8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The $\mu \mathrm{PD} 78064 \mathrm{~B}(\mathrm{~A})$ is an 8 -bit single-chip microcontroller belonging to the $\mu \mathrm{PD} 78064 \mathrm{~B}$ subseries of the $78 \mathrm{~K} / 0$ series. A stricter quality assurance program is applied to this device, which is classified as special grade, compared to the μ PD78064B, which is classified as standard grade.

The EMI (Electro Magnetic Interference) noise generated inside the $\mu \mathrm{PD} 78064 \mathrm{~B}(\mathrm{~A})$ is reduced compared to the μ PD78064 subseries.

A one-time PROM version that can operate in the same power supply voltage as the mask ROM version, and various development tools are available for this device.

For detailed descriptions of functions, refer to the following user's manuals. Be sure to read them before starting design.

μ PD78064B Subseries User's Manual : U10785E
78K/0 Series User's Manual Instruction : U12326E

FEATURES

- Internal high-capacity ROM and RAM
- Internal ROM : 32 Kbytes
- Internal high-speed RAM : 1024 bytes
- LCD display RAM : 40×4 bits
- Three packages
- 100-pin plastic QFP (fine pitch) ($14 \times 14 \mathrm{~mm}$)
- 100-pin plastic LQFP (fine pitch) $(14 \times 14 \mathrm{~mm})$
- 100-pin plastic QFP $(14 \times 20 \mathrm{~mm})$
- Minimum instruction execution time can be changed from high-speed $(0.4 \mu \mathrm{~s})$ to ultra-low-speed ($122 \mu \mathrm{~s}$)
- I/O ports : 57 (including segment signal output alter-nate-function pin)
- LCD controller/driver

Power supply voltage : VDD $=2.0$ to 6.0 V
(static display mode)
: VDD $=2.5$ to 6.0 V ($1 / 3$ bias)
: Vdd = 2.7 to 6.0 V ($1 / 2$ bias)

- 8-bit resolution A/D converter : 8 channels
- Serial interface : 2 channels
- Timer: 5 channels
- Power supply voltage : VDD $=2.0$ to 6.0 V

APPLICATIONS

Control devices of automotive electrical equipment, gas detector circuit-breakers, safety devices, sphygmomanometer, etc.

ORDERING INFORMATION

Part Number	Package	Quality Grade
μ PD78064BGC(A)-×××-7EA	100-pin plastic QFP (fine pitch) $(14 \times 14 \mathrm{~mm})$	Special
μ PD78064BGC(A)-x××-8EUNote	100-pin plastic LQFP (fine pitch) $(14 \times 14 \mathrm{~mm})$	Special
μ PD78064BGF $(\mathrm{A})-\times \times x-3 B A$	100-pin plastic QFP $(14 \times 20 \mathrm{~mm})$	Special

Note Under development

Caution The μ PD78064BGC(A) comes in two types of packages (refer to 11. PACKAGE DRAWINGS). For packages which can be supplied, please consult an NEC sales representative.

Remark $x \times x$ indicates ROM code suffix.

Please refer to the Quality Grades on NEC Semiconductor Devices (C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

Difference between μ PD78064B(A) and μ PD78064B

Part number Item	μ PD78064B(A)	μ PD78064B
Quality grade	Special	Standard

78K/0 Series Development

The following shows the 78K/0 series products development. Subseries names are shown inside frames.

Note Under planning

The following table shows the differences among subseries functions.

Function Subseries name		ROM	Timer				$\begin{aligned} & \text { 8-bit } \\ & \text { A/D } \end{aligned}$	$\begin{gathered} \text { 10-bit } \\ \text { A/D } \end{gathered}$	$\begin{gathered} \text { 8-bit } \\ \text { D/A } \end{gathered}$	Serial interface	I/O	Vdd MIN. value	External expansion
		capacity	8-bit	16-bit	Watch	WDT							
Controller	μ PD78075B	32 K to 40 K	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1 ch)	88	1.8 V	Available
	$\mu \mathrm{PD} 78078$	48 K to 60K											
	μ PD78070A	-									61	2.7 V	
	μ PD780058	24 K to 60K	2 ch						2 ch	3 ch (Time division UART: 1 ch)	68	1.8 V	
	$\mu \mathrm{PD} 78058 \mathrm{~F}$	48 K to 60K								3 ch (UART: 1 ch)	69	2.7 V	
	μ PD78054	16 K to 60K										2.0 V	
	$\mu \mathrm{PD} 780034$	8K to 32K					-	8 ch	-	3 ch (UART: 1 ch , Time	51	1.8 V	
	μ PD780024						8 ch	-		division 3-wire: 1 ch)			
	$\mu \mathrm{PD} 78014 \mathrm{H}$									2 ch	53		
	$\mu \mathrm{PD} 78018 \mathrm{~F}$	8 K to 60K											
	μ PD78014	8 K to 32K										2.7 V	
	$\mu \mathrm{PD} 780001$	8K		-	-					1 ch	39		-
	μ PD78002	8K to 16K			1 ch		-				53		Available
	μ PD78083				-		8 ch			1 ch (UART: 1 ch)	33	1.8 V	-
Inverter controller	μ PD780964	8 K to 32K	3 ch	Note	-	1 ch	-	8 ch	-	2 ch (UART: 2 ch)	47	2.7 V	Available
	μ PD780924						8 ch	-					
FIP driver	μ PD780208	32 K to 60K	2 ch	1 ch	1 ch	1 ch	8 ch	-	-	2 ch	74	2.7 V	-
	μ PD780228	48 K to 60K	3 ch	-	-					1 ch	72	4.5 V	
	$\mu \mathrm{PD} 78044 \mathrm{H}$	32 K to 48K	2 ch	1 ch	1 ch						68	2.7 V	
	$\mu \mathrm{PD} 78044 \mathrm{~F}$	16K to 40K								2 ch			
LCD driver	μ PD780308	48 K to 60K	2 ch	1 ch	1 ch	1 ch	8 ch	-	-	3 ch (Time division UART: 1 ch)	57	2.0 V	-
	$\mu \mathrm{PD} 78064 \mathrm{~B}$	32K								2 ch (UART: 1 ch)			
	μ PD78064	16 K to 32 K											
IEBus supported	μ PD78098B	40K to 60K	2 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1 ch$)$	69	2.7 V	Available
	μ PD78098	32 K to 60K											
Meter controller	μ PD780973	24 K to 32K	3 ch	1 ch	1 ch	1 ch	5 ch	-	-	2 ch (UART: 1 ch)	56	4.5 V	-
LV	μ PD78P0914	32 K	6 ch	-	-	1 ch	8 ch	-	-	2 ch	54	4.5 V	Available

Note 10 bits timer: 1 channel

FUNCTION OVERVIEW

Item		Function
Internal memory	ROM	32 Kbytes
	High-speed RAM	1024 bytes
	LCD display RAM	40×4 bits
General registers		8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)
Minimum instruction execution time	When main system clock selected	$0.4 \mu \mathrm{~s} / 0.8 \mu \mathrm{~s} / 1.6 \mu \mathrm{~s} / 3.2 \mu \mathrm{~s} / 6.4 \mu \mathrm{~s} / 12.8 \mu \mathrm{~s}$ (@ 5.0-MHz operation)
	When subsystem clock selected	$122 \mu \mathrm{~s}$ (@ 32.768-kHz operation)
Instruction set		-16-bit operation - Multiply/divide (8 bits $\times 8$ bits, 16 bits/ 8 bits) - Bit manipulate (set, reset, test, boolean operation) - BCD adjust, etc.
I/O ports (including segment signal output pins)		Total $: 57$ \cdot CMOS input $: 2$ - CMOS I/O $: 55$
A/D converter		- 8 -bit resolution $\times 8$ channels
LCD controller/driver		- Segment signal output : Maximum 40 - Common signal output : Maximum 4 - Bias : $1 / 2$ or $1 / 3$ switchable
Serial interface		- 3 -wire serial I/O/SBI/2-wire serial I/O mode selectable : 1 channel - 3-wire serial I/O/UART mode selectable : 1 channel
Timer		-16-bit timer/event counter : 1 channel - 8-bit timer/event counter : 2 channels - Watch timer : 1 channel - Watchdog timer : 1 channel
Timer output		3 (14-bit PWM output capability : 1)
Clock output		$\begin{aligned} & 19.5 \mathrm{kHz}, 39.1 \mathrm{kHz}, 78.1 \mathrm{kHz}, 156 \mathrm{kHz}, 313 \mathrm{kHz}, 625 \mathrm{kHz}, 1.25 \mathrm{MHz}, 2.5 \mathrm{MHz} \text {, } \\ & 5.0 \mathrm{MHz} \text { (@ } 5.0-\mathrm{MHz} \text { operation with main system clock) } \\ & 32.768 \mathrm{kHz} \text { (@ } 32.768-\mathrm{kHz} \text { operation with subsystem clock) } \end{aligned}$
Buzzer output		$1.2 \mathrm{kHz}, 2.4 \mathrm{kHz}, 4.9 \mathrm{kHz}, 9.8 \mathrm{kHz}$ (@ 5.0-MHz operation with main system clock)
Vectored interrupt source	Maskable	Internal: 12, external : 6
	Non-maskable	Internal : 1
	Software	1
Test input		Internal : 1, external: 1
Supply voltage		$\mathrm{V} D \mathrm{D}=2.0$ to 6.0 V
Package		- 100-pin plastic QFP (fine pitch) $(14 \times 14 \mathrm{~mm})$ - 100-pin plastic LQFP (fine pitch) $(14 \times 14 \mathrm{~mm})^{\text {Note }}$ -100-pin plastic QFP $(14 \times 20 \mathrm{~mm})$

Note Under development

CONTENTS

1. PIN CONFIGURATION (Top View) 7
2. BLOCK DIAGRAM 10
3. PIN FUNCTIONS 11
3.1 Port Pins 11
3.2 Non-port Pins 13
3.3 Pin I/O Circuits and Recommended Connection of Unused Pins 14
4. MEMORY SPACE 18
5. PERIPHERAL HARDWARE FUNCTION FEATURE 19
5.1 Port 19
5.2 Clock Generator 20
5.3 Timer/Event Counter 20
5.4 Clock Output Control Circuit 23
5.5 Buzzer Output Control Circuit 23
5.6 A/D Converter 24
5.7 Serial Interface 25
5.8 LCD Controller/Driver 27
6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS 28
6.1 Interrupt Functions 28
6.2 Test Functions 32
7. STANDBY FUNCTION 33
8. RESET FUNCTION 33
9. INSTRUCTION SET 34
10. ELECTRICAL SPECIFICATIONS 36
11. PACKAGE DRAWINGS 56
12. RECOMMENDED SOLDERING CONDITIONS 59
APPENDIX A. DEVELOPMENT TOOLS 60
APPENDIX B. RELATED DOCUMENTS 62

1. PIN CONFIGURATION (Top View)

```
-100-pin plastic QFP (fine pitch) (14 × 14 mm)
    \muPD78064BGC(A)-xxx-7EA
-100-pin plastic LQFP (fine pitch) (14 }\times14\textrm{mm}
        \muPD78064BGC(A)-×xx-8EUNote
```


Note Under development

Cautions 1. Connect directly the IC (Internally Connected) pin to Vss.
2. The $A V_{D D}$ pin functions as both an A / D converter power supply and a port power supply. When the $\mu \mathrm{PD} 78064 \mathrm{~B}(\mathrm{~A})$ is used in applications where the noise generated inside the microcontroller needs to be reduced, connect the AVdd pin to another power supply which has the same potential as Vdo.
3. The $A V$ ss pin functions as both an A / D converter ground and a port ground. When the μ PD78064B(A) is used in applications where the noise generated inside the microcontroller needs to be reduced, connect the AVss pin to another ground line than Vss.

- 100-pin plastic QFP ($14 \times 20 \mathrm{~mm}$)

Cautions 1. Connect directly the IC (Internally Connected) pin to Vss.
2. The $A V D D$ pin functions as both an A / D converter power supply and a port power supply. When the $\mu \mathrm{PD} 78064 \mathrm{~B}(\mathrm{~A})$ is used in applications where the noise generated inside the microcontroller needs to be reduced, connect the AVdD pin to another power supply which has the same potential as Vdo.
3. The AVss pin functions as both an A/D converter ground and a port ground. When the μ PD78064B(A) is used in applications where the noise generated inside the microcontroller needs to be reduced, connect the AVss pin to another ground line than Vss.

ANI0 to ANI7	: Analog Input
ASCK	: Asynchronous Serial Clock
AVdD	: Analog Power Supply
AV	: Analog Reference Voltage
AVss	: Analog Ground
BIAS	: LCD Power Supply Bias Control
BUZ	: Buzzer Clock
COM0 to COM3	: Common Output
IC	: Internally Connected
INTP0 to INTP5	: Interrupt from Peripherals
P00 to P05, P07	: Port0
P10 to P17	: Port1
P25 to P27	: Port2
P30 to P37	: Port3
P70 to P72	: Port7
P80 to P87	: Port8
P90 to P97	: Port9
P100 to P103	: Port10

P110 to P117 : Port11
PCL : Programmable Clock
RESET : Reset
RxD : Receive Data
S0 to S39 : Segment Output
SB0, SB1 : Serial Bus
SI0, SI2 : Serial Input
SO0, SO2 : Serial Output
$\overline{\text { SCK0, }}$ SCK2 : Serial Clock
TI00, TI01 : Timer Input
TI1, TI2 : Timer Input
TO0 to TO2 : Timer Output
TxD : Transmit Data
VDD : Power Supply
VLco to VLCz : LCD Power Supply
Vss : Ground
X1, X2 : Crystal (Main System Clock)
XT1, XT2 : Crystal (Subsystem Clock)

2. BLOCK DIAGRAM

3. PIN FUNCTIONS

3.1 Port Pins (1/2)

Pin Name	I/O		Function	After Reset	Alternate function	
P00	Input	Port 0 7-bit I/O port.	Input only.	Input	INTP0/TI00	
P01	Input/ output		Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by software.	Input	INTP1/TI01	
P02					INTP2	
P03					INTP3	
P04					INTP4	
P05					INTP5	
P07Note 1	Input		Input only.	Input	XT1	
P10 to P17	Input/ output	Port 1 8-bit input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by software. Note 2		Input	ANIO to ANI7	
P25	Input/ output	Port 2 3-bit input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by software.		Input	SIO/SB0	
P26				SO0/SB1		
P27				$\overline{\text { SCKO }}$		
P30	Input/ output	Port 3 8-bit input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by software.			Input	TO0
P31				TO1		
P32				TO2		
P33				TI1		
P34				TI2		
P35				PCL		
P36				BUZ		
P37				-		
P70	Input/ output	Port 7 3-bit input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by software.			Input	SI2/RxD
P71				SO2/TxD		
P72				$\overline{\text { SCK2 }}$ /ASCK		

Notes 1. When using the P07/XT1 pins as an input port, set (1) bit 6 (FRC) of the processor clock control register (PCC). (the on-chip feedback resistor of the subsystem clock oscillator should not be used.)
2. When using the P10/ANIO to P17/ANI7 pins as the A/D converter analog input, port 1 is set to the input mode. However, the on-chip pull-up resistor is automatically disabled.

3.1 Port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate function
P80 to P87	Input/ output	Port 8 8-bit input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by software. Input/output port/segment signal output function can be specified in 2-bit unit by the LCD display control register (LCDC).	S39 to S32	
P90 to P97	Input// output	Port 9 8-bit input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by software. Input/output port/segment signal output function can be specified in 2-bit unit by the LCD display control register (LCDC).		Input

Caution For pins which also function as port pins, do not perform the following operations during A/D conversion. If these operations are performed, the total error ratings cannot be kept (except for LCD segment output alternate-function pin).
(1) Rewriting the output latch while the pin is used as a port pin.
(2) Changing the output level of the pin used as an output pin, even if it is not used as a port pin.

3.2 Non-port Pins (1/2)

Pin Name	I/O	Function	After Reset	Alternate function
INTP0	Input	External interrupt request input by which the effective edge (rising edge, falling edge, or both rising edge and falling edge) can be specified.	Input	P00/TI00
INTP1				P01/TI01
INTP2				P02
INTP3				P03
INTP4				P04
INTP5				P05
SIO	Input	Serial interface serial data input.	Input	P25/SB0
SI2				P70/RxD
SO0	Output	Serial interface serial data output.	Input	P26/SB1
SO2				P71/TxD
SB0	Input/ output	Serial interface serial data input/output.	Input	P25/SI0
SB1				P26/SO0
SCKO	Input/ output	Serial interface serial clock input/output.	Input	P27
SCK2				P72/ASCK
RxD	Input	Asynchronous serial interface serial data input.	Input	P70/SI2
TxD	Output	Asynchronous serial interface serial data output.	Input	P71/SO2
ASCK	Input	Asynchronous serial interface serial clock input.	Input	P72/SCK2
TIOO	Input	External count clock input to 16-bit timer (TM0).	Input	P00/INTP0
TI01		Capture trigger signal input to capture register (CR00).		P01/INTP1
TI1		External count clock input to 8-bit timer (TM1).		P33
TI2		External count clock input to 8-bit timer (TM2).		P34
TO0	Output	16-bit timer (TM0) output (shared with 14-bit PWM output).	Input	P30
TO1		8-bit timer (TM1) output.		P31
TO2		8-bit timer (TM2) output.		P32
PCL	Output	Clock output (for main system clock, subsystem clock trimming).	Input	P35
BUZ	Output	Buzzer output.	Input	P36
S0 to S23	Output	LCD controller/driver segment signal output.	Output	-
S24 to S31			Input	P97 to P90
S32 to S39				P87 to P80
COM0 to COM3	Output	LCD controller/driver common signal output.	Output	-
VLC0 to VLC2	-	LCD drive voltage. Split resistors can be incorporated by mask option.	-	-
BIAS	-	LCD drive power supply.	-	-

3.2 Non-port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate function
ANIO to ANI7	Input	A/D converter analog input.	Input	P10 to P17
$A V_{\text {ref }}$	Input	A/D converter reference voltage input.	-	-
AVDD	-	A/D converter analog power supply (shared with the port power supply).	-	-
AVss	-	A/D converter ground potential (shared with the port ground potential).	-	-
RESET	Input	System reset input.	-	-
X1	Input	Main system clock oscillation crystal connection.	-	-
X2	-		-	-
XT1	Input	Subsystem clock oscillation crystal connection.	Input	P07
XT2	-		-	-
VDD	-	Positive power supply (except for port).	-	-
Vss	-	Ground potential (except for port).	-	-
IC	-	Internal connection. Connect directly to Vss pin.	-	-

Cautions 1. The AVDD pin functions as both an A/D converter power supply and a port power supply. When the $\mu \mathrm{PD} 78064 \mathrm{~B}(\mathrm{~A})$ is used in applications where the noise generated inside the microcontroller needs to be reduced, connect the AVDD pin to another power supply which has the same potential as Vod.
2. The $A V$ ss pin functions as both an A / D converter ground and a port ground. When the $\mu \mathrm{PD} 78064 \mathrm{~B}(\mathrm{~A})$ is used in applications where the noise generated inside the microcontroller needs to be reduced, connect the AVss pin to another ground line than Vss.

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1.
For the input/output circuit configuration of each type, see Figure 3-1.

Table 3-1. Input/Output Circuit Type of Each Pin (1/2)

Pin Name	Input/output Circuit Type	1/O	Recommended Connection when not Used
P00/INTP0/TI00	2	Input	Connected to Vss.
P01/INTP1/TI01	8-D	Input/output	Independently connected to Vss through a resistor.
P02/INTP2			
P03/INTP3			
P04/INTP4			
P05/INTP5			
P07/XT1	16	Input	Connected to Vod.

Table 3-1. Input/Output Circuit Type of Each Pin (2/2)

Pin Name	Input/output Circuit Type	I/O	Recommended Connection when not Used
P10/ANI0 to P17/ANI7	11-C	Input/output	Independently connected to VDD or Vss through a resistor.
P25/SI0/SB0	10-C		
P26/SO0/SB1			
P27/SCK0			
P30/TO0	5-J		
P31/TO1			
P32/TO2			
P33/TI1	8-D	Input/output	Independently connected to VDD or Vss through a resistor.
P34/TI2			
P35/PCL	5-J		
P36/BUZ			
P37			
P70/SI2/RxD	8-D		
P71/SO2/TxD	5-J		
P72/SCK2/ASCK	8-D		
P80/S39 to P87/S32	17-E		
P90/S31 to P97/S24			
P100 to P103	5-J		
P110 to P117	8-D		Independently connected to Vod through a resistor.
S0 to S23	17-D	Output	Leave open
COM0 to COM3	18-B		
V lco to V $\mathrm{LC2}$	-	-	
BIAS			
RESET	2	Input	-
XT2	16	-	Leave open.
AV ${ }_{\text {ref }}$	-		Connected to Vss.
AVdd			Connected to another power supply which has the same potential as Vod.
AVss			Connected to another ground line which has the same potential as Vss.
IC			Connected directly to Vss.

Figure 3-1. Pin Input/Output Circuits (1/2)
Typer

Figure 3-1. Pin Input/Output Circuits (2/2)

4. MEMORY SPACE

The memory map of the $\mu \mathrm{PD} 78064 \mathrm{~B}(\mathrm{~A})$ is shown in Figure 4-1.

Figure 4-1. Memory Map

5. PERIPHERAL HARDWARE FUNCTION FEATURE

5.1 Port

There are two kinds of I/O ports.

- CMOS input (P00, P07)	$: 2$
- CMOS input/output (P01 to P05, Port 1 to 3,7 to 11)	$: 55$
Total	$: 57$

Table 5-1. Functions of Ports

Name	Pin Name	
Port 0	P00, P07	Dedicated input port
	P01 to P05	Input/output port. Input/output specifiable bit-wise. When used as input port, on-chip pull-up resistor can be used by software.
Port 1	P10 to P17	Input/output port. Input/output specifiable bit-wise. When used as input port, on-chip pull-up resistor can be used by software.
Port 2	P25 to P27	Input/output port. Input/output specifiable bit-wise. When used as input port, on-chip pull-up resistor can be used by software.
Port 7 7	P30 to P37	Input/output port. Input/output specifiable bit-wise. When used as input port, on-chip pull-up resistor can be used by software.
Port 8 8	P80 to P87	Input/output port. Input/output specifiable bit-wise. When used as input port, on-chip pull-up resistor can be used by software.
Port 9 9	P90 to P97	
When used as input port, on-chip pull-up resistor can be used by software.		
Input/output port/segment signal output function specifiable in 2-bit units by LCD display		
control register (LCDC).		

5.2 Clock Generator

There are two kinds of clocks, a main system clock and a subsystem clock.
The minimum instruction execution time can also be changed.

- $0.4 \mu \mathrm{~s} / 0.8 \mu \mathrm{~s} / 1.6 \mu \mathrm{~s} / 3.2 \mu \mathrm{~s} / 6.4 \mu \mathrm{~s} / 12.8 \mu \mathrm{~s}$ (@ $5.0-\mathrm{MHz}$ operation with main system clock)
- $122 \mu \mathrm{~s}$ (@ 32.768-kHz operation with subsystem clock)

Figure 5-1. Clock Generator Block Diagram

5.3 Timer/Event Counter

Five timer/event counter channels are incorporated.

- 16-bit timer/event counter : 1 channel
- 8-bit timer/event counter : 2 channels
- Watch timer : 1 channel
- Watchdog timer : 1 channel

Table 5-2. Timer/Event Counter Types and Functions

		16-bit Timer/ Event Counter	8-bit Timer/ Event Counter	Watch Timer	Watchdog Timer
Type	Interval timer	1 channel	2 channels	1 channel	1 channel
	External event counter	1 channel	2 channels	-	-
	Timer output	1 output	2 outputs	-	-
	PWM output	1 output	-	-	-
	Pulse width measurement	2 inputs	-	-	-
	Square wave output	1 output	2 outputs	-	-
	One-shot pulse output	1 output	-	-	-
	Interrupt request	2	2	1	-
	Test input	-	-	1 input	-

Figure 5-2. 16-Bit Timer/Event Counter Block Diagram

Figure 5-3. 8-Bit Timer/Event Counter Block Diagram

Figure 5-4. Watch Timer Block Diagram

Figure 5-5. Watchdog Timer Block Diagram

5.4 Clock Output Control Circuit

Clocks of the following frequency can be output as clock outputs:

- $19.5 \mathrm{kHz} / 39.1 \mathrm{kHz} / 78.1 \mathrm{kHz} / 156 \mathrm{kHz} / 313 \mathrm{kHz} / 625 \mathrm{kHz} / 1.25 \mathrm{MHz} / 2.5 \mathrm{MHz} / 5.0 \mathrm{MHz}$ (@ 5.0-MHz operation with main system clock)
- 32.768 kHz (@32.768-kHz operation with subsystem clock)

Figure 5-6. Clock Output Control Circuit Block Diagram

5.5 Buzzer Output Control Circuit

Clocks of the following frequency can be output as buzzer outputs:

- $1.2 \mathrm{kHz} / 2.4 \mathrm{kHz} / 4.9 \mathrm{kHz} / 9.8 \mathrm{kHz}$ (@ 5.0-MHz operation with main system clock)

Figure 5-7. Buzzer Output Control Circuit Block Diagram

5.6 A/D converter

Eight 8-bit resolution A/D converter channels are incorporated.
The following two types of start-up method are available.

- Hardware start
- Software start

Figure 5-8. A/D Converter Block Diagram

Caution For pins which also function as port pins (refer to 3.1 Port Pins), do not perform the following operations during A/D conversion. If these operations are performed, the total error ratings cannot be kept (except for LCD segment output alternate-function pin).
(1) Rewriting the output latch while the pin is used as a port pin.
(2) Changing the output level of the pin used as an output pin, even if it is not used as a port pin.

5.7 Serial Interface

Two clocked serial interface channels are incorporated:

- Serial interface channel 0
- Serial interface channel 2

Table 5-3. Serial Interface Types and Functions

Function	Serial Interface Channel 0	Serial Interface Channel 2
3-wire serial I/O mode	Yes (MSB/LSB-first switchable)	Yes (MSB/LSB-first switchable)
SBI (serial bus interface) mode	Yes (MSB-first)	No
2-wire serial I/O mode	Yes (MSB-first)	No
Asynchronous serial interface (UART) mode	No	Yes (Dedicated baud rate generator incorporated)

Figure 5-9. Serial Interface Channel 0 Block Diagram

Figure 5-10. Serial Interface Channel 2 Block Diagram

5.8 LCD Controller/Driver

An LCD controller/driver with the following functions is incorporated.

- Selection of 5 types of display mode
- 16 of the segment signal of outputs can be switched to input/output ports in units of 2. (P80/S39 to P87/S32, P90/S31 to P97/S24)

Table 5-4. Display Mode Types and Maximum Number of Display Pixels

Bias Method	Time Multiplexing	Common Signal Used	Maximum Number of Display Pixels
-	Static	COM0 $($ COM1 to COM3 $)$	$40(40$ segments $\times 1$ common $)$
$1 / 2$	2	COM0, COM1	$80(40$ segments $\times 2$ commons $)$
	3	COM0 to COM2	$120(40$ segments $\times 3$ commons $)$
	3	COM0 to COM2	
	4	COM0 to COM3	$160(40$ segments $\times 4$ commons $)$

Figure 5-11. LCD Controller/Driver Block Diagram

6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS

6.1 Interrupt Functions

There are twenty interrupt sources of three different kinds, as shown below.

- Non-maskable : 1
- Maskable : 18
- Software : 1

Table 6-1. Interrupt Source List

Interrupt Type	Default Priority Note1	Interrupt Source		Internal/ External	Vector Table Address	Basic Configuration Type ${ }^{\text {Note2 }}$
		Name	Trigger			
Nonmaskable	-	INTWDT	Watchdog timer overflow (with watchdog timer mode 1 selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Watchdog timer overflow (with interval timer mode selected)			(B)
	1	INTPO	Pin input edge detection	External	0006H	(C)
	2	INTP1			0008H	(D)
	3	INTP2			000AH	
	4	INTP3			000 CH	
	5	INTP4			000EH	
	6	INTP5			0010H	
	7	INTCSIO	Serial interface channel 0 transfer termination	Internal	0014H	(B)
	8	INTSER	Serial interface channel 2 UART reception error generation		0018H	
	9	INTSR	Serial interface channel 2 UART reception termination		001 AH	
		INTCSI2	Serial interface channel 2 3-wire transfer termination			
	10	INTST	Serial interface channel 2 UART transmission termination		001 CH	
	11	INTTM3	Reference time interval signal from watch timer		001EH	
	12	INTTM00	16-bit timer register and capture/compare register (CR00) match signal generation		0020H	
	13	INTTM01	16-bit timer register and capture/compare register (CR01) match signal generation		0022H	
	14	INTTM1	8-bit timer/event counter 1 match signal generation		0024H	
	15	INTTM2	8 -bit timer/event counter 2 match signal generation		0026H	
	16	INTAD	A/D converter conversion termination		0028H	
Software	-	BRK	BRK instruction execution	-	003EH	(E)

Notes 1. Default priority is a priority order when more than one maskable interrupt source is generated simultaneously. 0 is the highest priority and 16 the lowest priority.
2. Basic configuration types (A) to (E) correspond to those shown in Figure 6-1.

Figure 6-1. Basic Configuration of Interrupt Functions (1/2)
(A) Internal non-maskable interrupt

(B) Internal maskable interrupt

(C) External maskable interrupt (INTPO)

Figure 6-1. Basic Configuration of Interrupt Functions (2/2)
(D) External maskable interrupt (except INTPO)

(E) Software interrupt

IF : Interrupt request flag
IE : Interrupt enable flag
ISP : In-service priority flag
MK : Interrupt mask flag
PR : Priority specification flag

6.2 Test Functions

There are two test functions as shown in Table 6-2.

Table 6-2. Test Input Source List

Test Input Source		Internal/External
Name	Trigger	
INTWT	Watch timer overflow	External
INTPT11	Port 11 falling edge detection	

Figure 6-2. Basic Configuration of Test Function

[^0]
7. STANDBY FUNCTION

The standby function is a function to reduce current consumption. The following two kinds of standby functions are provided.

- HALT mode : Halts CPU operating clock and can reduce average current consumption by the intermittent operation along with the normal operation.
- STOP mode : Halts main system clock oscillation. Halts all operations with the main system clock and sets ultra-low current consumption state with subsystem clock only.

Figure 7-1. Standby Function

Note Halting the main system clock enables the current consumption to be reduced.
When the CPU is operated by the subsystem clock, the main system clock should be halted by setting the bit 7 (MCC) of the processor clock control register (PCC). The STOP instruction is not available.

Caution When the main system clock is stopped and the system is operated by the subsystem clock, the main system clock should be returned to after securing the oscillation stabilization time by a program.

8. RESET FUNCTION

There are the following two kinds of resetting methods.

- External reset by RESET pin.
- Internal reset by watchdog timer runaway time detection.

9. INSTRUCTION SET

(1) 8-bit instruction

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

2nd operand 1st operand	\#byte	A	r Note	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL+byte] [HL+B] [$\mathrm{HL}+\mathrm{C}$]	\$addr16	1	None
A	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{XCH} \end{aligned}$	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{XCH} \end{aligned}$	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
r	MOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP											$\begin{aligned} & \hline \text { INC } \\ & \text { DEC } \end{aligned}$
B, C											DBNZ		
sfr	MOV	MOV											
saddr	MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV									DBNZ		$\begin{aligned} & \text { INC } \\ & \text { DEC } \end{aligned}$
!addr16		MOV											
PSW	MOV	MOV											$\begin{aligned} & \hline \text { PUSH } \\ & \text { POP } \end{aligned}$
[DE]		MOV											
[HL]		MOV											$\begin{aligned} & \hline \text { ROR4 } \\ & \text { ROL4 } \\ & \hline \end{aligned}$
$\begin{aligned} & {[\mathrm{HL}+\text { byte }]} \\ & {[\mathrm{HL}+\mathrm{B}]} \\ & {[\mathrm{HL}+\mathrm{C}]} \\ & \hline \end{aligned}$		MOV											
X													MULU
C													DIVUW

Note Except $r=A$
(2) 16-bit instruction

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

| 2nd operand |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1st operand | \#word

Note Only when $r p=B C, D E, H L$
(3) Bit manipulation instruction

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

2nd operand 1st operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	BT BF BTCLR	SET1 CLR1
sfr.bit						MOV1	BT BF BTCLR	SET1 CLR1
saddr.bit						MOV1	$\begin{aligned} & \text { BT } \\ & \text { BF } \\ & \text { BTCLR } \\ & \hline \end{aligned}$	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	SET1 CLR1
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
CY	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1				

(4) Call instruction/branch instruction

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

2nd operand 1st operand	AX	!addr16	!addr11	[addr5]	\$addr16
Basic instruction	BR	CALL BR	CALLF	CALLT	BR, BC, BNC, BZ, BNZ
Compound instruction				BT, BF, BTCLR DBNZ	

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

10. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Conditions			Rating	Unit
Supply voltage	VdD				-0.3 to +7.0	V
	AVdD				-0.3 to V DD +0.3	V
	$A V_{\text {ref }}$				-0.3 to $V_{D D}+0.3$	V
	AVss				-0.3 to +0.3	V
Input voltage	V				-0.3 to $V_{\text {DD }}+0.3$	V
Output voltage	Vo				-0.3 to $V_{\text {DD }}+0.3$	V
Analog input voltage	$V_{\text {AN }}$	P10 to P17	Analog input pin		AVss - 0.3 to $A V_{\text {ref }}+0.3$	V
Output current high	Іон	Per pin			-10	mA
		Total for P01 to P05, P10 to P17, P25 to P27, P30 to P37, P70 to P72, P80 to P87, P90 to P97, P100 to P103, P110 to P117			-15	mA
Output current low	loL Note	Per pin		Peak value	30	mA
				r.m.s. value	15	mA
		Total for P01 to P05, P10 to P17, P25 to P27, P30 to P37, P70 to P72, P80 to P87, P90 to P97, P100 to P103, P110 to P117		Peak value	100	mA
				r.m.s. value	70	mA
Operating ambient temperature	TA				-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$				-65 to +150	${ }^{\circ} \mathrm{C}$

Note The r.m.s. value should be calculated as follows: $[$ r.m.s. value $]=[$ Peak value $] \times \sqrt{\text { Duty }}$

Caution The product quality may be damaged even if a value of only one of the above parameters exceeds the absolute maximum rating or any value exceeds the absolute maximum rating for an instant. That is, the absolute maximum rating is a rating value which may cause a product to be damaged physically. The absolute maximum rating values must therefore be observed when using the product.

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{dD}}=\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	CIN	$\mathrm{f}=1 \mathrm{MHz}$			15	pF
Output capacitance	Cout	Unmeasured pins			15	pF
I/O capacitance	Cı	returned to 0 V.			15	pF

$\star \quad$ MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{DD}}=2.0$ to 6.0 V)

Notes 1. Indicates only oscillator characteristics. Refer to "AC Characteristics" for instruction execution time.
2. Time required to stabilize oscillation after reset or STOP mode release.

Cautions 1. When using the main system clock oscillator, wiring in the area enclosed with the dotted line should be carried out as follows to avoid an adverse effect from wiring capacitance.

- Wiring should be as short as possible.
- Wiring should not cross other signal lines.
- Wiring should not be placed close to a varying high current.
- The potential of the oscillator capacitor ground should be the same as Vss.
- Do not ground it to the ground pattern in which a high current flows.
- Do not fetch a signal from the oscillator.

2. If the main system clock oscillator is operated by the subsystem clock when the main system clock is stopped, reswitching to the main system clock should be performed after the oscillation stabilization time has been obtained by the program.

SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS ($T_{A}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=2.0$ to 6.0 V)

Notes 1. Indicates only oscillator characteristics. Refer to "AC Characteristics" for instruction execution time.
2. Time required to stabilize oscillation after VDD has reached the minimum oscillation voltage range.

Cautions 1. When using the subsystem clock oscillator, wiring in the area enclosed with the dotted line should be carried out as follows to avoid an adverse effect from wiring capacitance.

- Wiring should be as short as possible.
- Wiring should not cross other signal lines.
- Wiring should not be placed close to a varying high current.
- The potential of the oscillator capacitor ground should be the same as Vss.
- Do not ground it to the ground pattern in which a high current flows.
- Do not fetch a signal from the oscillator.

2. The subsystem clock oscillator is designed as a low amplification circuit to provide low consumption current, causing misoperation by noise more frequently than the main system clock oscillation circuit. Special care should therefore be taken about the wiring method when the subsystem clock is used.

RECOMMENDED OSCILLATOR CONSTANT

MAIN SYSTEM CLOCK: CERAMIC RESONATOR (TA $=-40$ to $+85^{\circ} \mathrm{C}$)

Manufacturer	Part Number	Frequency (MHz)	Recommended Circuit Constant		Oscillation Voltage Range		Remarks
			C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)	
Murata Mfg. Co., Ltd.	CSA5.00MG	5.00	30	30	2.2	6.0	
	CST5.00MGW	5.00	On-chip	On-chip	2.7	6.0	
Matsushita Electronics Components Co., Ltd.	EF0GC5004A4	5.00	On-chip	On-chip	2.7	6.0	Lead type
	EF0EC5004A4	5.00	On-chip	On-chip	2.0	6.0	Round lead type
	EF0EN5004A4	5.00	33	33	2.7	6.0	Lead type
	EF0S5004B5	5.00	On-chip	On-chip	2.7	6.0	Chip type
Kyocera Corporation	KBR-5.0MSA	5.00	33	33	2.7	6.0	Lead type
	PBRC5.00A	5.00	33	33	2.7	6.0	Chip type
	KBR-5.0MKS	5.00	On-chip	On-chip	2.7	6.0	Lead type
	KBR-5.0MWS	5.00	On-chip	On-chip	2.7	6.0	Chip type

SUBSYSTEM CLOCK: CRYSTAL RESONATOR ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+\mathbf{6} 0^{\circ} \mathrm{C}$)

Manufacturer	Part Number	Frequency (kHz)	Recommended Circuit Constant			Oscillation Voltage Range	
			C3 (pF)	C 4 (pF)	R2 (k 2)	MIN. (V)	MAX. (V)
Kyocera Corporation	KF-38G-12P0200 ${ }^{\text {Note }}$ (Load capacitance 12 pF)	32.768	15	22	220	2.0	6.0

Note Maintenance-only product

Caution The recommended circuit constant and the oscillation voltage range are the conditions required for stable oscillation, but do not guarantee oscillation frequency accuracy. In the case of applications requiring oscillation frequency accuracy, the oscillation frequency must be adjusted in a mounted circuit. For details, consult the resonator manufacturer directly.

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.0$ to 6.0 V)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	$\mathrm{V}_{\mathrm{H} 1}$	P10 to P17, P30 to P32, P35 to P37, P80 to P87, P90 to P97, P100 to P103	$V_{\text {dD }}=2.7$ to 6.0 V	0.7 Vdd		Vod	V
				0.8 VDD		Vod	V
	VIH2	P00 to P05, P25 to P27, P33, P34, P70 to P72, P110 to P117, $\overline{\text { RESET }}$	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V	0.8 VdD		Vod	V
				0.85 Vdo		VdD	V
	V ${ }_{\text {H3 }}$	X1, X2	$V_{\text {dD }}=2.7$ to 6.0 V	Vdo-0.5		VDD	V
				Vdo - 0.2		Vdo	V
	VIH4	XT1/P07, XT2	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$	0.8 Vdo		Vdo	V
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	0.9 VdD		VdD	V
			$2.0 \mathrm{~V} \leq \mathrm{V}_{\text {do }}<2.7 \mathrm{~V}$ Note	0.9 Vdd		Vdo	V
Input voltage, low	VIL1	P10 to P17, P30 to P32, P35 to P37, P80 to P87, P90 to P97, P100 to P103	$V_{\text {dD }}=2.7$ to 6.0 V	0		0.3 VDD	V
				0		0.2 VDD	V
	VIL2	P00 to P05, P25 to P27, P33, P34, P70 to P72, P110 to P117, $\overline{\text { RESET }}$	$\mathrm{V} D \mathrm{D}=2.7$ to 6.0 V	0		0.2 VDd	V
				0		0.15 VDD	V
	VIL3	X1, X2	$V_{\text {dD }}=2.7$ to 6.0 V	0		0.4	V
				0		0.2	V
	VIL4	XT1/P07, XT2	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$	0		0.2 V DD	V
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	0		0.1 V DD	V
			$2.0 \mathrm{~V} \leq \mathrm{V}_{\text {do }}<2.7 \mathrm{~V}^{\text {Note }}$	0		0.1 V DD	V
Output voltage, high	Vor	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V , $\mathrm{IOH}^{\text {a }}=-1 \mathrm{~mA}$		VDD-1.0		Vdo	V
		Іон $=-100 \mu \mathrm{~A}$		VDD - 0.5		VDD	V
Output voltage, low	VoL1	P100 to P103	$\begin{aligned} & \mathrm{V} D \mathrm{DD}=4.5 \text { to } 6.0 \mathrm{~V}, \\ & \mathrm{loL}=15 \mathrm{~mA} \end{aligned}$		0.4	2.0	V
		P01 to P05, P10 to P17, P25 to P27, P30 to P37, P70 to P72, P80 to P87, P90 to P97, P110 to P117	$\begin{aligned} & \mathrm{V} D \mathrm{DD}=4.5 \text { to } 6.0 \mathrm{~V}, \\ & \mathrm{loL}=1.6 \mathrm{~mA} \end{aligned}$			0.4	V
	Vol2	SB0, SB1, $\overline{\text { SCK0 }}$	$V_{D D}=4.5 \text { to } 6.0 \mathrm{~V},$ open-drain, pull-up ($R=1 \mathrm{k} \Omega$)			0.2 VDD	V
	Vol3	loL $=400 \mu \mathrm{~A}$				0.5	V

Note When P07/XT1 is used as P07, the inverse phase of P07 should be input to XT2.

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{V} D=2.0$ to 6.0 V)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$	P00 to P05, P10 to P17, P25 to P27, P30 to P37, P70 to P72, P80 to P87, P90 to P97, P100 to P103, P110 to P117			3	$\mu \mathrm{A}$
	ILIH2		X1, X2, XT1/P07, XT2			20	$\mu \mathrm{A}$
Input leakage current, low	ILIL1	V IN $=0 \mathrm{~V}$	P00 to P05, P10 to P17, P25 to P27, P30 to P37, P70 to P72, P80 to P87, P90 to P97, P100 to P103, P110 to P117			-3	$\mu \mathrm{A}$
	ILIL2		X1, X2, XT1/P07, XT2			-20	$\mu \mathrm{A}$
Output leakage current, high	ILOH	Vout $=\mathrm{V}_{\text {DD }}$				3	$\mu \mathrm{A}$
Output leakage current, low	ILoL	Vout $=0 \mathrm{~V}$				-3	$\mu \mathrm{A}$
Software pull-up resistor	R	V IN $=0 \mathrm{~V}, \mathrm{P} 01$ to P 05 , P10 to P17, P25 to P27, P30 to P37, P70 to P72, P80 to P87, P90 to P97, P100 to P103, P110 to P117	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$	15	40	90	$\mathrm{k} \Omega$
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	20		500	$\mathrm{k} \Omega$
Supply current ${ }^{\text {Note }} 1$	IDD1	$5.00-\mathrm{MHz}$ crystal oscillation $\left(\mathrm{f}_{\mathrm{xx}}=2.5 \mathrm{MHz}\right)^{\text {Note } 2}$ operating mode	$V_{D D}=5.0 \mathrm{~V} \pm 10$ \% ${ }^{\text {Note } 4}$		4	12	mA
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note } 5}$		0.6	1.8	mA
			$V_{D D}=2.2 \mathrm{~V} \pm 10 \%{ }^{\text {Note } 5}$		0.35	1.05	mA
		$5.00-\mathrm{MHz}$ crystal oscillation $(f x x=5.0 \mathrm{MHz})^{\text {Note } 3}$ operating mode	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%^{\text {Note }} 4$		6.5	19.5	mA
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note } 5}$		0.8	2.4	mA
	IdD2	$5.00-\mathrm{MHz}$ crystal oscillation $(\mathrm{fxx}=2.5 \mathrm{MHz})^{\text {Note } 2}$ HALT mode	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$		1.4	4.2	mA
			$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$		500	1500	$\mu \mathrm{A}$
			$V \mathrm{DD}=2.2 \mathrm{~V} \pm 10 \%$		280	840	$\mu \mathrm{A}$
		5.00-MHz crystal oscillation $(f x x=5.0 \mathrm{MHz}){ }^{\text {Note } 3}$ HALT mode	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$		1.6	4.8	mA
			$V \mathrm{DD}=3.0 \mathrm{~V} \pm 10 \%$		650	1950	$\mu \mathrm{A}$

Notes 1. The current flowing in $V_{D D}$ and $A V_{D D}$, excluding the current flowing in an A / D converter, on-chip pullup resistors and LCD split resistors
2. Main system clock $f x x=f x / 2$ operation (when oscillation mode selection register (OSMS) is set to 00 H)
3. Main system clock $f x x=f x$ operation (when OSMS is set to 01 H)
4. High-speed mode operation (when processor clock control register (PCC) is set to 00 H)
5. Low-speed mode operation (when PCC is set to 04 H)

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.0$ to 6.0 V)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Supply current ${ }^{\text {Note } 1}$	Idd3	$32.768-\mathrm{kHz}$ crystal oscillation operating mode ${ }^{\text {Note } 2}$	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$		60	120	$\mu \mathrm{A}$
			$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$		32	64	$\mu \mathrm{A}$
			$V_{D D}=2.2 \mathrm{~V} \pm 10 \%$		24	48	$\mu \mathrm{A}$
	IdD4	$32.768-\mathrm{kHz}$ crystal oscillation HALT mode ${ }^{\text {Note } 2}$	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$		25	55	$\mu \mathrm{A}$
			$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$		5	15	$\mu \mathrm{A}$
			$V_{D D}=2.2 \mathrm{~V} \pm 10 \%$		2.5	12.5	$\mu \mathrm{A}$
	IdD5	$\mathrm{XT} 1=\mathrm{V}_{\mathrm{DD}}$ STOP mode When feedback resistor is connected	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$		1	30	$\mu \mathrm{A}$
			$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$		0.5	10	$\mu \mathrm{A}$
			$V_{D D}=2.2 \mathrm{~V} \pm 10 \%$		0.3	10	$\mu \mathrm{A}$
	Idd6	$\mathrm{XT} 1=\mathrm{V}_{\mathrm{DD}}$ STOP mode When feedback resistor is disconnected	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$		0.1	30	$\mu \mathrm{A}$
			$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$		0.05	10	$\mu \mathrm{A}$
			$V_{D D}=2.2 \mathrm{~V} \pm 10 \%$		0.05	10	$\mu \mathrm{A}$

Notes 1. The current flowing in $V_{D D}$ and $A V_{D D}$, excluding the current flowing in an A / D converter, on-chip pullup resistors and LCD split resistors
2. When the main system clock is stopped.

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-10$ to $+85^{\circ} \mathrm{C}$)
(1) Static Display Mode (VDD $=2.0$ to 6.0 V)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
LCD drive voltage	V LCd			2.0		VDD	V
LCD split resistor	Rlcd			60	100	150	k Ω
LCD output voltage deviation ${ }^{\text {Note }}$ (common)	Vodc	$\mathrm{lo}= \pm 5 \mu \mathrm{~A}$	$\begin{aligned} & 2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{LCD}} \leq \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{LCDO}}=\mathrm{V}_{\mathrm{LCD}} \end{aligned}$	0		± 0.2	V
LCD output voltage deviation ${ }^{\text {Note }}$ (segment)	Vods	$\mathrm{lo}= \pm 1 \mu \mathrm{~A}$		0		± 0.2	V

Note The voltage deviation is the difference from the output voltage corresponding to the ideal value of the segment and common outputs (VLCDn; $n=0,1,2$).
(2) $1 / 3$ Bias Method $(\mathrm{VdD}=2.5$ to 6.0 V$)$

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
LCD drive voltage	V lcd			2.5		VDD	V
LCD split resistor	Rlcd			60	100	150	$k \Omega$
LCD output voltage deviation ${ }^{\text {Note }}$ (common)	Vodc	$\mathrm{lo}= \pm 5 \mu \mathrm{~A}$	$\begin{aligned} & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{LCD}} \leq \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{LCDO}}=\mathrm{V}_{\mathrm{LCD}} \end{aligned}$	0		± 0.2	V
LCD output voltage deviation Note (segment)	Vods	$\mathrm{lo}= \pm 1 \mu \mathrm{~A}$	$\begin{aligned} & V_{L C D 1}=V_{L C D} \times 2 / 3 \\ & V_{L C D 2}=V_{L C D} \times 1 / 3 \end{aligned}$	0		± 0.2	V

Note The voltage deviation is the difference from the output voltage corresponding to the ideal value of the segment and common outputs (VLCDn; $n=0,1,2$).
(3) $1 / 2$ Bias Method $(V d D=2.7$ to 6.0 V$)$

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
LCD drive voltage	V lcd			2.7		Vdd	V
LCD split resistor	Rlcd			60	100	150	$\mathrm{k} \Omega$
LCD output voltage deviation Note (common)	Vodc	$\mathrm{lo}= \pm 5 \mu \mathrm{~A}$	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{LCD}} \leq \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{LCDO}}=\mathrm{V}_{\mathrm{LCD}} \\ & \mathrm{~V}_{\mathrm{LCD} 1}=\mathrm{V}_{\mathrm{LCD}} \times 1 / 2 \\ & \mathrm{~V}_{\mathrm{LCD} 2}=\mathrm{V}_{\mathrm{LCD} 1} \end{aligned}$	0		± 0.2	V
LCD output voltage deviation ${ }^{\text {Note }}$ (segment)	Vods	$\mathrm{lo}= \pm 1 \mu \mathrm{~A}$		0		± 0.2	V

Note The voltage deviation is the difference from the output voltage corresponding to the ideal value of the segment and common outputs (VLCDn; $n=0,1,2$).

AC CHARACTERISTICS

(1) Basic Operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85{ }^{\circ} \mathrm{C}, \mathrm{VdD}=2.0$ to 6.0 V)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Cycle time (Minimum instruction execution time)	Tcy	Operating on main system clock$(f x x=2.5 \mathrm{MHz})^{\text {Note } 1}$	$\mathrm{V} D \mathrm{D}=2.7$ to 6.0 V	0.8		64	$\mu \mathrm{s}$
				2.2		64	$\mu \mathrm{S}$
		Operating on main system clock $\left(\mathrm{f}_{\mathrm{xx}}=5.0 \mathrm{MHz}\right)^{\text {Note } 2}$	$4.5 \leq \mathrm{VDD}^{5} 5.0 \mathrm{~V}$	0.4		32	$\mu \mathrm{s}$
			$2.7 \leq \mathrm{VDD}<4.5 \mathrm{~V}$	0.8		32	$\mu \mathrm{S}$
		Operating on subsystem clock		$40^{\text {Note } 3}$	122	125	$\mu \mathrm{s}$
TIOO input high-/low-level width	tтinoo, ttiloo	$4.5 \mathrm{~V} \leq \mathrm{VdD} \leq 6.0 \mathrm{~V}$		$2 / \mathrm{fsam}_{\text {sam }}+0.1^{\text {Note } 4}$			$\mu \mathrm{s}$
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		$2 / f_{\text {sam }}+0.2^{\text {Note } 4}$			$\mu \mathrm{s}$
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		$2 / \mathrm{fsam}_{\text {sam }}+0.5^{\text {Note } 4}$			$\mu \mathrm{s}$
TI01 input high-/low-level width	ttinol, ttLLO1	$V_{D D}=2.7$ to 6.0 V		10			$\mu \mathrm{s}$
				20			$\mu \mathrm{S}$
TI1, TI2 input frequency	ftil	$V_{\text {DD }}=4.5$ to 6.0 V		0		4	MHz
				0		275	kHz
TI1, TI2 input high-Ilow-level width	tтill, tTIL1	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V		100			ns
				1.8			$\mu \mathrm{s}$
Interrupt input high-/low-level width	tinth, tintl	INTP0		8/fsam ${ }^{\text {Note } 4}$			$\mu \mathrm{s}$
		INTP1 to INTP5, P110 to P117	$V_{D D}=2.7$ to 6.0 V	10			$\mu \mathrm{s}$
				20			$\mu \mathrm{s}$
RESET low-level width	trsL	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V		10			$\mu \mathrm{s}$
				20			$\mu \mathrm{s}$

Notes 1. Main system clock $f_{x x}=f_{x} / 2$ operation (when oscillation mode selection register (OSMS) is set to 00 H)
2. Main system clock $f \times x=f x$ operation (when OSMS is set to 01 H)
3. This is the value when the external clock is used. The value is $114 \mu \mathrm{~s}$ (min.) when the crystal resonator is used.
4. In combination with bits 0 (SCS0) and 1 (SCS1) of sampling clock select register (SCS), selection of $f_{\text {sam }}$ is possible between $\mathrm{fxx}_{\mathrm{x}} / \mathrm{R}^{\mathrm{N}}, \mathrm{fxx}^{\prime} / 32, \mathrm{fxx}^{\mathrm{l}} / 64$ and $\mathrm{fxx} / 128$ (when $\mathrm{N}=0$ to 4).

Tcy vs VDD (At main system clock $f x x=f x / 2$ operation)

Tcy vs Vod (At main system clock $f x x=f x$ operation)

(2) Serial Interface ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.0$ to 6.0 V)
(a) Serial interface channel 0
(i) 3-wire serial I/O mode (SCKO... Internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK0 }}$ cycle time	tkcy1	$4.5 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 6.0 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.5 \mathrm{~V}$	1600			ns
			3200			ns
$\overline{\text { SCKO }}$ high-/low-level width	tkH1, $^{\text {, }}$ tkL1	$V_{\text {DD }}=4.5$ to 6.0 V	tксуı/2-50			ns
			tксуı/2-100			ns
SIO setup time (to SCKO \uparrow)	tsik1	$4.5 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 6.0 \mathrm{~V}$	100			ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD}^{2} 4.5 \mathrm{~V}$	150			ns
			300			ns
SIO hold time (from $\overline{\text { SCKO }} \uparrow$)	tksı11		400			ns
SO0 output delay time from SCKO \downarrow	tksO1	$\mathrm{C}=100 \mathrm{pF}$ Note			300	ns

Note C is the load capacitance of SCK0, SOO output line.
(ii) 3-wire serial I/O mode (SCKO...External clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKO }}$ cycle time	tксү2	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	1600			ns
			3200			ns
$\overline{\text { SCK0 high-/low-level }}$ width	tкH2,tkL2	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$	400			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	800			ns
			1600			ns
SIO setup time (to $\overline{\text { SCKO }} \uparrow$)	tsİ2		100			ns
SIO hold time (from $\overline{\text { SCKO }} \uparrow$)	tksi2		400			ns
SO0 output delay time from $\overline{\text { SCKO }} \downarrow$	tksO2	$\mathrm{C}=100 \mathrm{pF}^{\text {Note }}$			300	ns
$\overline{\text { SCKO }}$ rise, fall time	$\begin{aligned} & \mathrm{t}_{\mathrm{R} 2}, \\ & \mathrm{t}_{2} \end{aligned}$				1000	ns

Note C is the load capacitance of SOO output line.
(iii) SBI mode ($\overline{\text { SCKO }}$...Internal clock output)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKO }}$ cycle time	tксүз	$V_{D D}=4.5$ to 6.0 V		800			ns
				3200			ns
$\overline{\text { SCKO }}$ high-/low-level width	tкн3,tкL3	$V_{\text {DD }}=4.5$ to 6.0 V		tксүз/2-50			ns
				tксүз/2-150			ns
SB0, SB1 setup time (to $\overline{\mathrm{SCKO}} \uparrow$)	tsıк3	$V_{\text {DD }}=4.5$ to 6.0 V		100			ns
				300			ns
SB0, SB1 hold time (from SCKO \uparrow)	tksı3			tксүз/2			ns
SB0, SB1 output delay	tKsO3	$\mathrm{R}=1 \mathrm{k} \Omega$,	$\mathrm{V} D \mathrm{D}=4.5$ to 6.0 V	0		250	ns
time from		$\mathrm{C}=100 \mathrm{pF}$ Note		0		1000	ns
SB0, SB1 \downarrow from SCK0 \uparrow	tksb			tксүз			ns
SCK0 \downarrow from SB0, SB1 \downarrow	tsbk			tксүз			ns
SB0, SB1 high-level width	tsb			tксүз			ns
SB0, SB1 low-level width	tsbL			tксүз			ns

Note R and C are the load resistance and load capacitance of the SCK0, SB0 and SB1 output lines, respectively.
(iv) SBI mode (SCKO.. External clock input)

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output lines, respectively.
(v) 2-wire serial I/O mode ($\overline{\mathrm{SCKO}}$... Internal clock output)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKO }}$ cycle time	tkcy5	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega \\ & \mathrm{C}=100 \mathrm{pF} \text { Note } \end{aligned}$	$V_{\text {dD }}=2.7$ to 6.0 V	1600			ns
				3200			ns
$\overline{\text { SCK0 }}$ high-level width	tкн5		V DD $=2.7$ to 6.0 V	tксу5/2-160			ns
				tксу5/2-190			ns
$\overline{\text { SCKO }}$ low-level width	tkL5		$V_{\text {dD }}=4.5$ to 6.0 V	tксу5/2-50			ns
				tксу5/2-100			ns
SB0, SB1 setup time (to $\overline{\mathrm{SCKO}} \uparrow$)	tsiks		$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$	300			ns
			$2.7 \mathrm{~V} \leq \mathrm{V} D<4.5 \mathrm{~V}$	350			ns
				400			ns
SB0, SB1 hold time (from $\overline{\mathrm{SCKO}} \uparrow$)	t¢sı5			600			ns
SB0, SB1 output delay time from $\overline{\text { SCK0 }} \downarrow$	tkso5			0		300	ns

Note R and C are the load resistance and load capacitance of the $\overline{\text { SCKO }}$, SB0 and SB1 output lines, respectively.
(vi) 2-wire serial I/O mode ($\overline{\mathrm{SCKO}} . .$. External clock input)

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output lines, respectively.
(b) Serial interface channel 2
(i) 3-wire serial I/O mode (SCK2... Internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK2 }}$ cycle time	tkcy7	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 6.0 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V} D<4.5 \mathrm{~V}$	1600			ns
			3200			ns
$\overline{\text { SCK2 }}$ high-/low-level width	tkH7, tkL7	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 6.0 \mathrm{~V}$	tксү7/2-50			ns
			tкıү7/2-100			ns
SI2 setup time (to $\overline{\text { SCK2 }} \uparrow$)	tsik7	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 6.0 \mathrm{~V}$	100			ns
		$2.7 \mathrm{~V} \leq \mathrm{V} D<4.5 \mathrm{~V}$	150			ns
			300			ns
SI2 hold time (from $\overline{\mathrm{SCK}} \uparrow$)	tкsı17		400			ns
SOO output delay time from SCK2 \downarrow	tkso7	$\mathrm{C}=100 \mathrm{pF}$ Note			300	ns

Note C is the load capacitance of the SCK2 and SO2 output lines.
(ii) 3-wire serial I/O mode ($\overline{\text { SCK2 }}$...External clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK2 }}$ cycle time	tkcys	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	1600			ns
			3200			ns
SCK2 high-llow-level width	tкнв,tkL8	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$	400			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	800			ns
			1600			ns
SI2 setup time (to $\overline{\mathrm{SCK}} \uparrow$)	tsIk8		100			ns
SI2 hold time (from $\overline{\text { SCK2 }} \uparrow$)	tksı8		400			ns
SO2 output delay time from $\overline{\text { SCK2 }} \downarrow$	tkso8	$\mathrm{C}=100 \mathrm{pF}$ Note			300	ns
$\overline{\text { SCK2 }}$ rise, fall time	$\begin{aligned} & \mathrm{t}_{\mathrm{R} 8}, \\ & \mathrm{t} / \mathrm{l} \end{aligned}$				1000	ns

Note C is the load capacitance of the SO2 output line.
(iii) UART mode (Dedicated baud rate generator output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.
Transfer rate	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 6.0 \mathrm{~V}$			78125	bps
	$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.5 \mathrm{~V}$		39063	bps	
				19531	bps

(iv) UART mode (External clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	tксү9	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}$ do $<4.5 \mathrm{~V}$	1600			ns
			3200			ns
ASCK high-/low-level width	tкно, tкı9	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$	400			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}$ D $<4.5 \mathrm{~V}$	800			ns
			1600			ns
Transfer rate		$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 6.0 \mathrm{~V}$			39063	bps
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$			19531	bps
					9766	bps
ASCK rise, fall time	$\begin{aligned} & \mathrm{t}_{\mathrm{R} 9}, \\ & \mathrm{t}_{\mathrm{F} 9} \end{aligned}$				1000	ns

AC Timing Test Point (Excluding X1, XT1 Input)

Clock Timing

XT1 Input

TI Timing

TIOO, TIO1

TI1, TI2

Serial Transfer Timing

3-wire serial I/O mode:

$$
\begin{aligned}
& m=1,2,7,8 \\
& n=2,8
\end{aligned}
$$

SBI mode (bus release signal transfer):

SBI mode (command signal transfer):
$\overline{\text { SCKO }}$

2-wire serial I/O mode:

UART mode:

A/D CONVERTER CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{AVDD}=\mathrm{V}_{\mathrm{dD}}=2.0$ to 6.0 V , $\mathrm{AVss}=\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Total error Note		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq 6.0 \mathrm{~V}$			± 0.6	\%
					± 1.4	\%
Conversion time	tconv		19.1		200	$\mu \mathrm{s}$
Sampling time	tsamp		12/fxx			$\mu \mathrm{s}$
Analog input voltage	Vian		AVss		AVref	V
Reference voltage	AVREF		2.0		AVDD	V
AV $\mathrm{refF}^{\text {-AVss }}$ resistance	Rairef		4	14		k Ω

Note Quantization error ($\pm 1 / 2 \mathrm{LSB}$) is not included. This is expressed in proportion to the full-scale value.

DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.8		6.0	V
Data retention supply current	IDDDR	VDDDR $=1.8 \mathrm{~V}$ Subsystem clock stopped and feedback resistor disconnected		0.1	10	$\mu \mathrm{~A}$
Release signal set time	tsREL		0			
Oscillation stabilization wait time	twait	Release by RESET				

Note In combination with bits 0 to 2 (OSTS0 to OSTS2) of oscillation stabilization time select register (OSMS), selection of $2^{12} / \mathrm{fxx}$ and $2^{14 / f \mathrm{fx}}$ to $2^{17} / \mathrm{fxx}$ is possible.

Data Retention Timing (STOP Mode Release by $\overline{\text { RESET }}$)

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)

Interrupt Input Timing

RESET Input Timing

11. PACKAGE DRAWINGS

100 PIN PLASTIC QFP (FINE PITCH)
 ($\square 14)$

detail of lead end

NOTE
Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	16.0 ± 0.2	0.630 ± 0.008
B	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
C	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
D	16.0 ± 0.2	0.630 ± 0.008
F	1.0	0.039
G	1.0	0.039
H	$0.22_{-0.04}^{+0.05}$	0.009 ± 0.002
I	0.10	0.004
J	$0.5($ T.P. $)$	$0.020($ T.P. $)$
K	1.0 ± 0.2	$0.039_{-0.008}^{+0.009}$
L	0.5 ± 0.2	$0.020_{-0.009}^{+0.008}$
M	$0.17{ }_{-0.07}^{+0.03}$	$0.007_{-0.001}^{+0.001}$
N	0.10	0.004
P	1.45	0.057
Q	0.125 ± 0.075	0.005 ± 0.003
R	$5^{\circ} \pm 5^{\circ}$	$5^{\circ} \pm 5^{\circ}$
S	1.7 MAX.	0.067 MAX.
		P100GC-50-7EA-2

Remark Dimensions and materials of ES products are the same as those of mass-produced products.

100 PIN PLASTIC LQFP (FINE PITCH) (14×14)

NOTE

Each lead centerline is located within 0.08 mm (0.003 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	16.00 ± 0.20	0.630 ± 0.008
B	14.00 ± 0.20	$0.551_{-0.008}^{+0.009}$
C	14.00 ± 0.20	$0.551_{-0.008}^{+0.009}$
D	16.00 ± 0.20	0.630 ± 0.008
F	1.00	0.039
G	1.00	0.039
H	$0.22_{-0.04}^{+0.05}$	0.009 ± 0.002
I	0.08	0.003
J	$0.50($ T.P. $)$	$0.020($ T.P. $)$
K	1.00 ± 0.20	$0.039_{-0.009}^{+0.009}$
L	0.50 ± 0.20	$0.020_{-0.008}^{+0.008}$
M	$0.17_{-0.07}^{+0.03}$	$0.007_{-0.003}^{+0.001}$
N	0.08	0.003
P	1.40 ± 0.05	0.055 ± 0.002
Q	0.10 ± 0.05	0.004 ± 0.002
R	$3^{\circ}{ }_{-3^{\circ}}^{7^{\circ}}$	$3^{\circ}{ }_{-3^{\circ}}^{\circ}$
S	1.60 MAX.	0.063 MAX.
		S100GC-50-8EU

Remark Dimensions and materials of ES products are the same as those of mass-produced products.

100 PIN PLASTIC QFP (14 x 20)

P100GF-65-3BA1-2

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	23.6 ± 0.4	0.929 ± 0.016
B	20.0 ± 0.2	$0.795_{-0.008}^{+0.009}$
C	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
D	17.6 ± 0.4	$0.693^{ \pm 0.016}$
F	0.8	0.031
G	0.6	0.024
H	0.30 ± 0.10	$0.012_{-0.005}^{+0.004}$
I	0.15	0.006
J	$0.65($ T.P. $)$	$0.026(T . P)$.
K	1.8 ± 0.2	$0.071_{-0.009}^{+0.008}$
L	0.8 ± 0.2	$0.031_{-0.008}^{+0.009}$
M	$0.15_{-0.05}^{+0.10}$	$0.006_{-0.003}^{+0.004}$
N	0.10	0.004
P	2.7	0.106
Q	0.1 ± 0.1	0.004 ± 0.004
S	3.0 MAX.	0.119 MAX.

Remark Dimensions and materials of ES products are the same as those of mass-produced products.

12. RECOMMENDED SOLDERING CONDITIONS

The μ PD78064B(A) should be soldered and mounted under the conditions recommended in the table below.
For details of recommended soldering conditions, refer to the information document Semiconductor Device Mounting Technology Manual (C10535E).

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 12-1. Surface Mounting Type Soldering Conditions
(1) μ PD78064BGC(A)-×××-7EA : 100-pin plastic QFP (Fine pitch) ($14 \times 14 \mathrm{~mm}$)

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Duration: 30 sec. max. (at $210^{\circ} \mathrm{C}$ or above), Number of times: Twice max., Time limit: 7 days ${ }^{\text {Note (thereafter } 10 \text { hours prebaking }}$ required at $125^{\circ} \mathrm{C}$)	IR35-107-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Duration: 40 sec. max. (at $200^{\circ} \mathrm{C}$ or above), Number of times: Twice max., Time limit: 7 days ${ }^{\text {Note (thereafter } 10 \text { hours prebaking }}$ required at $\left.125^{\circ} \mathrm{C}\right)$	VP15-107-2
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max. Duration: 3 sec. max. (per pin row)	-

(2) μ PD78064BGF (A)- $\times \times \times-3 B A: 100-$ pin plastic QFP $(14 \times 20 \mathrm{~mm})$

| Soldering Method | | Soldering Conditions |
| :--- | :--- | :---: | Symbol | Infrared reflow | Package peak temperature: $235^{\circ} \mathrm{C}$, Duration: 30 sec. max. (at $210^{\circ} \mathrm{C}$ or above),
 Number of times: 3 times max. |
| :--- | :--- |
| VPS | Package peak temperature: $215^{\circ} \mathrm{C}$, Duration: 40 sec. max. (at $200^{\circ} \mathrm{C}$ or above),
 Number of times: 3 times max. |
| Wave soldering | Solder bath temperature: $260^{\circ} \mathrm{C}$ max., Duration: 10 sec. max., Number of times: Once,
 Preliminary heat temperature: $120^{\circ} \mathrm{C}$ max. (Package surface temperature) |
| Partial heating | Pin temperature: $300^{\circ} \mathrm{C}$ max. Duration: 3 sec. max. (per pin row) |

Note For the storage period after dry-pack decapsulation, storage conditions are max. $25^{\circ} \mathrm{C}, 65 \% \mathrm{RH}$.

Cautions 1. Use of more than one soldering method should be avoided (except in the case of partial heating).
2. Because the μ PD78064BGC(A)-xxx-8EU is under development, its soldering condition is not defined.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78064B(A).

Language Processing Software

RA78K/0 Notes $1,2,3,4$	$78 \mathrm{~K} / 0$ Series common assembler package
CC78K/0 Notes $1,2,3,4$	$78 \mathrm{~K} / 0$ Series common C compiler package
DF78064 Notes $1,2,3,4$	μ PD78064 Subseries common device file
CC78K/0-L Notes $1,2,3,4$	$78 \mathrm{~K} / 0$ Series common C compiler library source file

PROM Writing Tools

PG-1500	PROM programmer
PA-78P0308GC (or PA-78P064GC) PA-78P0308GF (or PA-78P064GF)	Programmer adapters connected to PG-1500
PG-1500 controller Notes 1,2	PG-1500 control program

* Debugging Tools

IE-78000-R	78K/0 Series common in-circuit emulator
IE-78000-R-A	$78 \mathrm{~K} / 0$ Series common in-circuit emulator (for integrated debugger)
IE-78000-R-BK	$78 \mathrm{~K} / 0$ Series common break board
IE-780308-R-EM	μ PD780308 Subseries common emulation board
IE-78000-R-SV3	Interface adapter and cable (for IE-78000-R-A) when using EWS as a host machine
IE-70000-98-IF-B	Interface adapter (for IE-78000-R-A) when using PC-9800 Series (except notebook) as a host machine
IE-70000-98N-IF	Interface adapter and cable (for IE-78000-R-A) when using PC-9800 Series notebook as a host machine
IE-70000-PC-IF-B	Interface adapter (for IE-78000-R-A) when using IBM PC/ATM as a host machine
EP-78064GC-R EP-78064GF-R	μ PD78064 Subseries common emulation probes
TGC-100SDW	Adapter to be mounted on a target system board made for 100-pin plastic QFP (GC-7EA, GC-8EU) Manufactured by TOKYO ELETECH Corporation. Contact on NEC sales representative to purchase.
EV-9200GF-100	Socket to be mounted on a target system board made for 100-pin plastic QFP (GF-3BA)
SM78K0 Notes 5, 6,7	$78 K / 0$ Series common system simulator
ID78K0 Notes 4, 5,6,7	IE-78000-R-A integrated debugger
SD78K/0 Notes 1,2	IE-78000-R screen debugger
DF78064 Notes $1,2,4,5,6,7$	μ PD78064 Subseries common device file

Real-Time OS

RX78K/0 Notes $1,2,3,4$	$78 \mathrm{~K} / 0$ series real-time OS
MX78KO Notes $1,2,3,4$	$78 \mathrm{~K} / 0$ series OS

Fuzzy Inference Development Support System

FE9000 ${ }^{\text {Note 1 }, ~ F E 9200 ~ N o t e ~ 6 ~}$	Fuzzy knowledge data creation tool
FT9080 Note 1, FT9085 Note 2	Translator
FI78K0 Notes 1, 2	Fuzzy inference module
FD78K0 Notes 1, 2	Fuzzy inference debugger

Notes 1. PC-9800 Series (MS-DOS ${ }^{\text {TM }}$) based
2. IBM PC/AT and compatibles (PC DOS ${ }^{\text {TM } / I B M ~ D O S ~}{ }^{\text {TM } / M S-D O S) ~ b a s e d ~}$
3. HP 9000 Series $300^{\text {TM }}$ (HP-UX ${ }^{\text {TM }}$) based
4. HP 9000 Series $700^{\text {TM }}$ (HP-UX) based, SPARCstation ${ }^{\text {TM }}$ (SunOS ${ }^{\top M}$) based, EWS4800 Series (EWS-UX/V) based
5. PC-9800 Series (MS-DOS + Windows ${ }^{\text {TM }}$) based
6. IBM PC/AT and compatibles (PC DOS/IBM DOS/MS-DOS + Windows) based
7. NEWS $^{\text {TM }}$ (NEWS-OS ${ }^{\text {TM }}$) based

Remarks 1. For third party development tools, see the 78K/0 Series Selection Guide (U11126E).
2. RA78K/0, CC78K/0, SM78K0, ID78K0, SD78K/0, and RX78K/0 are used in combination with DF78064.

APPENDIX B. RELATED DOCUMENTS

Device Related Documents

Document Name	Document No	
	English	Japanese
μ PD78064B Subseries User's Manual	U10785E	U10785J
μ PD78064B(A) Data Sheet	This document	U11597J
μ PD78P064B Data Sheet	U11598E	U11598J
$78 K / 0$ Series User's Manual Instructions	U12326E	U12326J
$78 K / 0$ Series Instruction Table	-	U10903J
$78 K / 0$ Series Instruction Set	-	U10904J
μ PD78064B Subseries Special Function Register Table	-	Planned

Development Tool Related Documents (User's Manual) (1/2)

Document Name		Document No	
		English	Japanese
RA78K Series Assembler Package	Operation	EEU-1399	EEU-809
	Language	EEU-1404	EEU-815
RA78K Series Structured Assembler Preprocessor		EEU-1402	EEU-817
RA78K0 Assembler Package	Operation	U11802E	U11802J
	Assembly Language	U11801E	U11801J
	Structured Assembly Language	U11789E	U11789J
CC78K Series C Compiler	Operation	EEU-1280	EEU-656
	Language	EEU-1284	EEU-655
CC78K0 C Compiler	Operation	U11517E	U11517J
	Language	U11518E	U11518J
CC78K/0 C Compiler Application Note	Programming know-how	EEA-1208	EEA-618
CC78K Series Library Source File		-	U12322J
PG-1500 PROM Programmer		EEU-1335	EEU-651
PG-1500 Controller PC-9800 Series (MS-DOS) based		EEU-1291	EEU-704
PG-1500 Controller IBM PC Series (PC DOS) based		U10540E	EEU-5008
IE-78000-R		U11376E	U11376J
IE-78000-R-A		U10057E	U10057J
IE-78000-R-BK		EEU-1427	EEU-867
IE-780308-R-EM		U11362E	U11362J
EP-78064		EEU-1469	EEU-934

Caution The above related documents are subject to change without notice. Be sure to use the latest documents when starting design.

Development Tool Related Documents (User's Manual) (2/2)

Embedded Software Related Documents (User's Manual)

Other Related Documents

Document Name	Document No	
	English	
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535E	C10535J
Quality Grades on NEC Semiconductor Devices	C10531E	C10531J
NEC Semiconductor Device Reliability/Quality Control System	C10983E	C10983J
Electrostatic Discharge (ESD) Test	IEI-1201	MEM-539
Guide to Quality Assurance for Semiconductor Devices	MEI-1202	C111893J
Microcomputer Product Series Guide	-	U11416J

Caution The above related documents are subject to change without notice. Be sure to use the latest documents when starting design.

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VdD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I / O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Mountain View, California
Tel: 800-366-9782
Fax: 800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (France) S.A.
France
Tel: 01-30-67 5800
Fax: 01-30-67 5899
NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby Sweden
Tel: 8-63 80820
Fax: 8-63 80388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951
NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689

FIP and IEBus are trademarks of NEC Corporation.
MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machines Corporation.
HP9000 series 300, HP9000 series 700, and HP-UX are trademarks of Hewlett-Packard Company.
SPARCstation is a trademark of SPARC International, Inc.
SunOS is a trademark of Sun Microsystems, Inc.
NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions.
However, preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

[^0]: IF : Test input flag
 MK : Test mask flag

