxD	Receive Data
AVrefo, AVref1	Analog Reference Voltage	SB0, SB1	Serial Bus
AVss	Analog Ground	$\overline{\text { SCKO }}$ to $\overline{\text { SCK2 }}$	Serial Clock
BUSY	Busy	SCL	Serial Clock
BUZ	Buzzer Clock	SDA0, SDA1	Serial Data
IC	Internally Connected	SIO to SI2	Serial Input
INTP0 to INTP6	Interrupt from Peripherals	SO0 to SO2	Serial Output
P00 to P07	Port0	STB	Strobe
P10 to P17	Port1	TIOO, TI01	Timer Input
P20 to P27	Port2	TI1, TI2, TI5, TI6	Timer Input
P30 to P37	Port3	TOO to TO2, TO5, TO6 :	Timer Output
P40 to P47	Port4	TxD	Transmit Data
P50 to P57	Port5	VDD	Power Supply
P60 to P67	Port6	Vss	Ground
P70 to P72	Port7	WAIT	Wait
P80 to P87	Port8	$\overline{\mathrm{WR}}$	Write Strobe
P90 to P96	Port9	X1, X2	Crystal (Main System Clock)
P100 to P103	Port10	XT1, XT2	Crystal (Subsystem Clock)

2. BLOCK DIAGRAM

Remark The internal ROM capacity depends on the product.

3. PIN FUNCTIONS

3.1 Port Pins (1/2)

Pin Name	I/O		Function	After Reset	Alternate Function	
P00	Input	Port 0 8-bit input/output port	Input only	Input	INTP0/TI00	
P01	Input/ output		Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.	Input	INTP1/TI01	
P02					INTP2	
P03					INTP3	
P04					INTP4	
P05					INTP5	
P06					INTP6	
P07Note 1	Input		Input only	Input	XT1	
P10 to P17	Input/ output	Port 1 8-bit input/output port Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software. ${ }^{\text {Note } 2}$		Input	ANIO to ANI7	
P20	Input/ output	Port 2 8-bit input/output port Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.		Input	SI1	
P21				SO1		
P22				$\overline{\text { SCK1 }}$		
P23				STB		
P24				BUSY		
P25				SIO/SB0/SDA0		
P26				SO0/SB1/SDA1		
P27				$\overline{\text { SCK0/SCL }}$		
P30	Input/ output	Port 3 8-bit input/output port Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.			Input	TOO
P31				TO1		
P32				TO2		
P33				TI1		
P34				TI2		
P35				PCL		
P36				BUZ		
P37				-		
P40 to P47	Input/ output	Port 4 8-bit input/output port Input/output can be specified in 8-bit units. When used as an input port, an on-chip pull-up resistor can be used by means of software. Test input flag (KRIF) is set to 1 by falling edge detection.			Input	AD0 to AD7

Notes 1. When using the P07/XT1 pins as an input port, set to 1 bit 6 (FRC) of the processor clock control register (PCC). (Do not use the on-chip feedback resistor of the subsystem clock oscillator.)
2. When using the P10/ANI0 to P17/ANI7 pins as the A/D converter analog input, set port 1 to the input mode. At this time, on-chip pull-up resistor is automatically disconnected.

3.1 Port Pins (2/2)

Pin Name	I/O		Function	After Reset	Alternate Function	
P50 to P57	Input/ output	Port 5 8-bit input/output port LEDs can be driven directly. Input/output can be specified When used as an input port, used by means of software.	-wise. on-chip pull-up resistor can be	Input	A8 to A15	
P60	Input/ output	Port 6 8-bit input/ output port Input/output can be specified bit-wise.	N-ch open-drain input/output port. An on-chip pull-up resistor can be specified by mask option. LEDs can be driven directly.	Input	-	
P61						
P62						
P63						
P64			When used as an input port, an on-chip pull-up resistor can be used by means of software.	Input	$\overline{\mathrm{RD}}$	
P65					$\overline{\mathrm{WR}}$	
P66					$\overline{\text { WAIT }}$	
P67					ASTB	
P70	Input/ output	Port 7 3-bit input/output port Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.		Input	SI2/RxD	
P71				SO2/TxD		
P72				$\overline{\text { SCK2 }} /$ ASCK		
P80 to P87	Input/ output	Port 8 8-bit input/output port Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.			Input	A0 to A7
P90	Input/ output	Port 9 7-bit input/output port Input/output can be specified bit-wise.	N-ch open-drain input/output port. An on-chip pull-up resistor can be specified by mask option. LEDs can be driven directly.		Input	-
P91						
P92						
P93						
P94			When used as an input port, an on-chip pull-up resistor can be used by means of software.			
P95						
P96						
P100	Input/ output	Port 10 4-bit input/output port Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.		Input	TI5/TO5	
P101				TI6/TO6		
P102, P103				-		
$\begin{gathered} \mathrm{P} 120 \\ \text { to P127 } \end{gathered}$	Input/ output	Port 12 8-bit input/output port Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.			Input	RTP0 to RTP7
P130, P131	Input/ output	Port 13 2-bit input/output port Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.			Input	ANO0, ANO1

3.2 Non-port Pins (1/2)

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	External interrupt request input for which the active edge (rising edge, falling edge, or both rising and falling edges) can be specified.	Input	P00/TI00
INTP1				P01/TI01
INTP2				P02
INTP3				P03
INTP4				P04
INTP5				P05
INTP6				P06
SIO	Input	Serial interface serial data input	Input	P25/SB0/SDA0
SI1				P20
SI2				P70/RxD
SO0	Output	Serial interface serial data output	Input	P26/SB1/SDA1
SO1				P21
SO2				P71/TxD
SB0	Input/ output	Serial interface serial data input/output	Input	P25/SI0/SDA0
SB1				P26/SO0/SDA1
SDA0				P25/SI0/SB0
SDA1				P26/SO0/SB1
$\overline{\text { SCKO }}$	Input/	Serial interface serial clock input/output	Input	P27/SCL
SCK1				P22
$\overline{\text { SCK2 }}$				P72/ASCK
SCL				P27/SCK0
STB	Output	Serial interface automatic transmit/receive strobe output	Input	P23
BUSY	Input	Serial interface automatic transmit/receive busy input	Input	P24
RxD	Input	Asynchronous serial interface serial data input	Input	P70/SI2
TxD	Output	Asynchronous serial interface serial data output	Input	P71/SO2
ASCK	Input	Asynchronous serial interface serial clock input	Input	P72/SCK2
TIOO	Input	External count clock input to 16-bit timer (TM0)	Input	P00/INTP0
TI01		Capture trigger signal input to capture register (CR00)		P01/INTP1
TI1		External count clock input to 8-bit timer (TM1)		P33
TI2		External count clock input to 8-bit timer (TM2)		P34
TI5		External count clock input to 8-bit timer (TM5)		P100/TO5
TI6		External count clock input to 8-bit timer (TM6)		P101/TO6
TOO	Output	16-bit timer (TM0) output (also used for 14-bit PWM output)	Input	P30
TO1		8-bit timer (TM1) output		P31
TO2		8-bit timer (TM2) output		P32
TO5		8-bit timer (TM5) output (also used for 8-bit PWM output)		P100/TI5
TO6		8-bit timer (TM6) output (also used for 8-bit PWM output)		P101/TI6
PCL	Output	Clock output (for main system clock, subsystem clock trimming)	Input	P35
BUZ	Output	Buzzer output	Input	P36

3.2 Non-port Pins (1/2)

Pin Name	I/O	Function	After Reset	Alternate Function
RTP0 to RTP7	Output	Real-time output port from which data is output in synchronization with a trigger	Input	P120 to P127
AD0 to AD7	Input/ output	Low-order address/data bus at external memory expansion	Input	P40 to P47
A0 to A7	Output	Low-order address bus at external memory expansion	Input	P80 to P87
A8 to A15	Output	High-order address bus at external memory expansion	Input	P50 to P57
$\overline{\mathrm{RD}}$	Output	External memory read operation strobe signal output	Input	P64
$\overline{W R}$		External memory write operation strobe signal output		P65
$\overline{\text { WAIT }}$	Input	Wait insertion at external memory access	Input	P66
ASTB	Output	Strobe output which externally latches the address information to ports 4,5 , and 8 to access external memory	Input	P67
ANIO to ANI7	Input	A/D converter analog input	Input	P10 to P17
ANO0, ANO1	Output	D/A converter analog output	Input	P130, P131
A $\mathrm{V}_{\text {refo }}$	Input	A/D converter reference voltage input	-	-
AVref1	Input	D/A converter reference voltage input	-	-
AVdo	-	A/D converter analog power supply. Connect to Vdd.	-	-
AVss	-	A/D converter and D/A converter ground potential. Connect to Vss.	-	-
RESET	Input	System reset input	-	-
X1	Input	Crystal resonator connection for main system clock oscillation	-	-
X2	-		-	-
XT1	Input	Crystal resonator connection for subsystem clock oscillation	Input	P07
XT2	-		-	-
Vdd	-	Positive power supply	-	-
Vss	-	Ground potential	-	-
IC	-	Internally connected. Connect directly to Vss.	-	-

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1.
For the input/output circuit configuration of each type, see Figure 3-1.
Table 3-1. Types of Pin Input/Output Circuits (1/2)

\left.| Pin Name | Input/Output |
| :--- | :---: | :---: | :--- |
| Circuit Type | |$\right)$

Table 3-1. Types of Pin Input/Output Circuits (2/2)

Pin Name	Input/Output Circuit Type	I/O	Recommended Connection for Unused Pins
P70/SI2/RxD	8-A	Input/output	Independently connect to Vdd or Vss via a resistor.
P71/SO2/TxD	5-A		
P72/ $\overline{\text { SCK2 }} /$ /ASCK	8-A		
P80/A0 to P87/A7	5-A		
P90 to P93	13-B	Input/output	Independently connect to VdD via a resistor.
P94 to P96	5-A	Input/output	Independently connect to VdD or Vss via a resistor.
P100/TI5/TO5	8-A		
P101/TI6/TO6			
P102, P103	5-A		
$\begin{aligned} & \text { P120/RTP0 to } \\ & \text { P127/RTP7 } \end{aligned}$			
$\begin{aligned} & \text { P130/ANO0, } \\ & \text { P131/ANO1 } \end{aligned}$	12-A	Input/output	Independently connect to Vss via a resistor.
RESET	2	Input	-
XT2	16	-	Leave open.
AV ${ }_{\text {refo }}$	-		Connect to Vss.
AV ${ }_{\text {ref } 1}$			Connect to Vod.
AVDd			
AVss			Connect to Vss.
IC			Connect directly to Vss.

Figure 3-1. Pin Input/Output Circuits (1/2)

Figure 3-1. Pin Input/Output Circuits (2/2)

4. MEMORY SPACE

The memory map of the μ PD78076Y and 78078Y is shown in Figure 4-1.

Figure 4-1. Memory Map

Notes 1. If external device expansion functions are to be employed for the $\mu \mathrm{PD} 78078 \mathrm{Y}$, set the size of the internal ROM to 56 Kbytes or below using the memory size switching register (IMS).
2. The internal ROM capacity depends on the product. (See the following table.)

Part Number	Internal ROM Last Address nnnnH
μ PD78076Y	BFFFH
μ PD78078Y	EFFFH

5. PERIPHERAL HARDWARE FUNCTIONS

5.1 Ports

Input/output ports are classified into three types

- CMOS input (P00, P07) : 2
- CMOS input/output (P01 to P06, Port 1 to 5, P64 to P67, Port 7,

Port 8, P94 to P96, Port 10, Port 12, Port 13) : 78

- N-ch open-drain input/output (P60 to P63, P90 to P93) : 8

Total : 88

Table 5-1. Functions of Ports

Port Name	Pin Name	Function
Port 0	P00, P07	Input only.
	P01 to P06	Input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.
Port 1	P10 to P17	Input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.
Port 2	P20 to P27	Input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.
Port 3	P30 to P37	Input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.
Port 4	P40 to P47	Input/output port. Input/output can be specified in 8-bit units. When used as an input port, an on-chip pull-up resistor can be used by means of software. The test input flag (KRIF) is set to 1 by falling edge detection.
Port 5	P50 to P57	Input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software. LEDs can be driven directly.
Port 6	P60 to P63	N-ch open-drain input/output port. Input/output can be specified bit-wise. An on-chip pull-up resistor can be used by mask option. LEDs can be driven directly.
	P64 to P67	Input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.
Port 7	P70 to P72	Input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.
Port 8	P80 to P87	Input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.
Port 9	P90 to P93	N -ch open-drain input/output port. Input/output can be specified bit-wise. An on-chip pull-up resistor can be used by mask option. LEDs can be driven directly.
	P94 to P96	Input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.
Port 10	P100 to P103	Input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.
Port 12	P120 to P127	Input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.
Port 13	P130, P131	Input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by means of software.

5.2 Clock Generator

There are two kinds of clock generators: main system and subsystem clock generators.
It is possible to change the minimum instruction execution time.

- $0.4 \mu \mathrm{~s} / 0.8 \mu \mathrm{~s} / 1.6 \mu \mathrm{~s} / 3.2 \mu \mathrm{~s} / 6.4 \mu \mathrm{~s} / 12.8 \mu \mathrm{~s}$ (at main system clock frequency of 5.0 MHz)
- $122 \mu \mathrm{~s}$ (at subsystem clock frequency of 32.768 kHz)

Figure 5-1. Clock Generator Block Diagram

5.3 Timer/Event Counter

There are the following seven timer/event counter channels:

- 16-bit timer/event counter : 1 channel
- 8-bit timer/event counter : 4 channels
- Watch timer : 1 channel
- Watchdog timer : 1 channel

Table 5-2. Operations of Timer/Event Counters

		16-bit Timer/Event Counter	8-bit Timer/Event Counters 1, 2	8-bit Timer/Event Counters 5, 6	Watch Timer	Watchdog Timer
Operation mode	Interval timer	External event counter	1 channel	2 channels	2 channels	-
	Timer output	1 output	2 outputs	2 outputs	-	1 channel
	PWM output	1 output	-	2 outputs	-	-
	Pulse width measurement	2 inputs	-	-	-	-
	Square wave output	1 output	2 outputs	2 outputs	-	-
	One-shot pulse output	1 output	-	-	-	-
	Interrupt request	2	2	-	1	-

Figure 5-2. 16-Bit Timer/Event Counter Block Diagram

Figure 5-3. 8-Bit Timer/Event Counters 1, 2 Block Diagram

Figure 5-4. 8-Bit Timer/Event Counters 5, 6 Block Diagram

$\mathrm{n}=5,6$

Figure 5-5. Watch Timer Block Diagram

Figure 5-6. Watchdog Timer Block Diagram

5.4 Clock Output Control Circuit

This circuit can output clocks of the following frequencies:

- $19.5 \mathrm{kHz} / 39.1 \mathrm{kHz} / 78.1 \mathrm{kHz} / 156 \mathrm{kHz} / 313 \mathrm{kHz} / 625 \mathrm{kHz} / 1.25 \mathrm{MHz} / 2.5 \mathrm{MHz} / 5.0 \mathrm{MHz}$ (at main system clock frequency of 5.0 MHz)
- 32.768 kHz (at subsystem clock frequency of 32.768 kHz)

Figure 5-7. Clock Output Control Circuit Block Diagram

5.5 Buzzer Output Control Circuit

This circuit can output clocks of the following frequencies that can be used for driving buzzers:

- $1.2 \mathrm{kHz} / 2.4 \mathrm{kHz} / 4.9 \mathrm{kHz} / 9.8 \mathrm{kHz}$ (at main system clock frequency of 5.0 MHz)

Figure 5-8. Buzzer Output Control Circuit Block Diagram

5.6 A/D Converter

The A/D converter consists of eight 8-bit resolution channels.
A/D conversion can be started by the following two methods:

- Hardware starting
- Software starting

Figure 5-9. A/D Converter Block Diagram

5.7 D/A Converter

The D/A converter consists of two 8-bit resolution channels.
The conversion method is the R-2R resistor ladder method.

Figure 5-10. D/A Converter Block Diagram

$\mathrm{n}=0,1$
$m=4,5$
$x=1,2$

5.8 Serial Interfaces

There are the following three on-chip serial interface channels synchronous with the clock:

- Serial interface channel 0
- Serial interface channel 1
- Serial interface channel 2

Table 5-3. Types and Functions of Serial Interfaces

Function	Serial Interface Channel 0	Serial Interface Channel 1	Serial Interface Channel 2
3-wire serial I/O mode	$\sqrt{ }$ (MSB/LSB first switching possible)	$\sqrt{ }$ (MSB/LSB first switching possible)	$\begin{aligned} & \hline \sqrt{ } \text { (MSB/LSB first } \\ & \text { switching possible) } \end{aligned}$
3-wire serial I/O mode with automatic data transmit/ receive function	-	$\sqrt{ }$ (MSB/LSB first switching possible)	-
2-wire serial I/O mode	$\sqrt{ }$ (MSB first)	-	-
$1^{2} \mathrm{C}$ bus mode	$\sqrt{ }$ (MSB first)	-	-
Asynchronous serial interface (UART) mode	-	-	(On-chip dedicated baud rate generator)

Figure 5-11. Serial Interface Channel 0 Block Diagram

Figure 5-12. Serial Interface Channel 1 Block Diagram

Figure 5-13. Serial Interface Channel 2 Block Diagram

5.9 Real-time Output Port

Data set previously in the real-time output buffer is transferred to the output latch by hardware concurrently with timer interrupt request or external interrupt request generation in order to output to off-chip. This is a realtime output function. Pins used to output to off-chip are called real-time output ports.

By using a real-time output port, a signal which has no jitter can be output. This is most applicable to control of stepping motor, etc.

Figure 5-14. Real-time Output Port Block Diagram

6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS

6.1 Interrupt Functions

A total of 24 interrupt sources are provided, divided into the following three types.

- Non-maskable interrupt : 1
- Maskable interrupt : 22
- Software interrupt : 1

Table 6-1. List of Interrupt Sources

Interrupt Type	Note 1 Default Priority	Interrupt Source		Internal/ External	Vector Table Address	Basic Note 2 Configuration Type
		Name	Trigger			
Nonmaskable	-	INTWDT	Overflow of watchdog timer (When the watchdog timer mode 1 is selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Overflow of watchdog timer (When the interval timer mode is selected)			(B)
	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1			0008H	(D)
	3	INTP2			000AH	
	4	INTP3			000CH	
	5	INTP4			000EH	
	6	INTP5			0010H	
	7	INTP6			0012H	
	8	INTCSIO	Completion of serial interface channel 0 transfer	Internal	0014H	(B)
	9	INTCSI1	Completion of serial interface channel 1 transfer		0016H	
	10	INTSER	Occurrence of serial interface channel 2 UART reception error		0018H	
	11	INTSR	Completion of serial interface channel 2 UART reception		001 AH	
		INTCSI2	Completion of serial interface channel 2 3-wire transfer			
	12	INTST	Completion of serial interface channel 2 UART transmission		001 CH	
	13	INTTM3	Reference interval signal from watch timer		001EH	
	14	INTTM00	Generation of matching signal of 16-bit timer register and capture/compare register (CR00)		0020H	
	15	INTTM01	Generation of matching signal of 16-bit timer register and capture/compare register (CR01)		0022H	
	16	INTTM1	Generation of matching signal of 8-bit timer/event counter 1		0024H	
	17	INTTM2	Generation of matching signal of 8-bit timer/event counter 2		0026H	
	18	INTAD	Completion of A/D conversion		0028H	
	19	INTTM5	Generation of matching signal of 8-bit timer/event counter 5		002AH	
	20	INTTM6	Generation of matching signal of 8-bit timer/event counter 6		002CH	
Software	-	BRK	Execution of BRK instruction	-	003EH	(E)

Notes 1. Default priority is the priority order when several maskable interrupt requests are generated at the same time. 0 is the highest order and 20 is the lowest order.
2. Basic configuration types (A) to (E) correspond to (A) to (E) in Figure 6-1.

Figure 6-1. Interrupt Function Basic Configuration (1/2)
(A) Internal non-maskable interrupt

(B) Internal maskable interrupt

(C) External maskable interrupt (INTPO)

Figure 6-1. Interrupt Function Basic Configuration (2/2)
(D) External maskable interrupt (except INTPO)

(E) Software interrupt

IF : Interrupt request flag
E : Interrupt enable flag
ISP : In-service priority flag
MK : Interrupt mask flag
PR : Priority specification flag

6.2 Test Functions

Table 6-2 shows the two test functions available.

Table 6-2. Test Input Factors

Test Input Factor		Internal/ External
Name	Trigger	
INTWT	Overflow of watch timer	External
INTPT4	Detection of falling edge of port 4	Enn

Figure 6-2. Basic Configuration of Test Function

[^0]
7. EXTERNAL DEVICE EXPANSION FUNCTIONS

The external device expansion functions connect external devices to areas other than the internal ROM, RAM and SFR.

External devices connection uses ports 4 to 6 and port 8.
The external device expansion function has the following two modes:

- Separate bus mode : External devices are connected by using an independent address bus and data bus. Because an external latch circuit is not necessary, this mode is effective for reducing the number of components and the mounting area on a printed wiring board.
- Multiplexed bus mode

External devices are connected by using a time-division multiplexed address/data bus. This mode can reduce the number of ports used when external devices are connected.

8. STANDBY FUNCTION

The standby function is designed to reduce current consumption. It has the following two modes:

- HALT mode : In this mode, the CPU operation clock is stopped. The average current consumption can be reduced by intermittent operation by combining this mode with the normal operation mode.
- STOP mode : In this mode, oscillation of the main system clock is stopped. All the operations performed on the main system clock are suspended, and only the subsystem clock is used for extremely small power consumption.

Figure 8-1. Standby Function

Note Current consumption can be reduced by shutting off the main system clock.
If the CPU is operating on the subsystem clock, shut off the main system clock by setting MCC (bit 7 in the processor clock control register (PCC)). In this case, a STOP instruction cannot be used.

Caution When switching on the main system clock again after the subsystem clock has been used with the main system clock stopped, be sure to provide enough time for oscillation stabilization with the program first.

9. RESET FUNCTION

There are the following two reset methods.

- External reset input by RESET pin
- Internal reset by watchdog timer runaway time detection

10. INSTRUCTION SET

(1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

2nd Operand 1st Operand	\#byte	A	${ }^{\text {Note }}$	sfr	saddr	laddr16	PSW	[DE]	[HL]	$\left[\begin{array}{c} {[H L+\text { byte] }} \\ {[H L+B]} \\ {[H L+C]} \end{array}\right]$	\$addr16	1	None
A	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{XCH} \end{aligned}$	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV	$\begin{aligned} & \hline \mathrm{MOV} \\ & \mathrm{XCH} \end{aligned}$	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
r	MOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP											$\begin{array}{\|l} \text { INC } \\ \text { DEC } \end{array}$
B, C											DBNZ		
sfr	MOV	MOV											
saddr	MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV									DBNZ		$\begin{array}{\|l\|} \hline \text { INC } \\ \text { DEC } \end{array}$
!addr16		MOV											
PSW	MOV	MOV											$\begin{aligned} & \text { PUSH } \\ & \text { POP } \end{aligned}$
[DE]		MOV											
[HL]		MOV											ROR4 ROL4
$\left[\begin{array}{l} {[\mathrm{HL}+\text { byte }]} \\ {[\mathrm{HL}+\mathrm{B}]} \\ {[\mathrm{HL}+\mathrm{C}]} \end{array}\right.$		MOV											
x													MULU
C													DIVUW

Note Except $r=A$
(2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

1st Operand	\#word	AX	rperand	sfrp	saddrp	!addr16	SP	None
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVWNote					INCW, DECW PUSH, POP	
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
laddr16		MOVW						
SP	MOVW	MOVW						

Note Only when $\mathrm{rp}=\mathrm{BC}, \mathrm{DE}, \mathrm{HL}$
(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

2nd Operand 1st Operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	BT BF BTCLR	SET1 CLR1
sfr.bit						MOV1	BT BF BTCLR	$\begin{aligned} & \text { SET1 } \\ & \text { CLR1 } \end{aligned}$
saddr.bit						MOV1	BT BF BTCLR	$\begin{aligned} & \text { SET1 } \\ & \text { CLR1 } \end{aligned}$
PSW.bit						MOV1	BT BF BTCLR	$\begin{aligned} & \text { SET1 } \\ & \text { CLR1 } \end{aligned}$
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
CY	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1				

(4) Call instructions/Branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

1st Operand	And Operand	laddr16	!addr11	[addr5]	\$addr16
Basic instruction	BR	CALL BR	CALLF	CALLT	BR, BC BNC BZ, BNZ
Compound instruction					BT, BF BTCLR DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

11. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Note The r.m.s. (root mean square) should be calculated as follows: [r.m.s. $]=[$ Peak value $] \times \sqrt{\text { duty }}$
Caution Product quality may suffer if the absolute maximum ratings are exceeded for even a single parameter or even momentarily. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark The characteristics of an alternate function pin are the same as those of port pins unless otherwise specified.

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	$f=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V .				15	pF
Input/output capacitance	Cıo	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V .	P01 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P72, P80 to P87, P94 to P96, P100 to P103, P120 to P127, P130, P131			15	pF
			P60 to P63, P90 to P93			20	pF

Remark The characteristics of an alternate function pin are the same as those of port pins unless otherwise specified.

MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, VDD $=1.8$ to 5.5 V)

Notes 1. Indicates only oscillator characteristics. Refer to AC CHARACTERISTICS for instruction execution time.
2. Time required to stabilize oscillation after reset or STOP mode release.

Cautions 1. When using the main system clock oscillator, wiring in the area enclosed with the broken line should be carried out as follows to avoid an adverse effect from wiring capacitance.

- Wiring should be as short as possible.
- Wiring should not cross other signal lines.
- Wiring should not be placed close to a varying high current.
- The potential of the oscillator capacitor ground should always be the same as that of Vss.
- Do not ground wiring to a ground pattern in which a high current flows.
- Do not fetch a signal from the oscillator.

2. When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched again to the main system clock after the oscillation stabilization time is secured by the program.

SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS (TA $=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{Vdd}=1.8$ to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator		Oscillation frequency (fxt) Note 1		32	32.768	35	kHz
		Oscillation stabilization time Note 2	V DD $=4.5$ to 5.5 V		1.2	2	S
						10	
External clock		XT1 input frequency (fxt) Note 1		32		100	kHz
		XT1 input high/low-level width ($\mathrm{txTh}, \mathrm{txtL}$)		5		15	$\mu \mathrm{s}$

Notes 1. Indicates only oscillator characteristics. Refer to AC CHARACTERISTICS for instruction execution time.
2. Time required to stabilize oscillation after VDD reaches oscillation voltage range MIN.

Cautions 1. When using the subsystem clock oscillator, wiring in the area enclosed with the broken line should be carried out as follows to avoid an adverse effect from wiring capacitance.

- Wiring should be as short as possible.
- Wiring should not cross other signal lines.
- Wiring should not be placed close to a varying high current.
- The potential of the oscillator capacitor ground should always be the same as that of Vss.
- Do not ground wiring to a ground pattern in which a high current flows.
- Do not fetch a signal from the oscillator.

2. The subsystem clock oscillator is designed to be a circuit with a low amplification level, for low power consumption more prone to malfunction due to noise than that of the main system clock. Therefore, when using the subsystem clock, take special cautions for wiring methods.

RECOMMENDED OSCILLATOR CONSTANT

MAIN SYSTEM CLOCK : CERAMIC RESONATOR (TA $=\mathbf{- 4 5}$ to $+85^{\circ} \mathrm{C}$)

Manufacturer	Part Number	Frequency	Recommended Circuit Constant			Oscillation Voltage Range		Remarks
			C1 (pF)	C 2 (pF)	R1 (k Ω)	MIN. (V)	MAX. (V)	
TDK	CCR1000K2	1.00 MHz	150	150	0	2.0	5.5	Surface mount type
	CCR4.0MC3	4.00 MHz	On-chip	On-chip	0	1.8	5.5	On-chip capacitor Surface mount type
	FCR4.0MC5	4.00 MHz	On-chip	On-chip	0	1.8	5.5	On-chip capacitor Insertion type
	CCR5.00MC3	5.00 MHz	On-chip	On-chip	0	1.8	5.5	On-chip capacitor Surface mount type
	FCR5.00MC5	5.00 MHz	On-chip	On-chip	0	2.0	5.5	On-chip capacitor Insertion type
Murata Mfg. Corporation	CSB1000J	1.00 MHz	100	100	5.6	2.2	5.5	Insertion type
	CSA2.00MG040	2.00 MHz	100	100	0	1.9	5.5	Insertion type
	CST2.00MG040	2.00 MHz	On-chip	On-chip	0	1.9	5.5	On-chip capacitor Insertion type
	CSA4.00MG	4.00 MHz	30	30	0	1.8	5.5	Insertion type
	CST4.00MGW	4.00 MHz	On-chip	On-chip	0	1.8	5.5	On-chip capacitor Insertion type
	CSA5.00MG	5.00 MHz	30	30	0	2.0	5.5	Insertion type
	CST5.00MGW	5.00 MHz	On-chip	On-chip	0	2.0	5.5	On-chip capacitor Insertion type

MAIN SYSTEM CLOCK : CERAMIC RESONATOR (TA = $\mathbf{- 2 0}$ to $\mathbf{+ 8 0}^{\circ} \mathrm{C}$)

Manufacturer	Part Number	Frequency	Recommended Circuit Constant			Oscillation Voltage Range		Remarks
			C1 (pF)	C2 (pF)	R1 (k ${ }^{\text {) }}$	MIN. (V)	MAX. (V)	
Kyocera Corporation	KBR-1000F	1.00 MHz	150	150	0	2.3	5.5	Insertion type
	KBR-2.0MS	2.00 MHz	82	82	0	2.4	5.5	Insertion type
	PBRC4.00A	4.00 MHz	33	33	0	2.4	5.5	Surface mount type
	PBRC4.00B	4.00 MHz	On-chip	On-chip	0	2.4	5.5	On-chip capacitor Surface mount type
	KBR-4.00MSA	4.00 MHz	33	33	0	2.4	5.5	Insertion type
	KBR-4.00MKS	4.00 MHz	On-chip	On-chip	0	2.4	5.5	On-chip capacitor Insertion type
	PBRC5.00A	5.00 MHz	33	33	0	1.8	5.5	Surface mount type
	PBRC5.00B	5.00 MHz	On-chip	On-chip	0	1.8	5.5	On-chip capacitor Surface mount type
	KBR-5.00MSA	5.00 MHz	33	33	0	1.8	5.5	Insertion type
	KBR-5.00MKS	5.00 MHz	On-chip	On-chip	0	1.8	5.5	On-chip capacitor Insertion type

Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation.
The oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit. For details, please contact directly the manufacturer of the resonator you will use.

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=1.8$ to 5.5 V) (1 of 3)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P10 to P17, P21, P23, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P64 to P67, P71, P80 to P87, P94 to P96, P102, P103, P120 to P127, P130, P131	$\mathrm{V} D \mathrm{D}=2.7$ to 5.5 V	0.7 V DD		VdD	V
				0.8 VDD		VDD	V
	V ${ }^{\text {H2 }}$	P00 to P06, P20, P22, P24 to P27, P33, P34, P70, P72, P100, P101, RESET	$\mathrm{V} D \mathrm{D}=2.7$ to 5.5 V	0.8 VDD		VdD	V
				0.85 VdD		Vdd	V
	Vıн3	P60 to P63, P90 to P93 (N-ch open-drain)	$V_{\text {dD }}=2.7$ to 5.5 V	0.7 V do		15	V
				0.8 VDD		15	V
	VIH4	X1, X2	V do $=2.7$ to 5.5 V	VdD - 0.5		Vdd	V
				$V_{D D}-0.2$		VdD	V
	VIH5	XT1/P07, XT2	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.8 VdD		VdD	V
			2.7 V \leq V $\mathrm{DD}<4.5 \mathrm{~V}$	0.9 VdD		VdD	V
			Note	0.9VDD		VDD	V
Input voltage, low	VIL1	P10 to P17, P21, P23, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P64 to P67, P71, P80 to P87, P94 to P96, P102, P103, P120 to P127, P130, P131	$\mathrm{V} D \mathrm{D}=2.7$ to 5.5 V	0		0.3VDD	V
				0		$0.2 \mathrm{~V}_{\text {D }}$	V
	VIL2	```P00 to P06, P20, P22, P24 to P27, P33, P34, P70, P72, P100, P101, RESET```	$\mathrm{V} D \mathrm{D}=2.7$ to 5.5 V	0		0.2Vdd	V
				0		0.15 V DD	V
	VIL3	P60 to P63, P90 to P93 (N-ch open-drain)	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0		0.3VDD	V
			$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD}<4.5 \mathrm{~V}$	0		0.2Vdd	V
				0		0.1 VDD	V
	VIL4	X1, X2	$\mathrm{V} D \mathrm{D}=2.7$ to 5.5 V	0		0.4	V
				0		0.2	V
	VIL5	XT1/P07, XT2	$4.5 \mathrm{~V} \leq \mathrm{Vdo} \leq 5.5 \mathrm{~V}$	0		0.2Vdd	V
			2.7 V \leq V ${ }_{\text {d }}<4.5 \mathrm{~V}$	0		0.1VDD	V
			Note	0		0.1VdD	V
Output voltage, high	Vor	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V , І I ($=-1 \mathrm{~mA}$		$V_{D D}-1.0$			V
		Іон $=-100 \mu \mathrm{~A}$		VDD - 0.5			V
Output voltage, Iow	VoL1	P50 to P57, P60 to P63, P90 to P93	$\begin{aligned} & \mathrm{V} D \mathrm{DD}=4.5 \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{loL}=15 \mathrm{~mA} \end{aligned}$		0.4	2.0	V
		P01 to P06, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P64 to P67, P70 to P72, P80 to P87, P94 to P96, P100 to P103, P120 to P127, P130, P131	$\begin{aligned} & \mathrm{V} D \mathrm{D}=4.5 \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{loL}=1.6 \mathrm{~mA} \end{aligned}$			0.4	V
	Vol2	SB0, SB1, $\overline{\text { SCK0 }}$	$\begin{aligned} & \text { VDD }=4.5 \text { to } 5.5 \mathrm{~V} \text {, } \\ & \text { open-drain, at } \\ & \text { pulled-up }(R=1 \mathrm{k} \Omega) \end{aligned}$			0.2 VDD	V
	Vol3	$\mathrm{loL}=400 \mu \mathrm{~A}$				0.5	V

Note For use of P07/XT1 pin as P07, use an inverter to input the reverse phase of P07 to the XT2 pin.
Remark The characteristics of an alternate function pin are the same as those of port pins unless otherwise specified.

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=1.8$ to 5.5 V) (2 of 3)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {DD }}$	P00 to P06, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P72, P80 to P87, P94 to P96, P100 to P103, P120 to P127, P130, P131, RESET			3	$\mu \mathrm{A}$
	ІІІн2		X1, X2, XT1/P07, XT2			20	$\mu \mathrm{A}$
	ІІнз	$\mathrm{VIN}=15 \mathrm{~V}$	P60 to P63, P90 to P93			80	$\mu \mathrm{A}$
Input leakage current, low	ILLL1	$\mathrm{VIN}=0 \mathrm{~V}$	P00 to P06, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P72, P80 to P87, P94 to P96, P100 to P103, P120 to P127, P130, P131, RESET			-3	$\mu \mathrm{A}$
	ILlı2		X1, X2, XT1/P07, XT2			-20	$\mu \mathrm{A}$
	ILIL3		P60 to P63, P90 to P93			$-3^{\text {Note }} 1$	$\mu \mathrm{A}$
Output leakage current, high	ILOH	Vout $=$ V ${ }_{\text {DD }}$				3	$\mu \mathrm{A}$
Output leakage current, low	ILoL	Vout $=0 \mathrm{~V}$				-3	$\mu \mathrm{A}$
Mask option pullup resistor	R_{1}	Vin $=0 \mathrm{~V}$, P60 to P63, P90 to P93		20	40	90	k Ω
Software pullup resistor Note 2	R2	$\begin{aligned} & \text { Vin = } 0 \text { V, } \\ & \text { P10 to P17, } \\ & \text { P20 to P27, P30 } \\ & \text { to P37, P40 to } \\ & \text { P47, P50 to P57, } \\ & \text { P64 to P67, P70 } \\ & \text { to P72, P80 to } \\ & \text { P87, P94 to P96, } \\ & \text { P100 to P103, } \\ & \text { P120 to P127, } \\ & \text { P130, P131 } \end{aligned}$	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	15	40	90	k Ω
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	20		500	k Ω

Notes 1. When the pull-up resistors are not connected to P60 to P63 and P90 to P93 (specified by mask option), a low-level input leakage current of $-200 \mu \mathrm{~A}$ (MAX.) flows only for 1.5 clocks (without wait) after a read instruction has been executed to port 6 (P6), port mode register 6 (PM6), port 9 (P9), or port mode register 9 (PM9).
At times other than this 1.5-clock interval, a $-3 \mu \mathrm{~A}$ (MAX.) current flows.
2. A software pull-up resistor can be used only in the range of $\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V .

Remark The characteristics of an alternate function pin are the same as those of port pins unless otherwise specified.

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=1.8$ to 5.5 V) (3 of 3)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Power supply current Note 1	IdD1	$5.0-\mathrm{MHz}$ crystal oscillation operating mode ($\mathrm{fxx}=2.5 \mathrm{MHz}$) Note 2	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$ Note 5		4.5	13.5	mA
			VDD $=3.0 \mathrm{~V} \pm 10 \%$ Note 6		0.7	2.1	mA
			$V_{D D}=2.0 \mathrm{~V} \pm 10 \%$ Note 6		0.4	1.2	mA
		$5.0-\mathrm{MHz}$ crystal oscillation operating mode $(f x x=5.0 \mathrm{MHz})$ Note 3	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$ Note 5		8.0	24.0	mA
			VDD $=3.0 \mathrm{~V} \pm 10 \%$ Note 6		0.9	2.7	mA
	IdD2	$5.0-\mathrm{MHz}$ crystal oscillation HALT mode $(\mathrm{fxx}=2.5 \mathrm{MHz})^{\text {Note } 2}$	$V_{\text {dD }}=5.0 \mathrm{~V} \pm 10 \%$		1.4	4.2	mA
			$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$		0.5	1.5	mA
			$V_{\text {DD }}=2.0 \mathrm{~V} \pm 10 \%$		280	840	$\mu \mathrm{A}$
		5.0-MHz crystal oscillation HALT mode $(\mathrm{fxx}=5.0 \mathrm{MHz}){ }^{\text {Note }} 3$	V DD $=5.0 \mathrm{~V} \pm 10 \%$		1.6	4.8	mA
			V dD $=3.0 \mathrm{~V} \pm 10 \%$		0.65	1.95	mA
	Idd3	$32.768-\mathrm{kHz}$ crystal oscillation operating mode Note 4	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V} \pm 10 \%$		60	120	$\mu \mathrm{A}$
			$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V} \pm 10 \%$		32	64	$\mu \mathrm{A}$
			$\mathrm{V} D \mathrm{D}=2.0 \mathrm{~V} \pm 10 \%$		24	48	$\mu \mathrm{A}$
	IDD4	$32.768-\mathrm{kHz}$ crystal oscillation HALT mode Note 4	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V} \pm 10 \%$		25	55	$\mu \mathrm{A}$
			$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$		5	15	$\mu \mathrm{A}$
			$V_{D D}=2.0 \mathrm{~V} \pm 10 \%$		2.5	12.5	$\mu \mathrm{A}$
	IdD5	$\mathrm{XT} 1=\mathrm{V}_{\mathrm{DD}}$ STOP mode When feedback resistor is used	V DD $=5.0 \mathrm{~V} \pm 10 \%$		1	30	$\mu \mathrm{A}$
			V dD $=3.0 \mathrm{~V} \pm 10 \%$		0.5	10	$\mu \mathrm{A}$
			$V_{D D}=2.0 \mathrm{~V} \pm 10 \%$		0.3	10	$\mu \mathrm{A}$
	Idd6	$\mathrm{XT} 1=\mathrm{V}_{\mathrm{DD}}$ STOP mode When feedback resistor is not used	V DD $=5.0 \mathrm{~V} \pm 10 \%$		0.1	30	$\mu \mathrm{A}$
			VdD $=3.0 \mathrm{~V} \pm 10 \%$		0.05	10	$\mu \mathrm{A}$
			$V_{\text {dD }}=2.0 \mathrm{~V} \pm 10 \%$		0.05	10	$\mu \mathrm{A}$

Notes 1. Refers to the current flowing to the VDD pin. The current flowing to the A/D converter, D/A converter, and ports is not included.
2. Operation with main system clock $\mathrm{fxx}^{\mathrm{f}} \mathrm{fx} / 2$ (when oscillation mode select register (OSMS) is set to 00 H)
3. Operation with main system clock $\mathrm{fxx}=\mathrm{fx}$ (when oscillation mode select register (OSMS) is set to 01 H)
4. When the main system clock operation is halted
5. Operating in high-speed mode (when the processor clock control register (PCC) is set to 00 H).
6. Operating in low-speed mode (when the processor clock control register (PCC) is set to 04H).

Remark The characteristics of an alternate function pin are the same as those of port pins unless otherwise specified.

AC CHARACTERISTICS

(1) Basic Operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Cycle time (Min. instruction execution time)	Tcy	Operating on main system clock	$f x x=f x / 2^{\text {Note }} 1$	$V_{\text {DD }}=2.7$ to 5.5 V	0.8		64	$\mu \mathrm{s}$
					2.0		64	$\mu \mathrm{s}$
			$\mathrm{fxx}^{\text {a }} \mathrm{fx}$ Note 2	$3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.4		32	$\mu \mathrm{S}$
				$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.5 \mathrm{~V}$	0.8		32	$\mu \mathrm{s}$
		Operating on subsystem clock			$40^{\text {Note } 3}$	122	125	$\mu \mathrm{s}$
TIOO input high/ low-level width	ttihoo, ttiloo	$3.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			$2 / \mathrm{ssam}+0.1^{\text {Note }} 4$			$\mu \mathrm{S}$
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.5 \mathrm{~V}$			$2 /$ ssam $+0.2^{\text {Note }} 4$			$\mu \mathrm{S}$
					$2 / \mathrm{fsam}+0.5^{\text {Note }} 4$			$\mu \mathrm{S}$
TI01 input high/ low-level width	tтiH01, ttil01	$\mathrm{V} D \mathrm{DD}=2.7$ to 5.5 V			10			$\mu \mathrm{S}$
					20			$\mu \mathrm{s}$
TI1, TI2, TI5, TI6 input frequency	$\mathrm{f}_{\text {TII }}$	$\mathrm{V} D \mathrm{DD}=4.5$ to 5.5 V			0		4	MHz
					0		275	kHz
TI1, TI2, TI5, TI6 input high/ low-level width	ttin', tillı	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V			100			ns
					1.8			$\mu \mathrm{s}$
Interrupt request input high/low-level width	tinth, tintl	INTP0		$3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	$2 / \mathrm{fsam}+0.1^{\text {Note }} 4$			$\mu \mathrm{S}$
				$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.5 \mathrm{~V}$	$2 / \mathrm{fsam}+0.2^{\text {Note }} 4$			$\mu \mathrm{S}$
					$2 / \mathrm{fsam}+0.5^{\text {Note }} 4$			$\mu \mathrm{s}$
		INTP1 to INTP6, KR0 to KR7		$V_{\text {DD }}=2.7$ to 5.5 V	10			$\mu \mathrm{s}$
					20			$\mu \mathrm{S}$
RESET Iowlevel width	trsL	$\mathrm{V} D \mathrm{D}=2.7$ to 5.5 V			10			$\mu \mathrm{S}$
					20			$\mu \mathrm{S}$

Notes 1. When oscillation mode select register (OSMS) is set to 00 H
2. When oscillation mode select register (OSMS) is set to 01 H
3. The value when using external clock. When using crystal resonator, it is $114 \mu \mathrm{~s}$ (MIN.).
4. In combination with bits 0 (SCS0) and 1 (SCS1) of sampling clock select register (SCS), selection of fsam is possible from $f_{x x} / 2^{N}, f_{x x} / 32, f_{x x} / 64$, and $f x x / 128$ (when $N=0$ to 4).

Remarks 1. fxx : Main system clock frequency (fx or $\mathrm{fx} / 2$)
2. $f x$: Main system clock oscillation frequency

Tcy vs Vdo (At $f_{x x}=f_{x} / 2$ main system clock operation)

Tcy vs VDD (At $\mathrm{fxx}_{\mathrm{x}}=\mathrm{fx}$ main system clock operation)

(2) Read/Write Operation

(a) When MCS $=1, \mathrm{PCC} 2$ to $\mathrm{PCCO}=000 \mathrm{~B}\left(\mathrm{~T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V$)$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		$0.85 \mathrm{tcy}-50$		ns
Address setup time	tads		$0.85 \mathrm{tcy}-50$		ns
Address hold time	tadh		50		ns
Data input time from address	tadD1			$(2.85+2 n)$ tcy - 80	ns
	tadD2			$(4+2 n) t c y-100$	ns
Data input time from $\overline{\mathrm{RD}} \downarrow$	trDD1			$(2+2 n) t c r-100$	ns
	trod2			$(2.85+2 n) t c y-100$	ns
Read data hold time	trin		0		ns
$\overline{\mathrm{RD}}$ low-level width	troL1		$(2+2 n) t \mathrm{cc}-60$		ns
	trdL2		$(2.85+2 n) t \mathrm{tcy}-60$		ns
$\overline{\text { WAIT } ~} \downarrow$ input time from $\overline{\mathrm{RD}} \downarrow$	trdwt1			0.85tcy - 50	ns
	trdwT2			2tcy - 60	ns
$\overline{\text { WAIT }} \downarrow$ input time from $\overline{\mathrm{WR}} \downarrow$	twrwt			2tcy - 60	ns
$\overline{\text { WAIT }}$ low-level width	twTL		$(1.15+2 n)$ tcy	$(2+2 n)$ tcy	ns
Write data setup time	twds		$(2.85+2 n)$ tcy - 100		ns
Write data hold time	twor	Load resistance $\geq 5 \mathrm{k} \Omega$	20		ns
$\overline{\text { WR }}$ low-level width	twrL		$(2.85+2 n)$ tcy -60		ns
$\overline{\mathrm{RD}} \downarrow$ delay time from ASTB \downarrow	tAStRD		25		ns
$\overline{\mathrm{WR}} \downarrow$ delay time from ASTB \downarrow	tastwr		$0.85 \mathrm{tcy}+20$		ns
ASTB \uparrow delay time from $\overline{\mathrm{RD}} \uparrow$ at external fetch	trdast		$0.85 \mathrm{tcy} \mathrm{-} 10$	$1.15 \mathrm{tcy}+20$	ns
Address hold time from $\overline{\mathrm{RD}} \uparrow$ at external fetch	trdadh		$0.85 \mathrm{tcy}-50$	$1.15 \mathrm{tcy}+50$	ns
Write data output time from $\overline{\mathrm{RD}} \uparrow$	triwd		40		ns
Write data output time from $\overline{W R} \downarrow$	twrwd		0	50	ns
Address hold time from $\overline{\mathrm{WR}} \uparrow$	twradh		$0.85 \mathrm{tcy}-20$	$1.15 \mathrm{tcy}+40$	ns
$\overline{\mathrm{RD}} \uparrow$ delay time from $\overline{\text { WAIT }} \uparrow$	twtrd		$1.15 \mathrm{tcy}+40$	$3.15 \mathrm{tcy}+40$	ns
$\overline{\mathrm{WR}} \uparrow$ delay time from $\overline{\text { WAIT }} \uparrow$	twTWr		$1.15 \mathrm{tcy}+30$	$3.15 \mathrm{tcr}+30$	ns

Remarks 1. MCS: Bit 0 of the oscillation mode select register (OSMS)
2. PCC2 to PCCO: Bits 2 to 0 of the processor clock control register (PCC)
3. $\mathrm{tcy}=\mathrm{Tcy} / 4$
4. n indicates the number of waits.
(b) Except when MCS $=1, \mathrm{PCC} 2$ to $\mathrm{PCCO}=000 \mathrm{~B}\left(\mathrm{~T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V$)$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		tcy - 80		ns
Address setup time	tads		tcy - 80		ns
Address hold time	tadh		$0.4 \mathrm{tcy}-10$		ns
Data input time from address	tadD1			$(3+2 n) t c r-160$	ns
	tADD2			$(4+2 n) t c y-200$	ns
Data input time from $\overline{\mathrm{RD}} \downarrow$	trDD1			$(1.4+2 n) t c y-70$	ns
	trDD2			$(2.4+2 n) t c y-70$	ns
Read data hold time	trin		0		ns
$\overline{\mathrm{RD}}$ low-level width	trDL1		$(1.4+2 n) t c r-20$		ns
	trdL2		$(2.4+2 n) t \mathrm{tcy}-20$		ns
$\overline{\text { WAIT } ~} \downarrow$ input time from $\overline{\mathrm{RD}} \downarrow$	trowt1			tcy - 100	ns
	trowt2			2 tcr - 100	ns
$\overline{\text { WAIT }} \downarrow$ input time from $\overline{\mathrm{WR}} \downarrow$	twrwt			2tcr - 100	ns
$\overline{\text { WAIT }}$ low-level width	twtL		$(1+2 n)$ tcy	$(2+2 n)$ tcy	ns
Write data setup time	twos		$(2.4+2 n)$ tcy -60		ns
Write data hold time	twoh	Load resistance $\geq 5 \mathrm{k} \Omega$	20		ns
$\overline{\text { WR }}$ low-level width	twrL		$(2.4+2 n) t c r-20$		ns
$\overline{\mathrm{RD}} \downarrow$ delay time from ASTB \downarrow	tastrd		$0.4 \mathrm{tcy}-30$		ns
$\overline{\mathrm{WR}} \downarrow$ delay time from ASTB \downarrow	tastwr		$1.4 \mathrm{tcr}-30$		ns
ASTB \uparrow delay time from $\overline{\mathrm{RD}} \uparrow$ at external fetch	trdast		tcy -10	tcy +20	ns
Address hold time from $\overline{\mathrm{RD}} \uparrow$ at external fetch	trdadh		tcy - 80	tcy +50	ns
Write data output time from $\overline{\mathrm{RD}} \uparrow$	trowd		$0.4 \mathrm{tcy}-30$		ns
Write data output time from $\overline{W R} \downarrow$	twrwd		0	60	ns
Address hold time from $\overline{\mathrm{WR}} \uparrow$	twradh		tcy - 60	tcr + 60	ns
$\overline{\mathrm{RD}} \uparrow$ delay time from $\overline{\mathrm{WAIT}} \uparrow$	twTRD		$0.6 \mathrm{tcy}+180$	$2.6 \mathrm{tcy}+180$	ns
$\overline{\text { WR }} \uparrow$ delay time from $\overline{\text { WAIT }} \uparrow$	twTwr		$0.6 \mathrm{tcy}+120$	$2.6 \mathrm{tcy}+120$	ns

Remarks 1. MCS: Bit 0 of the oscillation mode select register (OSMS)
2. PCC2 to PCCO: Bits 2 to 0 of the processor clock control register (PCC)
3. $\mathrm{tcy}=\mathrm{Tcy} / 4$
4. n indicates the number of waits.
(3) Serial Interface ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)
(a) Serial Interface Channel 0
(i) 3-wire serial I/O mode ($\overline{\text { SCKO}}$... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKO }}$ cycle time	tkcy1	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	1600			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	3200			ns
			4800			ns
$\overline{\text { SCKO }}$ high/low-level width	tKH1, tkL1	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	tксуı1/2-50			ns
			tkcrı/2-100			ns
SIO setup time (to SCKO \uparrow)	tsık1	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	100			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	150			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	300			$n \mathrm{~s}$
			400			ns
SIO hold time (from $\overline{\mathrm{SCKO}} \uparrow$)	tksı1		400			ns
SOO output delay time from SCKO \downarrow	tksot	$\mathrm{C}=100 \mathrm{pF}$ Note			300	ns

Note C is the load capacitance of SOO output line.
(ii) 3-wire serial I/O mode (SCKO... External clock input)

Note C is the load capacitance of the SO0 output line.
（iii）2－wire serial I／O mode（SCKO．．．Internal clock output）

Parameter	Symbol	Conditions		MIN．	TYP．	MAX．	Unit
$\overline{\text { SCKO }}$ cycle time	tксүз	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega, \\ & \mathrm{C}=100 \mathrm{pF} \text { Note } \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	1600			ns
			$2.0 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	3200			ns
				4800			ns
$\overline{\text { SCKO }}$ high－level width	tк⿺𠃊		$\mathrm{V} D \mathrm{D}=2.7$ to 5.5 V	七ксүз／2－160			ns
				tксүз／2－190			ns
$\overline{\text { SCKO }}$ low－level width	tкL3		$\mathrm{V} D \mathrm{D}=4.5$ to 5.5 V	tксүз／2－50			ns
				七ксүз／2－100			ns
SB0，SB1 setup time （to $\overline{\mathrm{SCKO}} \uparrow$ ）	tsıк3		$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	300			ns
			$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.5 \mathrm{~V}$	350			ns
			$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	400			ns
				500			ns
SB0，SB1 hold time （from SCKO \uparrow ）	tksı3			600			ns
SB0，SB1 output delay time from SCK0 \downarrow	tkso3			0		300	ns

Note R and C are the load resistance and load capacitance of the SCKO，SB0，and SB1 output lines，respectively．
（iv）2－wire serial I／O mode（ $\overline{\text { SCKO}}$ ．．．External clock input）

Parameter	Symbol	Conditions		MIN．	TYP．	MAX．	Unit
$\overline{\text { SCK0 }}$ cycle time	tkcy 4	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		1600			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		3200			ns
				4800			ns
$\overline{\text { SCK0 }}$ high－level width	tkH4	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		650			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		1300			ns
				2100			ns
$\overline{\text { SCKO }}$ low－level width	tkL4	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		800			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		1600			ns
				2400			ns
SB0，SB1 setup time （to $\overline{\mathrm{SCKO}} \uparrow$ ）	tsik4	$\mathrm{V} D \mathrm{D}=2.0$ to 5.5 V		100			ns
				150			ns
SB0，SB1 hold time （from $\overline{\mathrm{SCKO}} \uparrow$ ）	tks14			tkcy4／2			ns
SB0，SB1 output delay time from SCKO \downarrow	tkso4	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega \\ & \mathrm{C}=100 \mathrm{pF} \text { Note } \end{aligned}$	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0		300	ns
			$2.0 \mathrm{~V} \leq \mathrm{VDD}<4.5 \mathrm{~V}$	0		500	ns
						800	ns
$\overline{\text { SCK0 }}$ rise／fall time	tr4，tF4	When using external device expansion function				160	ns
		When not using external device expansion function				1000	ns

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output lines，respectively．
(v) ${ }^{12} \mathrm{C}$ bus mode (SCL... Internal clock output)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCL cycle time	tkcy	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega, \\ & \mathrm{C}=100 \mathrm{pF} \text { Note } \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	10			$\mu \mathrm{s}$
			$2.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD}<2.7 \mathrm{~V}$	20			$\mu \mathrm{S}$
				30			$\mu \mathrm{S}$
SCL high-level width	tkH5		$\mathrm{V} \mathrm{DD}=2.7$ to 5.5 V	tксү5 - 160			ns
				tксү5 - 190			$n \mathrm{~s}$
SCL low-level width	tkL5		$V_{D D}=4.5$ to 5.5 V	tкč5 - 50			ns
				tксү5 - 100			ns
SDAO, SDA1 setup time (to SCLT)	tsik5		$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	200			$n \mathrm{~s}$
			$2.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD}<2.7 \mathrm{~V}$	300			ns
				400			ns
SDA0, SDA1 hold time (from SCL \downarrow)	tkS15			0			ns
SDA0, SDA1 output delay time from SCL \downarrow	tkso5		$4.5 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	0		300	ns
			$2.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD}<4.5 \mathrm{~V}$	0		500	ns
				0		600	ns
SDA0, SDA1 \downarrow from SCL \uparrow or SDAO, SDA1 \uparrow from SCL \uparrow	tks			200			ns
SCL \downarrow from SDAO, SDA1 \downarrow	tsbk		V DD $=2.0$ to 5.5 V	400			ns
				500			ns
SDA0, SDA1 highlevel width	tsb			500			ns

Note R and C are the load resistance and load capacitance of the SCL, SDA0, and SDA1 output lines, respectively.
(vi) $I^{2} \mathrm{C}$ bus mode (SCL... External clock input)

Note R and C are the load resistance and load capacitance of the SDA0 and SDA1 output lines, respectively.
(b) Serial Interface Channel 1
(i) 3-wire serial I/O mode (SCK1... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK1 }}$ cycle time	tkcy ${ }^{\text {l }}$	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	1600			ns
		$2.0 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	3200			ns
			4800			ns
SCK1 high/low-level width	$\mathrm{t}_{\text {KH7, }}$ tkL7	$V_{\text {DD }}=4.5$ to 5.5 V	tксү7/2-50			ns
			tксү7/2-100			ns
SI1 setup time (to $\overline{\mathrm{SCK} 1} \uparrow$)	tsik7	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	100			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	150			ns
		$2.0 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	300			ns
			400			ns
SI1 hold time (from $\overline{\mathrm{SCK}} \uparrow$)	tks17		400			ns
SO1 output delay time from $\overline{\text { SCK1 }} \downarrow$	tksor	$\mathrm{C}=100 \mathrm{pF}$ Note			300	ns

Note C is the load capacitance of the SO1 output line.
(ii) 3-wire serial I/O mode (SCK1... External clock input)

Note C is the load capacitance of the SO1 output line.
(iii) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK1 }}$ cycle time	tkcy9	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	1600			ns
		$2.0 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	3200			ns
			4800			ns
$\overline{\text { SCK1 }}$ high/low-level width	tкн9, tkL9	$V_{\text {DD }}=4.5$ to 5.5 V	tксуя/2-50			ns
			tkcy9/2-100			ns
SI1 setup time (to SCK1 \uparrow)	tsıк9	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	100			ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD}^{2} 4.5 \mathrm{~V}$	150			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	300			ns
			400			ns
SI1 hold time (from SCK1 \uparrow)	tkS19		400			ns
SO1 output delay time from $\overline{\text { SCK1 }} \downarrow$	tkso9	$\mathrm{C}=100 \mathrm{pF}$ Note			300	ns
STB \uparrow from $\overline{\text { SCK1 } \uparrow ~}$	tsbd		tkcrg/2-100		tkcr9/2 + 100	ns
Strobe signal high-level width	tsBw	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	tксу9 - 30		tkcy9 + 30	ns
		$2.0 \mathrm{~V} \leq \mathrm{VDD}^{2} 2.7 \mathrm{~V}$	tксу9 - 60		tксу9 + 60	ns
			tксу9 - 90		tксу9 +90	ns
Busy signal setup time (to busy signal detection timing)	tBys		100			ns
Busy signal hold time (from busy signal detection timing)	tBy	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	100			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	150			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	200			ns
			300			ns
$\overline{\text { SCK } 1} \downarrow$ from busy inactive	tsps				2 trcy $^{\text {g }}$	ns

Note C is the load capacitance of the SO1 output line.
(iv) 3-wire serial I/O mode with automatic transmit/receive function ($\overline{\text { SCK1 }} \ldots$.. External clock input)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK1 }}$ cycle time	tKCY10	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V} D \mathrm{CD} 4.5 \mathrm{~V}$		1600			ns
		$2.0 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$		3200			ns
				4800			ns
$\overline{\text { SCK1 }}$ high/low-level width	$\begin{aligned} & \text { tKH10, } \\ & \text { tKL10 } \end{aligned}$	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		400			ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.5 \mathrm{~V}$		800			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		1600			ns
				2400			ns
SI1 setup time (to $\overline{\mathrm{SCK}} 1 \uparrow$)	tsik10	$\mathrm{V} D \mathrm{D}=2.0$ to 5.5 V		100			ns
				150			ns
SI1 hold time (from $\overline{\text { SCK1 }} \uparrow$)	tksı10			400			ns
SO1 output delay time from $\overline{\text { SCK1 }} \downarrow$	tksolo	$\mathrm{C}=100 \mathrm{pF} \text { Note }$	$V_{D D}=2.0$ to 5.5 V			300	ns
						500	ns
$\overline{\text { SCK1 }}$ rise/fall time	$t_{\text {R10 }}, t_{\text {F10 }}$	When using external device expansion function				160	ns
		When not using external device expansion function				1000	ns

Note C is the load capacitance of the SO1 output line.
(c) Serial Interface Channel 2
(i) 3-wire serial I/O mode (SCK2... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK2 }}$ cycle time	tkcy 11	$4.5 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.5 \mathrm{~V}$	1600			ns
		$2.0 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	3200			ns
			4800			ns
$\overline{\text { SCK2 }}$ high/low-level width	tkhi1, tkL11	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	tксү11/2-50			ns
			tkcrı1/2-100			ns
SI2 setup time (to SCK2 \uparrow)	tsik11	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	100			ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.5 \mathrm{~V}$	150			ns
		$2.0 \mathrm{~V} \leq \mathrm{VD}<2.7 \mathrm{~V}$	300			ns
			400			ns
SI2 hold time (from $\overline{\text { SCK2 }} \uparrow$)	tks111		400			ns
SO2 output delay time from $\overline{\text { SCK2 }} \downarrow$	tksO11	$\mathrm{C}=100 \mathrm{pF}$ Note			300	ns

Note C is the load capacitance of SO2 output line.
(ii) 3-wire serial I/O mode (SCK2... External clock input)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK2 }}$ cycle time	tkCy12	$4.5 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$		800			ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD}^{2} 4.5 \mathrm{~V}$		1600			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		3200			ns
				4800			ns
$\overline{\text { SCK2 }}$ high/low-level width	tkH12, tkL12	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		400			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		800			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		1600			ns
				2400			ns
SI2 setup time (to $\overline{\mathrm{SCK}} \uparrow$)	tsı\|K12			100			ns
		VDD $=2.0$ to 5.5 V		150			ns
SI2 hold time (from $\overline{\text { SCK2 }} \uparrow$)	tкs112			400			ns
SO2 output delay time from $\overline{\text { SCK2 }} \downarrow$	tksO12	$\mathrm{C}=100 \mathrm{pF}$ Note	$V_{D D}=2.0$ to 5.5 V			300	ns
						500	ns
$\overline{\text { SCK2 }}$ rise/fall time	$t_{\text {R12, }} \mathrm{tF} 12$	$V_{D D}=4.5$ to 5.5 V When not using external device expansion function				1000	ns
						160	ns

Note C is the load capacitance of the SO2 output line.
(iii) UART mode (Dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			78125	bps
		$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.5 \mathrm{~V}$			39063	bps
		$2.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD}<2.7 \mathrm{~V}$			19531	bps
					9766	bps

(iv) UART mode (External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	tkcy13	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	1600			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	3200			ns
			4800			ns
ASCK high/low-level width	tKH13, tKL13	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	400			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	800			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	1600			ns
			2400			ns
Transfer rate		$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			39063	bps
		$2.7 \mathrm{~V} \leq \mathrm{VDD}^{2} 4.5 \mathrm{~V}$			19531	bps
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			9766	bps
					6510	bps
ASCK rise/fall time	$\mathrm{t}_{\mathrm{R} 13}, \mathrm{tF} 13$	$V_{D D}=4.5 \text { to } 5.5 \mathrm{~V}$ When not using external device expansion function			1000	ns
					160	ns

AC Timing Test Points (excluding X1, XT1 Inputs)

Clock Timing

TI Timing

TI1, TI2,
TI5, TI6

Read/Write Operation

External fetch (no wait) :

Remark () is valid only in the separate bus mode.

External fetch (wait insertion) :

Remark () is valid only in the separate bus mode.

External data access (no wait) :

Remark () is valid only in the separate bus mode.

External data access (wait insertion) :

Remark () is valid only in the separate bus mode.

Serial Transfer Timing

3-wire serial I/O mode :

$$
m=1,2,7,8,11,12
$$

$$
\mathrm{n}=2,8,12
$$

2-wire serial I/O mode :

$I^{2} \mathrm{C}$ bus mode :

3-wire serial I/O mode with automatic transmit/receive function :

3-wire serial I/O mode with automatic transmit/receive function (busy processing) :

Note The signal is not actually driven low here; it is shown as such to indicate the timing.

UART mode (external clock input) :

A/D CONVERTER CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{AVDD}=\mathrm{VDD}=1.8$ to 5.5 V , $\mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error Note		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {REF0 }} \leq \mathrm{AV} \mathrm{VD}$			0.6	\%
		$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {refo }}<2.7 \mathrm{~V}$			1.4	\%
Conversion time	tconv	$2.0 \mathrm{~V} \leq \mathrm{AV}$ DD $\leq 5.5 \mathrm{~V}$	19.1		200	$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{AV}$ do $<2.0 \mathrm{~V}$	38.2		200	$\mu \mathrm{s}$
Sampling time	tsamp		12/fxx			$\mu \mathrm{s}$
Analog input voltage	Vian		AVss		AVrefo	V
Reference voltage	AVrefo		1.8		AVdo	V
Resistance between $A V_{\text {refo }}$ and $A V_{\text {ss }}$	Rairefo		4	14		$\mathrm{k} \Omega$

Note Excluding quantization error ($\pm 1 / 2 \mathrm{LSB})$. It is indicated as a ratio to the full-scale value.
Remarks 1. fxx : Main system clock frequency (fx or $\mathrm{fx} / 2$)
2. fx: Main system clock oscillation frequency

D/A CONVERTER CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 5.5 V , AV Ss $=\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution						8	bit
Overall error		$\mathrm{R}=2 \mathrm{M} \Omega^{\text {Note } 1}$				1.2	\%
		$R=4 \mathrm{M} \Omega^{\text {Note } 1}$				0.8	\%
		$\mathrm{R}=10 \mathrm{M} \Omega^{\text {Note } 1}$				0.6	\%
Settling time		$\begin{array}{r} \text { Note } \\ \mathrm{C}=30 \mathrm{pF} \end{array}$	$4.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF } 1} \leq 5.5 \mathrm{~V}$			10	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {REF } 1}<4.5 \mathrm{~V}$			15	$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {ReF } 1}<2.7 \mathrm{~V}$			20	$\mu \mathrm{s}$
Output resistance	Ro	Note 2			10		$\mathrm{k} \Omega$
Analog reference voltage	AVref1			1.8		Vod	V
Resistance between $A V_{\text {ref1 }}$ and $A V_{s s}$	Rairef1	DACS0, DACS1 $=55 \mathrm{H}^{\text {Note } 2}$		4	8		$\mathrm{k} \Omega$

Notes 1. R and C are the D / A converter output pin load resistance and load capacitance, respectively.
2. Value for one D/A converter channel

Remark DACS0, DACS1: D/A Conversion value setting registers 0, 1.

DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	VDDDR		1.8		5.5	V
Data retention power supply current	IDDDR	VodDR $=1.8 \mathrm{~V}$ Subsystem clock stop and feed- back resistor disconnected		0.1	10	$\mu \mathrm{~A}$
Release signal set time	tsREL		0			
Oscillation stabilization wait time	twait	Release by RESET				

Note In combination with bits 0 to 2 (OSTS0 to OSTS2) of oscillation stabilization time select register (OSTS), selection is possible from $2^{12 / f x x}$ and $2^{14} / \mathrm{fxx}$ to $2^{17} / \mathrm{fxx}$.

Remark fxx: Main system clock frequency (fx or fx/2)
fx : Main system clock oscillation frequency

Data Retention Timing (STOP mode release by RESET)

Data Retention Timing (Standby release signal: STOP mode release by interrupt request signal)

Interrupt Request Input Timing

$\overline{\text { RESET }}$ Input Timing

12. CHARACTERISTIC CURVES (REFERENCE VALUE)

Ido vs $\mathrm{V}_{\mathrm{DD}}(\mathrm{fx}=5.0 \mathrm{MHz}, \mathrm{fxx}=2.5 \mathrm{MHz})$

13. PACKAGE DRAWINGS

100 PIN PLASTIC QFP (14x20)

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

Remark The external dimensions and material of the ES version

ITEM	MILLIMETERS	INCHES
A	23.6 ± 0.4	0.929 ± 0.016
B	20.0 ± 0.2	$0.795_{-0.008}^{+0.009}$
C	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
D	17.6 ± 0.4	0.693 ± 0.016
F	0.8	0.031
G	0.6	0.024
H	0.30 ± 0.10	$0.012_{-0.005}^{+0.004}$
I	0.15	0.006
J	$0.65($ T.P. $)$	$0.026($ T.P. $)$
K	1.8 ± 0.2	$0.071_{-0.009}^{+0.008}$
L	0.8 ± 0.2	$0.031_{-0.008}^{+0.009}$
M	$0.15_{-0}^{+0.05}$	$0.006_{-0.003}^{+0.004}$
N	0.10	0.004
P	2.7 ± 0.1	$0.106_{-0.004}^{+0.005}$
Q	0.1 ± 0.1	$0.004^{\circ} \pm 0.004$
R	$5^{\circ} \pm 5^{\circ}$	$5^{\circ} \pm 5^{\circ}$
S	3.0 MAX.	0.119 MAX.
		P100GF-65-3BA1-3

100 PIN PLASTIC LQFP (FINE PITCH) (14×14)

detail of lead end

ITEM	MILLIMETERS	INCHES
A	16.00 ± 0.20	0.630 ± 0.008
B	14.00 ± 0.20	$0.551_{-0.008}^{+0.009}$
C	14.00 ± 0.20	$0.551_{-0.008}^{+0.009}$
D	16.00 ± 0.20	0.630 ± 0.008
F	1.00	0.039
G	1.00	0.039
H	$0.22_{-0.04}^{+0.05}$	0.009 ± 0.002
I	0.08	0.003
J	$0.50($ T.P. $)$	$0.020($ T.P.)
K	1.00 ± 0.20	$0.039_{-0.008}^{+0.009}$
L	0.50 ± 0.20	$0.020_{-0.009}^{+0.008}$
M	$0.17_{-0.07}^{+0.03}$	$0.007_{-0.001}^{+0.001}$
N	0.08	0.003
P	1.40 ± 0.05	0.055 ± 0.002
Q	0.10 ± 0.05	0.004 ± 0.002
R	$3^{\circ}+{ }_{-3^{\circ}}^{\circ}$	$3^{\circ}{ }_{-3^{\circ}}{ }^{\circ}$
S	1.60 MAX.	0.063 MAX.
		S100GC-50-8EU

Remark The external dimensions and material of the ES version are the same as that of the mass-produced version.

14. RECOMMENDED SOLDERING CONDITIONS

The μ PD78076Y and 78078Y should be soldered and mounted under the conditions recommended in the table below.

For detail of recommended soldering conditions, refer to the information document Semiconductor Device Mounting Technology Manual (C10535E).

For soldering methods and conditions other than those recommended below, consult an NEC sales personnel.

Table 14-1. Surface Mounting Type Soldering Conditions

μ PD78076YGF- $\times \times \times-3 B A: 100-$ pin plastic QFP ($14 \times 20 \mathrm{~mm}$, resin thickness 2.7 mm)
μ PD78078YGF- $\times \times \times-3 B A: 100-$ pin plastic QFP ($14 \times 20 \mathrm{~mm}$, resin thickness 2.7 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Duration: 30 sec. max. (at $210^{\circ} \mathrm{C}$ or above), Number of times: three or less.	IR35-00-3
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Duration: 40 sec. max. (at $200^{\circ} \mathrm{C}$ or above), Number of times: three or less.	VP15-00-3
Wave soldering	Soldering bath temperature: $260^{\circ} \mathrm{C}$ max., Duration: 10 sec. max., Number of times: once, Preheating temperature: $120^{\circ} \mathrm{C}$ max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max. Duration: 3 sec. max. (per pin row)	-

Cautions 1. Use of more than one soldering method should be avoided (except in the case of partial heating).
2. The soldering conditions for the μ PD78076YGC-xxx-8EU and μ PD78078YGC-xxx-8EU are undefined, since they are still under development.

APPENDIX A. DEVELOPMENT TOOLS

The following tools are available for system development using the $\mu \mathrm{PD} 78076 \mathrm{Y}$ and 78078 Y .
Also refer to (5) Cautions when Using Development Tools.

(1) Language Processing Software

RA78K/0	Assembler package common to the $78 \mathrm{~K} / 0$ Series
CC78K/0	C compiler package common to the $78 \mathrm{~K} / 0$ Series
DF78078	Device file common to the μ PD78078 Subseries
CC78K/0-L	C compiler library source file common to the $78 \mathrm{~K} / 0$ Series

(2) PROM Writing Tools

PG-1500	PROM programmer
PA-78P078GF	Programmer adapters connected to the PG-1500
PA-78P078GC	
PA-78P078KL-T	PG-1500 control program
PG-1500 controller	

(3) Debugging Tools

- In-circuit emulator (when IE-78K0-NS is used)

IE-78K0-NSNote	In-circuit emulator common to the 78K/0 Series
IE-70000-MC-PS-B	Power supply unit for the IE-78K0-NS
IE-70000-98-IF-CNote	Interface adapter when using the PC-9800 series (except for notebook computers) as the host machine
IE-70000-CD-IFNote	PC card and interface cable when using the PC-9800 series notebook computers as the host machine
IE-70000-PC-IF-CNote	Interface adapter when using IBM PC/AT TM and its compatibles as the host machine
IE-78078-NS-EM1 Note	Emulation board to common to the μ PD78078 Subseries
NP-100GC	Emulation probe for 100-pin plastic QFP (GC-8EU type)
NP-100GF	Emulation probe for 100-pin plastic QFP (GF-3BA type)
TGC-100SDW	Conversion adapter to connect the NP-100GC and the target system board on which 100-pin plastic QFP (GC-8EU type) can be mounted
EV-9200GF-100	Socket mounted on the target system board for 100-pin plastic QFP (GF-3BA type)
ID78K0-NSNote	Integrated debugger for the IE-78K0-NS
SM78K0	System simulator common to the 78K/0 Series
DF78078	Device file common to the μ PD78078 Subseries

Note Under development

- In-circuit Emulator (when IE-78001-R-A is used)

IE-78001-R-ANote	In-circuit emulator common to the 78K/0 Series
IE-70000-98-IF-B IE-70000-98-IF-CNote	Interface adapter when using the PC-9800 series (except for notebook computers) as the host machine
IE-70000-PC-IF-B IE-70000-PC-IF-CNote	Interface adapter and cable when using IBM PC/AT and its compatibles as the host machine
IE-78000-R-SV3	Interface adapter and cable when using EWS as the host machine
IE-78078-NS-EM1 IE-7807e	Emulation board common to the μ PD78078 Subseries
IE-78K0-R-EX1Note	Emulation probe conversion board that is necessary when using the IE-78078-NS-EM1 on the IE-78001-R-A
EP-78064GC-R	Emulation probe for 100-pin plastic QFP (GC-8EU type)
EP-78064GF-R	Emulation probe for 100-pin plastic QFP (GF-3BA type) which 100-pin plastic QFP (GC-8EU type) can be mounted
TGC-100SDW	Socket mounted on the target system board for 100-pin plastic QFP (GF-3BA type)
EV-9200GF-100	Integrated debugger for the IE-78001-R-A
ID78K0	System simulator common to the 78K/0 Series
SM78K0	Device file common to the μ PD78078 Subseries
DF78078	

Note Under development

(4) Real-time OS

RX78K/0	Real-time OS for the $78 \mathrm{~K} / 0$ Series
MX78K0	OS for the $78 \mathrm{~K} / 0$ Series

(5) Cautions when Using Development Tools

- The ID78K0-NS, ID78K0, and SM78K0 are used in combination with the DF78078.
- The CC78K/0 and RX78K/0 are used in combination with the RA78K/0 or DF78078.
- The NP-100GC and NP-100GF are products of Naito Densei Machidaseisakusho Co., Ltd. (044-8223813). Contact an NEC distributor about purchasing.
- The TGC-100SDW is a product of TOKYO ELETECH CORPORATION.

Refer to: Daimaru Kogyo, Ltd. Tokyo Electronic Components Division (03-3820-7112)
Osaka Electronic Components Division (06-244-6672)

- Refer to 78K/0 Series Selection Guide (U11126E) about third-party development tools.
- The host machine and the OS applied to each software are shown below.

Host Machine	PC	EWS
	PC-9800 series [Windows ${ }^{\text {TM }}$] IBM PC/AT and compatibles [Japanese/English Windows]	HP9000 series $700^{\text {TM }}$ [HP-UX ${ }^{\text {TM }}$] SPARCstation ${ }^{\text {TM }}$ [SunOS ${ }^{\text {TM }}$] NEWS ${ }^{\text {TM }}$ (RISC) [NEWS-OS ${ }^{\text {TM }}$]
RA78K/0	$\sqrt{\text { Note }}$	\checkmark
CC78K/0	$\sqrt{\text { Note }}$	\checkmark
PG-1500 controller	$\sqrt{\text { Note }}$	-
ID78K0-NS	\checkmark	-
ID78K0	\checkmark	\checkmark
SM78K0	\checkmark	-
RX78K/0	$\sqrt{\text { Note }}$	$\sqrt{ }$
MX78K0	$\sqrt{ }$ Note	\checkmark

Note DOS-based software
^ APPENDIX B. RELATED DOCUMENTS

Documents Related to Devices

Document Name	Document No.	
	English	Japanese
μ PD78078, 78078Y Subseries User's Manual	U10641E	U10641J
μ PD78076Y, 78078Y Data Sheet	This document	U10605J
μ PD78P078Y Data Sheet	U10606E	U10606J
$78 K / 0$ Series User's Manual—Instructions	U12326E	U12326J
$78 K / 0$ Series Instruction Table	-	U10903J
$78 K / 0$ Series Instruction Set	-	U10904J
μ PD78078Y Subseries Special Function Register Table	-	IEM-5601
$78 K / 0$ Series Application Note—Basic (III)	U10182E	U10182J

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version for designing, etc.

Documents Related to Development Tools (User's Manuals)

Document Name		Document No.	
		English	Japanese
RA78K Series Assembler Package	Operation	EEU-1399	EEU-809
	Language	EEU-1404	EEU-815
RA78K Series Structured Assembler Preprocessor		EEU-1402	U12323J
RA78K0 Assembler Package	Operation	U11802E	U11802J
	Language	U11801E	U11801J
	Structured Assembly Language	U11789E	U11789J
CC78K Series C Compiler	Operation	EEU-1280	EEU-656
	Language	EEU-1284	EEU-655
CC78K/0 C Compiler	Operation	U11517E	U11517J
	Language	U11518E	U11518J
CC78K/0 C Compiler Application Note	Programming know-how	EEA-1208	EEA-618
CC78K Series Library Source File		-	U12322J
PG-1500 PROM Programmer		EEU-1335	U11940J
PG-1500 Controller PC-9800 Series (MS-DOS ${ }^{\text {M }}$) Based		EEU-1291	EEU-704
PG-1500 Controller IBM PC Series (PC DOS ${ }^{\text {TM }}$) Based		U10540E	EEU-5008
IE-78K0-NS		To be prepared	To be prepared
IE-78001-R-A		To be prepared	To be prepared
IE-78K0-R-EX1		To be prepared	To be prepared
IE-78078-NS-EM1		To be prepared	To be prepared
IE-78078-R-EM		U10775E	U10775J
EP-78064		EEU-1469	EEU-934
SM78K0 System Simulator Windows Based	Reference	U10181E	U10181J
SM78K Series System Simulator	External part user open interface specifications	U10092E	U10092J
ID78K0-NS Integrated Debugger	Reference	To be prepared	U12900J
ID78K0 Integrated Debugger EWS Based	Reference	-	U11151J
ID78K0 Integrated Debugger Windows Based	Guide	U11649E	U11649J
ID78K0 Integrated Debugger PC Based	Reference	U11539E	U11539J

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version for designing, etc.

Documents Related to Embedded Software (User's Manuals)

Document Name		Document No.	
		Japanese	English
78K/0 Series Real-time OS	Basics	U11537E	U11537J
		Installation	U11536E
U11536J			
78K/0 Series OS MX78K0	Basics	U12257E	U12257J

Other Documents

Document Name	Document No.	
	English	
Japanese		
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535E	C10535J
Quality Grades on NEC Semiconductor Devices	C11531E	C11531J
NEC Semiconductor Device Reliability/Quality Control System	C10983E	C10983J
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E	C11892J
Guide to Quality Assurance for Semiconductor Devices	MEI-1202	-
Microcomputer Product Series Guide	-	U11416J

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version for designing, etc.
[MEMO]

PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VdD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
800-366-9782
Fax: 408-588-6130
800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-67 5899
NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

NEC Electronics Hong Kong Ltd.

Hong Kong

Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951
NEC do Brasil S.A.
Cumbica-Guarulhos-SP, Brasil
Tel: 011-6465-6810
Fax: 011-6465-6829

> Purchase of NEC $I^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ Patent Rights to use these components in an $I^{2} \mathrm{C}$ system, provided that the system conforms to the $I^{2} \mathrm{C}$ Standard Specification as defined by Philips.

FIP and IEBus are trademarks of NEC Corporation.
MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
PC/AT and PC DOS are trademarks of International Business Machines Corporation.
HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.
SPARCstation is a trademark of SPARC International, Inc.
SunOS is a trademark of Sun Microsystems, Inc.
NEWS and NEWS-OS are trademarks of Sony Corporation.
The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

[^0]: IF : Test input flag
 MK : Test mask flag

