

# MOS INTEGRATED CIRCUIT $\mu$ PD78058F(A)

## 8-BIT SINGLE-CHIP MICROCONTROLLER

#### **DESCRIPTION**

The  $\mu$ PD78058F(A) is an 8-bit single-chip microcontroller belonging to the  $\mu$ PD78058F Subseries of the 78K/0 Series. A stricter quality assurance program is applied to this device, which is classified as special grade, compared to the  $\mu$ PD78058F, which is classified as standard grade.

The Electro Magnetic Interference (EMI) noise generated inside the  $\mu$ PD78058F(A) is reduced compared to the  $\mu$ PD78058 Subseries.

This microcontroller includes a rich assortment of peripheral hardware, such as 8-bit resolution A/D converter, 8-bit resolution D/A converter, timer, serial interface, real-time output port, and interrupt functions.

The  $\mu$ PD78P058F, a one-time PROM version which can be operated in the same supply voltage range as the mask ROM version, and various development tools are also available.

Details of the function descriptions are described in the following user's manuals. Be sure to read them before designing.

 $\mu$ PD78058F, 78058FY Subseries User's Manual: U12068E 78K/0 Series User's Manual – Instructions : U12326E

#### **FEATURES**

- EMI noise reduced version (the overall peak level is reduced by 5 to 10 dB.)
- · High-capacity on-chip ROM & RAM

ROM: 60 Kbytes
High-speed RAM: 1024 bytes
Buffer RAM: 32 bytes
Expanded RAM: 1024 bytes

- Package: 80-pin plastic QFP (14 × 14 mm)
- External memory expansion space: 64 Kbytes
- I/O ports: 69 (N-ch open-drain: 4)
- 8-bit resolution A/D converter: 8 channels
  8-bit resolution D/A converter: 2 channels
- · Serial interface: 3 channels
- Timer: 5 channels
- Supply voltage: VDD = 2.7 to 6.0 V

#### **APPLICATIONS**

Automobile equipment control units, gas detector/cutoff units, safety devices, etc.

The information in this document is subject to change without notice.

μ**PD78058F(A)** 

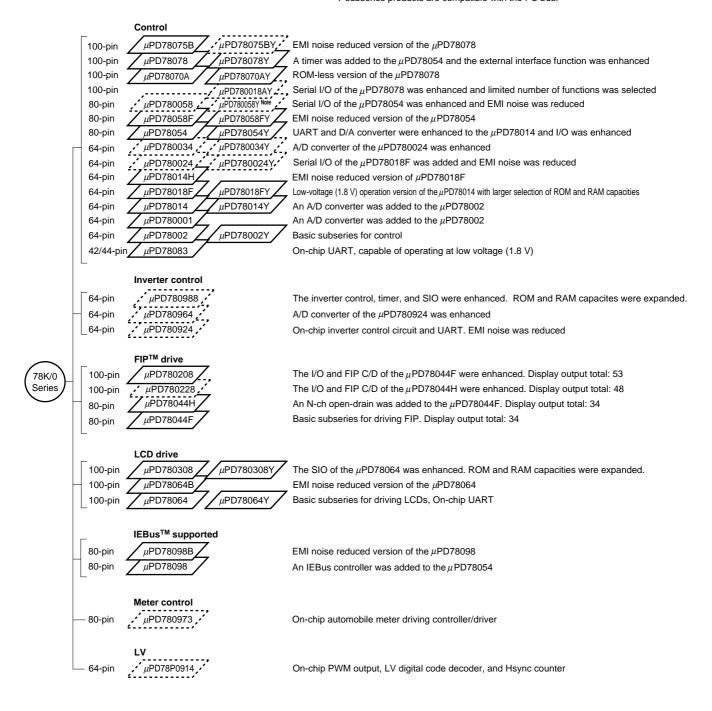


## ORDERING INFORMATION

| Part Number            | Package                         | Quality Grade                               |
|------------------------|---------------------------------|---------------------------------------------|
| μPD78058FGC(A)-×××-3B9 | 80-pin plastic QFP (14 × 14 mm) | Special                                     |
|                        |                                 | (for high-reliability electronic equipment) |

Remark xxx denotes the ROM code suffix.

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.


# Differences between the $\mu$ PD78058F(A) and $\mu$ PD78058F

| Product name Item | μPD78058F(A)                                            | μPD78058F                                                                                                                                                                     |
|-------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality grade     | Special                                                 | Standard                                                                                                                                                                      |
| Package           | 80-pin plastic QFP (14 × 14 mm, resin thickness 2.7 mm) | 80-pin plastic QFP     (14 × 14 mm, resin thickness 2.7 mm)     80-pin plastic QFP     (14 × 14 mm, resin thickness 1.4 mm)     80-pin plastic TQFP (fine pitch) (12 × 12 mm) |

#### 78K/0 SERIES PRODUCT DEVELOPMENT

These products are a further development in the 78K/0 Series. The designations appearing inside the boxes are subseries names.





Note Under planning



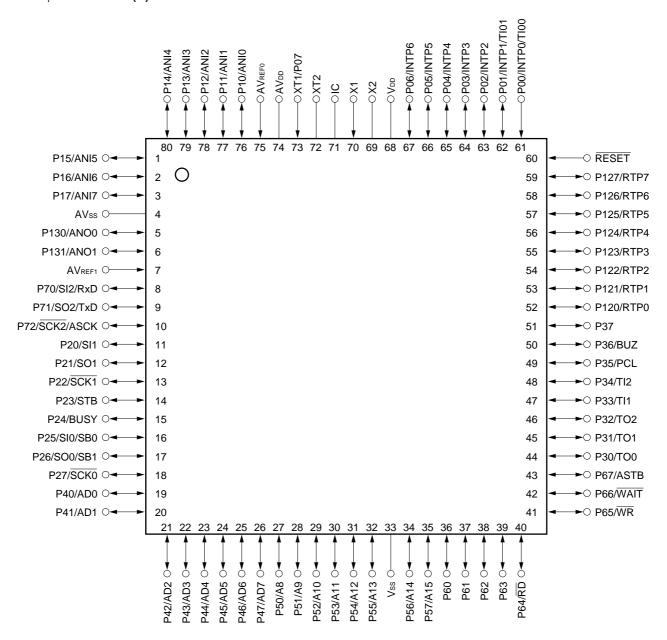
The major functional differences among the subseries are shown below.

|                  | Function       | ROM<br>Capacity |       | Tin    | ner   |      |      | 10-bit |      | Serial Interface                | I/O | V <sub>DD</sub><br>MIN. | External  |
|------------------|----------------|-----------------|-------|--------|-------|------|------|--------|------|---------------------------------|-----|-------------------------|-----------|
| Subseries        | Subseries Name |                 | 8-bit | 16-bit | Watch | WDT  | A/D  | A/D    | D/A  |                                 |     | Value                   | Expansion |
| Control          | μPD78075B      | 32 K to 40 K    | 4 ch  | 1 ch   | 1 ch  | 1 ch | 8 ch | _      | 2 ch | 3 ch (UART: 1 ch)               | 88  | 1.8 V                   | √         |
|                  | μPD78078       | 48 K to 60 K    |       |        |       |      |      |        |      |                                 |     |                         |           |
|                  | μPD78070A      |                 |       |        |       |      |      |        |      |                                 | 61  | 2.7 V                   |           |
|                  | μPD780058      | 24 K to 60 K    | 2 ch  |        |       |      |      |        |      | 3 ch (Time division UART: 1 ch) | 68  | 1.8 V                   |           |
|                  | μPD78058F      | 48 K to 60 K    |       |        |       |      |      |        |      | 3 ch (UART: 1 ch)               | 69  | 2.7 V                   |           |
|                  | μPD78054       | 16 K to 60 K    |       |        |       |      |      |        |      |                                 |     | 2.0 V                   |           |
|                  | μPD780034      | 8 K to 32 K     |       |        |       |      | _    | 8 ch   | _    | 3 ch (UART: 1 ch, Time          | 51  | 1.8 V                   |           |
|                  | μPD780024      |                 |       |        |       |      | 8 ch | _      |      | division 3-wire: 1 ch)          |     |                         |           |
|                  | μPD78014H      |                 |       |        |       |      |      |        |      | 2 ch                            | 53  |                         |           |
|                  | μPD78018F      | 8 K to 60 K     |       |        |       |      |      |        |      |                                 |     |                         |           |
|                  | μPD78014       | 8 K to 32 K     |       |        |       |      |      |        |      |                                 |     | 2.7 V                   |           |
|                  | μPD780001      | 8 K             |       | _      | _     |      |      |        |      | 1 ch                            | 39  |                         | _         |
|                  | μPD78002       | 8 K to 16 K     |       |        | 1ch   |      | _    |        |      |                                 | 53  |                         | √         |
|                  | μPD78083       |                 |       |        | _     |      | 8 ch |        |      | 1 ch (UART: 1 ch)               | 33  | 1.8 V                   | _         |
| Inverter         | μPD780988      | 32 K to 60 K    | 3 ch  | Note 1 | _     | 1 ch | _    | 8 ch   | _    | 3 ch (UART: 2 ch)               | 47  | 4.0 V                   | √         |
| control          | μPD780964      | 8 K to 32 K     |       | Note 2 |       |      |      |        |      | 2 ch (UART: 2 ch)               |     | 2.7 V                   |           |
|                  | μPD780924      |                 |       |        |       |      | 8 ch | _      |      |                                 |     |                         |           |
| FIP              | μPD780208      | 32 K to 60 K    | 2 ch  | 1 ch   | 1 ch  | 1 ch | 8 ch | _      | _    | 2 ch                            | 74  | 2.7 V                   | _         |
| driving          | μPD780228      | 48 K to 60 K    | 3 ch  | _      | _     |      |      |        |      | 1 ch                            | 72  | 4.5 V                   |           |
|                  | μPD78044H      | 32 K to 48 K    | 2 ch  | 1 ch   | 1 ch  |      |      |        |      |                                 | 68  | 2.7 V                   |           |
|                  | μPD78044F      | 16 K to 40 K    |       |        |       |      |      |        |      | 2 ch                            |     |                         |           |
| LCD<br>driving   | μPD780308      | 48 K to 60 K    | 2 ch  | 1 ch   | 1 ch  | 1 ch | 8 ch | _      | _    | 3 ch (Time division UART: 1 ch) | 57  | 2.0 V                   | _         |
|                  | μPD78064B      | 32 K            |       |        |       |      |      |        |      | 2 ch (UART: 1 ch)               |     |                         |           |
|                  | μPD78064       | 16 K to 32 K    |       |        |       |      |      |        |      |                                 |     |                         |           |
| IEBus            | μPD78098B      | 40 K to 60 K    | 2 ch  | 1 ch   | 1 ch  | 1 ch | 8 ch | _      | 2 ch | 3 ch (UART: 1 ch)               | 69  | 2.7 V                   | √         |
| supported        | μPD78098       | 32 K to 60 K    |       |        |       |      |      |        |      |                                 |     |                         |           |
| Meter<br>control | μPD780973      | 24 K to 32 K    | 3 ch  | 1 ch   | 1 ch  | 1 ch | 5 ch | _      | _    | 2 ch (UART: 1 ch)               | 56  | 4.5 V                   |           |
| LV               | μPD78P0914     | 32 K            | 6 ch  |        |       | 1 ch | 8 ch |        |      | 2 ch                            | 54  | 4.5 V                   | √         |

Notes 1. 16-bit timer: 2 channels
10-bit timer: 1 channel
2. 10-bit timer: 1 channel



# **FUNCTIONAL OUTLINE**


|              |              | Item                     | Function                                                                             |  |  |  |  |
|--------------|--------------|--------------------------|--------------------------------------------------------------------------------------|--|--|--|--|
| Intern       | al F         | ROM                      | 60 Kbytes                                                                            |  |  |  |  |
| memo         | ory F        | High-speed RAM           | 1024 bytes                                                                           |  |  |  |  |
|              | E            | Buffer RAM               | 32 bytes                                                                             |  |  |  |  |
| Expanded RAM |              | Expanded RAM             | 1024 Kbytes                                                                          |  |  |  |  |
| Memo         | ry space     |                          | 64 Kbytes                                                                            |  |  |  |  |
| Gener        | ral register | rs                       | 8 bits × 32 registers (8 bits × 8 registers × 4 banks)                               |  |  |  |  |
| Minim        | um instrud   | ction execution time     | On-chip minimum instruction execution time cycle modification function               |  |  |  |  |
| ,            | When mai     | in system clock selected | 0.4 μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs/12.8 μs (at 5.0-MHz operation)                    |  |  |  |  |
| ,            | When sub     | system clock selected    | 122 μs (at 32.768-kHz operation)                                                     |  |  |  |  |
| Instru       | ction set    |                          | 16-bit operation                                                                     |  |  |  |  |
|              |              |                          | Multiply/divide (8 bits × 8 bits,16 bits ÷ 8 bits)                                   |  |  |  |  |
|              |              |                          | Bit manipulate (set, reset, test, Boolean operation)                                 |  |  |  |  |
|              |              |                          | BCD adjust, etc.                                                                     |  |  |  |  |
| I/O po       | orts         |                          |                                                                                      |  |  |  |  |
|              |              |                          | • CMOS input : 2                                                                     |  |  |  |  |
|              |              |                          | • CMOS I/O : 63                                                                      |  |  |  |  |
|              |              |                          | N-ch open-drain I/O : 4                                                              |  |  |  |  |
| A/D co       | onverter     |                          | 8-bit resolution × 8 channels                                                        |  |  |  |  |
| D/A co       | onverter     |                          | 8-bit resolution × 2 channels                                                        |  |  |  |  |
| Serial       | interface    |                          | • 3-wire serial I/O, SBI, or 2-wire serial I/O mode selectable: 1 channel            |  |  |  |  |
|              |              |                          | • 3-wire serial I/O mode (on-chip max. 32 bytes automatic data transmit/receive      |  |  |  |  |
|              |              |                          | function): 1 channel                                                                 |  |  |  |  |
|              |              |                          | 3-wire serial I/O or UART mode selectable: 1 channel                                 |  |  |  |  |
| Timer        |              |                          | 16-bit timer/event counter : 1 channel                                               |  |  |  |  |
|              |              |                          | 8-bit timer/event counter : 2 channels                                               |  |  |  |  |
|              |              |                          | Watch timer : 1 channel                                                              |  |  |  |  |
|              |              |                          | Watchdog timer : 1 channel                                                           |  |  |  |  |
| Timer        | output       |                          | 3 (14-bit PWM output enable × 1)                                                     |  |  |  |  |
| Clock        | output       |                          | 19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz, 2.5 MHz,          |  |  |  |  |
|              |              |                          | 5.0 MHz (during 5.0-MHz operation with main system clock)                            |  |  |  |  |
|              |              |                          | 32.768 kHz (during 32.768-kHz operation with subsystem clock)                        |  |  |  |  |
| Buzze        | er output    |                          | 1.2 kHz, 2.4 kHz, 4.9 kHz, 9.8 kHz (during 5.0-MHz operation with main system clock) |  |  |  |  |
| Vector       | red interru  | ıpt Maskable             | Internal interrupts: 13, external interrupts: 7                                      |  |  |  |  |
| source       | е            | Non-maskable             | Internal interrupt: 1                                                                |  |  |  |  |
|              | Software     |                          | 1                                                                                    |  |  |  |  |
| Test in      | Test input   |                          | Internal: 1, external: 1                                                             |  |  |  |  |
| Suppl        | y voltage    |                          | V <sub>DD</sub> = 2.7 to 6.0 V                                                       |  |  |  |  |
| Opera        | iting ambi   | ent temperature          | $T_A = -40 \text{ to } + 85^{\circ}\text{C}$                                         |  |  |  |  |
| Packa        | ige          |                          | 80-pin plastic QFP (14 × 14 mm)                                                      |  |  |  |  |

# **CONTENTS**

| 1.  | PIN CONFIGURATION (TOP VIEW)                     | 7                                            |
|-----|--------------------------------------------------|----------------------------------------------|
| 2.  | BLOCK DIAGRAM                                    | 9                                            |
| 3.  | PIN FUNCTIONS                                    | . 10<br>. 12                                 |
| 4.  | MEMORY SPACE                                     | 18                                           |
| 5.  | PERIPHERAL HARDWARE FUNCTION FEATURES  5.1 Ports | . 19<br>. 20<br>. 23<br>. 23<br>. 24<br>. 25 |
| 6   | INTERRUPT FUNCTIONS AND TEST FUNCTIONS           | . 28                                         |
| 7.  | EXTERNAL DEVICE EXPANSION FUNCTIONS              | 33                                           |
| 8.  | STANDBY FUNCTION                                 | 33                                           |
| 9.  | RESET FUNCTION                                   | 33                                           |
| 10. | INSTRUCTION SET                                  | 34                                           |
| 11. | ELECTRICAL SPECIFICATIONS                        | 37                                           |
| 12. | PACKAGE DRAWINGS                                 | 63                                           |
| 13. | RECOMMENDED SOLDERING CONDITIONS                 | 64                                           |
| API | PENDIX A. DEVELOPMENT TOOLS                      | 65                                           |
| ΔΡΙ | PENDIX B. RELATED DOCUMENTS                      | 68                                           |

## 1. PIN CONFIGURATION (TOP VIEW)

80-pin plastic QFP (14 × 14 mm)
 μPD78058FGC(A)-×××-3B9



Cautions 1. Connect directly the Internally Connected (IC) pin to Vss.

- 2. The AV<sub>DD</sub> pin functions as both an A/D converter power supply and a port power supply. When the μPD78058F(A) is used in applications where the noise generated inside the microcontroller need to be reduced, connect the AV<sub>DD</sub> pin to another power supply that has the same potential as V<sub>DD</sub>.
- 3. The AVss pin functions as both a ground for A/D and D/A converters and a ground for a port. When the μPD78058F(A) is used in applications where the noise generated inside the microcontroller needs to be reduced, connect the AVss pin to a ground line other than Vss.

A8 to A15 : Address Bus

AD0 to AD7 : Address/Data Bus

ANI0 to ANI7 : Analog Input

ANO0, ANO1 : Analog Output

ASCK : Asynchronous Serial Clock

ASTB : Address Strobe
AVDD : Analog Power Supply
AVREF0, AVREF1 : Analog Reference Voltage

AVss : Analog Ground

BUSY : Busy

BUZ : Buzzer Clock

IC : Internally Connected INTP0 to INTP6 : Interrupt from Peripherals

: Port13

P00 to P07 : Port0 P10 to P17 : Port1 P20 to P27 : Port2 P30 to P37 : Port3 P40 to P47 : Port4 P50 to P57 : Port5 P60 to P67 : Port6 P70 to P72 : Port7 : Port12 P120 to P127

P130, P131

PCL : Programmable Clock

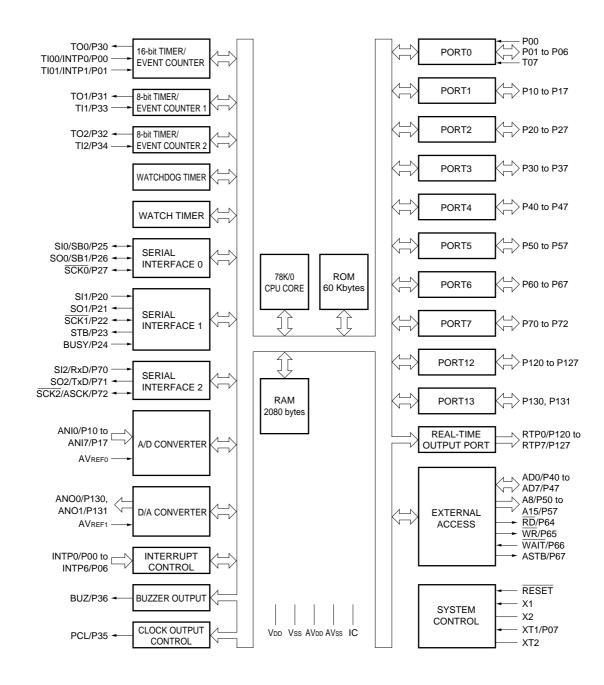
RD : Read Strobe

RESET : Reset

RTP0 to RTP7 : Real-Time Output Port

RxD : Receive Data
SB0, SB1 : Serial Bus
SCK0 to SCK2 : Serial Clock
SI0 to SI2 : Serial Input
SO0 to SO2 : Serial Output
STB : Strobe

TI00, TI01 : Timer Input
TI1, TI2, : Timer Input
TXD : Transmit Data
VDD : Power Supply
Vss : Ground


WR : Write Strobe

WAIT

X1, X2 : Crystal (Main System Clock)
XT1, XT2 : Crystal (Subsystem Clock)

: Wait

#### 2. BLOCK DIAGRAM





#### 3. PIN FUNCTIONS

## 3.1 Port Pins (1/2)

| Pin Name   | I/O              |                                                                                    | Function                                                                                    | After<br>Reset | Alternate<br>Function |
|------------|------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------|-----------------------|
| P00        | Input            | Port 0                                                                             | Input only                                                                                  | Input          | INTP0/TI00            |
| P01        | Input/           | 8-bit I/O port                                                                     | Input/output can be specified bit-wise.                                                     | Input          | INTP1/TI01            |
| P02        | output           |                                                                                    | When used as an input port, on-chip pull-up resis-                                          |                | INTP2                 |
| P03        | -                |                                                                                    | tor can be used by software.                                                                |                | INTP3                 |
| P04        |                  |                                                                                    |                                                                                             |                | INTP4                 |
| P05        |                  |                                                                                    |                                                                                             |                | INTP5                 |
| P06        |                  |                                                                                    |                                                                                             |                | INTP6                 |
| P07Note 1  | Input            |                                                                                    | Input only                                                                                  | Input          | XT1                   |
| P10 to P17 | Input/<br>output | Port 1 8-bit input/output port. Input/output can be spec When used as an input por | cified bit-wise.<br>rt, on-chip pull-up resistor can be used by software. <sup>Note 2</sup> | Input          | ANIO to ANI7          |
| P20        | Input/           | Port 2                                                                             |                                                                                             | Input          | SI1                   |
| P21        | output           | 8-bit input/output port.                                                           | 20 - 4 1-21                                                                                 |                | SO1                   |
| P22        |                  | Input/output can be spectiment when used as an input p                             | offied bit-wise.<br>ort, on-chip pull-up resistor can be used by software.                  |                | SCK1                  |
| P23        |                  |                                                                                    |                                                                                             |                | STB                   |
| P24        |                  |                                                                                    |                                                                                             |                | BUSY                  |
| P25        |                  |                                                                                    |                                                                                             |                | SI0/SB0               |
| P26        |                  |                                                                                    |                                                                                             |                | SO0/SB1               |
| P27        |                  |                                                                                    |                                                                                             |                | SCK0                  |

- **Notes** 1. When using the P07/XT1 pins as an input port, set 1 in bit 6 (FRC) of the processor clock control register (PCC). The on-chip feedback resistor of the subsystem clock oscillator should not be used.
  - 2. When using the P10/ANI0 to P17/ANI7 pins as the A/D converter analog input pins, set port 1 to input mode. The on-chip pull-up resistor is cancelled automatically.

Caution For pins that also function as port pins, do not perform the following operations during A/D conversion. If these operations are performed, the total error ratings cannot be kept.

- (1) Rewrite the output latch of the output for pins used as a port pin.
- (2) Change the output level of pins used as an output pin, even if they are not used as a port pin.



# 3.1 Port Pins (2/2)

| Pin Name     | I/O                                    | Fun                                                                                                                                                   | nction                                                                             | After<br>Reset | Alternate<br>Function |  |  |  |
|--------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------|-----------------------|--|--|--|
| P30          | Input/                                 | Port 3                                                                                                                                                |                                                                                    | Input          | TO0                   |  |  |  |
| P31          | output                                 | 8-bit input/output port.  Input/output can be specified bit-wise                                                                                      |                                                                                    | TO1            |                       |  |  |  |
| P32          |                                        | When used as an input port, on-chip p                                                                                                                 |                                                                                    | TO2            |                       |  |  |  |
| P33          |                                        |                                                                                                                                                       |                                                                                    | TI1            |                       |  |  |  |
| P34          |                                        |                                                                                                                                                       |                                                                                    | TI2            |                       |  |  |  |
| P35          |                                        |                                                                                                                                                       |                                                                                    | PCL            |                       |  |  |  |
| P36          |                                        |                                                                                                                                                       |                                                                                    |                |                       |  |  |  |
| P37          |                                        |                                                                                                                                                       |                                                                                    |                | _                     |  |  |  |
| P40 to P47   | Input/<br>output                       | Port 4 8-bit input/output port. Input/output can be specified in 8-bit When used as an input port, on-chip p Test input flag (KRIF) is set to 1 by fi | Input                                                                              | AD0 to AD7     |                       |  |  |  |
| P50 to P57   | Input/<br>output                       | Port 5 8-bit input/output port. LED can be driven directly. Input/output can be specified bit-wise When used as an input port, on-chip port.          | Input                                                                              | A8 to A15      |                       |  |  |  |
| P60          | Input/                                 | Port 6                                                                                                                                                | N-ch open-drain input/output port.                                                 | Input          | _                     |  |  |  |
| P61          | output                                 | 8-bit input/outport port.                                                                                                                             | On-chip pull-up resistor can be                                                    |                |                       |  |  |  |
| P62          | Input/output can be specified bit-wise | Input/output can be specified bit-wise.                                                                                                               | specified by mask option. LED can be driven directly.  When used as an input port, |                |                       |  |  |  |
| P63          |                                        |                                                                                                                                                       |                                                                                    |                |                       |  |  |  |
| P64          |                                        |                                                                                                                                                       |                                                                                    | Input          | RD                    |  |  |  |
| P65          |                                        |                                                                                                                                                       | on-chip pull-up resistor can be used by software.                                  |                | WR                    |  |  |  |
| P66          |                                        |                                                                                                                                                       | 2, 00                                                                              |                | WAIT                  |  |  |  |
| P67          |                                        |                                                                                                                                                       |                                                                                    |                | ASTB                  |  |  |  |
| P70          | Input/                                 | Port 7                                                                                                                                                |                                                                                    | Input          | SI2/RxD               |  |  |  |
| P71          | output                                 | 3-bit input/output port.  Input/output can be specified bit-wise                                                                                      |                                                                                    |                | SO2/TxD               |  |  |  |
| P72          |                                        |                                                                                                                                                       | ull-up resistor can be used by software.                                           |                | SCK2/ASCK             |  |  |  |
| P120 to P127 | Input/<br>output                       | Port 12 8-bit input/output port. Input/output can be specified bit-wise When used as an input port, on-chip pu                                        | Input                                                                              | RTP0 to RTP7   |                       |  |  |  |
| P130, P131   | Input/<br>output                       | Port 13 2-bit input/output port. Input/output can be specified bit-wis When used as an input port, on-chip p                                          | e.<br>ull-up resistor can be used by software.                                     | Input          | ANO0, ANO1            |  |  |  |

Caution For pins that also function as port pins, do not perform the following operations during A/D conversion. If these operations are performed, the total error ratings cannot be kept.

- (1) Rewrite the output latch of the output for pins used as a port pin.
- (2) Change the output level of pins used as an output pin, even if they are not used as a port pin.



# 3.2 Non-port Pins (1/2)

| Pin Name     | I/O              | Function                                                                           | After<br>Reset | Alternate<br>Function |
|--------------|------------------|------------------------------------------------------------------------------------|----------------|-----------------------|
| INTP0        | Input            | External interrupt request input by which the effective edge (rising edge, falling | Input          | P00/TI00              |
| INTP1        | -                | edge, or both rising edge and falling edges) can be specified.                     |                | P01/TI01              |
| INTP2        | -                |                                                                                    |                | P02                   |
| INTP3        |                  |                                                                                    |                | P03                   |
| INTP4        | -                |                                                                                    |                | P04                   |
| INTP5        |                  |                                                                                    |                | P05                   |
| INTP6        |                  |                                                                                    |                | P06                   |
| SIO          | Input            | Serial interface serial data input.                                                | Input          | P25/SB0               |
| SI1          |                  |                                                                                    |                | P20                   |
| SI2          |                  |                                                                                    |                | P70/RxD               |
| SO0          | Output           | Serial interface serial data output.                                               | Input          | P26/SB1               |
| SO1          |                  |                                                                                    |                | P21                   |
| SO2          |                  |                                                                                    |                | P71/TxD               |
| SB0          | Input/           | Serial interface serial data input/output.                                         | Input          | P25/SI0               |
| SB1          | output           |                                                                                    |                | P26/SO0               |
| SCK0         | Input/           | Serial interface serial clock input/output.                                        | Input          | P27                   |
| SCK1         | output           |                                                                                    |                | P22                   |
| SCK2         |                  |                                                                                    |                | P72/ASCK              |
| STB          | Output           | Serial interface automatic transmit/receive strobe output.                         | Input          | P23                   |
| BUSY         | Input            | Serial interface automatic transmit/receive busy input.                            | Input          | P24                   |
| RxD          | Input            | Asynchronous serial interface serial data input.                                   | Input          | P70/SI2               |
| TxD          | Output           | Asynchronous serial interface serial data output.                                  | Input          | P71/SO2               |
| ASCK         | Input            | Asynchronous serial interface serial clock input.                                  | Input          | P72/SCK2              |
| TI00         | Input            | External count clock input to the 16-bit timer (TM0)                               | Input          | P00/INTP0             |
| TI01         |                  | Capture trigger signal input to the capture register (CR00)                        |                | P01/INTP1             |
| TI1          |                  | External count clock input to the 8-bit timer (TM1)                                |                | P33                   |
| TI2          |                  | External count clock input to the 8-bit timer (TM2)                                |                | P34                   |
| TO0          | Output           | 16-bit timer (TM0) output (dual-function as 14-bit PWM output)                     | Input          | P30                   |
| TO1          | -                | 8-bit timer (TM1) output                                                           |                | P31                   |
| TO2          | -                | 8-bit timer (TM2)                                                                  |                | P32                   |
| PCL          | Output           | Clock output (for main system clock, subsystem clock trimming).                    | Input          | P35                   |
| BUZ          | Output           | Buzzer output.                                                                     | Input          | P36                   |
| RTP0 to RTP7 | Output           | Real-time output port by which data is output in synchronization with a trigger.   | Input          | P120 to P127          |
| AD0 to AD7   | Input/<br>output | Low-order address/data bus at external memory expansion.                           |                | P40 to P47            |
| A8 to A15    | Output           | High-order address bus at external memory expansion.                               | Input          | P50 to P57            |
| RD           | Output           | External memory read operation strobe signal output.                               | Input          | P64                   |
| WR           | 1                | External memory write operation strobe signal output.                              | 1              | P65                   |



## 3.2 Non-port Pins (2/2)

| Pin Name           | I/O    | Function                                                                                        | After<br>Reset | Alternate<br>Function |
|--------------------|--------|-------------------------------------------------------------------------------------------------|----------------|-----------------------|
| WAIT               | Input  | Wait insertion at external memory access.                                                       | Input          | P66                   |
| ASTB               | Output | Strobe output which latches the address information output at port 4 to access external memory. | Input          | P67                   |
| ANI0 to ANI7       | Input  | A/D converter analog input.                                                                     | Input          | P10 to P17            |
| ANO0, ANO1         | Output | D/A converter analog output.                                                                    | Input          | P130, P131            |
| AV <sub>REF0</sub> | Input  | A/D converter reference voltage input.                                                          | _              | _                     |
| AV <sub>REF1</sub> | Input  | D/A converter reference voltage input.                                                          | _              | _                     |
| AVDD               | _      | A/D converter analog power supply (shared with the port power supply)                           | _              | _                     |
| AVss               | _      | A/D and D/A converter ground potential (shared with the port ground potential)                  | _              | _                     |
| RESET              | Input  | System reset input.                                                                             | _              | _                     |
| X1                 | Input  | Main system clock oscillation crystal connection.                                               | _              | _                     |
| X2                 | _      |                                                                                                 | _              | _                     |
| XT1                | Input  | Subsystem clock oscillation crystal connection.                                                 | Input          | P07                   |
| XT2                | _      |                                                                                                 | _              | _                     |
| V <sub>DD</sub>    | _      | Positive power supply (except for port).                                                        | _              | _                     |
| Vss                | _      | Ground potential (except for port).                                                             | _              | _                     |
| IC                 | _      | Internally connected. Connect to Vss directly.                                                  | _              | _                     |

- Cautions 1. The AV<sub>DD</sub> pin functions as both an A/D converter power supply and a port power supply. When the μPD78058F(A) is used in applications where the noise generated inside the microcontroller needs to be reduced, connect the AV<sub>DD</sub> pin to another power supply that has the same potential as V<sub>DD</sub>.
  - 2. The AVss pin functions as both a ground potential of A/D and D/A converters and a ground potential of a port section. When the  $\mu$ PD78058F(A) is used in applications where the noise generated inside the microcontroller needs to be reduced, connect the AVss pin to a ground line other than Vss.

# 3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and the recommended connection of unused pins are shown in Table 3-1.

For the input/output circuit configuration of each type, see Figure 3-1.

Table 3-1. Input/Output Circuit Type of Each Pin (1/2)

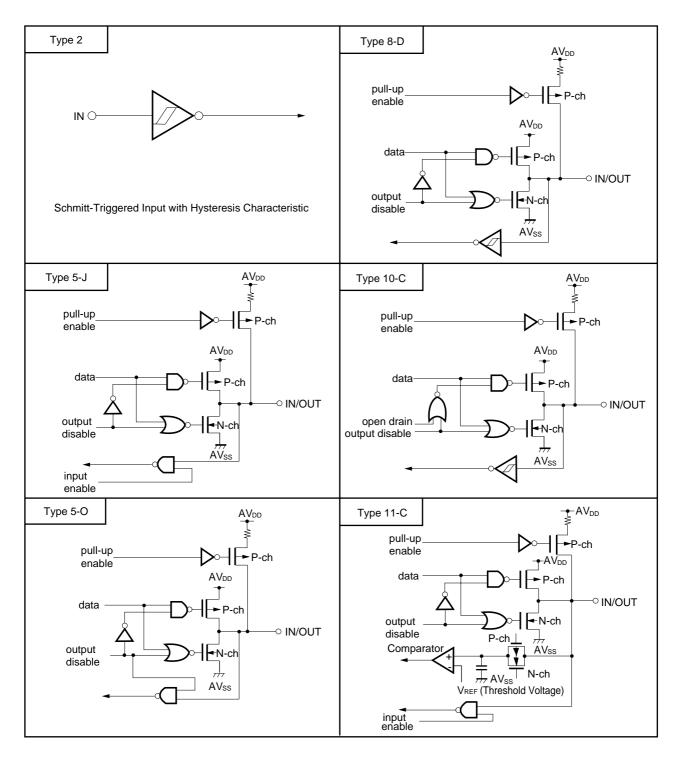

| Pin Name             | Input/output<br>Circuit Type | I/O          | Recommended Connection when Not Used                |
|----------------------|------------------------------|--------------|-----------------------------------------------------|
| P00/INTP0/TI00       | 2                            | Input        | Connect to Vss.                                     |
| P01/INTP1/TI01       | 8-D                          | Input/output | Independently connect to Vss via a resistor.        |
| P02/INTP2            |                              |              |                                                     |
| P03/INTP3            |                              |              |                                                     |
| P04/INTP4            |                              |              |                                                     |
| P05/INTP5            |                              |              |                                                     |
| P06/INTP6            |                              |              |                                                     |
| P07/XT1              | 16                           | Input        | Connect to VDD.                                     |
| P10/ANI0 to P17/ANI7 | 11-C                         | Input/output | Independently connect to VDD or Vss via a resistor. |
| P20/SI1              | 8-D                          |              |                                                     |
| P21/SO1              | 5-J                          |              |                                                     |
| P22/SCK1             | 8-D                          |              |                                                     |
| P23/STB              | 5-J                          |              |                                                     |
| P24/BUSY             | 8-D                          |              |                                                     |
| P25/SI0/SB0          | 10-C                         |              |                                                     |
| P26/SO0/SB1          |                              |              |                                                     |
| P27/SCK0             |                              |              |                                                     |
| P30/TO0              | 5-J                          |              |                                                     |
| P31/TO1              |                              |              |                                                     |
| P32/TO2              |                              |              |                                                     |
| P33/TI1              | 8-D                          |              |                                                     |
| P34/TI2              |                              |              |                                                     |
| P35/PCL              | 5-J                          |              |                                                     |
| P36/BUZ              |                              |              |                                                     |
| P37                  |                              |              |                                                     |
| P40/AD0 to P47/AD7   | 5-O                          |              | Independently connect to VDD via a resistor.        |
| P50/A8 to P57/A15    | 5-J                          |              | Independently connect to VDD or Vss via a resistor. |
| P60 to P63           | 13-I                         |              | Independently connect to VDD via a resistor.        |
| P64/RD               | 5-J                          |              | Independently connect to VDD or Vss via a resistor. |
| P65/WR               |                              |              |                                                     |
| P66/WAIT             |                              |              |                                                     |
| P67/ASTB             |                              |              |                                                     |

Table 3-1. Input/Output Circuit Type of Each Pin (2/2)

| Pin Name                  | Input/output<br>Circuit Type | I/O          | Recommended Connection when Not Used                                             |
|---------------------------|------------------------------|--------------|----------------------------------------------------------------------------------|
| P70/SI2/RxD               | 8-D                          | Input/output | Independently connect to VDD or Vss via a resistor.                              |
| P71/SO2/TxD               | 5-J                          |              |                                                                                  |
| P72/SCK2/ASCK             | 8-D                          |              |                                                                                  |
| P120/RTP0 to<br>P127/RTP7 | 5-J                          |              |                                                                                  |
| P130/ANO0,<br>P131/ANO1   | 12-B                         | Input/output | Independently connect to Vss via a resistor.                                     |
| RESET                     | 2                            | Input        | _                                                                                |
| XT2                       | 16                           | _            | Leave open.                                                                      |
| AV <sub>REF0</sub>        | _                            |              | Connect to Vss.                                                                  |
| AVREF1                    |                              |              | Connect to V <sub>DD</sub> .                                                     |
| AVDD                      |                              |              | Connect to another power supply that has the same potential as V <sub>DD</sub> . |
| AVss                      |                              |              | Connect to another ground line that has the same potential as Vss.               |
| IC                        |                              |              | Connect to Vss directly.                                                         |

μ**PD78058F(A)** 

Figure 3-1. Pin Input/Output Circuits (1/2)



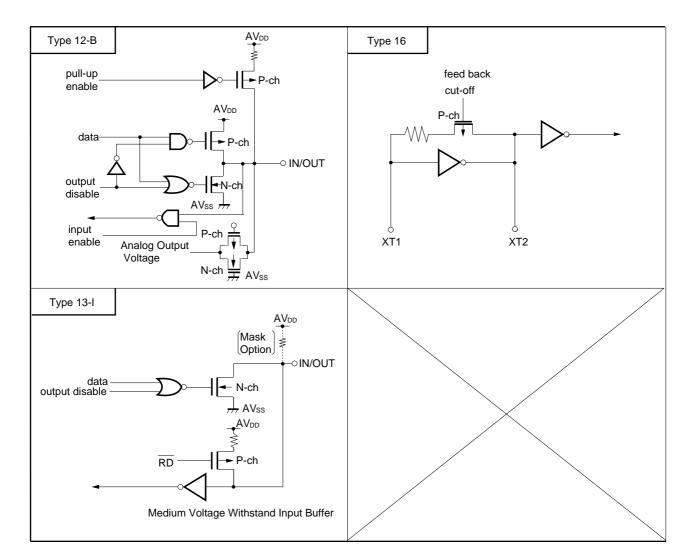
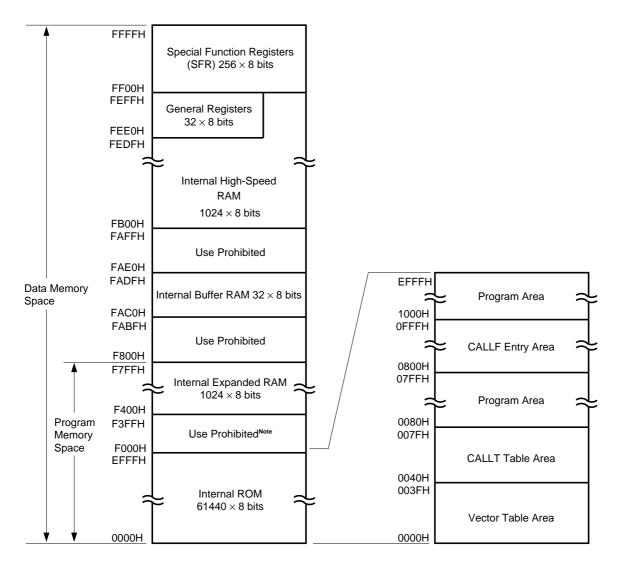




Figure 3-1. Pin Input/Output Circuits (2/2)

#### 4. MEMORY SPACE

Figure 4-1 shows the memory map of the  $\mu$ PD78058F(A).

Figure 4-1. Memory Map



**Note** When the external device expansion function is used, set the internal ROM capacity to 56 Kbytes or less using the memory size switching register (IMS).

μ**PD78058F(A)** 



## 5. PERIPHERAL HARDWARE FUNCTION FEATURES

## 5.1 Ports

The following 3 types of I/O ports are available.

• CMOS input (P00, P07) : 2
• CMOS input/output (P01 to P06, ports 1 to 5, P64 to P67, port 7, port 12, port 13) : 63
• N-channel open-drain input/output (P60 to P63) : 4

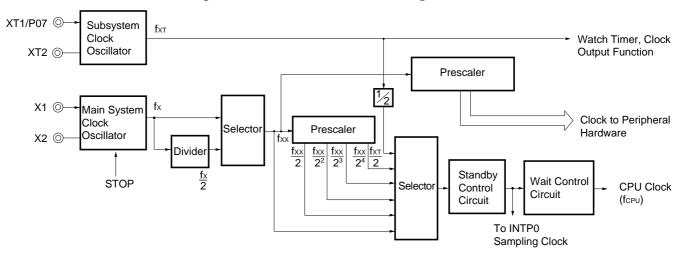
Total : 69

## Table 5-1. Port Functions

| Name    | Pin Name     | Function                                                                                                                                                                                                         |
|---------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Port 0  | P00, P07     | Dedicated input port pins                                                                                                                                                                                        |
|         | P01 to P06   | Input/output port pins. Input/output specifiable bit-wise. When used as input/output port pins, on-chip pull-up resistor can be used by software.                                                                |
| Port 1  | P10 to P17   | Input/output port pins. Input/output specifiable bit-wise.  When used as input port pins, on-chip pull-up resistor can be used by software.                                                                      |
| Port 2  | P20 to P27   | Input/output port pins. Input/output specifiable bit-wise.  When used as input port pins, on-chip pull-up resistor can be used by software.                                                                      |
| Port 3  | P30 to P37   | Input/output port pins. Input/output specifiable bit-wise.  When used as input port pins, on-chip pull-up resistor can be used by software.                                                                      |
| Port 4  | P40 to P47   | Input/output port pins. Input/output specifiable in 8-bit units.  When used as input port pins, on-chip pull-up resistor can be used by software.  Test input flag (KRIF) is set to 1 by falling edge detection. |
| Port 5  | P50 to P57   | Input/output port pins. Input/output specifiable bit-wise.  When used as input port pins, on-chip pull-up resistor can be used by software.  LED direct drive capability.                                        |
| Port 6  | P60 to P63   | N-channel open-drain input/output port pins. Input/output specifiable bit-wise. On-chip pull-up resistor can be used by mask option. LED direct drive capability.                                                |
|         | P64 to P67   | Input/output port pins. Input/output specifiable bit-wise. When used as input/output port pins, on-chip pull-up resistor can be used by software.                                                                |
| Port 7  | P70 to P72   | Input/output port pins. Input/output specifiable bit-wise. When used as input/output port pins, on-chip pull-up resistor can be used by software.                                                                |
| Port 12 | P120 to P127 | Input/output port pins. Input/output specifiable bit-wise.  When used as input/output port pins, on-chip pull-up resistor can be used by software.                                                               |
| Port 13 | P130, P131   | Input/output port pins. Input/output specifiable bit-wise.  When used as input/output port pins, on-chip pull-up resistor can be used by software.                                                               |

μ**PD78058F(A)** 




#### 5.2 Clock Generator

Two types of generators, a main system clock generator and a subsystem clock generator, are available.

The minimum instruction execution time can also be changed.

- 0.4  $\mu$ s/0.8  $\mu$ s/1.6  $\mu$ s/3.2  $\mu$ s/6.4  $\mu$ s/12.8  $\mu$ s (main system clock: at 5.0-MHz operation)
- 122 μs (subsystem clock: at 32.768-kHz operation)

Figure 5-1. Clock Generator Block Diagram



#### 5.3 Timer/event Counter

The  $\mu$ PD78058F(A) incorporates 5 channels of the timer/event counter.

16-bit timer/event counter
 8-bit timer/event counter
 2 channel
 Watch timer
 1 channel
 Watchdog timer
 1 channel

Table 5-2. Operations of Timer/Event Counter

|    |                         | 16-Bit Timer/Event Counter | 8-Bit Timer/Event Counter | Watch Timer | Watchdog Timer |
|----|-------------------------|----------------------------|---------------------------|-------------|----------------|
| Ор | peration mode           |                            |                           |             |                |
|    | Interval timer          | 1 channel                  | 2 channels                | 1 channel   | 1 channel      |
|    | External event counter  | 1 channel                  | 2 channels                | _           | _              |
| Fu | nction                  |                            |                           |             |                |
|    | Timer                   | 1 output                   | 2 outputs                 | _           | _              |
|    | PWM output              | 1 output                   | _                         | _           | _              |
|    | Pulse width measurement | 2 inputs                   | _                         | _           | _              |
|    | Square wave output      | 1 output                   | 2 outputs                 | _           | _              |
|    | One-shot pulse output   | 1 output                   | _                         | _           | _              |
|    | Interrupt request       | 2                          | 2                         | 1           | 1              |
|    | Test input              |                            |                           | 1 input     |                |

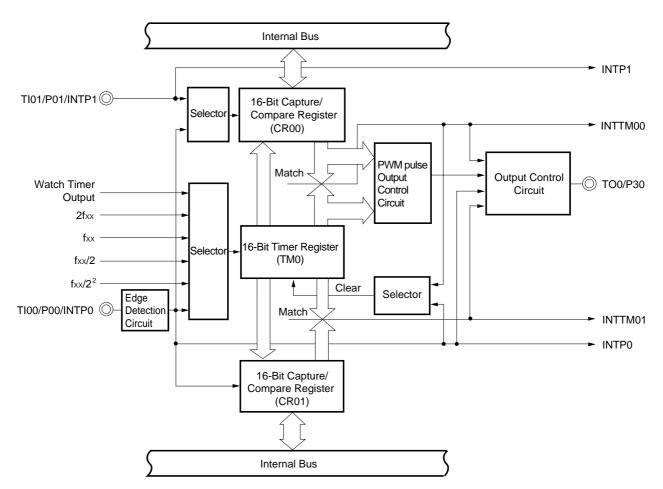



Figure 5-2. 16-Bit Timer/Event Counter Block Diagram

Figure 5-3. 8-Bit Timer/Event Counter Block Diagram

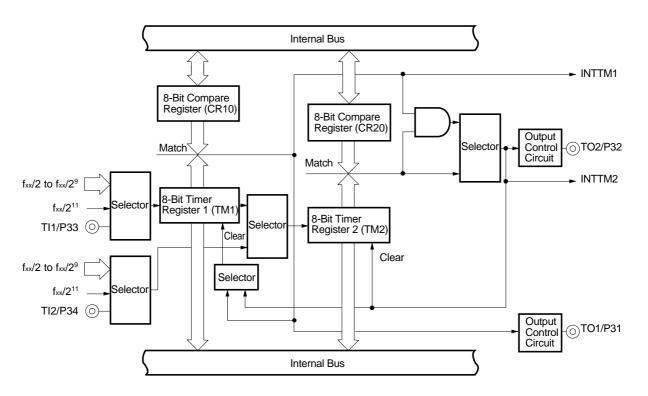



Figure 5-4. Watch Timer Block Diagram

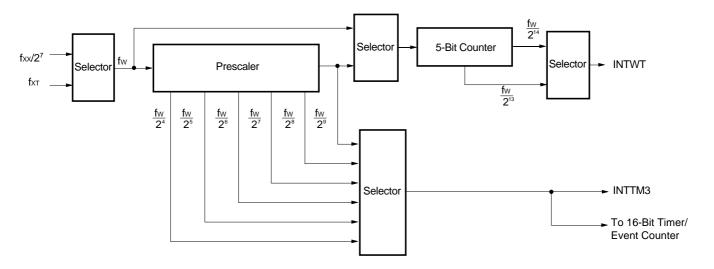
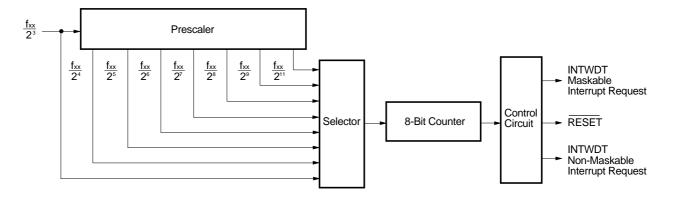




Figure 5-5. Watchdog Timer Block Diagram



## 5.4 Clock Output Control Circuit

Clocks with the following frequencies can be output as the clock output.

- 19.5 kHz/39.1 kHz/78.1 kHz/156 kHz/313 kHz/625 kHz/1.25 MHz/2.5 MHz/5.0 MHz (main system clock: at 5.0-MHz operation)
- 32.768 kHz (subsystem clock: at 32.768-kHz operation)

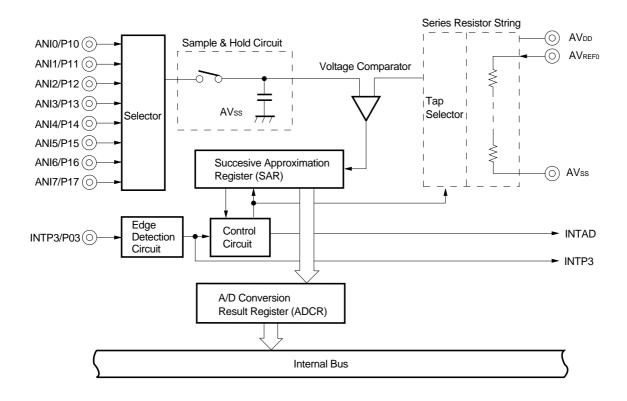
Figure 5-6. Clock Output Control Circuit Configuration

## 5.5 Buzzer Output Control Circuit

Clocks with the following frequencies can be output as the buzzer output.

• 1.2 kHz/2.4 kHz/4.9 kHz/9.8 kHz (main system clock: at 5.0-MHz operation)

Figure 5-7. Buzzer Output Control Circuit Block Diagram

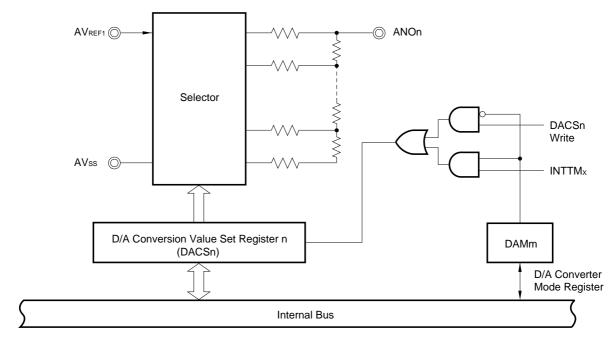

#### 5.6 A/D Converter

An A/D converter of 8-bit resolution  $\times\,8$  channels is incorporated.

The following two types of the A/D conversion operation start-up methods are available.

- Hardware start
- Software start

Figure 5-8. A/D Converter Block Diagram




#### 5.7 D/A Converter

A D/A converter of 8-bit resolution  $\times$  2 channels is available.

Conversion method is R-2R resistor ladder method.

Figure 5-9. D/A Converter Block Diagram



n = 0, 1

m = 4, 5

x = 1, 2

## 5.8 Serial Interfaces

3 channels of the clocked serial interface are incorporated.

- Serial interface channel 0
- Serial interface channel 1
- Serial interface channel 2

Table 5-3. Types and Functions of Serial Interface

| Function                                                              | Serial Interface Channel 0   | Serial Interface Channel 1   | Serial Interface Channel 2                     |
|-----------------------------------------------------------------------|------------------------------|------------------------------|------------------------------------------------|
| 3-wire serial I/O mode                                                | √ (MSB/LSB first switchable) | √ (MSB/LSB first switchable) | √ (MSB/LSB first switchable)                   |
| 3-wire serial I/O mode with automatic transmission/reception function | _                            | √ (MSB/LSB first switchable) | _                                              |
| SBI (serial bus interface) mode                                       | √ (MSB first)                | _                            | _                                              |
| 2-wire serial I/O mode                                                | √ (MSB first)                | _                            | _                                              |
| Asynchronous serial interface (UART) mode                             | _                            | _                            | √ (Dedicated baud rate generator incorporated) |

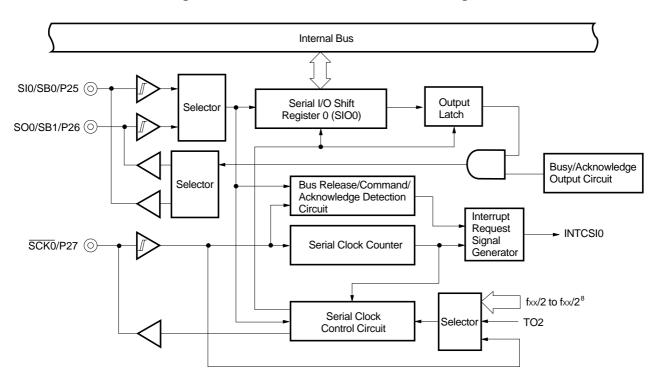
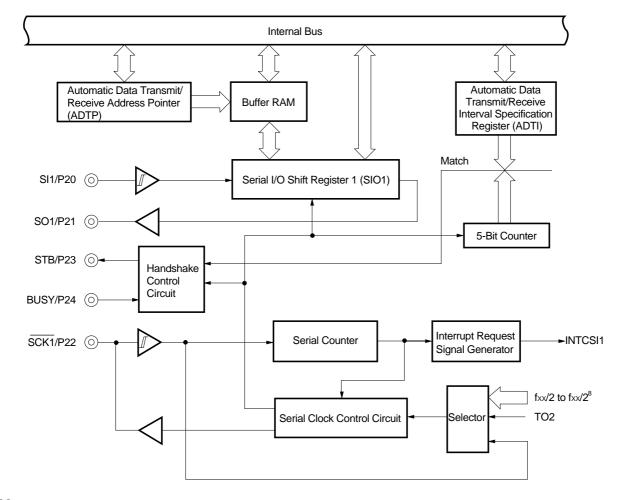




Figure 5-10. Serial Interface Channel 0 Block Diagram

Figure 5-11. Serial Interface Channel 1 Block Diagram



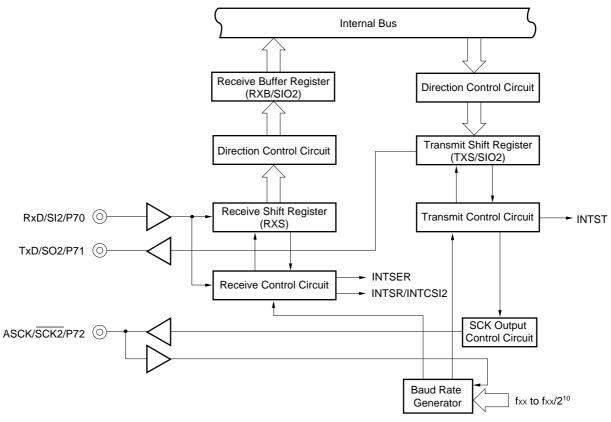



Figure 5-12. Serial Interface Channel 2 Block Diagram

## 5.9 Real-Time Output Port Functions

The real-time output function consists in transferring data set previously in the real-time output buffer register to the output latch by hardware concurrently with a timer interrupt request or external interrupt request generation in order to output to off-chip. Pins used to output to off-chip are called real-time output ports.

By using a real-time output port, a signal which has no jitter can be output. This is most applicable to control of stepping motors, etc.

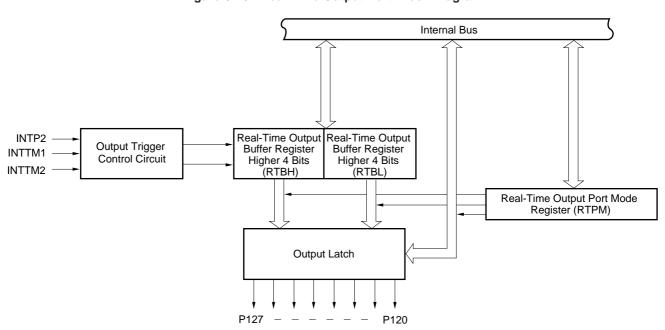



Figure 5-13. Real-Time Output Port Block Diagram



## 6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS

## 6.1 Interrupt Functions

There are 22 interrupt functions of three different types, as shown below.

Non-maskable : 1Maskable : 20Software : 1

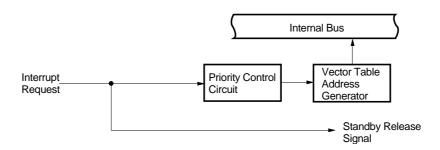
Table 6-1. Interrupt Source List (1/2)

| Interrupt Type | Default        |         | Interrupt Source                                            | Internal/ | Vector<br>Table | Basic<br>Configuration |
|----------------|----------------|---------|-------------------------------------------------------------|-----------|-----------------|------------------------|
|                | PriorityNote 1 | Name    | Trigger                                                     | External  | Address         | TypeNote 2             |
| Non-maskable   | _              | INTWDT  | Watchdog timer overflow (watchdog timer mode 1 selected)    | Internal  | 0004H           | (A)                    |
| Maskable       | 0              | INTWDT  | Watchdog timer overflow (interval timer mode selected)      |           |                 | (B)                    |
|                | 1              | INTP0   | Pin input edge detection                                    | External  | 0006H           | (C)                    |
|                | 2              | INTP1   |                                                             |           | 0008H           | (D)                    |
|                | 3              | INTP2   |                                                             |           | 000AH           | l                      |
|                | 4 INTP3        |         |                                                             |           | 000CH           | ı                      |
|                | 5              | INTP4   |                                                             |           | 000EH           |                        |
|                | 6              | INTP5   |                                                             |           | 0010H           |                        |
|                | 7              | INTP6   |                                                             |           | 0012H           |                        |
|                | 8              | INTCSI0 | End of serial interface channel 0 transfer                  | Internal  | 0014H           | (B)                    |
|                | 9              | INTCSI1 | End of serial interface channel 1 transfer                  |           | 0016H           |                        |
|                | 10             | INTSER  | Generation of serial interface channel 2 UART receive error |           | 0018H           |                        |
|                | 11             | INTSR   | End of serial interface channel 2<br>UART reception         |           | 001AH           |                        |
|                |                | INTCSI2 | End of serial interface channel 2<br>3-wire transfer        |           |                 |                        |
|                | 12             | INTST   | End of serial interface channel 2<br>UART transmission      |           | 001CH           |                        |

**Notes** 1. The default priority is a priority order when two or more maskable interrupt requests are generated simultaneously. 0 is the highest order and 18, the lowest.

2. Basic configuration types (A) to (E) correspond to (A) to (E) in Fig. 6-1, respectively.

Table 6-1. Interrupt Source List (2/2)


| Interrupt Type | Default                                                                                            |         | Interrupt Source                                                                              | Internal/ | Vector<br>Table | Basic<br>Configuration |
|----------------|----------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------|-----------|-----------------|------------------------|
|                | PriorityNote 1                                                                                     | Name    | Trigger                                                                                       | External  | Address         | Type <sup>Note 2</sup> |
| Maskable       | 13                                                                                                 | INTTM3  | Reference time interval signal from watch timer                                               | Internal  | 001EH           | (B)                    |
|                | 14 INTTM00 Generation of match signal of 16-bit timer register and capture/compare register (CR00) |         |                                                                                               | 0020H     |                 |                        |
|                | 15                                                                                                 | INTTM01 | Generation of match signal of 16-bit<br>timer register and capture/compare<br>register (CR01) |           | 0022H           |                        |
|                | 16                                                                                                 | INTTM1  | Generation of match signal of 8-bit timer/event counter 1                                     |           | 0024H           |                        |
|                | 17                                                                                                 | INTTM2  | Generation of match signal of 8-bit timer/event counter 2                                     |           | 0026H           |                        |
|                | 18                                                                                                 | INTAD   | End of conversion by A/D converter                                                            |           | 0028H           |                        |
| Software       | _                                                                                                  | BRK     | BRK instruction execution                                                                     | _         | 003EH           | (E)                    |

**Notes** 1. The default priority is a priority order when two or more maskable interrupt requests are generated simultaneously. 0 is the highest order and 18, the lowest.

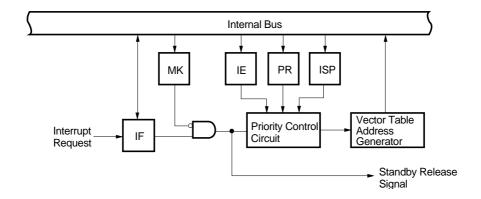

2. Basic configuration types (A) to (E) correspond to (A) to (E) in Figure 6-1, respectively.

Figure 6-1. Interrupt Function Basic Configuration (1/2)

# (A) Internal non-maskable interrupt



## (B) Internal maskable interrupt



## (C) External maskable interrupt (INTP0)

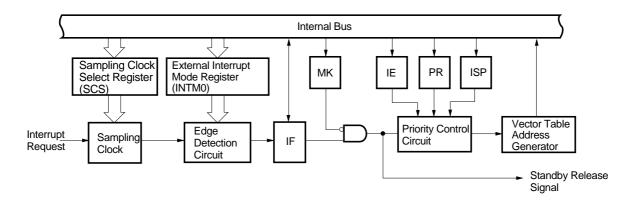
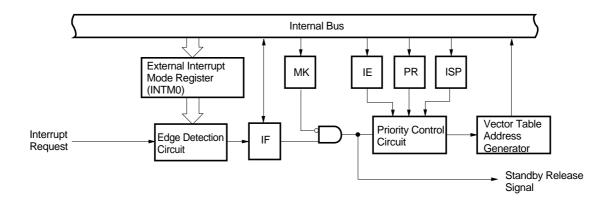
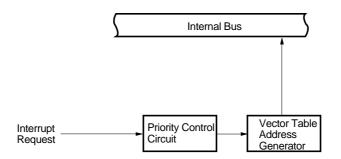





Figure 6-1. Interrupt Function Basic Configuration(2/2)

## (D) External maskable interrupt (except INTP0)



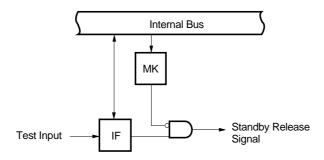
## (E) Software interrupt



IF : Interrupt request flag
 IE : Interrupt enable flag
 ISP : In-service priority flag
 MK : Interrupt mask flag
 PR : Priority specification flag

μ**PD78058F(A)** 




## 6.2 Test Functions

There are two sources of test function as shown in Table 6-2.

Table 6-2. Test Input Source List

| Name   | Internal/external             |          |
|--------|-------------------------------|----------|
| INTWT  | Watch timer overflow          | Internal |
| INTPT4 | Port 4 falling edge detection | External |

Figure 6-2. Test Function Basic Configuration



IF : Test input flag MK : Test mask flag

#### 7. EXTERNAL DEVICE EXPANSION FUNCTIONS

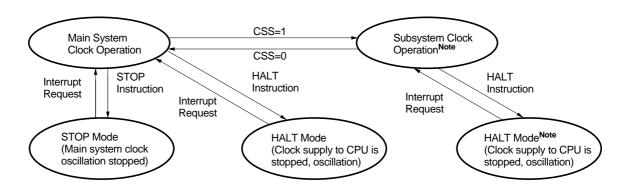
The external device expansion functions connect external devices to areas other than the internal ROM, RAM and SFR. Ports 4 to 6 are used for external device connection.

#### 8. STANDBY FUNCTION

There are the following two standby functions to reduce the system power consumption.

• HALT mode : The CPU operating clock is stopped.

The average consumption current can be reduced by intermittent operation in combination with


the normal operating mode.

• STOP mode : The main system clock oscillation is stopped. The whole operation by the main system clock

is stopped, so that the system operates with ultra-low power consumption using only the

subsystem clock.

Figure 8-1. Stand-by Function



**Note** The power consumption is reduced by stopping the main system clock. When the CPU is operating on the subsystem clock, set bit 7 (MCC) in the processor clock control register (PCC) to stop the main system clock. The STOP instruction cannot be used.

Caution When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched again to the main system clock after the oscillation stabilization time is secured by the program.

Remark CSS: Bit 4 in the PCC

#### 9. RESET FUNCTION

There are the following two reset methods.

- External reset input by RESET pin
- Internal reset by watchdog time runaway time detection

# 10. INSTRUCTION SET

# (1) 8-bit instructions

MOV, XCH, ADD ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

| Casasal                               |                                                              |                                 |                                                                     |            |                                                                     |                                                                     |     |            |                                                                     |                                          |          |                            |              |
|---------------------------------------|--------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------|------------|---------------------------------------------------------------------|---------------------------------------------------------------------|-----|------------|---------------------------------------------------------------------|------------------------------------------|----------|----------------------------|--------------|
| Second<br>Operand<br>First<br>Operand | #byte                                                        | А                               | r <sup>Note</sup>                                                   | sfr        | saddr                                                               | !addr16                                                             | PSW | [DE]       | [HL]                                                                | [HL + byte]<br>[HL + B]<br>[HL + C]      | \$addr16 | 1                          | None         |
| r                                     | ADD ADDC SUB SUBC AND OR XOR CMP                             | MOV<br>ADD<br>ADDC<br>SUB       | MOV<br>XCH<br>ADD<br>ADDC<br>SUB<br>SUBC<br>AND<br>OR<br>XOR<br>CMP | MOV<br>XCH | MOV<br>XCH<br>ADD<br>ADDC<br>SUB<br>SUBC<br>AND<br>OR<br>XOR<br>CMP | MOV<br>XCH<br>ADD<br>ADDC<br>SUB<br>SUBC<br>AND<br>OR<br>XOR<br>CMP | MOV | MOV<br>XCH | MOV<br>XCH<br>ADD<br>ADDC<br>SUB<br>SUBC<br>AND<br>OR<br>XOR<br>CMP | MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP |          | ROR<br>ROL<br>RORC<br>ROLC | INC<br>DEC   |
|                                       |                                                              | SUBC<br>AND<br>OR<br>XOR<br>CMP |                                                                     |            |                                                                     |                                                                     |     |            |                                                                     |                                          |          |                            |              |
| B, C                                  |                                                              |                                 |                                                                     |            |                                                                     |                                                                     |     |            |                                                                     |                                          | DBNZ     |                            |              |
| sfr                                   | MOV                                                          | MOV                             |                                                                     |            |                                                                     |                                                                     |     |            |                                                                     |                                          |          |                            |              |
| saddr                                 | MOV<br>ADD<br>ADDC<br>SUB<br>SUBC<br>AND<br>OR<br>XOR<br>CMP | MOV                             |                                                                     |            |                                                                     |                                                                     |     |            |                                                                     |                                          | DBNZ     |                            | INC<br>DEC   |
| !addr16                               |                                                              | MOV                             |                                                                     |            |                                                                     |                                                                     |     |            |                                                                     |                                          |          |                            |              |
| PSW                                   | MOV                                                          | MOV                             |                                                                     |            |                                                                     |                                                                     |     |            |                                                                     |                                          |          |                            | PUSH<br>POP  |
| [DE]                                  |                                                              | MOV                             |                                                                     |            |                                                                     |                                                                     |     |            |                                                                     |                                          |          |                            |              |
| [HL]                                  |                                                              | MOV                             |                                                                     |            |                                                                     |                                                                     |     |            |                                                                     |                                          |          |                            | ROR4<br>ROL4 |
| [HL + byte]<br>[HL + B]<br>[HL + C]   |                                                              | MOV                             |                                                                     |            |                                                                     |                                                                     |     |            |                                                                     |                                          |          |                            |              |
| Х                                     |                                                              |                                 |                                                                     |            |                                                                     |                                                                     |     |            |                                                                     |                                          |          |                            | MULU         |
| С                                     |                                                              |                                 |                                                                     |            |                                                                     |                                                                     |     |            |                                                                     |                                          |          |                            | DIVUW        |



## (2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

| Second instruction First instruction | #word                | AX                   | rp <sup>Note</sup> | sfrp | saddrp | !addr16 | SP   | None                    |
|--------------------------------------|----------------------|----------------------|--------------------|------|--------|---------|------|-------------------------|
| AX                                   | ADDW<br>SUBW<br>CMPW |                      | MOVW<br>XCHW       | MOVW | MOVW   | MOVW    | MOVW |                         |
| rp                                   | MOVW                 | MOVW <sup>Note</sup> |                    |      |        |         |      | INCW, DECW<br>PUSH, POP |
| sfrp                                 | MOVW                 | MOVW                 |                    |      |        |         |      |                         |
| saddrp                               | MOVW                 | MOVW                 |                    |      |        |         |      |                         |
| !addr16                              |                      | MOVW                 |                    |      |        |         |      |                         |
| SP                                   | MOVW                 | MOVW                 |                    |      |        |         |      |                         |

**Note** Only when rp = BC, DE or HL

## (3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

| Second instruction First instruction | A.bit                       | sfr.bit                     | saddr.bit                   | PSW.bit                     | [HL].bit                    | CY   | \$addr16          | None                 |
|--------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------|-------------------|----------------------|
| A.bit                                |                             |                             |                             |                             |                             | MOV1 | BT<br>BF<br>BTCLR | SET1<br>CLR1         |
| sfr.bit                              |                             |                             |                             |                             |                             | MOV1 | BT<br>BF<br>BTCLR | SET1<br>CLR1         |
| saddr.bit                            |                             |                             |                             |                             |                             | MOV1 | BT<br>BF<br>BTCLR | SET1<br>CLR1         |
| PSW.bit                              |                             |                             |                             |                             |                             | MOV1 | BT<br>BF<br>BTCLR | SET1<br>CLR1         |
| [HL].bit                             |                             |                             |                             |                             |                             | MOV1 | BT<br>BF<br>BTCLR | SET1<br>CLR1         |
| СҮ                                   | MOV1<br>AND1<br>OR1<br>XOR1 | MOV1<br>AND1<br>OR1<br>XOR1 | MOV1<br>AND1<br>OR1<br>XOR1 | MOV1<br>AND1<br>OR1<br>XOR1 | MOV1<br>AND1<br>OR1<br>XOR1 |      |                   | SET1<br>CLR1<br>NOT1 |

## (4) Call instruction/branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

| Second instruction First instruction | AX | !addr16    | !addr11 | [addr5] | \$addr16                |
|--------------------------------------|----|------------|---------|---------|-------------------------|
| Basic instruction                    | BR | CALL<br>BR | CALLF   | CALLT   | BR, BC, BNC<br>BZ, BNZ  |
| Compound instruction                 |    |            |         |         | BT, BF<br>BTCLR<br>DBNZ |

# (5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP



#### 11. ELECTRICAL SPECIFICATIONS

## ABSOLUTE MAXIMUM RATINGS ( $T_A = 25^{\circ}C$ )

| Parameter                     | Symbol               |                       | Test Conditions                                                                       |                       | Rating                        | Unit |
|-------------------------------|----------------------|-----------------------|---------------------------------------------------------------------------------------|-----------------------|-------------------------------|------|
| Supply voltage                | V <sub>DD</sub>      |                       |                                                                                       |                       | -0.3 to +7.0                  | V    |
|                               | AVDD                 |                       |                                                                                       |                       | -0.3 to V <sub>DD</sub> + 0.3 | V    |
|                               | AV <sub>REF0</sub>   |                       |                                                                                       |                       | -0.3 to V <sub>DD</sub> + 0.3 | V    |
|                               | AV <sub>REF1</sub>   |                       |                                                                                       |                       | -0.3 to V <sub>DD</sub> + 0.3 | V    |
|                               | AVss                 |                       |                                                                                       |                       | -0.3 to +0.3                  | V    |
| Input voltage                 | Vıı                  | P40 to P47, F         | 210 to P17, P20 to P27, P3<br>250 to P57, P64 to P67, P7<br>, P130, P131, X1, X2, XT2 | 70 to P72,            | -0.3 to V <sub>DD</sub> + 0.3 | V    |
|                               | V <sub>12</sub>      | P60 to P63            | N-ch Open-drain                                                                       | -0.3 to +16           | V                             |      |
| Output voltage                | Vo                   |                       |                                                                                       |                       | -0.3 to V <sub>DD</sub> + 0.3 | V    |
| Analog input voltage          | Van                  | P10 to P17            | Analog input pin                                                                      |                       | AVss - 0.3 to AVREF0 + 0.3    | V    |
| High-level output             | Іон                  | 1 pin                 |                                                                                       | -10                   |                               | mA   |
| current                       |                      | P01 to P06, P3        | 0 to P37, P56, P57, P60 to P6                                                         | 7, P120 to P127 total | -15                           | mA   |
|                               |                      | •                     | 220 to P27, P40 to P47, P5                                                            | 60 to P55,            | -15                           | mA   |
| Low-level output              | I <sub>OL</sub> Note | 1 pin                 |                                                                                       | Peak value            | 30                            | mA   |
| current                       |                      |                       |                                                                                       | Effective value       | 15                            | mA   |
|                               |                      | P50 to P55 total Peal |                                                                                       | Peak value            | 100                           | mA   |
|                               |                      |                       | Effective                                                                             |                       | 70                            | mA   |
|                               |                      | P56, P57, P6          | 0 to P63 total                                                                        | Peak value            | 100                           | mA   |
|                               |                      |                       |                                                                                       | Effective value       | 70                            | mA   |
|                               |                      | P10 to P17, P         | 20 to P27, P40 to P47,                                                                | Peak value            | 50                            | mA   |
|                               |                      | P70 to P72, P         | 2130, P131 total                                                                      | Effective value       | 20                            | mA   |
|                               |                      | P01 to P06, P         | 30 to P37, P64 to P67,                                                                | Peak value            | 50                            | mA   |
|                               |                      | P120 to P127          | total                                                                                 | Effective value       | 20                            | mA   |
| Operating ambient temperature | ТА                   |                       |                                                                                       |                       | -40 to +85                    | °C   |
| Storage temperature           | T <sub>stg</sub>     |                       |                                                                                       |                       | -65 to +150                   | °C   |

**Note** Effective value should be calculated as follows: [Effective value] = [Peak value]  $\times \sqrt{\text{duty}}$ 

Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter or even momentarily. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, alternate pin characteristics are the same as port pin characteristics.



#### Main System Clock Oscillation Circuit Characteristics (T<sub>A</sub> = −40 to 85°C, V<sub>DD</sub> = 2.7 to 6.0 V)

| Resonator         | Recommended<br>Circuit | Parameter                                        | Test Conditions                                             | MIN. | TYP. | MAX. | Unit |
|-------------------|------------------------|--------------------------------------------------|-------------------------------------------------------------|------|------|------|------|
| Ceramic resonator | X2 X1 IC               | Oscillator frequency (fx)Note 1                  | V <sub>DD</sub> = Oscillator voltage range                  | 1.0  |      | 5.0  | MHz  |
|                   | +C2 +C1                | Oscillation stabilization time <sup>Note 2</sup> | After V <sub>DD</sub> reaches oscillator voltage range MIN. |      |      | 4    | ms   |
| Crystal resonator | X2 X1 IC               | Oscillator frequency (fx)Note 1                  |                                                             | 1.0  |      | 5.0  | MHz  |
|                   | <del>+C2</del> +C1     | Oscillation                                      | V <sub>DD</sub> = 4.5 to 6.0 V                              |      |      | 10   |      |
|                   | <del></del>            | stabilization timeNote 2                         |                                                             |      |      | 30   | ms   |
| External clock    | X2 X1                  | X1 input<br>frequency (fx) <sup>Note 1</sup>     |                                                             | 1.0  |      | 5.0  | MHz  |
|                   | μPD74HCU04Å            | X1 input<br>high/low level width<br>(txH, txL)   |                                                             | 85   |      | 500  | ns   |

- **Notes** 1. Indicates only oscillation circuit characteristics. Refer to "AC CHARACTERISTICS" for instruction execution time.
  - 2. Time required to stabilize oscillation after reset or STOP mode release.
- Cautions 1. When using the main system clock oscillator, wiring in the area enclosed with the broken line in the above figures should be carried out as follows to avoid an adverse effect from wiring capacitance.
  - · Wiring should be as short as possible.
  - Wiring should not cross other signal lines.
  - Wiring should not be placed close to a varying high current.
  - The potential of the oscillator capacitor ground should be the same as Vss.
  - Do not ground wiring to a ground pattern in which a high current flows.
  - Do not fetch a signal from the oscillator.
  - 2. When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched again to the main system clock after the oscillation stabilization time is secured by the program.



#### Subsystem Clock Oscillation Circuit Characteristics (TA = -40 to +85°C, VDD = 2.7 to 6.0 V)

| Resonator         | Recommended<br>Circuit | Parameter                                   | Test Conditions                | MIN. | TYP.   | MAX. | Unit |
|-------------------|------------------------|---------------------------------------------|--------------------------------|------|--------|------|------|
| Ceramic resonator | IC XT2 XT1             | Oscillator frequency (fxT)Note 1            |                                | 32   | 32.768 | 35   | kHz  |
|                   |                        | Oscillation                                 | V <sub>DD</sub> = 4.5 to 6.0 V |      | 1.2    | 2    | s    |
|                   |                        | stabilization timeNote 2                    |                                |      |        | 10   | 3    |
| External clock    | XT2 XT1                | XT1 input frequency (fxT)Note 1             |                                | 32   |        | 100  | kHz  |
|                   |                        | XT1 input high/low level width (txth, txtl) |                                | 5    |        | 15   | μs   |

- **Notes 1.** Indicates only oscillation circuit characteristics. Refer to "AC CHARACTERISTICS" for instruction execution time.
  - 2. Time required to stabilize oscillation after VDD reaches MIN. oscillating voltage frequency.

# Cautions 1. When using the subsystem clock oscillator, wiring in the area enclosed with the broken line in the above figures should be carried out as follows to avoid an adverse effect from wiring capacitance.

- · Wiring should be as short as possible.
- · Wiring should not cross other signal lines.
- Wiring should not be placed close to a varying high current.
- The potential of the oscillator capacitor ground should be the same as Vss.
- . Do not ground wiring to a ground pattern in which a high current flows.
- Do not fetch a signal from the oscillator.
- The subsystem clock oscillator is a low-amplitude circuit in order to achieve a low consumption current, and is more prone to mulfunction due to noise than the main system clock oscillator.
   Particular care is therefore required with the wiring method when the subsystem clock is used.

## CAPACITANCE (TA = $25^{\circ}$ C, VDD = Vss = 0 V)

| Parameter         | Symbol | Test Conditions                                  |                                                                                                                                         | MIN. | TYP. | MAX. | Unit |
|-------------------|--------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| Input capacitance | CIN    | f = 1 MHz<br>Unmeasured pins returned to 0 V.    |                                                                                                                                         |      |      | 15   | pF   |
| Input/Output      | Сю     | f = 1 MHz<br>Unmeasured pins returned<br>to 0 V. | P01 to P06, P10 to P17,<br>P20 to P27, P30 to P37,<br>P40 to P47, P50 to P57,<br>P64 to P67, P70 to P72,<br>P120 to P127,<br>P130, P131 |      |      | 15   | pF   |
|                   |        |                                                  | P60 to P63                                                                                                                              |      |      | 20   | pF   |

Remark Unless otherwise specified, alternate pin characteristics are the same as port pin characteristics.



## DC CHARACTERISTICS (TA = -40 to +85°C, VDD = 2.7 to 6.0 V)

| Parameter                   | Symbol            | Test Co                                                                                                                  | nditions                                                                                                                                       | MIN.                  | TYP.            | MAX.                | Unit           |
|-----------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|---------------------|----------------|
| Input voltage,<br>high      | V <sub>IH1</sub>  | P10 to P17, P21, P23, P30 to P40 to P47, P50 to P57, P64 P120 to P127, P130, P131                                        |                                                                                                                                                | 0.7 VDD               |                 | V <sub>DD</sub>     | V              |
|                             | V <sub>IH2</sub>  | P00 to P06, P20, P22, P24 to RESET                                                                                       | o P27, P33, P34, P70, P72,                                                                                                                     | 0.8 V <sub>DD</sub>   |                 | VDD                 | V              |
|                             | VIH3              | P60 to P63 (N-ch Open-drain                                                                                              | 1)                                                                                                                                             | 0.7 V <sub>DD</sub>   |                 | 15                  | V              |
|                             | V <sub>IH4</sub>  | X1, X2                                                                                                                   | V <sub>DD</sub> - 0.5                                                                                                                          |                       | V <sub>DD</sub> | V                   |                |
| ViH5                        | V <sub>IH5</sub>  | XT1/P07, XT2                                                                                                             | V <sub>DD</sub> = 4.5 to 6.0 V                                                                                                                 | 0.8 V <sub>DD</sub>   |                 | V <sub>DD</sub>     | V              |
| Input voltage, Villow       | VIL1              | P10 to P17, P21, P23, P30 to P40 to P47, P50 to P57, P64 P120 to P127, P130, P131                                        |                                                                                                                                                | 0                     |                 | 0.3 V <sub>DD</sub> | V              |
|                             | V <sub>IL2</sub>  | P00 to P06, P20, P22, P24 to RESET                                                                                       | 0                                                                                                                                              |                       | 0.2 VDD         | V                   |                |
|                             | VIL3              | P60 to P63                                                                                                               | V <sub>DD</sub> = 4.5 to 6.0 V                                                                                                                 | 0                     |                 | 0.3 V <sub>DD</sub> | V              |
| Vı                          |                   |                                                                                                                          |                                                                                                                                                | 0                     |                 | 0.2 V <sub>DD</sub> | V              |
|                             | V <sub>IL4</sub>  | X1, X2                                                                                                                   | 1                                                                                                                                              | 0                     |                 | 0.4                 | V              |
|                             | V <sub>IL5</sub>  | XT1/P07, XT2                                                                                                             | V <sub>DD</sub> = 4.5 to 6.0 V                                                                                                                 | 0                     |                 | 0.2 V <sub>DD</sub> | V              |
|                             |                   |                                                                                                                          |                                                                                                                                                | 0                     |                 | 0.1 V <sub>DD</sub> | V              |
| Output voltage,             | Vон               | V <sub>DD</sub> = 4.5 to 6.0 V, I <sub>OH</sub> = -1 n                                                                   | V <sub>DD</sub> - 1.0                                                                                                                          |                       |                 | V                   |                |
| high                        |                   | Іон = -100 μА                                                                                                            |                                                                                                                                                | V <sub>DD</sub> - 0.5 |                 |                     | V              |
| Output voltage, low         | V <sub>OL1</sub>  | P50 to P57, P60 to P63                                                                                                   | V <sub>DD</sub> = 4.5 to 6.0 V,<br>I <sub>OL</sub> = 15 mA                                                                                     |                       | 0.4             | 2.0                 | V              |
| low                         |                   | P01 to P06, P10 to P17,<br>P20 to P27, P30 to P37,<br>P40 to P47, P64 to P67,<br>P70 to P72, P120 to P127,<br>P130, P131 | V <sub>DD</sub> = 4.5 to 6.0 V,<br>I <sub>OL</sub> = 1.6 mA                                                                                    |                       |                 | 0.4                 | V              |
|                             | Vol2              | SB0, SB1, SCK0                                                                                                           | $V_{DD} = 4.5 \text{ to } 6.0 \text{ V},$ N-ch open-drain at pull-up time (R = 1 K $\Omega$ )                                                  |                       |                 | 0.2 V <sub>DD</sub> | V              |
|                             | Vol3              | IoL = 400 μA                                                                                                             |                                                                                                                                                |                       |                 | 0.5                 | V              |
| Input leakage current, high | Ішн1              | VIN = VDD                                                                                                                | P00 to P06, P10 to P17,<br>P20 to P27, P30 to P37,<br>P40 to P47, P50 to P57,<br>P60 to P67, P70 to P72,<br>P120 to P127, P130,<br>P131, RESET |                       |                 | 3                   | μΑ             |
|                             | I <sub>LIH2</sub> | -                                                                                                                        | X1, X2, XT1/P07, XT2                                                                                                                           |                       |                 | 20                  | μΑ             |
|                             | Ішнз              | V <sub>IN</sub> = 15 V                                                                                                   | P60 to P63                                                                                                                                     |                       |                 | 80                  | <u>.</u><br>μΑ |

Remark Unless specified otherwise, alternate pin characteristics are the same as port pin characteristics.



#### DC CHARACTERISTICS (TA = -40 to +85°C, V<sub>DD</sub> = 2.7 to 6.0 V)

| Parameter                     | Symbol            | Test Cor                                                                                 | nditions                                                                                                                                       | MIN. | TYP. | MAX.               | Unit |
|-------------------------------|-------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------|------|--------------------|------|
| Input leakage<br>current, low | ILIL1             | V <sub>IN</sub> = 0 V                                                                    | P00 to P06, P10 to P17,<br>P20 to P27, P30 to P37,<br>P40 to P47, P50 to P57,<br>P64 to P67, P70 to P72,<br>P120 to P127,<br>P130, P131, RESET |      |      | -3                 | μΑ   |
|                               | I <sub>LIL2</sub> |                                                                                          | X1, X2, XT1/P07, XT2                                                                                                                           |      |      | -20                | μΑ   |
|                               | Ішз               |                                                                                          | P60 to P63                                                                                                                                     |      |      | -3 <sup>Note</sup> | μΑ   |
| Output leakage current, high  | Ісон              | Vout = Vdd                                                                               |                                                                                                                                                |      |      | 3                  | μΑ   |
| Output leakage current, low   | ILOL              | Vout = 0 V                                                                               |                                                                                                                                                |      |      | -3                 | μΑ   |
| Mask option pull-up resistor  | R <sub>1</sub>    | V <sub>IN</sub> = 0 V, P60 to P63                                                        |                                                                                                                                                | 20   | 40   | 90                 | kΩ   |
| Software pull-up resistor     | R <sub>2</sub>    | V <sub>IN</sub> = 0 V, P01 to P06,<br>P10 to P17, P20 to P27,<br>P30 to P37, P40 to P47, | V <sub>DD</sub> = 4.5 V to 6.0 V                                                                                                               | 15   | 40   | 90                 | kΩ   |
|                               |                   | P50 to P57, P64 to P67,<br>P70 to P72, P120 to P127,<br>P130, P131                       |                                                                                                                                                | 20   |      | 500                | kΩ   |

Note When the pull-up resistor is not included in P60 to P63 (specified by a mask option), the  $-200 \,\mu\text{A}$  (MAX.) low-level input leakage current is passed only at the 1.5 clock interval (no wait) when the read instruction to port 6 (PM6) and port mode register (PM6) is executed. At other than the 1.5 interval,  $-3 \,\mu\text{A}$  (MAX.) is passed.

Remark Unless specified otherwise, alternate pin characteristics are the same as port pin characteristics.



#### DC CHARACTERISTICS (TA = -40 to +85°C, VDD = 2.7 to 6.0 V)

| Parameter                 | Symbol           | Test Condition                                           | ns                                              | MIN. | TYP. | MAX. | Unit |
|---------------------------|------------------|----------------------------------------------------------|-------------------------------------------------|------|------|------|------|
| Power supply              | IDD1             | 5.0-MHz Crystal oscillation                              | V <sub>DD</sub> = 5.0 V ±10 % <sup>Note 5</sup> |      | 4    | 12   | mA   |
| current <sup>Note 1</sup> |                  | operating mode $(fxx = 2.5 \text{ MHz})^{\text{Note 2}}$ | V <sub>DD</sub> = 3.0 V ±10 % <sup>Note 6</sup> |      | 0.6  | 1.8  | mA   |
|                           |                  | 5.0-MHz Crystal oscillation                              | V <sub>DD</sub> = 5.0 V ±10 % <sup>Note 5</sup> |      | 6.5  | 19.5 | mA   |
| l <sub>DD2</sub>          |                  | operating mode<br>(fxx = 5.0 MHz) <sup>Note 3</sup>      | V <sub>DD</sub> = 3.0 V ±10 % <sup>Note 6</sup> |      | 0.8  | 2.4  | mA   |
|                           | I <sub>DD2</sub> | 5.0-MHz Crystal oscillation                              | V <sub>DD</sub> = 5.0 V ±10 %                   |      | 1.4  | 4.2  | mA   |
|                           |                  | HALT mode $(fxx = 2.5 \text{ MHz})^{\text{Note 2}}$      | V <sub>DD</sub> = 3.0 V ±10 %                   |      | 0.5  | 1.5  | mA   |
|                           |                  | 5.0-MHz Crystal oscillation                              | V <sub>DD</sub> = 5.0 V ±10 %                   |      | 1.6  | 4.8  | mA   |
|                           |                  | HALT mode $(fxx = 5.0 \text{ MHz})^{\text{Note 3}}$      | V <sub>DD</sub> = 3.0 V ±10 %                   |      | 0.65 | 1.95 | mA   |
|                           | I <sub>DD3</sub> | 32.768-kHz Crystal oscillation                           | V <sub>DD</sub> = 5.0 V ±10 %                   |      | 60   | 120  | μΑ   |
|                           |                  | operating modeNote 4                                     | V <sub>DD</sub> = 3.0 V ±10 %                   |      | 32   | 64   | μΑ   |
|                           | I <sub>DD4</sub> | 32.768-kHz Crystal oscillation                           | V <sub>DD</sub> = 5.0 V ±10 %                   |      | 25   | 55   | μΑ   |
|                           |                  | HALT modeNote 4                                          | V <sub>DD</sub> = 3.0 V ±10 %                   |      | 5    | 15   | μΑ   |
|                           | I <sub>DD5</sub> | XT1 = VDD STOP mode                                      | V <sub>DD</sub> = 5.0 V ±10 %                   |      | 1    | 30   | μΑ   |
|                           |                  | When feedback resistor is used                           | V <sub>DD</sub> = 3.0 V ±10 %                   |      | 0.5  | 10   | μΑ   |
|                           | I <sub>DD6</sub> | XT1 = VDD STOP mode                                      | V <sub>DD</sub> = 5.0 V ±10 %                   |      | 0.1  | 30   | μΑ   |
|                           |                  | When feedback resistor is not used                       | V <sub>DD</sub> = 3.0 V ±10 %                   |      | 0.05 | 10   | μΑ   |

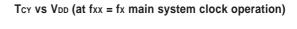
**Notes** 1. Passed through the VDD and AVDD pins. Does not include the current which is passed through the A/D converter, D/A converter, and on-chip pull-up resistor.

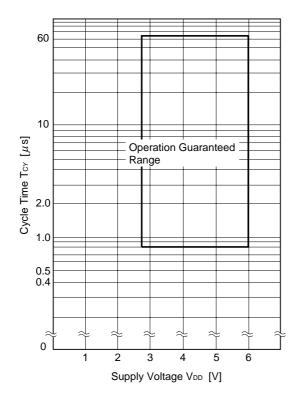
- 2. Main system clock fxx = fx/2 operation (when an oscillation mode selection register (OSMS) is set to 00H)
- **3.** Main system clock fxx = fx operation (when the OSMS is set to 01H)
- 4. When the operation of the main system clock is stopped
- 5. High-speed mode operation (when a processor clock control register (PCC) is set to 00H)
- 6. Low-speed mode operation (when the PCC is set to 04H)

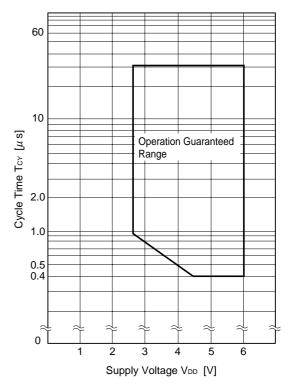


#### **AC CHARACTERISTICS**

## (1) Basic Operation (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 2.7 to 6.0 V)


| Parameter                           | Symbol            | Т                                        | est Condition                                                      | S                              | MIN.                                       | TYP. | MAX. | Unit |
|-------------------------------------|-------------------|------------------------------------------|--------------------------------------------------------------------|--------------------------------|--------------------------------------------|------|------|------|
| Cycle time                          | Тсч               | Operating on main                        | $fxx = fx/2^{Note 1}$                                              | ı                              | 0.8                                        |      | 64   | μs   |
| (Min. instruction                   |                   | system clock                             | $f_{XX} = f_{X}^{Note 2}$ $V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$ |                                | 0.4                                        |      | 32   | μs   |
| execution time)                     |                   |                                          |                                                                    |                                | 0.8                                        |      | 32   | μs   |
|                                     |                   | Operating on subsystem clock             |                                                                    |                                | 40 <sup>Note 3</sup>                       | 122  | 125  | μs   |
| TI00 input high/                    | <b>t</b> тіноо,   | $V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$ |                                                                    |                                | 2/f <sub>sam</sub> + 0.1 <sup>Note 4</sup> |      |      | μs   |
| low-level width                     | ttiloo            |                                          |                                                                    |                                | 2/f <sub>sam</sub> + 0.2 <sup>Note 4</sup> |      |      | μs   |
| TI01 input high/<br>low-level width | tтіно1,<br>tтіL01 |                                          |                                                                    |                                | 10                                         |      |      | μs   |
| TI1, TI2 input                      | f <sub>Tl1</sub>  | V <sub>DD</sub> = 4.5 to 6.0 V           |                                                                    |                                | 0                                          |      | 4    | MHz  |
| frequency                           |                   |                                          |                                                                    |                                | 0                                          |      | 275  | kHz  |
| TI1, TI2 input                      | tтін1,            | V <sub>DD</sub> = 4.5 to 6.0 V           |                                                                    |                                | 100                                        |      |      | ns   |
| high/low-level<br>width             | t <sub>TIL1</sub> |                                          |                                                                    |                                | 1.8                                        |      |      | μs   |
| Interrupt request                   | tinth,            | INTP0                                    |                                                                    | V <sub>DD</sub> = 4.5 to 6.0 V | 2/f <sub>sam</sub> + 0.1 <sup>Note 4</sup> |      |      | μs   |
| input high/low-                     | tintl             |                                          |                                                                    |                                | 2/f <sub>sam</sub> + 0.2 <sup>Note 4</sup> |      |      | μs   |
| level width                         |                   | INTP1 to INTP6, KR0 to KR7               |                                                                    |                                | 10                                         |      |      | μs   |
| RESET low level width               | trsL              |                                          |                                                                    |                                | 10                                         |      |      | μs   |


**Notes** 1. When the operation of the main system clock fxx = fx/2 (When oscillation mode selection register is set to 00H)


- 2. When the operation of the main system clock fxx = fx (When oscillation mode selection register is set to 0.1H)
- 3. Value when the external clock is used. 114  $\mu s$  (MIN.) when a crystal resonator is used.
- **4.** Selection of  $f_{sam}$  is possible between  $f_{xx}/2^N$ ,  $f_{xx}/32$ ,  $f_{xx}/64$  and  $f_{xx}/128$  (when N = 0 to 4) using bits 0 (SCS0) and 1 (SCS1) of sampling clock select register (SCS).

μ**PD78058F(A)** 

Tcy vs  $V_{DD}$  (at fxx = fx/2 main system clock operation)









## (2) Read/Write Operation

## (a) When MCS = 1, PCC2 to PCC0 = 000B ( $T_A = -40$ to $+85^{\circ}$ C, $V_{DD} = 4.5$ to 6.0 V)

| Parameter                                                                                                    | Symbol            | Test Conditions | MIN.                 | MAX.                     | Unit |
|--------------------------------------------------------------------------------------------------------------|-------------------|-----------------|----------------------|--------------------------|------|
| ASTB high-level width                                                                                        | tasth             |                 | 0.85tcy - 50         |                          | ns   |
| Address setup time                                                                                           | tads              |                 | 0.85tcy - 50         |                          | ns   |
| Address hold time                                                                                            | tadh              |                 | 50                   |                          | ns   |
| Data input time from address                                                                                 | t <sub>ADD1</sub> |                 |                      | (2.85 + 2n)tcy - 80      | ns   |
|                                                                                                              | t <sub>ADD2</sub> |                 |                      | (4 + 2n)tcy - 100        | ns   |
| Data input time from $\overline{RD} \downarrow$                                                              | tRDD1             |                 |                      | (2 + 2n)tcy - 100        | ns   |
|                                                                                                              | tRDD2             |                 |                      | (2.85 + 2n)tcy - 100     | ns   |
| Read data hold time                                                                                          | trdh              |                 | 0                    |                          | ns   |
| RD low-level width                                                                                           | tRDL1             |                 | (2 + 2n)tcy - 60     |                          | ns   |
|                                                                                                              | tRDL2             |                 | (2.85 + 2n)tcy - 60  |                          | ns   |
| $\overline{\text{WAIT}} \downarrow \text{input time from } \overline{\text{RD}} \downarrow$                  | trdwt1            |                 |                      | 0.85tcy - 50             | ns   |
|                                                                                                              | trdwt2            |                 |                      | 2tcy - 60                | ns   |
| $\overline{\mathrm{WAIT}} \!\!\downarrow \mathrm{input\ time\ from\ } \overline{\mathrm{WR}} \!\!\downarrow$ | twrwt             |                 |                      | 2tcy - 60                | ns   |
| WAIT low-level width                                                                                         | twTL              |                 | (1.15 + 2n)tcy       | (2 + 2n)tcy              | ns   |
| Write data setup time                                                                                        | twos              |                 | (2.85 + 2n)tcy - 100 |                          | ns   |
| Write data hold time                                                                                         | twoH              |                 | 20                   |                          | ns   |
| WR low-level width                                                                                           | twrL              |                 | (2.85 + 2n)tcy - 60  |                          | ns   |
| $\overline{RD} \!\!\downarrow delay$ time from $ASTB \!\!\downarrow$                                         | tastrd            |                 | 25                   |                          | ns   |
| $\overline{\mathrm{WR}} \!\!\downarrow \mathrm{delay}$ time from ASTB $\!\!\downarrow$                       | tastwr            |                 | 0.85tcy + 20         |                          | ns   |
| ASTB↑ delay time from RD↑ in external fetch                                                                  | trdast            |                 | 0.85tcy - 10         | 1.15tc <sub>Y</sub> + 20 | ns   |
| Address hold time from RD↑ in external fetch                                                                 | trdadh            |                 | 0.85tcy - 50         | 1.15tcy + 50             | ns   |
| Write data output time from RD↑                                                                              | trowd             |                 | 40                   |                          | ns   |
| Write data output time from $\overline{\mathrm{WR}} \downarrow$                                              | trowd             |                 | 0                    | 50                       | ns   |
| Address hold time from WR↑                                                                                   | twradh            |                 | 0.85tcy              | 1.15tcy + 40             | ns   |
| RD↑ delay time from WAIT↑                                                                                    | twtrd             |                 | 1.15tcy + 40         | 3.15tcy + 40             | ns   |
| WR↑ delay time from WAIT↑                                                                                    | twtwr             |                 | 1.15tcy + 30         | 3.15tcy + 30             | ns   |

Remarks 1. MCS: Oscillation mode selection register bit 0

2. PCC2 to PCC0: Processor clock control register (PCC) bits 2 to 0

**3.** tcy = Tcy/4

4. n indicates the number of waits.



## (b) When except MCS = 1, PCC2 to PCC0 = 000B ( $T_A = -40$ to +85°C, $V_{DD} = 2.7$ to 6.0 V)

| Parameter                                                                                                    | Symbol        | Test Conditions | MIN.               | MAX.               | Unit |
|--------------------------------------------------------------------------------------------------------------|---------------|-----------------|--------------------|--------------------|------|
| ASTB high-level width                                                                                        | <b>t</b> asth |                 | tcy - 80           |                    | ns   |
| Address setup time                                                                                           | tADS          |                 | tcy - 80           |                    | ns   |
| Address hold time                                                                                            | <b>t</b> adh  |                 | 0.4tcy - 10        |                    | ns   |
| Data input time from address                                                                                 | <b>t</b> ADD1 |                 |                    | (3 + 2n)tcy - 160  | ns   |
|                                                                                                              | tADD2         |                 |                    | (4 + 2n)tcy - 200  | ns   |
| Data input time from $\overline{RD} \downarrow$                                                              | tRDD1         |                 |                    | (1.4 + 2n)tcy - 70 | ns   |
|                                                                                                              | tRDD2         |                 |                    | (2.4 + 2n)tcy - 70 | ns   |
| Read data hold time                                                                                          | <b>t</b> RDH  |                 | 0                  |                    | ns   |
| RD low-level width                                                                                           | tRDL1         |                 | (1.4 + 2n)tcy - 20 |                    | ns   |
|                                                                                                              | tRDL2         |                 | (2.4 + 2n)tcy - 20 |                    | ns   |
| $\overline{\text{WAIT}} \downarrow \text{input time from } \overline{\text{RD}} \downarrow$                  | trdwT1        |                 |                    | tey - 100          | ns   |
|                                                                                                              | trdwt2        |                 |                    | 2tcy - 100         | ns   |
| $\overline{\mathrm{WAIT}} \!\!\downarrow \mathrm{input\ time\ from\ } \overline{\mathrm{WR}} \!\!\downarrow$ | twrwt         |                 |                    | 2tcy - 100         | ns   |
| WAIT low-level width                                                                                         | twtL          |                 | (1 + 2n)tcy        | (2 + 2n)tcy        | ns   |
| Write data setup time                                                                                        | twos          |                 | (2.4 + 2n)tcy - 60 |                    | ns   |
| Write data hold time                                                                                         | twoH          |                 | 20                 |                    | ns   |
| WR low-level width                                                                                           | twrL          |                 | (2.4 + 2n)tcy - 60 |                    | ns   |
| $\overline{RD} \!\!\downarrow delay$ time from $ASTB \!\!\downarrow$                                         | tastrd        |                 | 0.4tcy $-30$       |                    | ns   |
| $\overline{\mathrm{WR}} \!\!\downarrow \mathrm{delay}$ time from ASTB $\!\!\downarrow$                       | tastwr        |                 | 1.4tcy - 30        |                    | ns   |
| ASTB↑ delay time from RD↑ in external fetch                                                                  | trdast        |                 | tcy - 10           | tcy + 20           | ns   |
| Address hold time from RD↑ in external fetch                                                                 | trdadh        |                 | tcy - 50           | tcy + 50           | ns   |
| Write data output time from RD↑                                                                              | trdwd         |                 | 0.4tcy - 20        |                    | ns   |
| Write data output time from $\overline{\mathrm{WR}} \!\!\downarrow$                                          | trdwd         |                 | 0                  | 60                 | ns   |
| Address hold time from WR↑                                                                                   | twradh        |                 | tcy                | tcy + 60           | ns   |
| RD↑ delay time from WAIT↑                                                                                    | twtrd         |                 | 0.6tcy + 180       | 2.6tcy + 180       | ns   |
| WR↑ delay time from WAIT↑                                                                                    | twrwr         |                 | 0.6tcy + 120       | 2.6tcy + 120       | ns   |

Remarks 1. MCS: Oscillation mode selection register (OSMS) bit 0

- 2. PCC2 to PCC0: Processor clock control register (PCC) bits 2 to 0
- **3.** tcy = Tcy/4
- 4. n indicates the number of waits.



## (3) Serial Interface (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 2.7 to 6.0 V)

## (a) Serial interface channel 0

## (i) 3-wire serial I/O mode (SCK0... Internal clock output)

| Parameter                        | Symbol     | Test Conditions                | MIN.          | TYP. | MAX. | Unit |
|----------------------------------|------------|--------------------------------|---------------|------|------|------|
| SCK0 cycle time                  | tkcy1      | V <sub>DD</sub> = 4.5 to 6.0 V | 800           |      |      | ns   |
|                                  |            |                                | 1600          |      |      | ns   |
| SCK0 high/low-level              | tkH1, tkL1 | V <sub>DD</sub> = 4.5 to 6.0 V | tkcy1/2 - 50  |      |      | ns   |
| width                            |            |                                | tkcy1/2 - 100 |      |      | ns   |
| SI0 setup time (to               | tsıĸı      | V <sub>DD</sub> = 4.5 to 6.0 V | 100           |      |      | ns   |
| SCK0↑)                           |            |                                | 150           |      |      | ns   |
| SI0 hold time (from SCK0↑)       | tksii      |                                | 400           |      |      | ns   |
| SO0 output delay time from SCK0↓ | tKSO1      | C = 100 pF Note                |               |      | 300  | ns   |

**Note** C is the load capacitance of the  $\overline{SCK0}$  and SO0 output lines.

## (ii) 3-wire serial I/O mode (SCK0... Internal clock input)

| Parameter                        | Symbol     | Test Conditions                                   | MIN. | TYP. | MAX. | Unit |
|----------------------------------|------------|---------------------------------------------------|------|------|------|------|
| SCK0 cycle time                  | tkcy2      | V <sub>DD</sub> = 4.5 to 6.0 V                    | 800  |      |      | ns   |
|                                  |            |                                                   | 1600 |      |      | ns   |
| SCK0 high/low-level              | tkH2, tkL2 | V <sub>DD</sub> = 4.5 to 6.0 V                    | 400  |      |      | ns   |
| width                            |            |                                                   | 800  |      |      | ns   |
| SI0 setup time (to SCK0↑)        | tsik2      |                                                   | 100  |      |      | ns   |
| SI0 hold time (from SCK0↑)       | tksi2      |                                                   | 400  |      |      | ns   |
| SO0 output delay time from SCK0↓ | tkSO2      | C = 100 pF Note                                   |      |      | 300  | ns   |
| SCK0 rise, fall time             | tr2, tr2   | When using external device expansion function     |      |      | 160  | ns   |
|                                  |            | When not using external device expansion function |      |      | 1000 | ns   |

Note C is the load capacitance of the SO0 output line.

## (iii) SBI mode (SCK0... Internal clock output)

| Parameter                       | Symbol     | Test (                         | Conditions                     | MIN.          | TYP. | MAX. | Unit |
|---------------------------------|------------|--------------------------------|--------------------------------|---------------|------|------|------|
| SCK0 cycle time                 | tксүз      | V <sub>DD</sub> = 4.5 to 6.0 V | ,                              | 800           |      |      | ns   |
|                                 |            |                                |                                | 3200          |      |      | ns   |
| SCK0 high/low-level             | tкнз, tкьз | V <sub>DD</sub> = 4.5 to 6.0 V | ,                              | tксүз/2 — 50  |      |      | ns   |
| width                           |            |                                |                                | tксүз/2 — 150 |      |      | ns   |
| SB0, SB1 setup time             | tsıкз      | V <sub>DD</sub> = 4.5 to 6.0 V | ,                              | 100           |      |      | ns   |
| (to SCK0↑)                      |            |                                |                                | 300           |      |      | ns   |
| SB0, SB1 hold time (from SCK0↑) | tкsіз      |                                |                                | tксүз/2       |      |      | ns   |
| SB0, SB1 output                 | tkso3      | $R = 1 k\Omega$ ,              | V <sub>DD</sub> = 4.5 to 6.0 V | 0             |      | 250  | ns   |
| delay time from SCK0↓           |            | C = 100 pF <sup>Note</sup>     |                                | 0             |      | 1000 | ns   |
| SB0, SB1↓ from SCK0↑            | tksb       |                                |                                | tксүз         |      |      | ns   |
| SCK0↓ from SB0, SB1↓            | tsвк       |                                |                                | tксүз         |      |      | ns   |
| SB0, SB1 high-level width       | tsвн       |                                |                                | tксүз         |      |      | ns   |
| SB0, SB1 low-level width        | tsbl       |                                |                                | tксуз         |      |      | ns   |

Note R and C are the load resistance and load capacitance of the SCK0, SB0, and SB1 output lines.

## (iv) SBI mode (SCK0... External clock input)

| Parameter                       | Symbol     | Test Co                                       | onditions                      | MIN.    | TYP. | MAX. | Unit |
|---------------------------------|------------|-----------------------------------------------|--------------------------------|---------|------|------|------|
| SCK0 cycle time                 | tkcy4      | V <sub>DD</sub> = 4.5 to 6.0 V                |                                | 800     |      |      | ns   |
|                                 |            |                                               |                                | 3200    |      |      | ns   |
| SCK0 high/low-level             | tkH4, tkL4 | V <sub>DD</sub> = 4.5 to 6.0 V                |                                | 400     |      |      | ns   |
| width                           |            |                                               |                                | 1600    |      |      | ns   |
| SB0, SB1 setup time             | tsık4      | V <sub>DD</sub> = 4.5 to 6.0 V                |                                | 100     |      |      | ns   |
| (to SCK0↑)                      |            |                                               |                                | 300     |      |      | ns   |
| SB0, SB1 hold time (from SCK0↑) | tksi4      |                                               |                                | tксү4/2 |      |      | ns   |
| SB0, SB1 output                 | tkso4      | $R = 1 k\Omega$ ,                             | V <sub>DD</sub> = 4.5 to 6.0 V | 0       |      | 300  | ns   |
| delay time from SCK0↓           |            | C = 100 pF <sup>Note</sup>                    |                                | 0       |      | 1000 | ns   |
| SB0, SB1↓ from SCK0↑            | tĸsв       |                                               |                                | tkcy4   |      |      | ns   |
| SCK0↓ from SB0, SB1↓            | tsвк       |                                               |                                | tkcy4   |      |      | ns   |
| SB0, SB1 high-level width       | tsвн       |                                               |                                | tkcy4   |      |      | ns   |
| SB0, SB1 low-level width        | tsbl       |                                               |                                | tkcy4   |      |      | ns   |
| SCK0 rise, fall time            | tr4, tr4   | When using external device expansion function |                                |         |      | 160  | ns   |
|                                 |            | When not using extern function                | nal device expansion           |         |      | 1000 | ns   |

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output lines.



## (v) 2-wire serial I/O mode (SCK0... Internal clock output)

| Parameter                             | Symbol           | Test (                     | Conditions                     | MIN.          | TYP. | MAX. | Unit |
|---------------------------------------|------------------|----------------------------|--------------------------------|---------------|------|------|------|
| SCK0 cycle time                       | tkcy5            | $R = 1 k\Omega$ ,          |                                | 800           |      |      | ns   |
| SCK0 high-level width                 | t <sub>KH5</sub> | C = 100 pF <sup>Note</sup> |                                | tkcy5/2 - 160 |      |      | ns   |
| SCK0 low-level width                  | t <sub>KL5</sub> |                            | V <sub>DD</sub> = 4.5 to 6.0 V | tkcy5/2 - 50  |      |      | ns   |
|                                       |                  |                            |                                | tксү5/2 – 150 |      |      | ns   |
| SB0, SB1 setup time                   | tsik5            |                            | V <sub>DD</sub> = 4.5 to 6.0 V | 300           |      |      | ns   |
| (to SCK0↑)                            |                  |                            |                                | 350           |      |      | ns   |
| SB0, SB1 hold time (from SCK0↑)       | tksi5            |                            |                                | 600           |      |      | ns   |
| SB0, SB1 output delay time from SCK0↓ | tksos            |                            |                                | 0             |      | 300  | ns   |

Note R and C are the load resistance and load capacitance of the SCK0, SB0, and SB1 output lines.

## (vi) 2-wire serial I/O mode (SCK0... External clock input)

| Parameter                       | Symbol           | Test Co                       | onditions                                     | MIN.    | TYP. | MAX. | Unit |
|---------------------------------|------------------|-------------------------------|-----------------------------------------------|---------|------|------|------|
| SCK0 cycle time                 | <b>t</b> ксү6    |                               |                                               | 1600    |      |      | ns   |
| SCK0 high-level width           | <b>t</b> кн6     |                               |                                               | 650     |      |      | ns   |
| SCK0 low-level width            | t <sub>KL6</sub> |                               |                                               | 800     |      |      | ns   |
| SB0, SB1 setup time (to SCK0↑)  | tsik6            |                               |                                               | 100     |      |      | ns   |
| SB0, SB1 hold time (from SCK0↑) | tksi6            |                               |                                               | tксу6/2 |      |      | ns   |
| SB0, SB1 output                 | tkso6            | $R = 1 k\Omega$ ,             | V <sub>DD</sub> = 4.5 to 6.0 V                | 0       |      | 300  | ns   |
| delay time from SCK0↓           |                  | C = 100 pF <sup>Note</sup>    |                                               | 0       |      | 500  | ns   |
| SCK0 rise, fall time            | tre, tre         | When using external function  | When using external device expansion function |         |      | 160  | ns   |
|                                 |                  | When not using exter function | nal device expansion                          |         |      | 1000 | ns   |

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output lines.



#### (b) Serial interface channel 1

## (i) 3-wire serial I/O mode (SCK1...Internal clock output)

| Parameter                        | Symbol        | Test Conditions                | MIN.          | TYP. | MAX. | Unit |
|----------------------------------|---------------|--------------------------------|---------------|------|------|------|
| SCK1 cycle time                  | <b>t</b> ксү7 | V <sub>DD</sub> = 4.5 to 6.0 V | 800           |      |      | ns   |
|                                  |               |                                | 1600          |      |      | ns   |
| SCK1 high/low-level width        | tkH7, tkL7    | V <sub>DD</sub> = 4.5 to 6.0 V | tксүт/2 - 50  |      |      | ns   |
|                                  |               |                                | tксүт/2 - 100 |      |      | ns   |
| SI1 setup time (to SCK11)        | tsık7         | V <sub>DD</sub> = 4.5 to 6.0 V | 100           |      |      | ns   |
|                                  |               |                                | 150           |      |      | ns   |
| SI1 hold time (from SCK1↑)       | tksi7         |                                | 400           |      |      | ns   |
| SO1 output delay time from SCK1↓ | tkso7         | C = 100 pF Note                |               |      | 300  | ns   |

Note C is the load capacitance of the SCK1 and SO1 output line.

## (ii) 3-wire serial I/O mode (SCK1...External clock output)

| Parameter                        | Symbol            | Test Conditions                                   | MIN. | TYP. | MAX. | Unit |
|----------------------------------|-------------------|---------------------------------------------------|------|------|------|------|
| SCK1 cycle time                  | tkcy8             | V <sub>DD</sub> = 4.5 to 6.0 V                    | 800  |      |      | ns   |
|                                  |                   |                                                   | 1600 |      |      | ns   |
| SCK1 high/low-level width        | tkH8, tkL8        | V <sub>DD</sub> = 4.5 to 6.0 V                    | 400  |      |      | ns   |
|                                  |                   |                                                   | 800  |      |      | ns   |
| SI1 setup time (to SCK1↑)        | tsik8             |                                                   | 100  |      |      | ns   |
| SI1 hold time (from SCK1↑)       | t <sub>KSI8</sub> |                                                   | 400  |      |      | ns   |
| SO1 output delay time from SCK1↓ | tkso8             | C = 100 pF Note                                   |      |      | 300  | ns   |
| SCK1 rise, fall time             | trs, trs          | When using external device expansion function     |      |      | 160  | ns   |
|                                  |                   | When not using external device expansion function |      |      | 1000 | ns   |

Note C is the load capacitance of the SO1 output line.



## (iii) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... Internal clock output)

| Parameter                                                | Symbol            | Test Conditions                | MIN.          | TYP. | MAX.          | Unit |
|----------------------------------------------------------|-------------------|--------------------------------|---------------|------|---------------|------|
| SCK1 cycle time                                          | tkcy9             | V <sub>DD</sub> = 4.5 to 6.0 V | 800           |      |               | ns   |
|                                                          |                   |                                | 1600          |      |               | ns   |
| SCK1 high/low-level width                                | tkH9, tkL9        | V <sub>DD</sub> = 4.5 to 6.0 V | tксү9/2 - 50  |      |               | ns   |
|                                                          |                   |                                | tkcy9/2 - 100 |      |               | ns   |
| SI1 setup time (to SCK1↑)                                | tsik9             | V <sub>DD</sub> = 4.5 to 6.0 V | 100           |      |               | ns   |
|                                                          |                   |                                | 150           |      |               | ns   |
| SI1 hold time (from SCK1↑)                               | t <sub>KSI9</sub> |                                | 400           |      |               | ns   |
| SO1 output delay time from SCK1↓                         | tkso9             | C = 100 pF Note                |               |      | 300           | ns   |
| STB↓ from SCK1↑                                          | tsbd              |                                | tксүэ/2 — 100 |      | tксү9/2 + 100 | ns   |
| Strobe signal<br>high-level width                        | tsbw              |                                | tксу9/2 — 30  |      | tксү9/2 + 30  | ns   |
| Busy signal setup time (to busy signal detection timing) | tBYS              |                                | 100           |      |               | ns   |
| Busy signal hold time (from                              | tвүн              | V <sub>DD</sub> = 4.5 to 6.0 V | 100           |      |               | ns   |
| busy signal detection timing)                            |                   |                                | 150           |      |               | ns   |
| SCK1↓ from busy inactive                                 | tsps              |                                |               |      | 2tксү9        | ns   |

Note  $\,$  C is the load capacitance of the  $\overline{\text{SCK1}}$  and SO1 output lines.

# (iv) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... External clock output)

| Parameter                        | Symbol                     | Test Conditions                                   | MIN. | TYP. | MAX. | Unit |
|----------------------------------|----------------------------|---------------------------------------------------|------|------|------|------|
| SCK1 cycle time                  | tkCY10                     | V <sub>DD</sub> = 4.5 to 6.0 V                    | 800  |      |      | ns   |
|                                  |                            |                                                   | 1600 |      |      | ns   |
| SCK1 high/low-level width        | tkH10, tkL10               | V <sub>DD</sub> = 4.5 to 6.0 V                    | 400  |      |      | ns   |
|                                  |                            |                                                   | 800  |      |      | ns   |
| SI1 setup time (to SCK1↑)        | tsik10                     |                                                   | 100  |      |      | ns   |
| SI1 hold time (from SCK1↑)       | tksi10                     |                                                   | 400  |      |      | ns   |
| SO1 output delay time from SCK1↓ | tKSO10                     | C = 100 pF Note                                   |      |      | 300  | ns   |
| SCK1 rise, fall time             | <b>t</b> R10, <b>t</b> F10 | When using external device expansion function     |      |      | 160  | ns   |
|                                  |                            | When not using external device expansion function |      |      | 1000 | ns   |

Note C is the load capacitance of the SO1 output line.



#### ★ (c) Serial interface channel 2

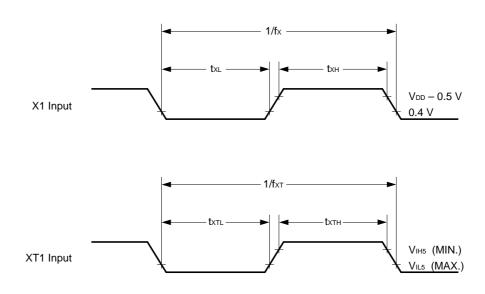
## (i) 3-wire serial I/O mode (SCK2...Internal clock output)

| Parameter                        | Symbol         | Test Conditions                | MIN.           | TYP. | MAX. | Unit |
|----------------------------------|----------------|--------------------------------|----------------|------|------|------|
| SCK2 cycle time                  | <b>t</b> KCY11 | V <sub>DD</sub> = 4.5 to 6.0 V | 800            |      |      | ns   |
|                                  |                |                                | 1600           |      |      | ns   |
| SCK2 high/low-level width        | tkH11, tkL11   | V <sub>DD</sub> = 4.5 to 6.0 V | tксү11/2 - 50  |      |      | ns   |
|                                  |                |                                | tксү11/2 - 100 |      |      | ns   |
| SI2 setup time (to SCK21)        | tsik11         | V <sub>DD</sub> = 4.5 to 6.0 V | 100            |      |      | ns   |
|                                  |                |                                | 150            |      |      | ns   |
| SI2 hold time (from SCK2↑)       | tksi11         |                                | 400            |      |      | ns   |
| SO2 output delay time from SCK1↓ | tKSO11         | C = 100 pF Note                |                |      | 300  | ns   |

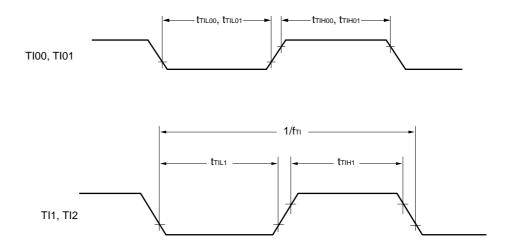
Note C is the load capacitance of the  $\overline{\text{SCK2}}$  and SO2 output lines.

#### (ii) UART mode (Dedicated baud rate generator output)

| Parameter     | Symbol | Test Conditions                | MIN. | TYP. | MAX.  | Unit |
|---------------|--------|--------------------------------|------|------|-------|------|
| Transfer rate |        | V <sub>DD</sub> = 4.5 to 6.0 V |      |      | 78125 | bps  |
|               |        |                                |      |      | 39063 | bps  |


## (iii) UART mode (External clock input)

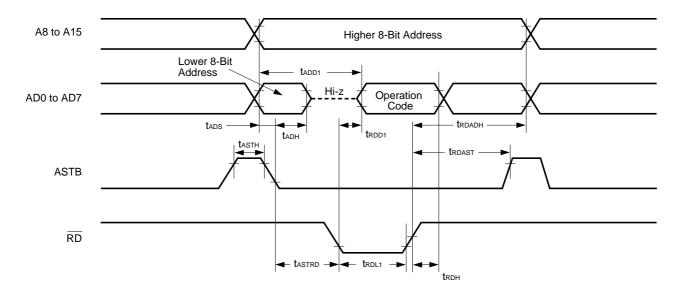
| Parameter                  | Symbol       | Test Conditions                                                                        | MIN. | TYP. | MAX.  | Unit |
|----------------------------|--------------|----------------------------------------------------------------------------------------|------|------|-------|------|
| ASCK cycle time            | tkCY12       | V <sub>DD</sub> = 4.5 to 6.0 V                                                         | 800  |      |       | ns   |
|                            |              |                                                                                        | 1600 |      |       | ns   |
| ASCK high-/low-level width | tkH12, tkL12 | V <sub>DD</sub> = 4.5 to 6.0 V                                                         | 400  |      |       | ns   |
|                            |              |                                                                                        | 800  |      |       | ns   |
| Transfer rate              |              | V <sub>DD</sub> = 4.5 to 6.0 V                                                         |      |      | 39063 | bps  |
|                            |              |                                                                                        |      |      | 19531 | bps  |
| ASCK rise, fall time       | tr12, tr12   | V <sub>DD</sub> = 4.5 to 6.0 V<br>When not using external device<br>expansion function |      |      | 1000  | ns   |
|                            |              |                                                                                        |      |      | 160   | ns   |


## AC Timing Test Point (Excluding X1, XT1 Input)

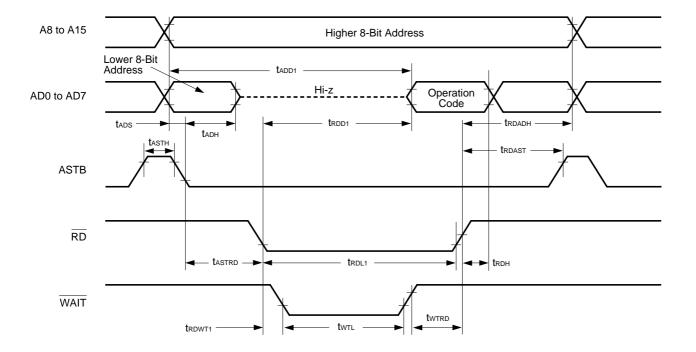


## **Clock Timing**



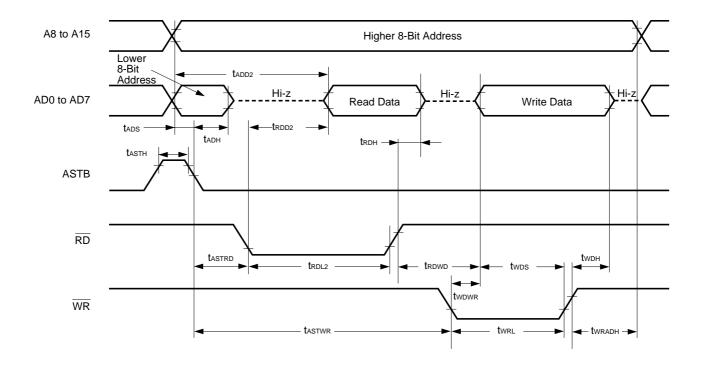

## **TI Timing**



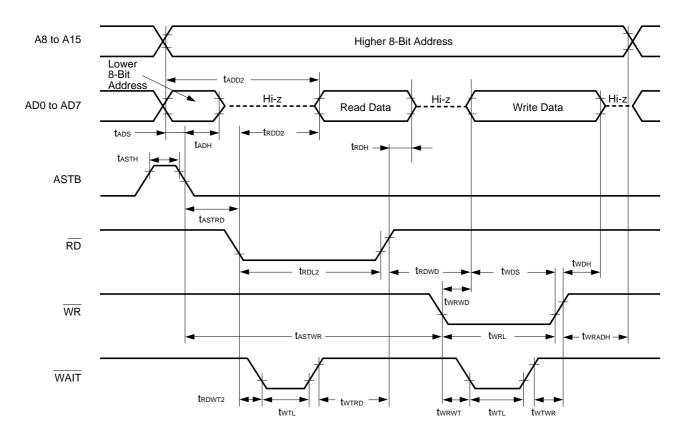



## **Read/Write Operation**

## External Fetch (No Wait):



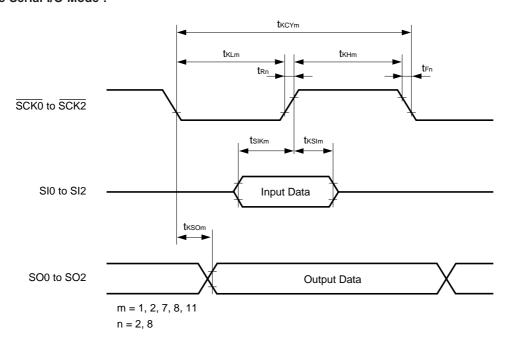

#### **External Fetch (Wait Insertion):**



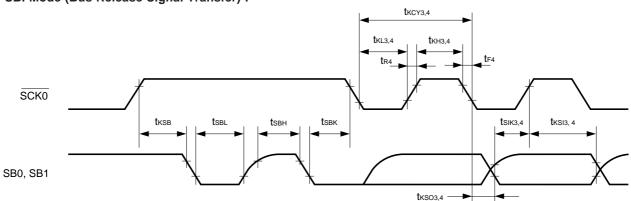



#### External Data Access (No Wait):

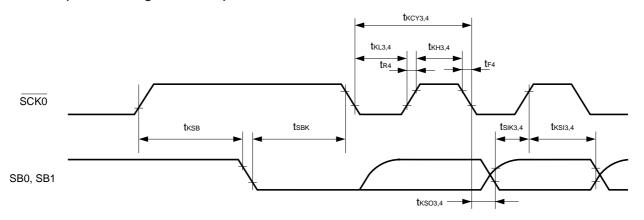



## **External Data Access (Wait Insertion):**

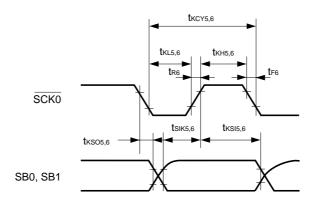




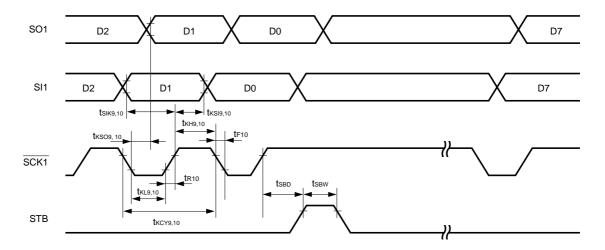

## **Serial Transfer Timing**


## 3-wire Serial I/O Mode:

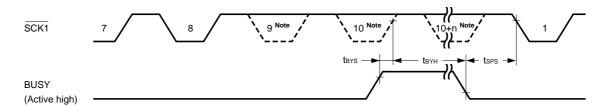



## SBI Mode (Bus Release Signal Transfer) :




## SBI Mode (Command Signal Transfer) :

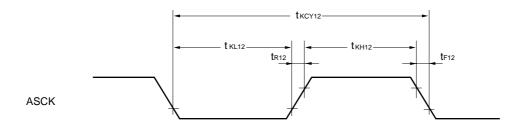



#### 2-wire Serial I/O Mode:



#### 3-wire Serial I/O Mode with Automatic Transmit/Receive Function :




## 3-wire Serial I/O Mode with Automatic Transmit/Receive Function (Busy processing) :



Note The signal is not actually driven low here; it is shown as such to indicate the timing.



#### **UART Mode (External Clock Input):**



A/D Converter Characteristics (TA = -40 to +85°C, AVDD = VDD = 2.7 to 6.0 V, AVss = Vss = 0 V)

| Parameter                          | Symbol             | Test Conditions                               | MIN.   | TYP. | MAX.               | Unit |
|------------------------------------|--------------------|-----------------------------------------------|--------|------|--------------------|------|
| Resolution                         |                    |                                               | 8      | 8    | 8                  | bit  |
| Overall error Note                 |                    | 2.7 V ≤ AV <sub>REF0</sub> ≤ AV <sub>DD</sub> |        |      | ±0.6               | %    |
| Conversion time                    | tconv              |                                               | 19.1   |      | 200                | μs   |
| Sampling time                      | <b>t</b> SAMP      |                                               | 12/fxx |      |                    | μs   |
| Analog input voltage               | VIAN               |                                               | AVss   |      | AV <sub>REF0</sub> | ٧    |
| Reference voltage                  | AV <sub>REF0</sub> |                                               | 2.7    |      | AV <sub>DD</sub>   | ٧    |
| Resistance between AVREFO and AVss | Rairef0            |                                               | 4      | 14   |                    | kΩ   |

Note Overroll error excluding quantization error ( $\pm 1/2$  LSB). It is indicated as a ratio to the full-scale value.

Caution For pins that also function as port pins (refer to 3.1 Port Pins), do not perform the following operations during A/D conversion. If these operations are performed, the total error ratings cannot be kept (except for LCD segment output alternate-function pin).

- (1) Rewrite the output latch while the pin is used as a port pin.
- (2) Change the output level of the pin used as an output pin, even if it is not used as a port pin.

Remarks 1. fxx: Main system clock frequency (fx or fx/2)

2. fx: Main system clock oscillation frequency

D/A Converter Characteristics (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 2.7 to 6.0 V, AVss = Vss = 0 V)

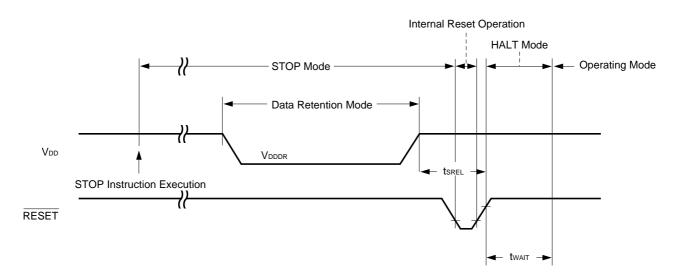
| Parameter                          | Symbol             | Tes                        | st Conditions                      | MIN. | TYP. | MAX.            | Unit |
|------------------------------------|--------------------|----------------------------|------------------------------------|------|------|-----------------|------|
| Resolution                         |                    |                            |                                    |      |      | 8               | bit  |
| Overall error                      |                    | R = 2 MΩ <sup>Note 1</sup> |                                    |      |      | 1.2             | %    |
|                                    |                    | $R = 4 M\Omega^{Note 1}$   |                                    |      |      | 0.8             | %    |
|                                    |                    | R = 10 MΩ <sup>Note</sup>  | 1                                  |      |      | 0.6             | %    |
| Settling time                      |                    | C = 30 pF Note 1           | 4.5 V ≤ AV <sub>REF1</sub> ≤ 6.0 V |      |      | 10              | μs   |
|                                    |                    |                            | 2.7 V ≤ AV <sub>REF1</sub> < 4.5 V |      |      | 15              | μs   |
| Output resistance                  | Ro                 | Note 2                     |                                    |      | 10   |                 | kΩ   |
| Analog reference voltage           | AV <sub>REF1</sub> |                            |                                    | 2.0  |      | V <sub>DD</sub> | V    |
| Resistance between AVREF1 and AVSS | Rairef1            | DACSO, DACS                | S1 = 55H <sup>Note 2</sup>         | 4    | 8    |                 | kΩ   |

Notes 1. R and C denote the D/A converter output pin load resistance and load capacitance, respectively.

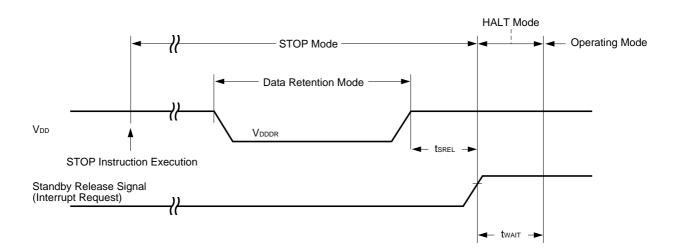
2. Value for 1 D/A converter channel

Remark DACS0, DACS1: D/A conversion value setting register 0, 1

#### Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = -40 to +85°C)


| Parameter                           | Symbol | Test Conditions                                                        | MIN. | TYP.   | MAX. | Unit |
|-------------------------------------|--------|------------------------------------------------------------------------|------|--------|------|------|
| Data retention power supply voltage | VDDDR  |                                                                        | 1.8  |        | 6.0  | V    |
| Data retention power supply current | Idddr  | VDDDR = 1.8 V Subsystem clock stop and feed-back resister disconnected |      | 0.1    | 10   | μΑ   |
| Release signal set time             | tsrel  |                                                                        | 0    |        |      | μs   |
| Oscillation stabilization wait time | twait  | Release by RESET                                                       |      | 217/fx |      | ms   |
|                                     |        | Release by interrupt request                                           |      | Note   |      | ms   |

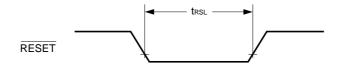
**Note** In combination with bits 0 to 2 (OSTS0 to OSTS2) of oscillation stabilization time select register, selection of  $2^{12}/fxx$  and  $2^{14}/fxx$  to  $2^{17}/fxx$  is possible.


 $\textbf{Remark} \hspace{0.2cm} \textbf{fxx: Main system clock frequency (fx or fx/2)}$ 

fx: Main system clock oscillatior frequency

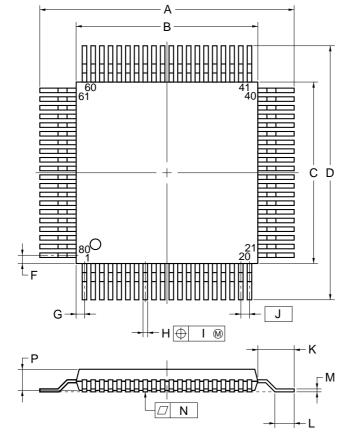
#### Data Retention Timing (STOP Mode Release by RESET)



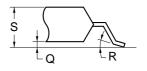

## Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Request Signal)



## **Interrupt Request Input Timing**




# **RESET** Input Timing




## 12. PACKAGE DRAWINGS

# 80 PIN PLASTIC QFP (14x14)



detail of lead end



#### NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

| ITEM | MILLIMETERS                    | INCHES                    |
|------|--------------------------------|---------------------------|
| Α    | 17.2±0.4                       | 0.677±0.016               |
| В    | 14.0±0.2                       | $0.551^{+0.009}_{-0.008}$ |
| С    | 14.0±0.2                       | $0.551^{+0.009}_{-0.008}$ |
| D    | 17.2±0.4                       | 0.677±0.016               |
| F    | 0.825                          | 0.032                     |
| G    | 0.825                          | 0.032                     |
| Н    | 0.30±0.10                      | $0.012^{+0.004}_{-0.005}$ |
| 1    | 0.13                           | 0.005                     |
| J    | 0.65 (T.P.)                    | 0.026 (T.P.)              |
| K    | 1.6±0.2                        | 0.063±0.008               |
| L    | 0.8±0.2                        | $0.031^{+0.009}_{-0.008}$ |
| М    | 0.15 <sup>+0.10</sup><br>-0.05 | $0.006^{+0.004}_{-0.003}$ |
| N    | 0.10                           | 0.004                     |
| Р    | 2.7±0.1                        | $0.106^{+0.005}_{-0.004}$ |
| Q    | 0.1±0.1                        | 0.004±0.004               |
| R    | 5°±5°                          | 5°±5°                     |
| S    | 3.0 MAX.                       | 0.119 MAX.                |
|      |                                |                           |

S80GC-65-3B9-5

Remark Dimensions and materials of ES product are the same as those of mass-production products.

#### 13. RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the conditions recommended in the table below.

For detail of recommended soldering conditions, refer to the information document **Semiconductor Device Mounting Technology Manual (C10535E).** 

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 13-1. Surface Mounting Type Soldering Conditions

 $\mu$ PD78058FGC(A)-xxx-3B9 : 80-pin Plastic QFP (14 x 14 mm)

| Soldering<br>Method | Soldering Conditions                                                                                                                                    | Recommended<br>Condition Symbol |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Infrared reflow     | Package peak temperature: 235°C, Duration: 30 sec. max. (at 210°C or above), Number of times: Three times max.                                          | IR35-00-3                       |
| VPS                 | Package peak temperature: 215°C, Duration: 40 sec. max. (at 200°C or above), Number of times: Three times max.                                          | VP15-00-3                       |
| Wave soldering      | Solder bath temperature : 260°C max., Duration : 10 sec. max., Number of times: once, Preheating temperature : 120°C max. (package surface temperature) | WS60-00-1                       |
| Partial heating     | Pin temperature: 300°C max. Duration: 3 sec. max. (per pin row)                                                                                         | _                               |

Caution Use of more than one soldering method should be avoided (except in the case of partial heating).



#### APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the  $\mu PD78058F(A)$ .

## **Language Processing Software**

| RA78K/0 <sup>Notes 1, 2, 3, 4</sup> | Assembler package common to the 78K/0 Series              |
|-------------------------------------|-----------------------------------------------------------|
| CC78K/0Notes 1, 2, 3, 4             | C compiler package common to the 78K/0 Series             |
| DF78054Notes 1, 2, 3, 4             | Device file common to the $\mu$ PD78054 Subseries         |
| CC78K/0-LNotes 1, 2, 3, 4           | C compiler library source file common to the 78K/0 Series |

#### **PROM Writing Tools**

| PG-1500                      | PROM programmer                          |
|------------------------------|------------------------------------------|
| PA-78P054GC                  | Programmer adapters connected to PG-1500 |
| PG-1500 controllerNotes 1, 2 | PG-1500 control program                  |

#### Notes 1. PC-9800 series based

- 2. IBM PC/AT™ and compatibles based
- **3.** HP9000 series 700<sup>™</sup> based, SPARCstation<sup>™</sup> based
- 4. NEWS™ based

Remark The RA78K/0 and CC78K/0 are used in combination with the DF78054.



#### **★ Debugging Tools**

## (1) In-circuit Emulators (when IE-78K0-NS is used)

| IE-78K0-NS <sup>Note 5</sup>       | In-circuit emulator common to 78K/0 Series                                              |
|------------------------------------|-----------------------------------------------------------------------------------------|
| IE-70000-MC-PS-B                   | Power supply unit for IE-78K0-NS                                                        |
| IE-70000-98-IF-CNote 5             | Interface adapter when PC-9800 series (except for notebooks) is used as host machine.   |
| IE-70000-CD-IF <sup>Note 5</sup>   | Interface adapter and cable when PC-9800 series notebook is used as host machine.       |
| IE-70000-PC-IF-O <sup>Note 5</sup> | Interface adapter when IBM PC/AT or compatibles is used as host machine.                |
| IE-780308-NS-EM1 <sup>Note 5</sup> | Emulation board to emulate μPD780308 Subseries                                          |
| NP-80GC                            | Emulation probe for 80-pin plastic QFP (GC-3B9 type)                                    |
| EV-9200GC-64                       | Socket for mounting on target system board created for 80-pin plastic QFP (GC-3B9 type) |
| ID78K0-NS <sup>Notes 2, 3, 5</sup> | Integrated debugger for IE-78K0-NS                                                      |
| SM78K0 <sup>Notes 2, 3</sup>       | System simulator common to 78K/0 Series                                                 |
| DF78054Notes 1, 2, 3, 4            | Device file for μPD78054 Subseries                                                      |

#### (2) In-circuit Emulators (when IE-78001-R-A is used)

| IE-78001-R-A <sup>Note 5</sup>                         | In-circuit emulator common to 78K/0 Series                                                     |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------|
| IE-70000-98-IF-B<br>IE-70000-98-IF-C <sup>Note 5</sup> | Interface adapter when PC-9800 series (except for notebooks) is used as host machine.          |
| IE-70000-PC-IF-B<br>IE-70000-PC-IF-C <sup>Note 5</sup> | Interface adapter when IBM PC/AT or its compatibles is used as host machine.                   |
| IE-78000-R-SV3                                         | Interface adapter and cable when EWS is used as host machine.                                  |
| IE-780308-NS-EM1Note 5                                 | Emulation board common to μPD780308 Subseries                                                  |
| IE-78K0-R-EX1Note 5                                    | Emulation probe conversion board that is necessary when using IE-780308-NS-EM1 on IE-78001-R-A |
| EP-78230GC-R                                           | Emulation probe for 80-pin plastic QFP (GC-3B9 type)                                           |
| EV-9200GC-80                                           | Socket for mounting on target system board created for 80-pin plastic QFP (GC-3B9 type)        |
| ID78K0Notes 1, 2, 3, 4                                 | Integrated debugger for IE-78001-R-A                                                           |
| SM78K0 <sup>Notes 2, 3</sup>                           | System simulator common to 78K/0 Series                                                        |
| DF78054Notes 1, 2, 3, 4                                | Device file for μPD78054 Subseries                                                             |

#### Notes 1. HP9000 series 700 based, SPARCstation based

- 2. PC-9800 series based
- 3. IBM PC/AT and compatibles based
- **4.** NEWS<sup>™</sup> based
- 5. Under development

Remarks 1. The ID78K0-NS, ID78K0, and SM78K0 are used in combination with the DF78054.

2. The NP-80GC is a product of Naito Densei Machida Seisakusho Co., Ltd. (044-822-3813). Contact an NEC sales representative about purchasing.

#### **Real-Time OS**

| RX78K/0 <sup>Notes 1, 2, 3, 4</sup> | Real-time OS for the 78K/0 Series |
|-------------------------------------|-----------------------------------|
| MX78K/0 <sup>Notes 1, 2, 3, 4</sup> | Real-time OS for the 78K/0 Series |

#### Notes 1. PC-9800 series based

- 2. IBM PC/AT™ and its compatibles based
- 3. NEWS based
- 4. HP9000 series  $700^{\text{TM}}$  based, SPARCstation  $^{\text{TM}}$  based

Remarks 1. For third party development tools, see the 78K/0 Series Selection Guide (U11126E).

2. The RX78K/0 is used in combination with the DF78054.

**μPD78058F(A)** 



#### APPENDIX B. RELATED DOCUMENTS

#### **Device Related Documents**

| Document Name                              | Document No.<br>(English) | Document No.<br>(Japanese) |
|--------------------------------------------|---------------------------|----------------------------|
| μPD78058F, 78058FY Subseries User's Manual | U12068E                   | U12068J                    |
| μPD78058F(A) Data Sheet                    | This document             | U12325J                    |
| μPD78P058F Data Sheet                      | U11796E                   | U11796J                    |
| 78K/0 Series User's Manual – Instructions  | U12326E                   | U12326J                    |
| 78K/0 Series Instruction Set               | _                         | U10904J                    |
| 78K/0 Series Instruction Table             | _                         | U10903J                    |
| 78K/0 Series Application Note Basics (III) | U10182E                   | U10182J                    |

Caution The above related documents are subject to change without notice. For design purposes, etc., be sure to use the latest documents.



## **Development Tool Related Documents (User's Manual)**

| Document Nam                               | ne                                               | Document No.<br>(English) | Document<br>(Japanes |
|--------------------------------------------|--------------------------------------------------|---------------------------|----------------------|
| RA78K Series Assembler Package             | Operation                                        | EEU-1399                  | EEU-809              |
|                                            | Language                                         | EEU-1404                  | EEU-81               |
| RA78K Series Structured Assembler Preproce | essor                                            | EEU-1402                  | U12323               |
| RA78K0 Assembler Package                   | Operation                                        | U11802E                   | U11802               |
|                                            | Assembly language                                | U11801E                   | U11801               |
|                                            | Structured assembly language                     | U11789E                   | U11789               |
| CC78K Series C Compiler                    | Operation                                        | EEU-1280                  | EEU-65               |
|                                            | Language                                         | EEU-1284                  | EEU-65               |
| CC78K/0 C Compiler                         | Operation                                        | U11517E                   | U11517               |
|                                            | Language                                         | U11518E                   | U11518               |
| CC78K/0 C Compiler Application Note        | Programming know-how                             | EEA-1208                  | EEA-618              |
| CC78K Series Library Source File           |                                                  | _                         | U12322               |
| PG-1500 PROM Programmer                    | EEU-1335                                         | U11940                    |                      |
| PG-1500 Controller PC-9800 Series (MS-DOS  | s) based                                         | EEU-1291                  | EEU-704              |
| PG-1500 Controller IBM PC series (PC DOS)  | based                                            | U10540E                   | EEU-500              |
| IE-78K0-NS                                 |                                                  | To be prepared            | To be prepa          |
| IE-78001-R-A                               |                                                  | To be prepared            | To be prepa          |
| IE-780308-NS-EM1                           |                                                  | To be prepared            | To be prepa          |
| EP-78230                                   |                                                  | EEU-1515                  | EEU-98               |
| SM78K0 System Simulator, Windows™ based    | Reference                                        | U10181E                   | U10181               |
| SM78K Series System Simulator              | External parts user open interface specification | U10092E                   | U10092               |
| ID78K0-NS Integrated Debugger              |                                                  | Under preparation         | To be prepa          |
| ID78K0 Integrated Debugger, EWS based      | Reference                                        | _                         | U11151               |
| ID78K0 Integrated Debugger, PC based       | Reference                                        | U11539E                   | U11539.              |
| ID78K0 Integrated Debugger, Windows based  | Guide                                            | U11649E                   | U11649.              |

Caution The above related documents are subject to change without notice. For design purposes, etc., be sure to use the latest documents.



## **Embedded Software Documents (User's Manual)**

| Document Name             |              | Document No.<br>(English) | Document No.<br>(Japanese) |  |
|---------------------------|--------------|---------------------------|----------------------------|--|
| 78K/0 Series Real-time OS | Basics       | U11537E                   | U11537J                    |  |
|                           | Installation | U11536E                   | U11536J                    |  |
| 78K/0 Series OS MX78K0    | Basics       | U12257E                   | U12257J                    |  |

#### **Other Documents**

|   | Document Name                                                                      | Document No.<br>(English) | Document No.<br>(Japanese) |
|---|------------------------------------------------------------------------------------|---------------------------|----------------------------|
|   | IC Package Manual                                                                  | C10943X                   |                            |
|   | Semiconductor Device Mounting Technology Manual                                    | C10535E                   | C10535J                    |
|   | Quality Grades on NEC Semiconductor Devices                                        | C11531E                   | C11531J                    |
|   | NEC Semiconductor Device Reliability/Quality Control System                        | C10983E                   | C10983J                    |
| * | Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD) | C11892E                   | C11892J                    |
|   | Guide to Quality Assurance for Semiconductor Devices                               | MEI-1202                  | C11893J                    |
|   | Microcontroller Related Product Guide — Third Party                                | _                         | C11416J                    |

Caution The above related documents are subject to change without notice. For design purpose, etc., be sure to use the latest documents.

[MEMO]

## NOTES FOR CMOS DEVICES-

## (1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

## (2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

## (3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

# **Regional Information**

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

#### **NEC Electronics Inc. (U.S.)**

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

#### **NEC Electronics (Germany) GmbH**

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

#### **NEC Electronics (UK) Ltd.**

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

#### NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

#### **NEC Electronics (Germany) GmbH**

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

#### **NEC Electronics (France) S.A.**

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

#### **NEC Electronics (France) S.A.**

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

#### **NEC Electronics (Germany) GmbH**

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

#### **NEC Electronics Hong Kong Ltd.**

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

#### **NEC Electronics Hong Kong Ltd.**

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

#### **NEC Electronics Singapore Pte. Ltd.**

United Square, Singapore 1130 Tel: 253-8311

Fax: 250-3583

#### **NEC Electronics Taiwan Ltd.**

Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

#### **NEC do Brasil S.A.**

Cumbica-Guarulhos-SP, Brasil Tel: 011-6465-6810

Fax: 011-6465-6829

J97. 8

FIP and IEBus are trademarks of NEC Corporation.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT, and PC DOS are trademarks of International Business Machines Corporation.

HP9000 series is a trademark of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

NEWS is a trademark of Sony Corporation.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.