8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD780204, 780205, 780206, and 780208 microcontrollers are the products of μ PD780208 subseries in $78 \mathrm{~K} / 0$ series, and incorporate many hardware peripherals such as an FIP ${ }^{T M}$ controller/driver, 8-bit resolution A/D converter, timer, serial interface, and interrupt controller.

In addition to these standard mask ROM models, one-time PROM models that can operate in the same voltage range, EPROM models μ PD78P0208, and various development tools are available.

The functions of these microcontrollers are described in detail in the following User's Manual. Be sure to read this manual when you design a system using any of these microcontrollers.
μ PD780208 Subseries User's Manual: U11302E
78K/0 Series User's Manual - Instruction: IEU-1372

FEATURES

- High-capacity ROM and RAM

\qquad Item Product Name	Program Memory (ROM)	Data Memory				Package
		Internal high-speed RAM	Buffer RAM	FIP display RAM	Internal expansion RAM	
μ PD780204	32 K bytes	1024 bytes	64 bytes	80 bytes	Not provided	100-pin plastic QFP
μ PD780205	40 K bytes					$(14 \times 20 \mathrm{~mm})$
$\mu \mathrm{PD} 780206$	48 K bytes				1024 bytes	
$\mu \mathrm{PD} 780208$	60 K bytes					

- Wide range of instruction execution time
- from high-speed $(0.4 \mu \mathrm{~s})$ to ultra low-speed (122 $\mu \mathrm{s}$)
- I/O ports: 74
- FIP controller/driver: total display outputs: 53
- 8-bit resolution A/D converter: 8 channels
- Serial interface: 2 channels
- Timer: 5 channels
- Power supply voltage: VDD $=2.7$ to 5.5 V

APPLICATIONS

Minicomponent stereo, cassette deck, tuner, CD player, VCR.

ORDERING INFORMATION

	Part Number	Package
	$\mu \mathrm{PD} 780204 \mathrm{GF}-\times \times \times-3 \mathrm{BA}$	100-pin plastic QFP ($14 \times 20 \mathrm{~mm}$)
	$\mu \mathrm{PD} 780205 \mathrm{GF}-\times \times \times-3 \mathrm{BA}$	100-pin plastic QFP ($14 \times 20 \mathrm{~mm}$)
\star	$\mu \mathrm{PD} 780206 \mathrm{GF}-\times \times \times-3 \mathrm{BA}$	100-pin plastic QFP ($14 \times 20 \mathrm{~mm}$)
\star	μ PD780208GF-×××-3BA	100-pin plastic QFP $(14 \times 20 \mathrm{~mm})$

Remark " $x x x$ " indicates ROM code number.
The information in this document is subject to change without notice.

78K/0 SERIES PRODUCT DEVELOPMENT

The following shows the $78 \mathrm{~K} / 0$ Series products development. Subseries name are shown inside frames.

Note Under planning

The following lists the main functional differences between subseries products.

Subseries Name Function		ROM Capacity	Timer				$\begin{aligned} & \text { 8-bit } \\ & \text { A/D } \end{aligned}$	$\begin{gathered} \text { 10-bit } \\ \text { A/D } \end{gathered}$	$\begin{aligned} & \hline \text { 8-bit } \\ & \text { D/A } \end{aligned}$	Serial Interface	1/0	Vdo MIN Value	External Expansion	
		8-bit	16-bit	Watch	WDT									
Control	$\mu \mathrm{PD} 78075 \mathrm{~B}$		32 K - 40K	4ch	1ch	1ch	1ch	8ch	-	2ch	3ch (UART : 1ch)	88	1.8 V	\bigcirc
	μ PD78078	48 K - 60 K												
	μ PD78070A	-	61									2.7 V		
	μ PD780018	48 K - 60 K	-							2ch (time division 3-wire: 1ch)	88			
	μ PD780058	$24 \mathrm{~K}-60 \mathrm{~K}$	2ch	2ch						3ch (time division UART: 1ch)	68	1.8 V		
	$\mu \mathrm{PD} 78058 \mathrm{~F}$	$48 \mathrm{~K}-60 \mathrm{~K}$								3ch (UART: 1ch)	69	2.7 V		
	μ PD78054	$16 \mathrm{~K}-60 \mathrm{~K}$										2.0 V		
	μ PD780034	$8 \mathrm{~K}-32 \mathrm{~K}$		-				8ch	-	3ch (UART: 1ch, time division 3-wire: 1ch)	51	1.8 V		
	μ PD780024			8 ch				-						
	μ PD78014H									2ch	53			
	μ PD78018F	$8 \mathrm{~K}-60 \mathrm{~K}$												
	μ PD78014	$8 \mathrm{~K}-32 \mathrm{~K}$										2.7 V		
	μ PD780001	8 K		-	-					1ch	39		-	
	μ PD78002	$8 \mathrm{~K}-16 \mathrm{~K}$			1ch	-					53		\bigcirc	
	μ PD78083				-	8ch				1ch (UART: 1ch)	33	1.8 V	-	
Inverter	μ PD780964	$8 \mathrm{~K}-32 \mathrm{~K}$	3ch	Note	-	1ch	-	8ch	-	2c (UART: 2ch)	47	2.7 V	\bigcirc	
control	μ PD780924						8ch	-						
FIP	μ PD780208	$32 \mathrm{~K}-60 \mathrm{~K}$	2 ch	1 ch	1 ch	1 ch	8 ch	-	-	2 ch	74	2.7 V	-	
drive	μ PD780228	$48 \mathrm{~K}-60 \mathrm{~K}$	3ch	-	-					1ch	72	4.5 V		
	$\mu \mathrm{PD} 78044 \mathrm{H}$	$32 \mathrm{~K}-48 \mathrm{~K}$	2ch	1ch	1ch						68	2.7 V		
	$\mu \mathrm{PD} 78044 \mathrm{~F}$	$16 \mathrm{~K}-40 \mathrm{~K}$								2ch				
LCD drive	μ PD780308	$48 \mathrm{~K}-60 \mathrm{~K}$	2 ch	1 ch	1 ch	1 ch	8 ch	-	-	3 ch (time division UART: 1ch)	57	1.8 V	-	
	μ PD78064B	32 K								2 ch (UART : 1 ch)		2.0 V		
	μ PD78064	$16 \mathrm{~K}-32 \mathrm{~K}$												
IEBus supported	μ PD78098	$32 \mathrm{~K}-60 \mathrm{~K}$	2 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART : 1 ch)	69	2.7 V	\bigcirc	
LV	μ PD78P0914	32 K	6 ch	-	-	1 ch	8 ch	-	-	2 ch	54	4.5 V	\bigcirc	

Note 10-bit timer: 1 channel

FUNCTIONAL OUTLINE

Product Name Item		$\mu \mathrm{PD} 780204$	$\mu \mathrm{PD} 780205$	$\mu \mathrm{PD} 780206$	$\mu \mathrm{PD} 780208$
Internal memory	ROM	32 K bytes	40 K bytes	48 K bytes	60 K bytes
	High-speed RAM	1024 bytes			
	Buffer RAM	64 bytes			
	FIP display RAM	80 bytes			
	Expansion RAM	Not provided		1024 bytes	
General-purpose registers		8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)			
Instruction cycle		Variable instruction execution time			
	w/main system clock	$0.4 \mu \mathrm{~s} / 0.8 \mu \mathrm{~s} / 1.6 \mu \mathrm{~s} / 3.2 \mu \mathrm{~s} / 6.4 \mu \mathrm{~s}$ (at 5.0 MHz)			
	w/subsystem clock	$122 \mu \mathrm{~s}$ (at 32.768 kHz)			
Instruction set		- Multiplecation/division (8 bits $\times 8$ bits, 16 bits $\div 8$ bits) - Bit operation (set, reset, test, Boolean algebra)			
I/O ports (including those multiplexed with FIP pins)		- CMOS input $: 2$ lines - CMOS I/O $: 27$ lines - N-ch open-drain I/O $: 5$ lines - P-ch open-drain I/O $: 24$ lines - P-ch open-drain output $: 16$ lines			
FIP controller/driver		Total $: 53$ lines - Segment $: 9$ to 40 lines - Digit $: 2$ to 16 lines			
A/D converter		- 8-bit resolution $\times 8$ channels - Supply voltage : AV DD $=4.0$ to 5.5 V			
Serial interface		- 3-wire serial I/O/SBI/2-wire serial I/O mode selectable - 3-wire serial I/O mode (w/automatic transfer/receive function of up to 64 bytes): 1 channel			
Timer		- 16 -bit timer/event counter $: 1$ channel - 8 -bit timer/event counter $: 2$ channels - Watch timer $: 1$ channel - Watchdog timer $: 1$ channel			
Timer output		3 lines (one for 14-bit PWM output)			
Clock output		$19.5 \mathrm{kHz}, 39.1 \mathrm{kHz}, 78.1 \mathrm{kHz}, 156 \mathrm{kHz}, 313 \mathrm{kHz}, 625 \mathrm{kHz}$ (main system clock: at 5.0 MHz) 32.768 kHz (subsystem clock: at 32.768 kHz)			
Buzzer output		$1.2 \mathrm{kHz}, 2.4 \mathrm{kHz}, 4.9 \mathrm{kHz} \quad$: (main system clock: at 5.0 MHz)			

Product Name Item		μ PD780204	$\mu \mathrm{PD} 780205$	$\mu \mathrm{PD} 780206$	$\mu \mathrm{PD} 780208$
Vectored interrupt sources	Maskable	Internal: 9, external: 4			
	Non-maskable	Internal: 1			
	Software	1			
Test input		Internal: 1 line			
Supply voltage		$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V			
Package		100-pin plastic QFP ($14 \times 20 \mathrm{~mm}$)			

CONTENTS

1. PIN CONFIGURATION (Top View) 7
2. BLOCK DIAGRAM 9
3. PIN FUNCTIONS 10
3.1 PORT PINS 10
3.2 PINS OTHER THAN PORT PINS 12
3.3 PIN I/O CIRCUITS AND PROCESSING OF UNUSED PINS 14
4. MEMORY SPACE 17
5. PERIPHERAL HARDWARE FUNCTIONS 18
5.1 PORTS 18
5.2 CLOCK GENERATOR CIRCUIT 19
5.3 TIMER/EVENT COUNTER 19
5.4 CLOCK OUTPUT CONTROL CIRCUIT 22
5.5 BUZZER OUTPUT CONTROL CIRCUIT 22
5.6 A/D CONVERTER 23
5.7 SERIAL INTERFACE 23
5.8 FIP CONTROLLER/DRIVER 25
6. INTERRUPT FUNCTION AND TEST FUNCTION 27
6.1 INTERRUPT FUNCTION 27
6.2 TEST FUNCTION 30
7. STANDBY FUNCTION 31
8. RESET FUNCTION 31
9. INSTRUCTION SET 32
10. ELECTRICAL SPECIFICATIONS 35
11. CHARACTERISTIC CURVE (REFERENCE VALUE) 58
12. PACKAGE DRAWING 68
13. RECOMMENDED SOLDERING CONDITIONS 69
APPENDIX A. DEVELOPMENT TOOLS 70
APPENDIX B. RELATED DOCUMENTS 72

1. PIN CONFIGURATION (Top View)

100-Pin Plastic QFP ($14 \times 20 \mathrm{~mm}$)
μ PD780204GF - $x \times x-3 B A$
μ PD780205GF $-x \times x-3 B A$
μ PD780206GF - $x \times x-3 B A$
μ PD780208GF - $X X \times$ - 3BA

Cautions 1. Connect the IC (Internally Connected) pins directly to the Vss.
2. Connect the AVdd pin to the Vdd pin.
3. Connect the AVss pin to the Vss pin.

P00-P04	: Port0
P10-P17	: Port1
P20-P27	: Port2
P30-P37	: Port3
P70-P74	: Port7
P80-P87	: Port8
P90-P97	: Port9
P100-P107	: Port10
P110-P117	: Port11
P120-P127	: Port12
INTP0-INTP3 :	Interrupt from Peripherals
TI0-TI2	: Timer Input
TO0-TO2	: Timer Output
SB0, SB1	: Serial Bus
SI0, SI1	: Serial Input
SO0, SO1	: Serial Output

$\overline{\text { SCK0 }}, \overline{\text { SCK1 }}$: Serial Clock
PCL	: Programmable Clock
BUZ	: Buzzer Clock
STB	: Strobe
BUSY	: Busy
FIP0-FIP52	: Fluorescent Indicator Panel
VLOAD	: Negative Power Supply
X1, X2	: Crystal (Main System Clock)
XT1, XT2	: Crystal (Subsystem Clock)
$\overline{\text { RESET }}$: Reset
ANIO-ANI7	: Analog Input
AVDD	: Analog Power Supply
AVSS	: Analog Ground
AVREF	: Analog Reference Voltage
VDD	: Power Supply
VSS	: Ground
IC	: Internally Connected

2. BLOCK DIAGRAM

Remark The capacities of the internal ROM and RAM differ depending on the product.

3. PIN FUNCTIONS

3.1 PORT PINS (1/2)

Notes 1. When the P04/XT1 pins is used as an input port pin, bit 6 (FRC) of the porcessor clock control register (PCC) must be set to 1. (At this time, do not use the feedback resistor of the subsystem clock oscillator circuit.)
2. When the P10/ANI0 through P17/ANI7 pins are used as the analog input lines of the A/D converter, be sure to place the port 1 in the input mode. In this case, the on-chip pull-up resistors are automaticaly unused.

3.1 PORT PINS (2/2)

Pin Name	I/O	Function	On Reset	Shared by:
P70-P74	I/O	Port 7 5-bit N-ch open-drain I/O port Can be specified for input or output in 1-bit units. Can directly drive LEDs. A pull-up resistor can be connected in 1-bit units by mask option.	Input	-
P80-P87	Output	Port 8 8-bit P-ch open-drain high-voltage output port Can directly drive LEDs. A pull-down resistor can be connected in 1-bit units by mask option (whether Vload or Vss is connected can be specified in 4-bit units).	Output	FIP13-FIP20
P90-P97	Output	Port 9 8-bit P-ch open-drain high-voltage output port Can directly drive LEDs. A pull-down resistor can be connected in 1-bit units by mask option (whether Vload or Vss is connected can be specified in 4-bit units).	Output	FIP21-FIP28
P100-P107	I/O	Port 10 8-bit P-ch open-drain high-voltage output port Can be specified for input or output in bit units. Can directly drive LEDs. A pull-down resistor can be connected in 1-bit units by mask option (whether Vload or Vss is connected can be specified in 4-bit units).	Input	FIP29-FIP36
P110-P117	I/O	Port 11 8-bit P-ch open-drain high-voltage I/O port Can be specified for input or output in 1-bit units. Can directly drive LEDs. A pull-down resistor can be conneced in 1-bit units by mask option (whether Vload or Vss is connected can be specified in 4-bit units).	Input	FIP37-FIP44
P120-P127	I/O	Port12 8-bit P-ch open-drain high-voltage I/O port. Can be specified for input or output in 1-bit units. Can directly drive LEDs. A pul-down resistor can be connected in 1-bit units by mask option (whether Vload or Vss is connected can be specified in 4-bit units).	Input	FIP45-FIP52

3.2 PINS OTHER THAN PORT PINS (1/2)

Pin Name	I/O	Function	On Reset	Shared by:
INTP0	Input	Valid edge (rising, falling, or both rising and falling edges) can be specified. External interrupt request input	Input	P00/TIO
INTP1				P01
INTP2				P02
INTP3		Falling edge-active external interrupt input	Input	P03
SIO	Input	Serial data input lines of serial interface	Input	P25/SB0
SI1				P20
SOO	Output	Serial data output lines of serial interface	Input	P26/SB1
SO1				P21
SB0	I/O	Serial data I/O lines of serial interface	Input	P25/SIO
SB1				P26/SO0
SCKO	I/O	Serial clock I/O lines of serial interface	Input	P27
$\overline{\text { SCK1 }}$				P22
STB	Output	Automatic transfer/receive strobe output line of serial interface	Input	P23
BUSY	Input	Automatic transfer/receive busy input line of serial interface	Input	P24
TIO	Input	External count clock input to 16-bit timer (TM0)	Input	P00/INTP0
TI1		External count clock input to 8-bit timer (TM1)		P33
TI2		External count clock input to 8-bit timer (TM2)		P34
TO0	Output	16-bit timer (TM0) output (multiplexed with 14-bit PWM output)	Input	P30
TO1		8 -bit timer (TM1) output		P31
TO2		8-bit timer (TM2) output		P32
PCL	Output	Clock output (for trimming main system clock and subsystem clock)	Input	P35
BUZ	Output	Buzzer output	Input	P36
FIP0-FIP12	Output	High-voltage, high-current output for FIP controller/driver display output A pull down register can be connected by mask option.	Output	-
FIP13-FIP20	Output	High-voltage, high-current output for FIP controller/driver display output	Output	P80-P87
FIP21-FIP28				P90-P97
FIP29-FIP36			Input	P100-P107
FIP37-FIP44				P110-P117
FIP45-FIP52				P120-P127
VLoad	-	Connects pull-down resistor to FIP controller/driver	-	-

3.2 PINS OTHER THAN PORT PINS (2/2)

Pin Name	I/O	Function	On Reset	Shared by:
ANIO-ANI7	Input	A/D converter analog input lines	Input	P10-P17
AV $_{\text {REF }}$	Input	A/D converter reference voltage input line	-	-
AV	-	Analog power supply to A/D converter. Connected to VDD pin.	-	-
AVss	-	A/D converter ground line. Connected to Vss pin.	-	-
RESET	Input	System reset input	-	-
X1	Input	Connect crystal for main system clock oscillation.	-	-
X2	-		-	-
XT1	Input	Connect crystal for subsystem clock oscillation.	-	-
XT2	-		-	-
VDD	-	Positive power supply	-	-
Vss	-	Ground potential	-	-
IC	-	Internal connection. Connected directly to Vss pin.	-	

3.3 PIN I/O CIRCUITS AND PROCESSING OF UNUSED PINS

Table 3-1 shows the I/O circuit type of each pin and the processing of unused pins.
For the configuration of the I/O circuit of each type, refer to Figure 3-1.

Table 3-1. I/O Circuit Type

Pin Name	I/O Circuit Type	I/O	Recommended Connections When Unused
P00/INTP0/TIO	2	Input	Connect to Vss
P01/INTP1	8-A	I/O	Independently connect to Vss through resistor
P02/INTP2			
P03/INTP3			
P04/XT1	16	Input	Connect to Vdd or Vss
P10/ANI0-P17/ANI7	11	I/O	Independently connect to VDD or Vss through resistor
P20/SI1	8-A		
P21/SO1	5-A		
P22/SCK1	8-A		
P23/STB	5-A		
P24/BUSY	8-A		
P25/SI0/SB0	$10-\mathrm{A}$		
P26/SO0/SB1			
P27/SCK0			
P30/TO0	5-C		
P31/TO1			
P32/TO2			
P33/TI1	8-B		
P34/TI2			
P35/PCL	5-C		
P36/BUZ			
P37			
P70-P74	13-B		
FIP0-FIP12	14-A	Output	Open
P80/FIP13-P87/FIP20			
P90/FIP21-P97/FIP28			
P100/FIP29-P107/FIP36	15-C	I/O	Independently connect to VDD or $\mathrm{V}_{\text {ss }}$ through resistor
P110/FIP37-P117/FIP44			
P120/FIP45-P127/FIP52			
RESET	2	Input	-
XT2	16	-	Open
AVRef	-		Connect to Vss
AVdo			Connect to Vdd
AVss			Connect to Vss
VLoad			
IC			Connect directly to Vss

Figure 3-1. Pin I/O Circuits (1/2)
Type 2

Figure 3-1. Pin I/O Circuits (2/2)

4. MEMORY SPACE

Figure 4-1 shows the memory maps for μ PD780204, 780205, 780206, and 780208.

Notes 1. μ PD780206 and 780208 only.
2. The internal ROM capacities vary depending on the product. (Refer to the table below.)

Product Name	Internal ROM Last Address nnnnH
μ PD780204	7FFFH
μ PD780205	9FFFH
μ PD780206	BFFFH
μ PD780208	EFFFH

5. PERIPHERAL HARDWARE FUNCTIONS

5.1 PORTS

I/O ports are classified into the following 5 kinds:

- CMOS input (P00, P04) :2
- CMOS input/output (P01-P03, ports 1-3) : 27
- N-ch open-drain input/output (port 7) :5
- P-ch open-drain output (ports 8, 9) : 16
-P-ch open-drain input/output (ports 10-12) : 24

Total : 74
Table 5-1. Port Function

Name	Pin Name	Function
Port 0	P00, P04	Input port
	P01-P03	I/O port. Can be specified for input or output in 1-bit units. When used as input port, internal pull-up resistor can be connected through software.
Port 1	P10-P17	I/O port. Can be specified for input or output in 1-bit units. When used as input port, internal pull-up resistor can be connected through software.
Port 2	P20-P27	I/O port. Can be specified for input or output in 1-bit units. When used as input port, internal pull-up resistor can be connected through software.
Port 3	P30-P37	I/O port. Can be specified for input or output in 1-bit units. When used as input port, internal pull-up resistor can be connected through software. Pull-down resistor can be connected in 1 -bit units by mask option. Can directly drive LED.
Port 7	P70-P74	N-ch open-drain I/O port. Can be specified for input or output in 1-bit units. Pull-up resistor can be connected in 1 -bit units by mask option. Can directly drive LED.
Port 8	P80-P87	P-ch open-drain high-voltage output port. Pull-down resistor can be connected in 1-bit units by mask option (connection to Vload or Vss can be specified in 4-bit units). Can directly drive LEDs.
Port 9	P90-P97	P-ch open-drain high-voltage output port. Pull-down resistor can be connected in 1-bit units by mask option (connection to Vload or Vss can be specified in 4 -bit units). Can directly drive LEDs.
Port 10	P100-P107	P-ch open-drain high-voltage I/O port. Can be specified for input or output in 1 -bit units. Pull-down resistor can be connected in 1-bit units by mask option (connection to VLoad or Vss can be specified in 4 -bit units). Can directly drive LEDs.
Port 11	P110-P117	P-ch open-drain high-voltage I/O port. Can be specified for input or output in 1-bit units. Pull-down resistor can be connected in 1-bit units by mask option (connection to Vload or Vss can be specified in 4 -bit units). Can directly drive LEDs.
Port 12	P120-P127	P-ch open-drain high-voltage I/O port. Can be specified for input or output in 1-bit units. Pull-down resistor can be connected in 1-bit units by mask option (connection to Vload or Vss can be specified in 4 -bit units). Can directly drive LEDs.

5.2 CLOCK GENERATOR CIRCUIT

The clock generator circuit has two kinds of generator circuits: the main system clock and subsystem clock.
The instruction time can be changed.

- $0.4 \mu \mathrm{~s} / 0.8 \mu \mathrm{~s} / 1.6 \mu \mathrm{~s} / 3.2 \mu \mathrm{~s} / 6.4 \mu \mathrm{~s}$ (with main system clock: 5.0 MHz)
- 122μ (with subsystem clock: 32.768 kHz)

Figure 5-1. Clock Generator Circuit Block Diagram

5.3 TIMER/EVENT COUNTER

Five channels of timer/event counters are provided.

- 16-bit timer/event counter : 1 channel
- 8-bit timer/event counter : 2 channels
- Watch timer : 1 channel
- Watchdog timer : 1 channel

Table 5-2. Timer/Event Counter Groups and Configurations

		16-bit Timer/ Event Counter	8-bit Timer/ Event Counter	Watch Timer	Watchdog Timer
$\begin{aligned} & \text { O } \\ & \text { O} \\ & \text { OU } \end{aligned}$	Interval timer	1 channel	2 channels	1 channel	1 channel
	External event counter	1 channel	2 channels	-	-
	Timer output	1 output	2 outputs	-	-
	PWM output	1 output	-	-	-
	Pulse width measurement	1 input	-	-	-
	Square wave output	1 output	2 outputs	-	-
	Interrupt Request	1	2	1	1
	Test input	-	-	1 input	-

Figure 5-2. 16-Bit Timer/Event Counter Block Diagram

Figure 5-3. 8-Bit Timer/Event Counter Block Diagram

Figure 5-4. Watch Timer Block Diagram

Figure 5-5. Watchdog Timer Block Diagram

5.4 CLOCK OUTPUT CONTROL CIRCUIT

Clocks of the following frequencies can be output to the clock :

- $19.5 \mathrm{kHz} / 39.1 \mathrm{kHz} / 78.1 \mathrm{kHz} / 156 \mathrm{kHz} / 313 \mathrm{kHz} / 625 \mathrm{kHz}$ (with main system clock: 5.0 MHz)
- 32.768 kHz (with subsystem clock: 32.768 kHz)

Figure 5-6. Clock Output Control Circuit Block Diagram

5.5 BUZZER OUTPUT CONTROL CIRCUIT

Clocks of the following frequencies can be output to the buzzer:

- $1.2 \mathrm{kHz} / 2.4 \mathrm{kHz} / 4.9 \mathrm{kHz}$ (with main system clock: 5.0 MHz)

Figure 5-7. Buzzer Output Control Circuit Block Diagram

5.6 A/D CONVERTER

An 8-bit resolution 8-channel A/D converter is provided.
This A/D converter can be started in the following two modes:

- Hardware start
- Software start

Figure 5-8. A/D Converter Block Diagram

5.7 SERIAL INTERFACE

Two channels of clocked serial interfaces are provided.

- Serial interface channel 0
- Serial interface channel 1

Table 5-3. Serial Interface Groups and Functions

Function	Serial Interface Channel 0	Serial Interface Channel 1
3-line serial I/O mode	O (MSB/LSB first selectable)	O (MSB/LSB first selectable)
SBI (serial bus interface) mode	O (MSB first)	-
2-line serial I/O mode	O(MSB first)	-
3-line serial I/O mode w/automatic transfer/reception function	-	O (MSB/LSB first selectable)

Figure 5-9. Serial Interface Channel 0 Block Diagram

Figure 5-10. Serial Interface Channel 1 Block Diagram

5.8 FIP CONTROLLER/DRIVER

An FIP controller/driver having the following features is provided:
(a) Automatic output of segment signals (DMA operation) and digit signals by automatically reading display data
(b) Display mode register 0-2 (DSPM0-DSPM2) that can control an FIP of 9 to 40 segments and 2 to 16 digits
(c) The output timing of the digit signal can be freely set by selecting the display mode 2 by using the display mode register 0 (DSPM0).
(d) Port pins not used for FIP display can be used as output port or I/O port pins (however, FIP0-FIP12 are display output pins).
(e) Display mode register 1 (DSPM1) can adjust luminance in eight steps.
(f) Hardware suitable for key scan application using segment pins
(g) High-voltage output buffer (FIP driver) that can directly drive an FIP
(h) Display output pins can be connected to a pull-down resistor by mask option.

Figure 5-11. Selecting Display Modes

Caution If the total number of digits and segments exceeds 53, the specified number of digits takes precedence.

Figure 5-12. FIP Controller/Driver Block Diagram

6. INTERRUPT FUNCTION AND TEST FUNCTION

6.1 INTERRUPT FUNCTION

The following three types, 15 sources of interrupt functions are available:

- Non-maskable : 1
- Maskable : 13
- Software : 1

Table 6-1. Interrupt Sources

Interrupt Type	Default Priority Note 1	Interrupt Source		Internal/ External	Vector Table Address	Basic Configuration Type ${ }^{\text {Note }} 2$
		Name	Trigger			
Non- maskable	-	INTWDT	Overflow of watchdog timer (when watchdog timer mode 1 is selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Overflow of watchdog timer (when interval timer mode is selected)			(B)
	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1			0008H	(D)
	3	INTP2			000AH	
	4	INTP3			000CH	
	5	INTCSIO	End of transfer by serial interface channel 0	Internal	000EH	(B)
	6	INTCSI1	End of transfer by serial interface channel 1		0010H	
	7	INTTM3	Reference time interval signal from watch timer		0012H	
	8	INTTM0	Coincidence signal generation of 16-bit timer/event counter		0014H	
	9	INTTM1	Coincidence signal generation of 8 -bit timer/event counter 1		0016H	
	10	INTTM2	Coincidence signal generation of 8-bit timer/event counter 2		0018H	
	11	INTAD	End of conversion by A/D converter		001AH	
	12	INTKS	Key scan timing from FIP controller/ driver		001CH	
Software	-	BRK	Execution of BRK instruction		003EH	(E)

Notes 1. The default priority is assumed when two or more maskable interrupts are generated at the same time, and 0 is the highest and 12 is the lowest.
2. Basic configuration types $(A)-(E)$ respectively correspond to (A) to (E) in Figure 6-1.

Figure 6-1. Basic Configuration of Interrupt Function (1/2)
(A) Internal non-maskable interrupt

(B) Internal maskable interrupt

(C) External maskable interrupt (INTPO)

Figure 6-1. Basic Configuration of Interrupt Function (2/2)
(D) External maskable interrupt (except INTP0)

(E) Software interrupt

IF : Interrupt request flag
IE : Interrupt enable flag
ISP: In-service priority flag
MK : Interrupt mask flag
PR: Priority specification flag

6.2 TEST FUNCTION

The following trigger is available for test function.

Test Input Source		Internal/
External		
Name	Trigger	Internal
INTWT	Overflow of watch timer	Inn

Figure 6-2. Basic Configuration of Test Function

IF : Test request flag
MK : Test mask flag

7. STANDBY FUNCTION

The standby function is to reduce the current dissipation of the system and can be effected in the following two modes:

- HALT mode: In this mode, the operating clock of the CPU is stopped. By using this mode in combination with the normal operation mode, the system can be operated intermittently, so that the average current dissipation can be reduced.
- STOP mode: Oscillation of the main system clock is stopped. All the operations on the main system clock are stopped, and therefore, the current dissipation of the system can be minimized with only the subsystem clock oscillating.

Figure 7-1. Standby Function

Note By stopping the main system clock, the current dissipation can be reduced. When the CPU operates on the subsystem clock, stop the main system clock by setting the MCC. The STOP instruction cannot be used.

Caution To select the main system clock again after the main system clock has been stopped once while the subsystem clock is in use, make sure through the program that the oscillation stabilization time elapses, and then that the main system clock is selected.

8. RESET FUNCTION

The system can be reset in the following two modes:

- External reset by RESET pin
- Internal reset by watchdog timer that detects hang up

9. INSTRUCTION SET

(1) 8-bit instruction

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

Second Operand First Operand	\#byte	A	$\mathrm{r}^{\text {Note }}$	sfr	saddr	!addr16	PSW	[DE]	[HL]	$\left\|\begin{array}{l} {[\mathrm{HL}+\text { byte] }} \\ {[\mathrm{HL}+\mathrm{B}]} \\ {[\mathrm{HL}+\mathrm{C}]} \end{array}\right\|$	\$addr16	1	None
A	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{XCH} \end{aligned}$	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
r	MOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP											$\begin{aligned} & \text { INC } \\ & \text { DEC } \end{aligned}$
B,C											DBNZ		
sfr	MOV	MOV											
saddr	MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV									DBNZ		INC DEC
!addr16		MOV											
PSW	MOV	MOV											$\begin{aligned} & \text { PUSH } \\ & \text { POP } \end{aligned}$
[DE]		MOV											
[HL]		MOV											$\begin{aligned} & \text { ROR4 } \\ & \text { ROL4 } \end{aligned}$
$\begin{aligned} & {[\mathrm{HL}+\text { byte }]} \\ & {[\mathrm{HL}+\mathrm{B}]} \\ & {[\mathrm{HL}+\mathrm{C}]} \end{aligned}$		MOV											
X													MULU
C													DIVUW

Note Except for $\mathrm{r}=\mathrm{A}$
(2) 16-bit instruction

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

Second Operand First Operand	\#word	AX	rpNote	sfrp	saddrp	laddr16	SP	None
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	Note MOVW						INCW DECW PUSH POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP								

Note Only when $\mathrm{rp}=\mathrm{BC}, \mathrm{DE}, \mathrm{HL}$
(3) Bit manipulation instruction

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

Second Operand First Operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	BT BF BTCLR	$\begin{aligned} & \text { SET1 } \\ & \text { CLR1 } \end{aligned}$
sfr.bit						MOV1	BT BF BTCLR	SET1 CLR1
saddr.bit						MOV1	BT BF BTCLR	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	SET1 CLR1
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
CY	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1				

(4) Call/Branch instruction

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

Second Operand	AX	!addr16	!addr11	[addr5]	\$addr16
First Operand					
Basic operation	BR	CALL BR	CALLF	CALLT	BR BC BNC
Compound operation					BZ BNZ

(5) Other instructions ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

10. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (TA $=25^{\circ} \mathrm{C}$)

Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter,

 or even momentarily. In other words, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.Remark Unless specified otherwise, dual-function pin characteristics are the same as port pin characteristics.
Notes 1. With the mask option, the range of the internal pull-up resistor pin is 0.3 to $\operatorname{VDD}+0.3$.
2. The RMS should be calculated as follows: $[R M S]=[$ Peak value $] \times \sqrt{\text { Duty }}$

Notes 3. Total power dissipation differs depending on the temperature (see the following figure).

* How to calculate total power dissipation

The following three power dissipation are available for the μ PD780204, 780205, 780206, and 780208. The sum of the three power dissipation should be less than the total power dissipation $\operatorname{PT}(80 \%$ or less of ratings is recommended).
<1> CPU power dissipation: calculate VDD (MAX.) $\times \operatorname{lDD1}$ (MAX.).
<2> Output pin power dissipation: Normal output and display output are available. Power dissipation when maximum current flows into each output.
<3> Pull-down resistor power dissipation: Power dissipation by pull-down resistor incorporated in display output pin by mask option.

The following is how to calculate total power dissipation for the example in the next page.

Example Assume the following conditions:
VDD $=5 \mathrm{~V} \pm 10 \%$, 5.0 MHz oscillator
Supply current (IDD) $=21.6 \mathrm{~mA}$
Display output: $\quad 11$ grids $\times 10$ segments (Cut width $=1 / 16$)
Maximum current at the grid pin is 15 mA .
Maximum current at the segment pin is 3 mA .
At the key scan timing, display output pin is OFF.
Display output voltage: grid $\quad V_{O D}=\mathrm{VDD}-2 \mathrm{~V}$ (voltage drop of 2 V)
segments $\mathrm{VOD}=\mathrm{V} D \mathrm{D}-0.4 \mathrm{~V}$ (voltage drop of 0.4 V)
Fluorescent display control voltage (VLOAD) $=-35 \mathrm{~V}$
Mask option pull-down resistor $=25 \mathrm{k} \Omega$

By placing the above conditions in calculation <1> to $<3>$, the total dissipation can be worked out. $<1>$ CPU power dissipation: $5.5 \mathrm{~V} \times 21.6 \mathrm{~mA}=118.8 \mathrm{~mW}$
<2> Output pin power dissipation:

$$
\begin{aligned}
& \text { Grid } \begin{array}{c}
\left(V D D-V_{O D}\right) \times \frac{\text { Total current value of each grid }}{\text { The number of grids }+1} \times \text { Digit width (1 - Cut width) } \\
\\
=2 \mathrm{~V} \times \frac{15 \mathrm{~mA} \times 11 \text { Grids }}{11 \text { Grids }+1} \times\left(1-\frac{1}{16}\right)=25.8 \mathrm{~mW} \\
\text { Segment }(\mathrm{VDD}-\mathrm{VOD}) \times \frac{\text { Total segment current value of illuminated dots }}{\text { The number of grids }+1} \\
\\
=0.4 \mathrm{~V} \times \frac{3 \mathrm{~mA} \times 31 \text { Dots }}{11 \text { Grids }+1}=3.1 \mathrm{~mW}
\end{array} .
\end{aligned}
$$

<3> Pull-down resistor power dissipation:

Grid

$$
\begin{aligned}
& \frac{\left(\mathrm{VOD}-\mathrm{V}_{\text {LOAD }}\right)^{2}}{\text { Pull-down resistor value }} \times \frac{\text { The number of grids }}{\text { The number of grids }+1} \times \text { Digit width } \\
= & \frac{(5.5 \mathrm{~V}-2 \mathrm{~V}-(-35 \mathrm{~V}))^{2}}{25 \mathrm{k} \Omega} \times \frac{11 \text { Grids }}{11 \text { Grids }+1} \times\left(1-\frac{1}{16}\right)=50.9 \mathrm{~mW}
\end{aligned}
$$

Segment $\frac{\left(\text { Vod }-V_{\text {LOAD }}\right)^{2}}{\text { Pull-down resistor value }} \times \frac{\text { The number of illuminated dots }}{\text { The number of grids }+1}$

$$
=\frac{(5.5 \mathrm{~V}-0.4 \mathrm{~V}-(-35 \mathrm{~V}))^{2}}{25 \mathrm{k} \Omega} \times \frac{31 \text { dots }}{11 \text { Grids }+1}=166.1 \mathrm{~mW}
$$

Total power dissipation $=\langle 1\rangle+\langle 2\rangle+<3\rangle=118.8+25.8+3.1+50.9+166.1=364.7 \mathrm{~mW}$

In this example, the total power dissipation do not exceed the rating of the total power dissipation, so there is no problem in power dissipation.
However, when the total power dissipation exceeds the rating of the total power dissipation, it is necessary to lower the power dissipation. To reduce power dissipation, reduce the number of pull-down resistor.

Display Data Memory

MAIN SYSTEM CLOCK OSCILLATION CIRCUIT CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+8{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	$\begin{array}{\|lll\|} \hline 1 C & X 1 & X 2 \\ \hline \end{array}$	Oscillator frequency (fx) ${ }^{\text {Note }} 1$		1		5	MHz
		Oscillator stabilization time ${ }^{\text {Note } 2}$				4	ms
Crystal resonator		Oscillator frequency (fx) ${ }^{\text {Note }} 1$		1	4.19	5	MHz
		Oscillator stabilization time ${ }^{\text {Note }} 2$	$\mathrm{V} D \mathrm{D}=4.5$ to 5.5 V			10	
						30	
External clock	$\begin{array}{\|ll\|} \mathrm{X} 1 & \mathrm{x} 2 \\ \hline \end{array}$	X1 input frequency $(\mathrm{fx})^{\text {Note }} 1$		1		5	MHz
	μ PD74HCU04	X1 input high-/low-leve width (txh/txı)		85		500	ns

Notes 1. Only the oscillator characteristics are shown. See AC CHARACTERISTICS for instruction execution times.
2. This is the time required for oscillation to stabilize after reset, or STOP mode release.

Cautions 1. When the main system clock oscillator is used, the following should be noted concerning wiring in the area in the figure enclosed by a broken line to prevent the influence of wiring capacitance, etc.

- The wiring should be kept as short as possible.
- No other signal lines should be crossed.
- Keep away from lines carrying a high fluctuating current.
- The oscillator capacitor grounding point should always be at the same potential as Vss.
- Do not connect to a ground pattern carrying a high current.
- A signal should not be taken from the oscillator.

2. When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS (TA = $\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$, Vdd = 2.7 to 5.5 V)

Notes 1. Only the oscillator characteristics are shown. See AC CHARACTERISTICS for instruction execution times.
2. This is the time required for oscillation to stabilize after Vod reaches MIN. in the range of oscillation voltage.

Cautions 1. When the subsystem clock oscillator is used, the following should be noted concerning wiring in the area in the figure enclosed by a broken line to prevent the influence of wiring capacitance, etc.

- The wiring should be kept as short as possible.
- No other signal lines should be crossed.
- Keep away from lines carrying a high fluctuating current.
- The oscillator capacitor grounding point should always be at the same potential as Vss.
- Do not connect to a ground pattern carrying a high current.
- A signal should not be taken from the oscillator.

2. The subsystem clock oscillator is a low-amplitude circuit in order to achieve a low consumption current, and is more prone to misoperation due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.

RECOMMENDED OSCILLATOR CONSTANT

(1) μ PD780204, 780205

Main System Clock: Ceramic Resonator ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85{ }^{\circ} \mathrm{C}$)

Manufacturer	Product Name	Frequency (MHz)	Circuit Constant		Oscillator Voltage Range		Remark
			C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)	
Murata Mfg. Co., Ltd. Toyama	CSB1000J	1.0	100	100	3.00	5.50	
	CSA2.00MG040	2.0	100	100	2.80	5.50	
	CST2.00MG040	2.0	-	-	2.80	5.50	Built-in capacitor
	CSA4.00MG	4.0	30	30	2.70	5.50	
	CST4.00MGW	4.0	-	-	2.70	5.50	Built-in capacitor
	CSA5.00MG	5.0	30	30	2.90	5.50	
	CST5.00MGW	5.0	-	-	2.90	5.50	Built-in capacitor
TDK Corp.	CCR1000K2	1.0	150	150	2.70	5.50	
	FCR4.00MC5	4.0	-	-	2.70	5.50	Built-in capacitor
	CCR4.00MC3	4.0	-	-	2.70	5.50	Built-in capacitor
	FCR5.00MC5	5.0	-	-	2.80	5.50	Built-in capacitor
	CCR5.00MC3	5.0	-	-	2.70	5.50	Built-in capacitor
Matsushita Electronics Components Co., Ltd.	EFOEC5004A4	5.0	-	-	2.70	5.50	Built-in capacitor
	EFOEN5004A4	5.0	33	33	2.70	5.50	
	EFOS5004B5	5.0	-	-	2.70	5.50	Built-in capacitor

Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation. However, they do not guarantee accuracy of the oscillation frequency. If the application circuit requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency in the application circuit. For this, it is necessary to directly contact the manufacturer of the resonator being used.
(2) μ PD780206, 780208

Main System Clock: Ceramic Resonator ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

Manufacturer	Product Name	Frequency(MHz)	Circuit Constant		Oscillator Voltage Range		Remark
			C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)	
Murata Mfg. Co., Ltd. Toyama	CSB1000J	1.0	100	100	2.80	5.50	
	CSA2.00MG040	2.0	100	100	2.70	5.50	
	CST2.00MG040	2.0	-	-	2.70	5.50	Built-in capacitor
	CSA4.00MG	4.0	30	30	2.70	5.50	
	CST4.00MGW	4.0	-	-	2.70	5.50	Built-in capacitor
	CSA5.00MG	5.0	30	30	2.70	5.50	
	CST5.00MGW	5.0	-	-	2.70	5.50	Built-in capacitor
TDK Corp.	CCR1000K2	1.0	220	220	2.70	5.50	
	CCR2.0MC33	2.0	-	-	2.70	5.50	Built-in capacitor
	CCR4.0MC3	4.0	-	-	2.70	5.50	Built-in capacitor
	FCR4.0MC5	4.0	-	-	2.70	5.50	Built-in capacitor
	CCR4.19MC3	4.19	-	-	2.70	5.50	Built-in capacitor
	FCR4.19MC5	4.19	-	-	2.70	5.50	Built-in capacitor
	CCR5.0MC3	5.0	-	-	2.70	5.50	Built-in capacitor
	FCR5.0MC5	5.0	-	-	2.70	5.50	Built-in capacitor
Matsushita Electronics Components Co., Ltd.	EFOEC2004A5	2.0	33	33	2.70	5.50	
	EFOEC4004A4	4.0	33	33	2.85	5.50	
	EFOEC4194A4	4.19	33	33	2.70	5.50	
	EFOEC5004A4	5.0	33	33	2.70	5.50	

Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation. However, they do not guarantee accuracy of the oscillation frequency. If the application circuit requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency in the application circuit. For this, it is necessary to directly contact the manufacturer of the resonator being used.

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V				15	pF
Output capacitance	Cout	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V				35	pF
Input/output capacitance	Cıo	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V	P01 to P03, P10 to P17, P20 to P27, P30 to P37			15	pF
			P70 to P74			20	pF
			P100 to P107, P110 to P117, P120 to P127			35	pF

Remark Unless otherwise specified, the characteristics of the shared pin are the same as the characteristics of the port pin.

POWER SUPPLY VOLTAGE ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Conditions	MIN.	TYP.	MAX.
CPUNote 1		$2.7^{\text {Note } 2}$		5.5
Display controller/driver		4.5		V
PWM mode of 16-bit time/event counter (TM0)		4.5		5.5
A/D converter		5.5	V	
Other hardware		2.7		5.5

Notes 1. Except for system clock oscillator, display controller/driver, and PWM.
2. Operating power supply voltage range differs depending on the cycle time. See AC CHARACTERISTICS.

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=2.7$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
High-level input voltage	V_{H}	P21, P23		0.7 Vdo		VDD	V
	V_{1+2}	P00 to P03, P20, P22, P24 to P27, P33, P34, RESET		0.8 VDD		VDD	V
	V ${ }^{\text {н }}$	P70 to P74	N -ch open-drain	0.7 VDD		15	V
	V_{1+4}	X1, X 2		VDD - 0.5		VDD	V
	Vін5	XT1/P04, XT2	$V_{D D}=4.5$ to 5.5 V	0.8 V DD		VDD	V
				0.9 VDD		VDD	V
	$\mathrm{V}_{\text {IH6 }}$	P10 to P17, P30 to P32, P35 to P37	$V_{D D}=4.5$ to 5.5 V	0.65 VDD		VDD	V
				0.7 V DD		VDD	V
	V_{1+7}	P100 to P107, P110 to P117, P120 to P127	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	0.7 VDD		VDD	V
				VDD - 0.5		VDD	V
Low-level input voltage	VIL1	P21, P23		0		0.3 VDD	V
	$\mathrm{V}_{\mathrm{IL} 2}$	P00 to P03, P20, P22, P24 to P27, P33, P34, $\overline{\text { RESET }}$		0		0.2 VDD	V
	VIL3	P70 to P74	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	0		0.3 VDD	V
				0		0.2 VDD	V
	VIL4	X1, X 2		0		0.4	V
	VIL5	XT1/P04, XT2	$V_{D D}=4.5$ to 5.5 V	0		0.2 VDD	V
				0		0.1 VDD	V
	VIL6	P10 to P17, P30 to P32, P35 to P37		0		0.3 VDD	V
	VIL7	P100 to P107, P110 to P117, P120 to P127		VDD -40		0.3 VDD	V
High-level output voltage	Vor	P01 to P03, P10 to P17, P20 to P27, P30 to P37, P80 to P87, P90 to P97, P100 to P107, P110 to P117, P120 to P127, FIP0 to FIP12	$\begin{aligned} & \mathrm{VDD}=4.5 \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{IOH}=-1 \mathrm{~mA} \end{aligned}$	VDD - 1.0			V
			$\mathrm{I} \mathrm{H}=-100 \mu \mathrm{~A}$	VDD - 0.5			V
Low-level output voltage	Voli	P30 to P37, P70 to P74	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \text { to } 5.5 \mathrm{~V} \\ & \mathrm{loL}=15 \mathrm{~mA} \end{aligned}$		0.4	2.0	V
		$\begin{aligned} & \text { P01 to P03, P10 to P17, } \\ & \text { P20 to P27 } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \text { to } 5.5 \mathrm{~V} \\ & \mathrm{loL}=1.6 \mathrm{~mA} \end{aligned}$			0.4	V
	Vot2	SB0, SB1, $\overline{\text { SCKO }}$	$V_{D D}=4.5$ to 5.5 V With open-drain and pull-up ($R=1 \mathrm{k} \Omega$)			0.2 VDD	V
	Vol3		lot $=400 \mu \mathrm{~A}$			0.5	V

Remark Unless otherwise specified, the characteristics of a shared pin are the same as those of a port pin.

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
High-level input leakage current	$\mathrm{lLIH1}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$	$\begin{aligned} & \text { P00 to P03, P10 to P17, } \\ & \text { P20 to P27, P30 to P37, } \\ & \text { P70 to P74, } \overline{\text { RESET }} \end{aligned}$			3	$\mu \mathrm{A}$
	ILIH2		X1, X2, XT1/P04, XT2			20	$\mu \mathrm{A}$
	ІІІнз	$\mathrm{Vin}=15 \mathrm{~V}$	P70 to P74			80	$\mu \mathrm{A}$
	ILIH4	P100 to P107, P110 to P117, P120 to P 127 V in $=\mathrm{V}_{\mathrm{dD}}$	V DD $=4.5$ to 5.5 V			$3^{\text {Note }} 1$	$\mu \mathrm{A}$
						$3^{\text {Note } 2}$	$\mu \mathrm{A}$
Low-level input leakage current	ILIL1	$\mathrm{VIN}=0 \mathrm{~V}$	P00 to P03, P10 to P17, P20 to P27, P30 to P37, RESET			-3	$\mu \mathrm{A}$
	ILIL2		X1, X2, XT1/P04 XT2			-20	$\mu \mathrm{A}$
	ILilz		P70 to P74			$-3^{\text {Note }} 3$	$\mu \mathrm{A}$
	ILIL4		P100 to P107, P110 to P117, P120 to P127			-10	$\mu \mathrm{A}$
High-level output leakage current Note 4	ILOH1	Vout $=\mathrm{V}_{\text {DD }}$	P01 to P03, P10 to P17, P20 to P27, P30 to P37, P80 to P87, P90 to P97, P100 to P107, P110 to P117, P120 to P127, FIP0 to FIP12			3	$\mu \mathrm{A}$
	ILOH2	Vout $=15 \mathrm{~V}$	P70 to P74, N-ch open-drain			80	$\mu \mathrm{A}$
Low-level output leakage current Note 4	ILOL1	Vout $=0 \mathrm{~V}$	P01 to P03, P10 to P17, P20 to P27, P30 to P37, P70 to P74			-3	$\mu \mathrm{A}$
	ILOL2	Vout $=\mathrm{V}_{\text {LOAD }}=\mathrm{V}_{\text {dD }}-40 \mathrm{~V}$	P80 to P87, P90 to P97, P100 to 107, P110 to P117, P120 to P127, FIP0 to FIP12			-10	$\mu \mathrm{A}$
Display output current	Iod	$V_{D D}=4.5$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {OD }}=\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$		-15	-18		mA
Mask option pull-up resistor	R_{1}	V In $=0 \mathrm{~V}$, P70 to P74		20	40	90	$\mathrm{k} \Omega$
Software pull-up resistor	R2	$\mathrm{V} \mathrm{IN}=0 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	15	40	90	$k \Omega$
		P01 to P03, P10 to P17, P20 to P27, P30 to P37		20		500	$\mathrm{k} \Omega$

Notes 1. For P 110 to P 117 and P 120 to P 127 without on-chip pull-down resistor (specifiable by mask option), a highlevel input leak current of $50 \mu \mathrm{~A}$ (MAX.) flows only during the 1.5 clocks after an instruction has been executed to read out ports 11,12 ($\mathrm{P} 11, \mathrm{P} 12$) or port mode registers 11, 12 (PM11, PM12). Outside the period of 1.5 clocks following executing a read-out instruction, the current is $3 \mu \mathrm{~A}$ (MAX.).
2. For P110 to P117 and P120 to P127 without on-chip pull-down resistor (specifiable by mask option), a highlevel input leak current of $30 \mu \mathrm{~A}$ (MAX.) flows only during the 1.5 clocks after an instruction has been executed to read out P11, P12, PM11, and PM12. Outside the period of 1.5 clocks following executing a read-out instruction, the current is $3 \mu \mathrm{~A}$ (MAX.).
3. For P70 to P74 without on-chip pull-up resistor (specifiable by mask option), a low-level input leak current of $-200 \mu \mathrm{~A}$ (MAX.) flows only during the 1.5 clocks after an instruction has been executed to read out port 7 (P7) or port mode register 7 (PM7). Outside the period of 1.5 clocks following executing a read-out instruction, the current is $-3 \mu \mathrm{~A}$ (MAX.).
4. This current excludes the current which flows in the on-chip pull-up/pull-down resistor.

Remark Unless otherwise specified, the characteritics of a shared pin are the same as those of a port pin.

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{dD}}=2.7$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Mask option pull-down resistor	R3	P80 to P87, P90 to P97, P100 to P107, P110 to P117, P120 to P127	Vod - V LOAD $=40 \mathrm{~V}$	25	70	135	$k \Omega$
			$\mathrm{V}_{\text {od }}-\mathrm{V}_{\text {ss }}=5 \mathrm{~V}$	20	55	100	$\mathrm{k} \Omega$
	R4	P30 to P37, Vin = Vod		40	80	150	$\mathrm{K} \Omega$
Power supply current Note 1	IdD1	5.0 MHz crystal oscillation operating mode	VDD $=5.0 \mathrm{~V} \pm 10 \%$ Note 2		7.2	21.6	mA
			VDD $=3.0 \mathrm{~V} \pm 10 \%$ Note 3		0.9	2.7	mA
	IDD2	5.0 MHz crystal oscillation HALT mode	$V_{\text {DD }}=5.0 \mathrm{~V} \pm 10 \%$		1.6	4.8	mA
			$V_{\text {DD }}=3.0 \mathrm{~V} \pm 10 \%$		650	1950	$\mu \mathrm{A}$
	IdD3	32.768 kHz crystal oscillation operating modeNote 4	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V} \pm 10 \%$		60	120	$\mu \mathrm{A}$
			$V_{\text {DD }}=3.0 \mathrm{~V} \pm 10 \%$		32	64	$\mu \mathrm{A}$
	IdD4	32.768 kHz crystal oscillation HALT modeNote 4	$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$		25	55	$\mu \mathrm{A}$
			$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$		5	15	$\mu \mathrm{A}$
	IdD5	$\mathrm{XT} 1=0 \mathrm{~V}$ in STOP mode when connecting to feedback resistor	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$		1	30	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$		0.5	10	$\mu \mathrm{A}$
	Idon	$\mathrm{XT} 1=0 \mathrm{~V}$ in STOP mode when not connecting to feedback resistor	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$		0.1	30	$\mu \mathrm{A}$
			$V_{\text {do }}=3.0 \mathrm{~V} \pm 10 \%$		0.05	10	$\mu \mathrm{A}$

Notes 1. This current excludes the $A V_{\text {ref current, port current, and current which flows in the on-chip pull-down }}$ resistor (mask option).
2. When operating at high-speed mode (when the processor clock control register (PCC) is set to 00 H)
3. When operating at low-speed mode (when the PCC is set to 04 H)
4. When main system clock stopped.

AC CHARACTERISTICS

(1) Basic Operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Cycle time (minimum instruction execution time)	Tcr	Operated with main system clock	$V_{D D}=4.5$ to 5.5 V	0.4		32	$\mu \mathrm{s}$
				0.8		32	$\mu \mathrm{s}$
		Operated with subsystem clock		$40^{\text {Note } 1}$	122	125	$\mu \mathrm{s}$
TI1, TI2 input frequency	$\mathrm{f}_{\text {¢ }}$	$V_{D D}=4.5$ to 5.5 V		0		2	MHz
				0		138	kHz
TI1, TI2 input high, low-level width	ftiH ftil	$V_{D D}=4.5$ to 5.5 V		250			ns
				3.6			$\mu \mathrm{s}$
Interrupt input high, low-level width	finth fintL	INTP0		8/fsam ${ }^{\text {Note } 2}$			$\mu \mathrm{s}$
		INTP1 to INTP3		10			$\mu \mathrm{s}$
$\overline{\text { RESET }}$ low-level width	trsL			10			$\mu \mathrm{s}$

Notes 1. Value when external clock input is used as subsystem clock. When crystal is used, the value becomes 114 $\mu \mathrm{s}$.
2. Selection of $\mathrm{f}_{\text {sam }}=\mathrm{fx} / 2^{\mathrm{N}+1}, \mathrm{fx} / 64, \mathrm{fx} / 128$ is available ($\mathrm{N}=0$ to 4) by bits 0 and 1 (SCS0, SCS1) of sampling clock select register (SCS).

Tcy vs. VDD (with main system clock operated)

(2) Serial Interface ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$, $\mathrm{VdD}=2.7$ to 5.5 V)
(a) Serial interface channel 0
(i) 3-wire serial I/O mode (SCK0: Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK0 }}$ cycle time	tkcy1	$V_{\text {DD }}=4.5$ to 5.5 V	800			ns
			1600			ns
$\overline{\text { SCK0 }}$ high, low-level width	tкн1 tkL1	$V_{\text {DD }}=4.5$ to 5.5 V	tkcrı/2-50			ns
			tkcri/2-100			ns
SIO setup time (to $\overline{\text { SCKO }} \uparrow$)	tsik1	$V_{D D}=4.5$ to 5.5	100			ns
			150			ns
SIO hold time (from $\overline{\text { SCKO }}$)	tksi1		400			ns
$\overline{\mathrm{SCKO}} \downarrow \rightarrow \mathrm{SOO}$ output delay time	tkso1	$\mathrm{C}=100 \mathrm{pF}$ Note			300	ns

Note C is a load capacitance of the $\overline{\text { SCKO }}$ or SOO output line.
(ii) 3-wire serial I/O mode ($\overline{\text { SCKO: }}$: External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKO }}$ cycle time	tксу2	$V_{D D}=4.5$ to 5.5 V	800			ns
			1600			ns
$\overline{\text { SCK0 }}$ high, low-level width	tкн2 tкı2	$V_{D D}=4.5$ to 5.5 V	tkcry/2-50			ns
			trcry/2-100			ns
SIO setup time (to $\overline{\text { SCKO}} \uparrow$)	tsik2	$V_{D D}=4.5$ to 5.5 V	100			ns
			150			ns
SIO hold time (from $\overline{\text { SCKO }} \uparrow$)	tksi2		400			ns
$\overline{\mathrm{SCKO}} \downarrow \rightarrow \mathrm{SOO}$ output delay time	tksoz	$\mathrm{C}=100 \mathrm{pF}$ Note			300	ns
$\overline{\text { SCKO }}$ rise, fall time	$\begin{aligned} & \mathrm{t}_{\mathrm{R}} \\ & \mathrm{t}_{\mathrm{F} 2} \end{aligned}$				160	ns

Note C is a load capacitance of the SOO output line.
(iii) SBI mode ($\overline{\mathbf{S C K O}}$: Internal clock output)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCKO cycle time	tксуз	$V_{\text {DD }}=4.5$ to 5.5 V		800			ns
				3200			ns
$\overline{\text { SCKO }}$ high, low-level width	tкнз tкıз	$V_{\text {DD }}=4.5$ to 5.5 V		tkcy3/2-50			ns
				tkcry/2-150			ns
SB0, SB1 setup time (to $\overline{\mathrm{SCKO}} \uparrow$)	tsiк3			100			ns
		$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V		300			ns
SB0, SB1 hold time (from $\overline{\text { SCKO }} \uparrow$)	tksi3			tkcy3/2			ns
$\overline{\mathrm{SCK}} \downarrow \rightarrow \mathrm{SB} 0, \mathrm{SB} 1$ output delay time	tkso3	$\mathrm{R}=1 \mathrm{k} \Omega, \mathrm{C}=100 \mathrm{pF}$ Note	$V_{\text {DD }}=4.5$ to 5.5 V	0		250	ns
				0		1000	ns
$\overline{\text { SCK0 } 0} \uparrow \rightarrow$ SB0, SB1 \downarrow	tksb			tксү3			ns
SB0, SB1 $\downarrow \rightarrow$ SCKO \downarrow	tsbk			tксу3			ns
SB0, SB1 high-level width	tsb			tксуз			ns
SB0, SB1 low-level width	tsbL			tксуз			ns

Note R is a load resistance and C is a load capacitance of the $\overline{\text { SCKO }}$, SB0, or SB1 output line.
(iv) SBI mode (SCKO: External clock input)

Note R is a load resistance and C is a load capacitance of the SB0 or SB1 output line.
(v) 2-wire serial I/O mode (SCK0: Internal clock output)

Parameter	Symbol	Conditio		MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксү5	$\mathrm{R}=1 \mathrm{k} \Omega, \mathrm{C}=100 \mathrm{pF}^{\text {Note }}$		1600			ns
$\overline{\text { SCK0 }}$ high-level width	tкн5			tkcys/2-160			ns
SCKO low-level width	tkL5		$V_{\text {DD }}=4.5$ to 5.5 V	tкcys/2-50			$n s$
				tkcys/2-100			ns
SB0, SB1 setup time (to SCKO \uparrow)	tsiks		$V_{\text {dD }}=4.5$ to 5.5 V	300			ns
				350			ns
SB0, SB1 hold time (from $\overline{\text { SCKO }} \uparrow$)	tкsı5			600			ns
$\overline{\text { SCK0 }} \downarrow \rightarrow$ SB0, SB1 output delay time	tksos			0		300	$n s$

Note R is a load resistance and C is a load capacitance of the SCK0, SB0, or SB1 output line.
(vi) 2-wire serial I/O mode ($\overline{\text { SCKO }}$: External clock input)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKO }}$ cycle time	tксу6			1600			ns
$\overline{\text { SCKO }}$ high-level width	tкн6			650			ns
$\overline{\text { SCKO }}$ low-level width	tkL6			800			ns
SB0, SB1 setup time (to $\overline{\mathrm{SCKO}} \uparrow$)	tsik6			100			ns
SB0, SB1 hold time (from $\overline{\text { SCKO }} \uparrow$)	tks16			tкcy6/2			ns
$\overline{\text { SCK0 }} \downarrow \rightarrow$ SB0, SB1	tkso6	$\mathrm{R}=1 \mathrm{k} \Omega, \mathrm{C}=100 \mathrm{pF}$ Note	$V_{\text {DD }}=4.5$ to 5.5 V	0		300	ns
output delay time				0		500	ns
$\overline{\text { SCKO }}$ rise, fall time	$\begin{aligned} & \text { tr6 } \\ & \text { tF6 } \end{aligned}$					160	ns

Note R is a load resistance and C is a load capacitance of the SB0 or SB1 output line.
(b) Serial interface channel 1
(i) 3-wire serial I/O mode (SCK1: Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK1 }}$ cycle time	tkcy ${ }^{\text {c }}$	$V_{D D}=4.5$ to 5.5 V	800			ns
			1600			ns
$\overline{\text { SCK1 }}$ high, low-level width	tкн7 tкı7	$\mathrm{V}_{\text {DD }}=4.5$ to 5.5 V	tkcri/2-50			ns
			tkerl/2-100			ns
SI1 setup time (to $\overline{\mathrm{SCK} 1} \uparrow$)	tsik7	VDD $=4.5$ to 5.5 V	100			ns
			150			ns
SI1 hold time (from $\overline{\text { SCK }} \uparrow$)	tks17		400			ns
$\overline{\mathrm{SCK} 1} \downarrow \rightarrow$ SO1 output delay time	tksot	$\mathrm{C}=100 \mathrm{pF}$ Note			300	ns

Note C is a load capacitance of the $\overline{\mathrm{SCK}}$ or SO1 output line.
(ii) 3-wire serial I/O mode (SCK1: External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK1 }}$ cycle time	tксу8	$V_{\text {DD }}=4.5$ to 5.5 V	800			ns
			1600			ns
SCK1 high, low-level width	tкH8 tkı8	$V_{D D}=4.5$ to 5.5 V	tкcys/2-50			ns
			tkcry/2-100			ns
SI1 setup time (to $\overline{\mathrm{SCK} 1} \uparrow$)	tsik8	$V_{\text {DD }}=4.5$ to 5.5 V	100			ns
			150			ns
SI1 hold time (from $\overline{\text { SCK1 }} \uparrow$)	tks18		400			ns
$\overline{\mathrm{SCK} 1} \downarrow \rightarrow$ SO1 output delay time	tksos	$\mathrm{C}=100 \mathrm{pF}$ Note			300	ns
$\overline{\text { SCK1 }}$ rise, fall time	$\begin{aligned} & \text { tR8 } \\ & \text { tF8 } \end{aligned}$				160	ns

Note C is a load capacitance of the SO1 output line.
(iii) 3-wire serial I/O mode with automatic transmit/receive function ($\overline{\text { SCK1 }}$: Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tксү9	$V_{\text {DD }}=4.5$ to 5.5 V	800			ns
			1600			ns
SCK1 high, low-level width	tкн9 tкıя	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	tkcry/2 - 50			ns
			tkcra/2-100			ns
SI1 setup time (to $\overline{\text { SCK1 }} \uparrow$)	tsiк9	$V_{D D}=4.5$ to 5.5 V	100			ns
			150			ns
SI1 hold time (from $\overline{\text { SCK1 }} \uparrow$)	tksı9		400			ns
$\overline{\text { SCK1 }} \downarrow \rightarrow$ SO1 output delay time	tkso9	$\mathrm{C}=100 \mathrm{pF}$ Note			300	ns
$\overline{\text { SCK1 }} \downarrow \rightarrow$ STB \uparrow	tsbo		tkcra/2-100		tkcry/2 +100	ns
Strobe signal high-level width	tsew		tkcy9 - 30		tkcy9 + 30	ns
Busy signal setup time (to busy signal detection timing)	ters		100			ns
Busy signal hold time	teym	$V_{D D}=4.5$ to 5.5 V	100			ns
			150			ns
Busy inactibe \rightarrow SCK1 \downarrow	tsps				2tксү9	ns

Note C is a load capacitance of the $\overline{\text { SCK1 }}$ or SO1 output line.
(iv) 3-wire serial I/O mode with automatic transmit/receive function (SCK1: External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK1 }}$ cycle time	tkcyı0	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	800			ns
			1600			ns
$\overline{\text { SCK1 }}$ high, low-level width	tкн10 tkL10	$V_{\text {DD }}=4.5$ to 5.5 V	400			ns
			800			ns
SI1 setup time (to $\overline{\text { SCK1 }} \uparrow$)	tsik10		100			ns
SI1 hold time (from $\overline{\text { SCK1 }} \uparrow$)	tks110		400			ns
$\overline{\text { SCK1 }} \downarrow \rightarrow$ SO1 output delay time	tksolo	$C=100 \mathrm{pF}$ Note			300	ns
$\overline{\text { SCK1 }}$ rise, fall time	$\begin{aligned} & \mathrm{t}_{\text {R10 }} \\ & \mathrm{t}_{\mathrm{F} 10} \end{aligned}$				160	ns

Note C is a load capacitance of the SO1 output line.

AC TIMING TEST POINT (EXCLUDING X1, XT1 INPUT)

CLOCK TIMING

TI TIMING

SERIAL TRANSFER TIMING

3-wire serial I/O mode:

SBI mode (bus release signal transfer):

SBI mode (command signal transfer):

2-wire serial I/O mode:

3-wire serial I/O mode with automatic transmit/receive function:

3-wire serial I/O mode with automatic transmit/receive function (Busy processing):

Note Though it does not become low level actually, here it is described as it does due to the timing rule.

A/D CONVERTER CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{AVdd}=\mathrm{V}_{\mathrm{dd}}=4.0$ to 5.5 V , $\mathrm{AV} \mathrm{ss}=\mathrm{Vss}=0 \mathrm{~V}$)

\star

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Total error Note 1					0.6	\%
Conversion time Note 2	tconv	$1 \mathrm{MHz} \leq \mathrm{fx} \leq 5.0 \mathrm{MHz}$	19.1		200	$\mu \mathrm{s}$
Sampling time Note 3	tsamp		12/fx			$\mu \mathrm{s}$
Analog input voltage	Vian		AVss		AV ${ }_{\text {ref }}$	V
Reference voltage	AV ReF		4.0		AVDD	V
AV $\mathrm{feF}^{\text {resistor }}$	Ravief		4	14		$\mathrm{k} \Omega$

Notes 1. Quantization error ($\pm 1 / 2 L S B$) is not included. This parameter is indicated as the ratio to the full-scale value.
2. Set the A / D conversion time to $19.1 \mu \mathrm{~s}$ or more.
3. Sampling time depends on the conversion time.

DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.8		5.5	V
Data retention supply current	IDDDR	VDDDR $=2.0 \mathrm{~V}$ Subsystem clock stopped, Feedback resistor not connected	0.1	10	$\mu \mathrm{~A}$	
Release signal set time	tsREL		0			$\mu \mathrm{~s}$
Oscillation stabilization wait time	twait	Release by RESET		$2^{17 / f x}$		ms
			Note		ms	

Note Selection of $2^{12} / \mathrm{fx}, 2^{14} / \mathrm{fx}$ to $2^{17} / \mathrm{fx}$ is available by bits 0 to 2 (OSTS0 to OSTS2) of oscillation stabilization time select register (OSTS).

Data retention timing (STOP mode release by RESET)

Data retention timing (standby release signal: STOP mode release by interrupt signal)

Interrupt input timing

INTP0 - INTP2

$\overline{\text { RESET }}$ input timing

11. CHARACTERISTIC CURVE (REFERENCE VALUE)
(1) μ PD780204, 780205

High-level output voltage $\mathrm{V}_{\mathrm{DD}}-\mathrm{VOH}_{\mathrm{O}}[\mathrm{V}]$
(2) μ PD780206, 780208

10.0	

12. PACKAGE DRAWING

100 PIN PLASTIC QFP (14×20)

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

P100GF-65-3BA1-2		
ITEM	MILLIMETERS	INCHES
A	23.6 ± 0.4	0.929 ± 0.016
B	20.0 ± 0.2	$0.795_{-0.008}^{+0.009}$
C	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
D	17.6 ± 0.4	0.693 ± 0.016
F	0.8	0.031
G	0.6	0.024
H	0.30 ± 0.10	$0.012_{-0.005}^{+0.004}$
1	0.15	0.006
J	0.65 (T.P.)	0.026 (T.P.)
K	1.8 ± 0.2	$0.071_{-0.009}^{+0.008}$
L	0.8 ± 0.2	$0.031-0.008$
M	$0.15_{-0.05}^{+0.10}$	$0.006{ }_{-0.003}^{+0.004}$
N	0.10	0.004
P	2.7	0.106
Q	0.1 ± 0.1	0.004 ± 0.004
S	3.0 MAX.	0.119 MAX.

Remark The dimensions and materials of the ES model are the same as the mass-produced model.

13. RECOMMENDED SOLDERING CONDITIONS

The conditions listed below shall be met when soldering the μ PD780204, 780205, 780206, and 780208.
For details of the recommended soldering conditions, refer to our document Semiconductor Device Mounting Technology Manual (C10535E).

Please consult with our sales offices in case any other soldering process is used, or in case soldering is done under different conditions.

Table 13-1. Soldering Conditions for Surface-Mount Type

```
\muPD780204GF- }\times\times\times-3BA: 100-pin plastic QFP (14 > 20 mm)
\muPD780205GF-×××-3BA: 100-pin plastic QFP (14 }\times20\textrm{mm}
\muPD780206GF- }\times\times\times-3BA: 100-pin plastic QFP (14 > 20 mm)
\muPD780208GF- }\times\times\times-3BA: 100-pin plastic QFP (14 > 20 mm)
```

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235{ }^{\circ} \mathrm{C}$, Duration: 30 sec. max. (at $210{ }^{\circ} \mathrm{C}$ or above), Number of times: Thrice max.	IR35-00-3
VPS	Package peak temperature: $215{ }^{\circ} \mathrm{C}$, Duration: 40 sec. max. (at $200{ }^{\circ} \mathrm{C}$ or above), Number of times: Thrice max.	VP15-00-3
Wave soldering	Solder bath temperature: $260{ }^{\circ} \mathrm{C}$ max. Duration: 10 sec. max. Number of times: Once Preliminary heat temperature: $120 ~$${ }^{\circ} \mathrm{C}$ max. (Package surface temperature)	

Caution Using more than one soldering method should be avoided (except in the case of partial heating).

APPENDIX A. DEVELOPMENT TOOLS

The following tools are available for development of systems using the μ PD780204, 780205, 780206, and 780208:

Language Processing Software

RA78K/0 ${ }^{\text {Note 1, 2, 3, } 4}$	Assembler package common to 78K/0 series
CC78K/0 ${ }^{\text {Note 1, 2, 3, } 4}$	C compiler package common to 78K/0 series
DF780208 ${ }^{\text {Note 1, 2, 3, } 4}$	Device file for μ PD780208 subseries
CC78K/0-L Note 1, 2, 3, 4	C compiler library source file common to $78 \mathrm{~K} / 0$ series

PROM Writing Tools

PG-1500	PROM programmer
PA-78P0208GF PA-78P0208KL-T	Programmer adapter connectd to PG-1500
PG-1500 Controller ${ }^{\text {Note 1, 2 }}$	

Debugging Tools

IE-78000-R	In-circuit emulator common to $78 \mathrm{~K} / 0$ series
IE-78000-R-A	In-circuit emulator common to $78 \mathrm{~K} / 0$ series (for integrated debugger)
IE-78000-R-BK	Break board common to $78 \mathrm{~K} / 0$ series
IE-780208-R-EM	Emulation board for evaluating μ PD780208 subseries
EP-78064GF-R	Emulation probe common to μ PD78064 subseries
EV-9200GF-100	Socket mounted to target system created for 100-pin plastic QFP (GF-3BA type)
SM78K0Note 5, 6,7	System simulator common to 78K/0 series
ID78K0 ${ }^{\text {Note 4,5,6,7 }}$	Integrated debugger for IE-78000-R-A
SD78K/0Note 1,2	Screen debugger for IE-78000-R
DF780208 ${ }^{\text {Note 1, 2,4,5,6,7}}$	Device file for μ PD780208 subseries

Real-time OS

RX78K/0	Note 1, 2, 3, 4
MX78K0 $0^{\text {Note 1, 2, 3, 4 }}$	Reame OS for $78 \mathrm{~K} / 0$ series

Notes 1. PC-9800 series (MS-DOS ${ }^{\text {TM }}$) based
2. IBM PC/AT ${ }^{T M}$ and compatible (PC DOS ${ }^{T M} / I B M ~ D O S ~(M / M S-D O S) ~ b a s e d ~$
3. HP9000 series $300^{T M}\left(H P-U X^{T M}\right)$ based
4. HP9000 series $700^{\top M}$ (HP-UX) based, SPARCstation ${ }^{\text {TM }}$ (Sun OS ${ }^{\top M}$) based, EWS4800 series (EWS-UX/V) based
5. PC-9800 series (MS-DOS + Windows ${ }^{\text {TM }}$) based
6. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS + Windows) based
7. $\mathrm{NEWS}^{\mathrm{TM}}\left(\right.$ NEWS-OS $\left.^{\mathrm{TM}}\right)$ based

Remarks 1. Please refer to the $78 \mathrm{~K} / 0$ Series Selection Guide (U11126E) for information on third party development tools.
2. RA78K/0, CC78K/0, SM78K0, ID78K0, SD78K/0, and RX78K/0 are used in combination with DF780208.

Fuzzy Inference Development Support System

FE9000	Note $\mathbf{1} /$ FE9200 $^{\text {Note } 3}$
FT9080 $^{\text {Note } 1 / \text { FT9085 }}$ Note 2	Fuzzy knowledge data creation tool
FI78K0 ${ }^{\text {Note } 1,2}$	Translator
FD78K0 ${ }^{\text {Note } 1,2}$	Fuzzy inference module

Notes 1. PC-9800 series (MS-DOS) based
2. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS) based
3. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS + Windows) based

Remark Please refer to the 78K/0 Series Selection Guide (U11126E) for information on third party development tools.

APPENDIX B. RELATED DOCUMENTS

Documents Related to Devices

	Document No.	
	Document Name	Japanese
μ PD780208 subseries user's manual	U11302J	U11302E
μ PD780204, 780205, 780206, 780208 data sheet	U10436J	This document
μ PD78P0208 data sheet	U11295J	U11295E
μ PD780208 subseries special function register list	U10997J	-
$78 K / 0$ series user's manual - instruction	IEU-849	IEU-1372
$78 K / 0$ series instruction list	U10903J	-
$78 K / 0$ series instruction set	U10904J	
$78 K / 0$ series application note - Basic (II)	-	

Caution The documents listed above are subject to change without notice. Be sure to use the latest documents for designing your system.

Development Tool Documents (User's Manual)

Document Name		Document No.	
		Japanese	English
RA78K series assembler package	Operation	EEU-809	EEU-1399
	Language	EEU-815	EEU-1404
RA78K0 assembler package	Operation	U11802J	U11802E
	Assembly language	U11801J	U11801E
	Structured assembly language	U11789J	U11789E
RA78K series structured assembler preprocessor		EEU-817	EEU-1402
CC78K series C compiler	Operation	EEU-656	EEU-1280
	Language	EEU-655	EEU-1284
CC78K0 C compiler	Operation	U11517J	U11517E
	Language	U11518J	U11518E
CC78K series library source file		EEU-777	-
CC78K/0 C compiler application note	Programming know-how	EEA-618	EEA-1208
PG-1500 PROM programmer		EEU-651	EEU-1335
PG-1500 controller PC-9800 series (MS-DOS) base		EEU-704	EEU-1291
PG-1500 controller IBM PC series (PC DOS) base		EEU-5008	U10540E
IE-78000-R		EEU-810	U11376E
IE-78000-R-A		U10057J	U10057E
IE-78000-R-BK		EEU-867	EEU-1427
IE-780208-R-EM		EEU-977	EEU-1501
EP-78064		EEU-934	EEU-1469
SM78K0 system simulator	Reference	U10181J	U10181E
SM78K series system simulator	External parts user-open interface specification	U10092J	U10092E
SD78K/0 screen debugger PC-9800 series (MS-DOS) base	Introduction	EEU-852	U10539E
	Reference	U10952J	-
SD78K/0 screen debugger IBM PC/AT (PC DOS) base	Introduction	EEU-5024	EEU-1414
	Reference	U11279J	U11279E
ID78K0 integrated debugger EWS based	Reference	U11151J	-
ID78K0 integrated debugger PC based	Reference	U11539J	U11539E
ID78K0 integrated debugger Windows based	Guide	U11649J	U11649E

Caution The documents listed above are subject to change without notice. Be sure to use the latest documents for designing your system.

Documents Related to Embedded Software (User's Manual)

Document Name		Document No.	
		Japanese	English
	Fundamental	U11537J	-
	Installation	U11536J	-
	Technical	U11538J	-
$78 \mathrm{~K} / 0$ series OS MX78K0	Fundamental	EEU-5010	-
Fuzzy knowledge data creation tool	EEU-829	EEU-1438	
$78 \mathrm{~K} / 0,78 \mathrm{~K} / I I, ~ 87 A D ~ s e r i e s ~ f u z z y ~ i n f e r e n c e ~ d e v e l o p m e n t ~ s u p p p o r t ~ s y s t e m ~-~$ translator	EEU-862	EEU-1444	
$78 \mathrm{~K} / 0$ series fuzzy inference development support system - fuzzy inference module	EEU-858	EEU-1441	
$78 \mathrm{~K} / 0$ series fuzzy inference development support system - fuzzy inference debugger	EEU-921	EEU-1458	

Other Related Documents

Document Name	Document No.	
	Japanese	English
IC package manual	C10943X	
Semiconductor device mounting technology manual	C10535J	C10535E
Quality grade on NEC semiconductor devices	C11531J	C11531E
NEC semiconductor device reliability/quality control system	C10983J	C10983E
Static electricity discharge (ESD) test	MEM-539	-
Semiconductor device quality guarantee guide	C11893J	MEI-1202
Product guide related to microcomputer - other manufacturers	U11416J	-

Caution The documents listed above are subject to change without notice. Be sure to use the latest documents for designing your system.
[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to Vod or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Mountain View, California
Tel: 800-366-9782
Fax: 800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (France) S.A.
France
Tel: 01-30-67 5800
Fax: 01-30-67 5899
NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby Sweden
Tel: 8-63 80820
Fax: 8-63 80388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951
NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689

The documents referred to in this publication may include preliminary versions. However, preliminary versions are not marked as such.

```
FIP and IEBus are trademarks of NEC Corporation.
MS-DOS and Windows are trademarks of Microsoft Corporation.
IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.
HP9000 series 300, HP9000 series 700, and HP-UX are trademarks of Hewlett-Packard.
SPARCstation is a trademark of SPARC International, Inc.
SunOS is a trademark of Sun Microsystems Inc.
NEWS and NEWS-OS are trademarks of Sony Corporation.
```

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

