DATA SHEET

MOS INTEGRATED CIRCUIT μPD780031A(A), 780032A(A), 780033A(A), 780034A(A), 780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A)

8-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The μ PD780031A(A), 780032A(A), 780033A(A), 780034A(A), 780031AY(A), 780032AY(A), 780033AY(A) and 780034AY(A) are products to which a quality assurance program more stringent than that used for the μ PD780031A, 780032A, 780033A, 780034A, 780031AY, 780032AY, 780033AY and 780034AY (standard models) is applied (NEC Electronics classifies these products as "special" quality grade models).

The μ PD780031A(A), 780032A(A), 780033A(A), and 780034A(A) are members of the μ PD780034A Subseries of the 78K/0 Series. Only selected functions of the existing μ PD78054 Subseries are provided, and the serial interface is enhanced.

The μ PD780031AY(A), 780032AY(A), 780033AY(A), and 780034AY(A) are the μ PD780034A Subseries with a multimaster supporting I²C bus interface, which makes them suitable for AV equipment.

Flash memory versions, the μ PD78F0034B(A) and 78F0034BY(A) and various development tools, are also available.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

μPD780024A, 780034A, 780024AY, 780034AY Subseries User's Manual: U14046E 78K/0 Series Instructions User's Manual: U12326E

FEATURES (1/2)

• Internal ROM and RAM/

Item Part Number	Program Memory (Internal ROM)	Data Memory (Internal High-Speed RAM)	Package
μPD780031A(A), 780031AY(A)	8 KB	512 bytes	• 64-pin plastic SDIP (19.05 mm (750))
μΡD780032A(A), 780032AY(A)	16 KB		 64-pin plastic QFP (14 x 14) 64-pin plastic LQFP (14 x 14)
μPD780033A(A), 780033AY(A)	24 KB	1024 bytes	• 64-pin plastic TQFP (12 x 12)
μPD780034A(A), 780034AY(A)	32 KB		• 64-pin plastic LQFP (10 x 10)

*

- External memory expansion space: 64 KB
- Minimum instruction execution time
 - Expanded-specification products of μPD780031A(A), 780032A(A), 780033A(A), 780034A(A): 0.166 μs (fx = 12 MHz, V_{DD} = 4.5 to 5.5 V)
 - μPD780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A) and conventional products of μPD780031A(A), 780032A(A), 780033A(A), 780034A(A): 0.238 μs (fx = 8.38 MHz, V_{DD} = 4.0 to 5.5 V)
- I/O ports: 51 (N-ch open-drain (5 V withstanding voltage): 4)
- 10-bit resolution A/D converter: 8 channels (AVDD = 1.8 to 5.5 V)

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

FEATURES (2/2)

- Serial interface: 3 channels
 - μPD780031A(A), 780032A(A), 780033A(A), 780034A(A): UART mode, 3-wire serial I/O mode (2 channels)
 - μPD780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A): UART mode, 3-wire serial I/O mode, I²C bus mode
- Timer: 5 channels
- Power supply voltage: VDD = 1.8 to 5.5 V

APPLICATIONS

Telephones, household electrical appliances, pagers, AV equipment, car audios, office automation equipment, etc.

ORDERING INFORMATION (1/2)

(1) µPD780034A(A) Subseries

	Part Number	Package
	μΡD780031ACW(A)-×××	64-pin plastic SDIP (19.05 mm (750))
	μPD780031AGC(A)-×××-AB8	64-pin plastic QFP (14 x 14)
*	μPD780031AGC(A)-×××-8BS	64-pin plastic LQFP (14 x 14)
	μPD780031AGK(A)-×××-9ET	64-pin plastic TQFP (12 x 12)
*	μ PD780031AGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 x 10)
	μPD780032ACW(A)-×××	64-pin plastic SDIP (19.05 mm (750))
	μPD780032AGC(A)-×××-AB8	64-pin plastic QFP (14 x 14)
*	μPD780032AGC(A)-×××-8BS	64-pin plastic LQFP (14 x 14)
	μPD780032AGK(A)-×××-9ET	64-pin plastic TQFP (12 x 12)
*	μ PD780032AGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 x 10)
	μPD780033ACW(A)-×××	64-pin plastic SDIP (19.05 mm (750))
	μPD780033AGC(A)-×××-AB8	64-pin plastic QFP (14 x 14)
*	μPD780033AGC(A)-×××-8BS	64-pin plastic LQFP (14 x 14)
	μPD780033AGK(A)-×××-9ET	64-pin plastic TQFP (12 x 12)
*	μ PD780033AGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 x 10)
	μ PD780034ACW(A)- \times	64-pin plastic SDIP (19.05 mm (750))
	μPD780034AGC(A)-×××-AB8	64-pin plastic QFP (14 x 14)
*	μPD780034AGC(A)-×××-8BS	64-pin plastic LQFP (14 x 14)
	μ PD780034AGK(A)-×××-9ET	64-pin plastic TQFP (12 x 12)
*	μ PD780034AGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 x 10)

Note Under development

ORDERING INFORMATION (2/2)

(2) µPD780034AY(A) Subseries

	Part Number	Package
*	μPD780031AYCW(A)-××× ^{Note}	64-pin plastic SDIP (19.05 mm (750))
	µPD780031AYGC(A)-×××-AB8 ^{№te}	64-pin plastic QFP (14 x 14)
*	µPD780031AYGC(A)-×××-8BS ^{Note}	64-pin plastic LQFP (14 x 14)
	μ PD780031AYGK(A)-×××-9ET ^{Note}	64-pin plastic TQFP (12 x 12)
*	μ PD780031AYGB(A)- \times ×-8EU ^{Note}	64-pin plastic LQFP (10 x 10)
*	μ PD780032AYCW(A)-××× ^{Note}	64-pin plastic SDIP (19.05 mm (750))
	µPD780032AYGC(A)-×××-AB8 ^{Note}	64-pin plastic QFP (14 x 14)
*	μ PD780032AYGC(A)- \times 8BS ^{Note}	64-pin plastic LQFP (14 x 14)
	µPD780032AYGK(A)-×××-9ET ^{№te}	64-pin plastic TQFP (12 x 12)
*	μ PD780032AYGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 x 10)
*	μ PD780033AYCW(A)- \times ×× ^{Note}	64-pin plastic SDIP (19.05 mm (750))
	μ PD780033AYGC(A)- \times AB8 ^{Note}	64-pin plastic QFP (14 x 14)
*	μ PD780033AYGC(A)-×××-8BS ^{Note}	64-pin plastic LQFP (14 x 14)
	µPD780033AYGK(A)-×××-9ET ^{№te}	64-pin plastic TQFP (12 x 12)
*	μ PD780033AYGB(A)- \times +8EU ^{Note}	64-pin plastic LQFP (10 x 10)
*	μ PD780034AYCW(A)-××× ^{Note}	64-pin plastic SDIP (19.05 mm (750))
	µPD780034AYGC(A)-≫×AB8 ^{Note}	64-pin plastic QFP (14 x 14)
*	μ PD780034AYGC(A)- \times +8BS ^{Note}	64-pin plastic LQFP (14 x 14)
	μ PD780034AYGK(A)- \times -9ET ^{Note}	64-pin plastic TQFP (12 x 12)
*	μ PD780034AYGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 x 10)

Note Under development

Remark ××× indicates ROM code suffix.

QUALITY GRADE

Special

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

DIFFERENCES BETWEEN μPD780031A(A), 780032A(A), 780033A(A), 780034A(A), 780031AY(A), 780032AY(A), 780033AY(A) AND 780034AY(A), AND μPD780031A, 780032A, 780033A, 780034A, 780031AY, 780032AY, 780033AY AND 780034AY

Product Number	μPD780031A(A), 780032A(A), 780033A(A),	μPD780031A, 780032A, 780033A, 780034A,
	780034A(A), 780031AY(A), 780032AY(A),	780031AY, 780032AY, 780033AY, 780034AY
Item	780033AY(A), 780034AY(A)	
Quality grade	Special	Standard
Package	64-pin plastic SDIP (19.05 mm (750))	64-pin plastic SDIP (19.05 mm (750))
	64-pin plastic QFP (14 x 14)	64-pin plastic QFP (14 x 14)
	64-pin plastic LQFP (14 x 14)	64-pin plastic LQFP (14 x 14)
	64-pin plastic TQFP (12 x 12)	64-pin plastic TQFP (12 x 12)
	64-pin plastic LQFP (10 x 10)	64-pin plastic LQFP (10 x 10)
		73-pin plastic FBGA (9 x 9)

***** EXPANDED-SPECIFICATION PRODUCTS AND CONVENTIONAL PRODUCTS

The expanded-specification product and conventional product refer to the following products.

Expanded-specification product: μPD780031A(A), 780032A(A), 780033A(A), 780034A(A) for which orders were received after December 1, 2001. (Products with a rank^{Note} other than K, E, P, X)

Conventional product:Products other than the above expanded specification products.
(Products with rank
Note K, E, P, X)
 μ PD780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A)

Note The rank is indicated by the 5th digit from the left in the lot number marked on the package.

Lot number	<u> </u>	\underline{OO}	$\times \times \times \times$				
	Year code	Week code	NEC Electronics control code				
	Rank						

Expanded-specification products and conventional products differ in the power supply voltage range and operating frequency ratings.

Power Supply Voltage (VDD)	Guaranteed Operating Speed (Operating Frequency)				
	Conventional Products	Expanded-Specification Products			
4.5 to 5.5 V	8.38 MHz (0.238 μs)	12 MHz (0.166 μs)			
4.0 to 5.5 V	8.38 MHz (0.238 μs)	8.38 MHz (0.238 μs)			
3.0 to 5.5 V	5 MHz (0.4 μs)	8.38 MHz (0.238 μs)			
2.7 to 5.5 V	5 MHz (0.4 μs)	5 MHz (0.4 μs)			
1.8 to 5.5 V	1.25 MHz (1.6 μs)	1.25 MHz (1.6 μs)			

Remark The parenthesized values indicates the minimum instruction execution time.

***** CORRESPONDENCE BETWEEN MASK ROM PRODUCTS AND FLASH MEMORY PRODUCTS

Mask ROM Products	Flash Memory Products
Expanded-specification products of μ PD780031A(A),	μPD78F0034B(A)
780032A(A), 780033A(A), 780034A(A)	
Conventional products of µPD780031A(A), 780032A(A),	
780033A(A), 780034A(A)	
μPD780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A)	μPD78F0034BY(A)

Caution The μPD78F0034B(A) and conventional products of the μPD780031A(A), 780032A(A), 780033A(A), and 780034A(A) differ in the operating frequency ratings. When using the mask ROM versions in place of the flash memory versions, take note of the power supply voltage and operating frequency used.

★ 78K/0 SERIES LINEUP

The products in the 78K/0 Series are listed below. The names enclosed in boxes are subseries names.

Products in mass production Products under development Y subseries products are compatible with I²C bus. Control EMI-noise reduced version of the µPD78078 μPD78075B 100-pin μPD78078 μPD78078Υ μ PD78054 with timer and enhanced external interface 100-pin μPD78070A μPD78070AY ROMless version of the µPD78078 100-pin μPD780018AY $\mu\,\text{PD78078Y}$ with enhanced serial I/O and limited function 100-pin μPD780058 μPD780058Y μ PD78054 with enhanced serial I/O 80-pin μPD78058F μPD78058FY EMI-noise reduced version of the μ PD78054 80-pin μPD78054 80-pin μPD78054Y μ PD78018F with UART and D/A converter, and enhanced I/O 80-pin μPD780065 μ PD780024A with expanded RAM //PD780078Y μ PD780034A with timer and enhanced serial I/O uPD780078 64-pin μPD780034A μPD780034AY µPD780024A with enhanced A/D converter 64-pin µPD78018F with enhanced serial I/O µPD780024A μPD780024AY 64-pin μPD780034AS 52-pin version of the µPD780034A 52-pin µPD780024AS 52-pin version of the μ PD780024A 52-pin 64-pin μPD78014H EMI-noise reduced version of the µPD78018F μPD78018F μPD78018FY Basic subseries for control 64-pin µPD78083 On-chip UART, capable of operating at low voltage (1.8 V) 42/44-pin Inverter control 64-pin µPD780988 On-chip inverter control circuit and UART. EMI-noise reduced. VFD drive 100-pin μPD780208 µPD78044F with enhanced I/O and VFD C/D. Display output total: 53 80-pin µPD780232 For panel control. On-chip VFD C/D. Display output total: 53 80-pin μPD78044H µPD78044F with N-ch open-drain I/O. Display output total: 34 μPD78044F 80-pin Basic subseries for driving VFD. Display output total: 34 LCD drive 78K/0 Series µPD780354 µPD780354Y µPD780344 with enhanced A/D converter 100-pin μPD780344 100-pin μPD780344Y µPD780308 with enhanced display function and timer. Segment signal output: 40 pins max. μ PD780308 with enhanced display function and timer. Segment signal output: 40 pins max. 120-pin µPD780338 μ PD780308 with enhanced display function and timer. Segment signal output: 32 pins max. μPD780328 120-pin µPD780308 with enhanced display function and timer. Segment signal output: 24 pins max. 120-pin μPD780318 μPD780308Υ 100-pin µPD780308 μ PD78064 with enhanced SIO, and expanded ROM and RAM 100-pin EMI-noise reduced version of the µPD78064 μPD78064B 100-pin μPD78064Υ μPD78064 Basic subseries for driving LCDs, on-chip UART Bus interface supported 100-pin µPD780948 On-chip CAN controller μPD78098B 80-pin µPD78054 with IEBus[™] controller 80-pin uPD780702Y On-chip IEBus controller μPD780703Y 80-pin On-chip CAN controller µPD780833Y 80-pin On-chip controller compliant with J1850 (Class 2) µPD780816 64-pin Specialized for CAN controller function Meter control μPD780958 100-pin For industrial meter control 80-pin μPD780852 On-chip automobile meter controller/driver μPD780828B For automobile meter driver. On-chip CAN controller 80-pin

Remark VFD (Vacuum Fluorescent Display) is referred to as FIP[™] (Fluorescent Indicator Panel) in some documents, but the functions of the two are same.

The major functional differences among the subseries are listed below.

• Non-Y subseries

	Function	ROM Capacity		Tin	ner		8-Bit	10-Bit	8-Bit	Serial Interface	I/O	Vdd MIN.	External
Subseries	Name	(Bytes)	8-Bit	16-Bit	Watch	WDT	A/D	A/D	D/A			Value	Expansion
Control	μPD78075B	32 K to 40 K	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1 ch)	88	1.8 V	\checkmark
	μPD78078	48 K to 60 K											_
	μPD78070A	-									61	2.7 V	_
	μPD780058	24 K to 60 K	2 ch							3 ch (time-division UART: 1 ch)	68	1.8 V	_
	μ PD78058F	48 K to 60 K								3 ch (UART: 1 ch)	69	2.7 V	_
	μPD78054	16 K to 60 K										2.0 V	
	μPD780065	40 K to 48 K							-	4 ch (UART: 1 ch)	60	2.7 V	
	μPD780078	48 K to 60 K		2 ch			-	8 ch		3 ch (UART: 2 ch)	52	1.8 V	
	μPD780034A	8 K to 32 K		1 ch						3 ch (UART: 1 ch)	51		
	μPD780024A						8 ch	-					
	μPD780034AS						_	4 ch			39		-
	μPD780024AS						4 ch	_					
	μPD78014H						8 ch			2 ch	53		\checkmark
	μ PD78018F	8 K to 60 K											
	μPD78083	8 K to 16 K		-	-					1 ch (UART: 1 ch)	33		-
Inverter control	μPD780988	16 K to 60 K	3 ch	Note	-	1 ch	-	8 ch	-	3 ch (UART: 2 ch)	47	4.0 V	V
VFD	μPD780208	32 K to 60 K	2 ch	1 ch	1 ch	1 ch	8 ch	-		2 ch	74	2.7 V	_
drive	µPD780232	16 K to 24 K	3 ch	-	Ι		4 ch				40	4.5 V	
	μPD78044H	32 K to 48 K	2 ch	1 ch	1 ch		8 ch			1 ch	68	2.7 V	
	μPD78044F	16 K to 40 K								2 ch			
LCD	µPD780354	24 K to 32 K	4 ch	1 ch	1 ch	1 ch	_	8 ch	-	3 ch (UART: 1 ch)	66	1.8 V	-
drive	µPD780344						8 ch	-					
	µPD780338	48 K to 60 K	3 ch	2 ch			-	10 ch	1 ch	2 ch (UART: 1 ch)	54		
	µPD780328										62		
	μPD780318										70		
	µPD780308	48 K to 60 K	2 ch	1 ch			8 ch	-	Ι	3 ch (time-division UART: 1 ch)	57	2.0 V	
	μPD78064B	32 K								2 ch (UART: 1 ch)			
	μPD78064	16 K to 32 K											
Bus	μPD780948	60 K	2 ch	2 ch	1 ch	1 ch	8 ch	-	Ι	3 ch (UART: 1 ch)	79	4.0 V	\checkmark
interface	μPD78098B	40 K to 60 K		1 ch					2 ch		69	2.7 V	-
supported	μPD780816	32 K to 60 K		2 ch			12 ch		-	2 ch (UART: 1 ch)	46	4.0 V	
Meter control	μPD780958	48 K to 60 K	4 ch	2 ch	-	1 ch	-	-	-	2 ch (UART: 1 ch)	69	2.2 V	-
Dash- board	μPD780852	32 K to 40 K	3 ch	1 ch	1 ch	1 ch	5 ch	-	_	3 ch (UART: 1 ch)	56	4.0 V	-
board control	μPD780828B	32 K to 60 K									59		

Note 16-bit timer: 2 channels 10-bit timer: 1 channel

• Y subseries

	Function	ROM Capacity		Tin	ner		8-Bit	10-Bit	8-Bit	Serial Interface	I/O	Vdd MIN.	External
Subseries	Name	(Bytes)	8-Bit	16-Bit	Watch	WDT	A/D	A/D	D/A				Expansion
Control	μPD78078Y	48 K to 60 K	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1 ch, I ² C: 1 ch)	88	1.8 V	\checkmark
	μPD78070AY	-									61	2.7 V	
	μPD780018AY	48 K to 60 K							_	3 ch (l ² C: 1 ch)	88		
	µPD780058Y	24 K to 60 K	2 ch]					2 ch	3 ch (time-division UART: 1 ch, I ² C: 1 ch)	68	1.8 V	
	μPD78058FY	48 K to 60 K								3 ch (UART: 1 ch, I ² C: 1 ch)	69	2.7 V	
	μPD78054Y	16 K to 60 K										2.0 V	
	µPD780078Y	48 K to 60 K		2 ch			_	8 ch	_	4 ch (UART: 2 ch, I ² C: 1 ch)	52	1.8 V	
	μPD780034AY	8 K to 32 K		1 ch						3 ch (UART: 1 ch, I ² C: 1 ch)	51		
	μPD780024AY						8 ch	-					
	μPD78018FY	8 K to 60 K								2 ch (l ² C: 1 ch)	53		
LCD	μPD780354Y	24 K to 32 K	4 ch	1 ch	1 ch	1 ch	_	8 ch	_	4 ch (UART: 1 ch,	66	1.8 V	-
drive	μPD780344Y						8 ch	_		I ² C: 1 ch)			
	µPD780308Y	48 K to 60 K	2 ch]						3 ch (time-division UART: 1 ch, I ² C: 1 ch)	57	2.0 V	
	μPD78064Y	16 K to 32 K								2 ch (UART: 1 ch, I ² C: 1 ch)			
Bus	μPD780701Y	60 K	3 ch	2 ch	1 ch	1 ch	16 ch	_	_	4 ch (UART: 1 ch, I ² C: 1 ch)	67	3.5 V	-
interface	µPD780703Y												
supported	µPD780833Y										65	4.5 V	

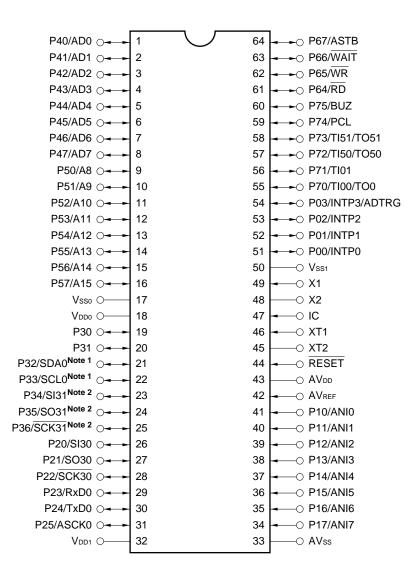
Remark The functions of non-Y subseries and Y subseries products are the same, except for the serial interface.

OVERVIEW OF FUNCTIONS (1/2)

Item	Part Number	μPD780031A(A) μPD780031AY(A)	μPD780032A(A) μPD780032AY(A)	μPD780033A(A) μPD780033AY(A)	μPD780034A(A) μPD780034AY(A)			
Internal	ROM	8 KB	16 KB	24 KB	32 KB			
memory	High-speed RAM	512 bytes		1024 bytes				
Memory space	ce	64 KB						
General-purp	oose registers	8 bits \times 32 registers ((8 bits $ imes$ 8 registers $ imes$ 4	banks)				
Minimum ins	truction execution	On-chip minimum ins	truction execution time	cycle variable functior	1			
time When main system clock selected		 Expanded-specification products of μPD780031A(A), 780032A(A), 780033A(A), 780034A(A): 0.166 μs/0.333 μs/0.666 μs/1.33 μs/2.66 μs (@12 MHz, V_{DD} = 4.5 to 5.5 V operation) μPD780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A) and conventional products of μPD780031A(A), 780032A(A), 780033A(A), 780034A(A): 0.238 μs/0.48 μs/0.95 μs/1.91 μs/3.81 μs (@8.38 MHz, V_{DD} = 4.0 to 5.5 V operation) 						
	When subsystem clock selected	122 μs (@ 32.768 k⊦	Iz operation)					
Instruction set		 16-bit operation Multiply/divide (8 bits × 8 bits,16 bits ÷ 8 bits) Bit manipulation (set, reset, test, Boolean operation) BCD adjust, etc. 						
I/O ports		Total:		51				
		 CMOS input: CMOS I/O: N-ch open-drain I/C 						
A/D converte	er	 10-bit resolution × 8 channels Low-voltage operation available: AVDD = 1.8 to 5.5 V 						
Serial interface		 μPD780031A(A), 780032A(A), 780033A(A), 780034A(A) UART mode: 1 channel 3-wire serial I/O mode: 2 channels μPD780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A) UART mode: 1 channel 3-wire serial I/O mode: 1 channel I'C bus mode (multimaster supporting): 1 channel 						
Timers		 16-bit timer/event counter: 1 channel 8-bit timer/event counter: 2 channels Watch timer: 1 channel Watchdog timer: 1 channel 						
Timer output	s	3 (8-bit PWM output capable: 2)						

 \star

OVERVIEW OF FUNCTIONS (2/2)

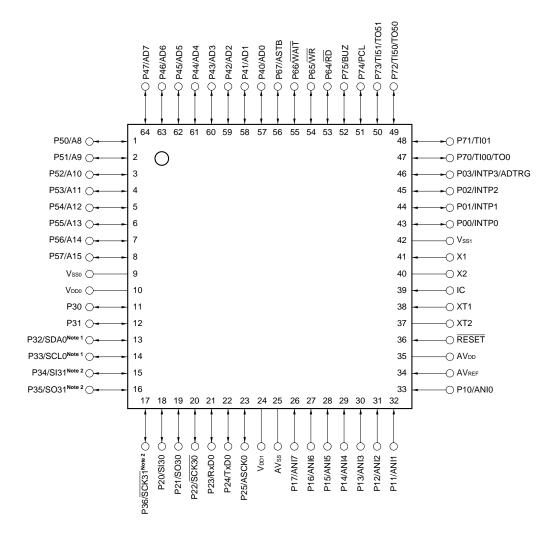

[Part Number	μPD780031A(A)	μPD780032A(A)	μPD780033A(A)	μPD780034A(A)			
	Item		μPD780031AY(A)	μPD780032AY(A)	μPD780033AY(A)	μPD780034AY(A)			
*	Clock output		 Expanded-specification products of μPD780031A(A), 780032A(A), 780033A(A), 780034A(A): 93.75 kHz, 187.5 kHz, 375 kHz, 750 kHz, 1.25 MHz, 3 MHz, 6 MHz, 12 MHz (@ 12MHz operation with main system clock) 32.768 kHz (@ 32.768 kHz operation with subsystem clock) μPD780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A) and conventional products of μPD780031A(A), 780032A(A), 780033A(A), 780034A(A): 65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.10 MHz, 4.19 MHz, 8.38 MHz (@ 8.38 MHz operation with main system clock) 32.768 kHz (@ 32.768 kHz operation with subsystem clock) 						
*	Buzzer outpu	ıt	 Expanded-specification products of μPD780031A(A), 780032A(A), 780033A(A), 780034A(A): 1.46 kHz, 2.93 kHz, 5.86 kHz, 11.7 kHz (@ 12 MHz operation with main system clock) μPD780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A) and conventional products of μPD780031A(A), 780032A(A), 780033A(A), 780034AY(A): 1.02 kHz, 2.05 kHz, 4.10 kHz, 8.19 kHz (@ 8.38 MHz operation with main system clock) 						
	Vectored	Maskable	Internal: 13, external:	5					
	interrupt	Non-maskable	Internal: 1						
	sources Software		1						
	Power supply	/ voltage	V _{DD} = 1.8 to 5.5 V						
	Operating an	nbient temperature	$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$						
	Package		• 64-pin plastic SDIP (19.05 mm (750))						
			• 64-pin plastic QFP (14 x 14)						
*			• 64-pin plastic LQFP (14 x 14)						
			• 64-pin plastic TQFP	(12 x 12)					
*			• 64-pin plastic LQFP	(10 x 10)					

CONTENTS

1.	PIN CONFIGURATION (TOP VIEW)1	1
2.	BLOCK DIAGRAM14	4
3.	PIN FUNCTIONS 1 3.1 Port Pins 1 3.2 Non-Port Pins 1 3.3 Pin I/O Circuits and Recommended Connection of Unused Pins 1	5 6
4.	MEMORY SPACE	0
5.	PERIPHERAL HARDWARE FUNCTION FEATURES 2 5.1 Ports 2 5.2 Clock Generator 2 5.3 Timer/Counter 2 5.4 Clock Output/Buzzer Output Controller 2 5.5 A/D Converter 2 5.6 Serial Interface 2	1 2 3 7 8
6.	INTERRUPT FUNCTIONS	2
7.	EXTERNAL DEVICE EXPANSION FUNCTION	5
8.	STANDBY FUNCTION	5
9.	RESET FUNCTION	5
10.	MASK OPTION	5
11.	INSTRUCTION SET	6
12.	ELECTRICAL SPECIFICATIONS 33 12.1 Expanded-Specification Products of μPD780031A(A), 780032A(A), 780033A(A), 780034A(A) 33 12.2 μPD780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A), and Conventional Products of μPD780031A(A), 780032A(A), 780033A(A), 780034A(A) 53 12.3 Timing Chart 73	8 of 5
13.	PACKAGE DRAWINGS	8
14.	RECOMMENDED SOLDERING CONDITIONS	3
AP	PENDIX A. DEVELOPMENT TOOLS8	5
AP	PENDIX B. RELATED DOCUMENTS	9

1. PIN CONFIGURATION (TOP VIEW)

• 64-pin plastic SDIP (19.05 mm (750))

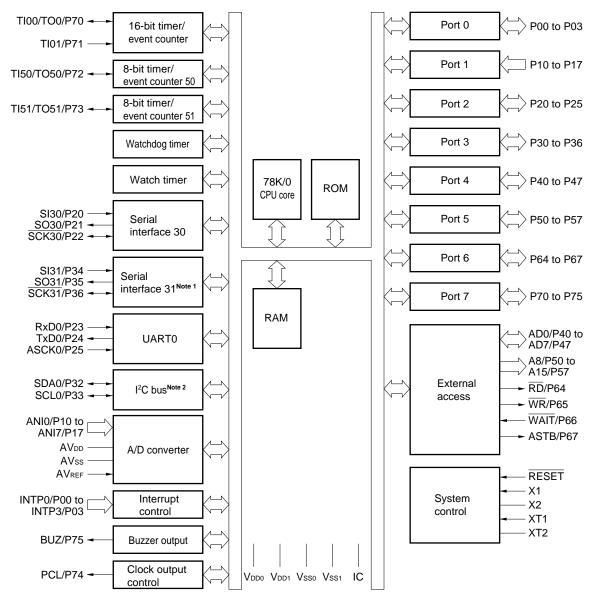


- **Notes 1.** SDA0 and SCL0 are incorporated only in the μ PD780034AY Subseries.
 - **2.** SI31, SO31, and SCK31 are incorporated only in the μ PD780034A Subseries.

Cautions 1. Connect the IC (Internally Connected) pin directly to Vsso or Vsso. 2. Connect the AVss pin to Vsso.

Remark When the μPD780031A(A), 780032A(A), 780033A(A), 780034A(A), 780031AY(A), 780032AY(A), 780033AY(A), and 780034AY(A) are used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} individually and connecting V_{SS0} and V_{SS1} to different ground lines, is recommended.

- 64-pin plastic QFP (14 x 14)
- 64-pin plastic LQFP (14 x 14)
- 64-pin plastic TQFP (12 x 12)
- 64-Pin plastic LQFP (10 x 10)



Notes 1. SDA0 and SCL0 are incorporated only in the μPD780034AY Subseries.
2. SI31, SO31, and SCK31 are incorporated only in the μPD780034A Subseries.

Cautions 1. Connect the IC (Internally Connected) pin directory to Vss0 or Vss1. 2. Connect the AVss pin to Vss0.

Remark When the μPD780031A(A), 780032A(A), 780033A(A), 780034A(A), 780031AY(A), 780032AY(A), 780033AY(A), and 780034AY(A) are used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to VDD0 and VDD1 individually and connecting Vss0 and Vss1 to different ground lines, is recommended.

A8 to A15:	Address bus	P70 to P75:	Port 7
AD0 to AD7:	Address/data bus	PCL:	Programmable clock
ADTRG:	AD trigger input	RD:	Read strobe
ANI0 to ANI7:	Analog input	RESET:	Reset
ASCK0:	Asynchronous serial clock	RxD0:	Receive data
ASTB:	Address strobe	$\overline{\text{SCK30}}$, $\overline{\text{SCK31}}$, SCL0:	Serial clock
AVDD:	Analog power supply	SDA0:	Serial data
AVREF:	Analog reference voltage	SI30, SI31:	Serial input
AVss:	Analog ground	SO30, SO31:	Serial output
BUZ:	Buzzer clock	TI00, TI01, TI50, TI51:	Timer input
IC:	Internally connected	TO0, TO50, TO51:	Timer output
INTP0 to INTP3:	External interrupt input	TxD0:	Transmit data
P00 to P03:	Port 0	Vdd0, Vdd1:	Power supply
P10 to P17:	Port 1	Vsso, Vss1:	Ground
P20 to P25:	Port 2	WAIT:	Wait
P30 to P36:	Port 3	WR:	Write strobe
P40 to P47:	Port 4	X1, X2:	Crystal (main system clock)
P50 to P57:	Port 5	XT1, XT2:	Crystal (subsystem clock)
P64 to P67:	Port 6		

2. BLOCK DIAGRAM

- **Notes 1.** Incorporated only in the μ PD780034A Subseries.
 - 2. Incorporated only in the μ PD780034AY Subseries.
- **Remark** The internal ROM and RAM capacities vary depending on the product.

3. PIN FUNCTIONS

3.1 Port Pins (1/2)

Pin Name	I/O		Function	After Reset	Alternate Function
P00 to P02	I/O	Port 0 4-bit I/O port			INTP0 to
P03		Input/output can be specified in 1 An on-chip pull-up resistor can be			INTP3/ADTRG
P10 to P17	Input	Port 1 8-bit input only port		Input	ANI0 to ANI7
P20	I/O	Port 2		Input	SI30
P21	1	6-bit I/O port			SO30
P22		Input/output can be specified in 1			SCK30
P23		An on-chip pull-up resistor can be	e used by setting software.		RxD0
P24					TxD0
P25					ASCK0
P30	I/O	Port 3	N-ch open-drain I/O port	Input	_
P31		7-bit I/O port	An on-chip pull-up resistor can be		
P32		Input/output can be specified in	specified by the mask option.		SDA0 ^{Note 1}
P33	-	1-bit units.	LEDs can be driven directly.		SCL0 ^{Note 1}
P34			An on-chip pull-up resistor can be	-	SI31 ^{Note 2}
P35			used by setting software.		SO31 ^{Note 2}
P36					SCK31 Note 2
P40 to P47	I/O	Port 4 8-bit I/O port Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be used by setting software. The interrupt request flag (KRIF) is set to 1 by falling edge detection.		Input	AD0 to AD7
P50 to P57	I/O	Port 5 8-bit I/O port LEDs can be driven directly. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be used by setting software.			A8 to A15
P64	I/O	Port 6			RD
P65		4-bit I/O port			WR
P66		Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be used by setting software.			WAIT
P67			assa by setting software.		ASTB

Notes 1. SDA0 and SCL0 are incorporated only in the μ PD780034AY Subseries.

2. SI31, SO31, and $\overline{\text{SCK31}}$ are incorporated only in the μ PD780034A Subseries.

3.1 Port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
P70	I/O	Port 7	Input	TI00/TO0
P71		6-bit I/O port		TI01
P72		Input/output can be specified in 1-bit units.		TI50/TO50
P73		An on-chip pull-up resistor can be used by setting software.		TI51/TO51
P74				PCL
P75				BUZ

3.2 Non-Port Pins (1/2)

INTPO Input External interrupt request input for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified Input Pool INTP2 falling edge, or both rising and falling edges) can be specified Input Pool INTP3 falling edge, or both rising and falling edges) can be specified Input Pool INTP3 falling edge, or both rising and falling edges) can be specified Input Pool Si30 falling edge, or both rising and falling edges) can be specified Input Pool Si31 ^{Note1} Serial interface serial data input Input Pool SO30 Output Serial interface serial data output Input Pool SCK30 ^{Note1} I/O Serial interface serial clock input/output Input P22 SCK30 ^{Note1} I/O Serial data input for asynchronous serial interface Input P24 SCK0 Input Serial clock input to rasynchronous serial interface Input P24 ASCK0 Input Serial clock input to asynchronous serial interface Input P24 TD00 Cloputet tigger input to capture register	Pin Name	I/O	Function	After	Alternate Function
INTP2 falling edge, or both rising and falling edges) can be specified P01 INTP2 interface serial data input P03/ADTF S130 Input Serial interface serial data output P1 S031 Output Serial interface serial data output Input P20 S031 Output Serial interface serial data output Input P21 S031 Output Serial interface serial data input/output Input P22 SCK30 I/O Serial interface serial clock input/output Input P23 SCK30 I/O Serial interface serial clock input/output Input P22 SCK31 V/O Serial data input for asynchronous serial interface Input P23 SCK0 Input Serial clock input for asynchronous serial interface Input P24 ASCK0 Input Serial clock input for asynchronous serial interface Input P25 T100 Capture trigger input to capture register 01 (CR01) of 16-bit timer/event counter 0 P71 P71 T150 External count clock input to 8-bit timer/event counter 50		Innut	External interrupt request input for which the valid adapt (rising adapt		
INT P2 INT P3 INT P3 P02 S130 Input Serial interface serial data input Input P20 S130 Input Serial interface serial data output Input P21 S030 Output Serial interface serial data output Input P21 S031Nee1 Serial interface serial data output Input P22 SCK30 I/O Serial interface serial clock input/output Input P22 SCK30 I/O Serial interface serial clock input/output Input P22 SCK30 I/O Serial clock input for asynchronous serial interface Input P23 SCL0Nee2 Input Serial clock input for asynchronous serial interface Input P24 SCK30 Input Serial clock input for asynchronous serial interface Input P24 SCK0 Input Serial clock input for asynchronous serial interface Input P25 T100 Input Serial clock input for asynchronous serial interface Input P27 T100 Input Serial clock		input		input	
INTP3 Input Serial interface serial data input Input P20/P3/PTF S130 Input Serial interface serial data input Input P20 S030 Output Serial interface serial data output Input P21 S031Note 1 I/O Serial interface serial data input/output Input P21 S030 Vi/O Serial interface serial data input/output Input P22 SCK30 I/O Serial interface serial data input/output Input P22 SCK30Note 1 V/O Serial atta input for asynchronous serial interface Input P23 SCL0Nore 2 Vi/O Serial clock input for asynchronous serial interface Input P24 SCL0 Input Serial clock input to capture register 01 (CR01) of 16-bit timer/event counter 0 Input P25 T100 Input External count clock input to 8-bit timer/event counter 50 P71 T150 External count clock input to 8-bit timer/event counter 51 P72/TO50 T151 8-bit timer/event counter 50 output (also used for 8-bit PWM output) P74 T050 <td></td> <td>- </td> <td></td> <td></td> <td></td>		-			
S130 Input S131 Note 1 Serial interface serial data input Input P34 P20 P34 S030 Output S031 Note 1 Serial interface serial data output Input P35 P21 P35 S030 Note 2 I/O Serial Interface serial data input/output Input P32 P21 P35 SDA0Note 2 I/O Serial Interface serial clock input/output Input P32 P22 P36 SCL0Note 2 I/O Serial data input for asynchronous serial interface Input P33 P22 P36 SCL0Note 2 Input Serial data output for asynchronous serial interface Input P24 P24 ASCK0 Input Serial clock input for asynchronous serial interface Input P24 P25 TI00 Unput Serial clock input to capture register 01 (CR01) of 16-bit timer/event counter 0 Capture trigger input to capture register 00 (CR00) of 16-bit timer/event counter 0 Input P71 P71 TI00 External count clock input to 8-bit timer/event counter 50 P72/TI050 P72/TI050 T151 External count clock input to 8-bit timer/event counter 50 Input P63/TI05 P72/TI050 T050 B-bit timer/event counter 50 output (also used for 8-bit PWM output)		-			
Sill Note 1 Image: marked					
SO30 SO30 SO31Note 1 Output P35 Serial interface serial data output Input P32 P35 SDA0Note 2 I/O Serial Interface serial data input/output Input P32 SCK30 SCK30 I/O Serial Interface serial clock input/output Input P22 SCK31 V/O Serial interface serial clock input/output Input P23 SCK30 Input Serial data input for asynchronous serial interface Input P23 RxD0 Input Serial clock input for asynchronous serial interface Input P23 TxD0 Output Serial clock input for asynchronous serial interface Input P24 ASCK0 Input Serial clock input for asynchronous serial interface Input P24 ASCK0 Input Serial clock input to capture register 01 (CR01) of 16-bit timer/event counter 0 Input P27 T100 External count clock input to 8-bit timer/event counter 50 P71 P71 T150 External count clock input to 8-bit timer/event counter 50 P71 P71 T00 Boutput 8-bit timer/event counter 50 output (also		Input	Serial interface serial data input	Input	
S031 Note 1Image: semial semial data input/outputP35SDA0Note 2I/OSerial Interface serial data input/outputInputP32SCK30I/OSerial interface serial clock input/outputInputP22SCK31 Note 1Serial interface serial clock input/outputInputP23SCL0Note 2InputSerial data input for asynchronous serial interfaceInputP23TXD0OutputSerial data output for asynchronous serial interfaceInputP24ASCK0InputSerial clock input for asynchronous serial interfaceInputP25T100Serial clock input to capture register 01 (CR01) of 16-bit timer/event counter 0 Capture trigger input to capture register 00 (CR00) of 16-bit timer/event counter 0P71T150External count clock input to 8-bit timer/event counter 50P71T150External count clock input to 8-bit timer/event counter 51P70/T00T151Se-bit timer/event counter 50 output (also used for 8-bit PWM output)InputP72/T150T0518-bit timer/event counter 51 output (also used for 8-bit PWM output)P74BUZOutputBuzzer outputInputP73/T151PCLOutputClock output (for trimming of main system clock and subsystem clock)InputP74BUZOutputStrobe signal output for reading from external memoryInputP64WRThopStrobe signal output for writing to external memoryInputP66					
SDA0Note 2 I/O Serial Interface serial data input/output Input P32 SCK30 I/O Serial interface serial clock input/output Input P22 SCK31Note 1 Serial interface serial clock input/output Input P22 SCL0Note 2 Serial data input for asynchronous serial interface Input P23 TxD0 Output Serial data output for asynchronous serial interface Input P24 ASCK0 Input Serial clock input for asynchronous serial interface Input P24 ASCK0 Input Serial clock input for asynchronous serial interface Input P25 TI00 Input Serial clock input for asynchronous serial interface Input P26 TI00 External count clock input to 16-bit timer/event counter 0 Input P70/TO0 Capture trigger input to capture register 00 (CR00) of 16-bit timer/event counter 0 P71/T P71/T TI50 External count clock input to 8-bit timer/event counter 50 P73/TO51 TO50 External count clock input to 8-bit timer/event counter 51 P72/TI50 TO51 8-bit timer/event c		Output	Serial interface serial data output	Input	P21
SCK30 I/O Serial interface serial clock input/output Input P22 SCK31Note1 SCK31Note2 Input Serial interface serial clock input/output P36 SCL0Note2 Input Serial data input for asynchronous serial interface Input P23 TxD0 Output Serial data output for asynchronous serial interface Input P24 ASCK0 Input Serial clock input for asynchronous serial interface Input P25 TI00 Unput Serial clock input for asynchronous serial interface Input P25 TI00 Input Serial clock input to capture register 01 (CR01) of 16-bit timer/event counter 0 Input P70/TO0 Capture trigger input to capture register 00 (CR00) of 16-bit timer/event counter 0 P73/TO50 P73/TO51 T05 External count clock input to 8-bit timer/event counter 50 P73/TO51 T05 External count clock input to 30 output (also used for 8-bit PWM output) Input P72/TI50 T051 B-bit timer/event counter 51 output (also used for 8-bit PWM output) P74 P73/TI51 PCL Output Buzer output Input </td <td>SO31^{Note 1}</td> <td></td> <td></td> <td></td> <td>P35</td>	SO31 ^{Note 1}				P35
SCK31Note 1 SCL0Note 2 P36 SCL0Note 2 P33 RxD0 Input Serial data input for asynchronous serial interface Input P23 TxD0 Output Serial data output for asynchronous serial interface Input P24 ASCK0 Input Serial clock input for asynchronous serial interface Input P25 T100 Input Serial clock input to 16-bit timer/event counter 0 Capture trigger input to capture register 01 (CR01) of 16-bit timer/event counter 0 Input P70/T00 T101 External count clock input to 8-bit timer/event counter 50 P71 P72/T050 T151 External count clock input to 8-bit timer/event counter 51 P70/T00 T050 External count clock input to 8-bit timer/event counter 50 P71/T00 T051 External count clock input to 8-bit timer/event counter 51 P70/T00 T051 8-bit timer/event counter 50 output (also used for 8-bit PWM output) P72/T150 T051 8-bit timer/event counter 51 output (also used for 8-bit PWM output) P73/T151 PCL Output Buzzer output Input P75 AD0 to AD7 I/O	SDA0 ^{Note 2}	I/O	Serial Interface serial data input/output	Input	P32
SCL0Note 2MP33RxD0InputSerial data input for asynchronous serial interfaceInputP23TxD0OutputSerial data output for asynchronous serial interfaceInputP24ASCK0InputSerial clock input for asynchronous serial interfaceInputP25T100InputSerial clock input for asynchronous serial interfaceInputP26T100InputExternal count clock input to 16-bit timer/event counter 0 Capture trigger input to capture register 01 (CR01) of 16-bit timer/event counter 0 External count clock input to 8-bit timer/event counter 50P71T150External count clock input to 8-bit timer/event counter 50P73/TO51T00Putput 8-bit timer/event counter 0 outputInputP70/T000T0516-bit timer/event counter 50 output (also used for 8-bit PWM output)InputP72/T150T051Buizt er outputInputP73/T151PCLOutputClock output (for trimming of main system clock and subsystem clock)InputP74BUZOutputBuzzer outputInputP75AD0 to AD7I/OLower address/data bus for expanding memory externallyInputP64WRStrobe signal output for writing to external memoryInputP66WAITInputWait insertion at external memory accessInputP66		I/O	Serial interface serial clock input/output	Input	P22
RxD0InputSerial data input for asynchronous serial interfaceInputP23TxD0OutputSerial data output for asynchronous serial interfaceInputP24ASCK0InputSerial clock input for asynchronous serial interfaceInputP25T100InputExternal count clock input to 16-bit timer/event counter 0 Capture trigger input to capture register 01 (CR01) of 16-bit timer/event counter 0InputP70/T00T101Capture trigger input to capture register 00 (CR00) of 16-bit timer/event counter 0 External count clock input to 8-bit timer/event counter 50P71P72/T050T150External count clock input to 8-bit timer/event counter 51InputP70/T00T00Output16-bit timer/event counter 0 outputInputP70/T100T050Serial data bus for expanding memory externallyInputP72/T150T051Buzzer outputClock output (for trimming of main system clock and subsystem clock)InputP74BUZOutputBuzzer outputInputP75AD0 to P4P40 to P4A8 to A15OutputStrobe signal output for reading from external memoryInputP64P65WAITInputWait insertion at external memory accessInputP66	SCK31 ^{Note 1}				P36
TxD0OutputSerial data output for asynchronous serial interfaceInputP24ASCK0InputSerial clock input for asynchronous serial interfaceInputP25TI00InputExternal count clock input to 16-bit timer/event counter 0 Capture trigger input to capture register 01 (CR01) of 16-bit timer/event counter 0InputP70/T00TI01Capture trigger input to capture register 00 (CR00) of 16-bit timer/event counter 0 External count clock input to 8-bit timer/event counter 50P71P72/T050TI51External count clock input to 8-bit timer/event counter 51InputP70/T00T00Output16-bit timer/event counter 0 outputInputP70/T00T0508-bit timer/event counter 51 output (also used for 8-bit PWM output)InputP72/T150T0518-bit timer/event counter 51 output (also used for 8-bit PWM output)InputP74BUZOutputClock output (for trimming of main system clock and subsystem clock)InputP74BUZOutputBuzzer outputInputP75AD0 to AD7I/OLower address /data bus for expanding memory externallyInputP50 to P5RDOutputStrobe signal output for reading from external memoryInputP64P65WAITInputWait insertion at external memory accessInputP66	SCL0 ^{Note 2}				P33
ASCK0InputSerial clock input for asynchronous serial interfaceInputP25TI00InputExternal count clock input to 16-bit timer/event counter 0 Capture trigger input to capture register 01 (CR01) of 16-bit timer/event counter 0 External count clock input to 8-bit timer/event counter 50InputP70/T00TI01Capture trigger input to capture register 00 (CR00) of 16-bit timer/event counter 0 External count clock input to 8-bit timer/event counter 50P71TI50External count clock input to 8-bit timer/event counter 51P73/T051T00Output 8-bit timer/event counter 0 outputInputP70/T100T0508-bit timer/event counter 50 output (also used for 8-bit PWM output)InputP72/T150T0518-bit timer/event counter 51 output (also used for 8-bit PWM output)InputP74BUZOutputClock output (for trimming of main system clock and subsystem clock)InputP74BUZOutputBuzzer outputInputP75P65Ab to A15OutputHigher address bus for expanding memory externallyInputP64WRInputWait insertion at external memory accessInputP66	RxD0	Input	Serial data input for asynchronous serial interface	Input	P23
TI00InputExternal count clock input to 16-bit timer/event counter 0 Capture trigger input to capture register 01 (CR01) of 16-bit timer/event counter 0 Capture trigger input to capture register 00 (CR00) of 16-bit timer/event counter 0 External count clock input to 8-bit timer/event counter 50InputP70/T00TI50External count clock input to 8-bit timer/event counter 51P71P72/T050TI51External count clock input to 8-bit timer/event counter 51P70/T00T00Output16-bit timer/event counter 0 outputInputP70/T00T0508-bit timer/event counter 50 output (also used for 8-bit PWM output)InputP72/T050T0518-bit timer/event counter 51 output (also used for 8-bit PWM output)InputP73/T051PCLOutputClock output (for trimming of main system clock and subsystem clock)InputP74BUZOutputBuzzer outputInputP75AD0 to AD7I/OLower address bus for expanding memory externallyInputP50 to P5RDOutputStrobe signal output for writing to external memoryInputP64WRInputVait insertion at external memory accessInputP66	TxD0	Output	Serial data output for asynchronous serial interface	Input	P24
TI01Capture trigger input to capture register 01 (CR01) of 16-bit timer/event counter 0P71TI01Capture trigger input to capture register 00 (CR00) of 16-bit timer/event counter 0P71TI50External count clock input to 8-bit timer/event counter 50P72/T050TI51External count clock input to 8-bit timer/event counter 51P70/T100T00Output16-bit timer/event counter 0 outputInputP70/T100T0508-bit timer/event counter 50 output (also used for 8-bit PWM output)InputP72/T050T0518-bit timer/event counter 51 output (also used for 8-bit PWM output)P74P73/T151PCLOutputClock output (for trimming of main system clock and subsystem clock)InputP74BUZOutputBuzzer outputInputP75P40 to P4Ab to A15OutputHigher address bus for expanding memory externallyInputP64WRStrobe signal output for writing to external memoryInputP64WAITInputWait insertion at external memory accessInputP66	ASCK0	Input	Serial clock input for asynchronous serial interface	Input	P25
TI01Capture trigger input to capture register 00 (CR00) of 16-bit timer/event counter 0P71TI50External count clock input to 8-bit timer/event counter 50P72/T050TI51External count clock input to 8-bit timer/event counter 51P73/T051T00Output16-bit timer/event counter 0 outputInputP70/T100T0508-bit timer/event counter 50 output (also used for 8-bit PWM output)InputP72/T150T0518-bit timer/event counter 51 output (also used for 8-bit PWM output)P73/T151PCLOutputClock output (for trimming of main system clock and subsystem clock)InputP74BUZOutputBuzzer outputInputP75AD0 to AD7I/OLower address/data bus for expanding memory externallyInputP50 to P5RDOutputStrobe signal output for vriting to external memoryInputP64WRInputWait insertion at external memory accessInputP66	TI00	Input	External count clock input to 16-bit timer/event counter 0	Input	P70/TO0
TI50External count clock input to 8-bit timer/event counter 50P72/T050TI51External count clock input to 8-bit timer/event counter 51P73/T051TO0Output16-bit timer/event counter 0 outputInputP70/T100T0508-bit timer/event counter 50 output (also used for 8-bit PWM output)InputP72/T050T0518-bit timer/event counter 51 output (also used for 8-bit PWM output)P73/T151P73/T151PCLOutputClock output (for trimming of main system clock and subsystem clock)InputP74BUZOutputBuzzer outputInputP75AD0 to AD7I/OLower address/data bus for expanding memory externallyInputP40 to P4A8 to A15OutputStrobe signal output for reading from external memoryInputP64WRInputWait insertion at external memory accessInputP65			Capture trigger input to capture register 01 (CR01) of 16-bit timer/event counter 0		
TI51External count clock input to 8-bit timer/event counter 51P73/T051TO0Output16-bit timer/event counter 0 outputInputP70/T100TO508-bit timer/event counter 50 output (also used for 8-bit PWM output)InputP72/T150TO518-bit timer/event counter 51 output (also used for 8-bit PWM output)InputP73/T051PCLOutputClock output (for trimming of main system clock and subsystem clock)InputP74BUZOutputBuzzer outputInputP75AD0 to AD7I/OLower address/data bus for expanding memory externallyInputP40 to P4A8 to A15OutputStrobe signal output for reading from external memoryInputP64WRInputWait insertion at external memory accessInputP65	TI01	1	Capture trigger input to capture register 00 (CR00) of 16-bit timer/event counter 0		P71
TO0Output16-bit timer/event counter 0 outputInputP70/T100T0508-bit timer/event counter 50 output (also used for 8-bit PWM output)InputP72/T150T0518-bit timer/event counter 51 output (also used for 8-bit PWM output)InputP73/T151PCLOutputClock output (for trimming of main system clock and subsystem clock)InputP74BUZOutputBuzzer outputInputP75AD0 to AD7I/OLower address/data bus for expanding memory externallyInputP40 to P4A8 to A15OutputHigher address bus for expanding memory externallyInputP64WRStrobe signal output for writing to external memoryP65P65WAITInputWait insertion at external memory accessInputP66	TI50	1	External count clock input to 8-bit timer/event counter 50		P72/TO50
TO508-bit timer/event counter 50 output (also used for 8-bit PWM output)InputP72/TI50TO518-bit timer/event counter 51 output (also used for 8-bit PWM output)InputP73/TI51PCLOutputClock output (for trimming of main system clock and subsystem clock)InputP74BUZOutputBuzzer outputInputP75AD0 to AD7I/OLower address/data bus for expanding memory externallyInputP40 to P4A8 to A15OutputHigher address bus for expanding memory externallyInputP50 to P5RDOutputStrobe signal output for reading from external memoryInputP64WAITInputWait insertion at external memory accessInputP66	TI51		External count clock input to 8-bit timer/event counter 51		P73/TO51
TO51 8-bit timer/event counter 51 output (also used for 8-bit PWM output) P73/TI51 PCL Output Clock output (for trimming of main system clock and subsystem clock) Input P74 BUZ Output Buzzer output Input P75 AD0 to AD7 I/O Lower address/data bus for expanding memory externally Input P40 to P4 A8 to A15 Output Higher address bus for expanding memory externally Input P50 to P5 RD Output Strobe signal output for reading from external memory Input P64 WR Input Wait insertion at external memory access Input P66	TO0	Output	16-bit timer/event counter 0 output	Input	P70/TI00
PCL Output Clock output (for trimming of main system clock and subsystem clock) Input P74 BUZ Output Buzzer output Input P75 AD0 to AD7 I/O Lower address/data bus for expanding memory externally Input P40 to P4 A8 to A15 Output Higher address bus for expanding memory externally Input P50 to P5 RD Output Strobe signal output for reading from external memory Input P64 WR Strobe signal output for writing to external memory Input P65 WAIT Input Wait insertion at external memory access Input P66	TO50		8-bit timer/event counter 50 output (also used for 8-bit PWM output)	Input	P72/TI50
BUZ Output Buzzer output Input P75 AD0 to AD7 I/O Lower address/data bus for expanding memory externally Input P40 to P4 A8 to A15 Output Higher address bus for expanding memory externally Input P50 to P5 RD Output Strobe signal output for reading from external memory Input P64 WR Strobe signal output for writing to external memory Input P65 WAIT Input Wait insertion at external memory access Input P66	TO51	1	8-bit timer/event counter 51 output (also used for 8-bit PWM output)		P73/TI51
AD0 to AD7 I/O Lower address/data bus for expanding memory externally Input P40 to P4 A8 to A15 Output Higher address bus for expanding memory externally Input P50 to P5 RD Output Strobe signal output for reading from external memory Input P64 WR Strobe signal output for writing to external memory P65 P65 WAIT Input Wait insertion at external memory access Input P66	PCL	Output	Clock output (for trimming of main system clock and subsystem clock)	Input	P74
A8 to A15 Output Higher address bus for expanding memory externally Input P50 to P5 RD Output Strobe signal output for reading from external memory Input P64 WR Strobe signal output for writing to external memory P65 WAIT Input Wait insertion at external memory access Input P66	BUZ	Output	Buzzer output	Input	P75
RD Output Strobe signal output for reading from external memory Input P64 WR Strobe signal output for writing to external memory P65 WAIT Input Wait insertion at external memory access Input P66	AD0 to AD7	I/O	Lower address/data bus for expanding memory externally	Input	P40 to P47
WR Strobe signal output for writing to external memory P65 WAIT Input Wait insertion at external memory access Input P66	A8 to A15	Output	Higher address bus for expanding memory externally	Input	P50 to P57
WAIT Input Wait insertion at external memory access Input P66	RD	Output	Strobe signal output for reading from external memory	Input	P64
WAIT Input Wait insertion at external memory access Input P66	WR		Strobe signal output for writing to external memory	1	P65
	WAIT	Input	Wait insertion at external memory access	Input	P66
ports 4 and 5 to access external memory	ASTB	Output	Strobe output that externally latches address information output to	Input	P67

Notes 1. SI31, SO31, and $\overline{\text{SCK31}}$ are incorporated only in the μ PD780034A Subseries.

2. SDA0 and SCL0 are incorporated only in the μ PD780034AY Subseries.

Pin Name	I/O	Function	After Reset	Alternate Function
ANI0 to ANI7	Input	A/D converter analog input	Input	P10 to P17
ADTRG	Input	A/D converter trigger signal input	Input	P03/INTP3
AVREF	Input	A/D converter reference voltage input	_	_
AVdd	_	A/D converter analog power supply. Set potential to that of V_{DD0} or V_{DD1}	_	_
AVss	_	A/D converter ground potential. Set potential to that of V_{SS0} or V_{SS1}	_	_
RESET	Input	System reset input	_	_
X1	Input	Connecting crystal resonator for main system clock oscillation	_	_
X2	_		_	_
XT1	Input	Connecting crystal resonator for subsystem clock oscillation	_	_
XT2	_		_	_
Vddo	_	Positive power supply for ports	_	—
Vsso	—	Ground potential of ports	—	—
Vdd1	—	Positive power supply (except ports)		_
Vss1	—	Ground potential (except ports)		_
IC	_	Internally connected. Connect directly to Vsso or Vsso.	—	

3.2 Non-Port Pins (2/2)

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The I/O circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the I/O circuit configuration of each type, see Figure 3-1.

\star	

Table 3-1. Types of Pin I/O Circuits

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/INTP0 to P02/INTP2	8-C	I/O	Input: Independently connect to Vsso or Vss1 via a resistor.
P03/INTP3/ADTRG			Output: Leave open.
P10/ANI0 to P17/ANI7	25	Input	Connect directly to VDD0, VDD1, VSS0, or VSS1.
P20/S130	8-C	I/O	Input: Independently connect to VDD0, VDD1, VSS0, or VSS1 via
P21/SO30	5-H		a resistor.
P22/SCK30	8-C		Output: Leave open.
P23/RxD0			
P24/TxD0	5-H		
P25/ASCK0	8-C		
P30, P31	13-Q		Input: Connect directly to Vsso or Vss1.
P32, P33 (µPD780034A Subseries only)	13-S		Output: Leave open at low-level output.
P32/SDA0 (µPD780034AY Subseries only)	13-R		
P33/SCL0 (µPD780034AY Subseries only)			
P34/SI31 ^{Note}	8-C		Input: Independently connect to VDD0, VDD1, VSS0, or VSS1 via
P35/SO31 ^{Note}	5-H	1	a resistor.
P36/SCK31 ^{Note}	8-C	1	Output: Leave open.
P40/AD0 to P47/AD7	5-H	-	Input: Independently connect to VDD0 or VDD1 via a resistor. Output: Leave open.
P50/A8 to P57/A15			Input: Independently connect to VDD0, VDD1, VSS0, or VSS1 via
P64/RD			a resistor.
P65/WR			Output: Leave open.
P66/WAIT			
P67/ASTB			
P70/TI00/TO0	8-C	-	
P71/TI01			
P72/TI50/TO50			
P73/TI51/TO51			
P74/PCL	5-H	-	
P75/BUZ			
RESET	2	Input	_
XT1	16		Connect directly to VDD0 or VDD1.
XT2		_	Leave open.
AVdd	_	1	Connect to directly VDD0 or VDD1.
AVREF			Connect to directly Vss0 or Vss1.
AVss			
IC			

Note SI31, SO31, and $\overline{SCK31}$ are incorporated only in the μ PD780034A Subseries.

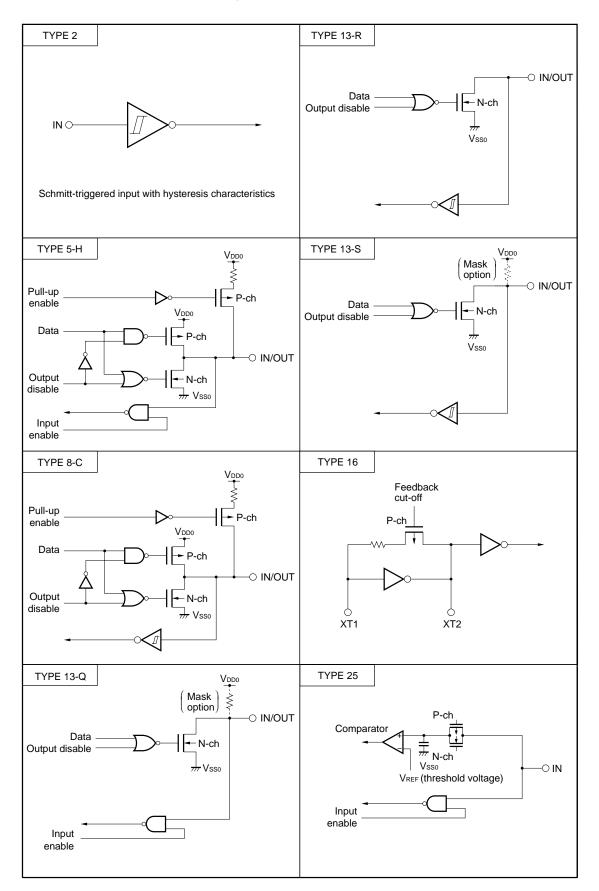
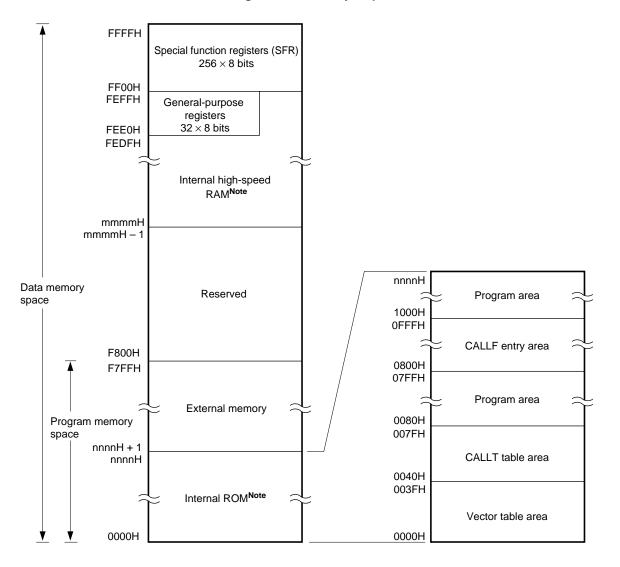



Figure 3-1. Pin I/O Circuits

4. MEMORY SPACE

Figure 4-1 shows the memory map of the μ PD780031A(A), 780032A(A), 780033A(A), 780034A(A), 780031AY(A), 780032AY(A), 780033AY(A), and 780034AY(A).

Figure 4-1. Memory Map

Note The internal ROM and internal high-speed RAM capacities vary depending on the product (see the following table).

Part Number	Last Address of Internal ROM nnnnH	Start Address of Internal High-Speed RAM mmmmH
μPD780031A(A), 780031AY(A)	1FFFH	FD00H
μPD780032A(A), 780032AY(A)	3FFFH	
μPD780033A(A), 780033AY(A)	5FFFH	FB00H
μPD780034A(A), 780034AY(A)	7FFFH	

5. PERIPHERAL HARDWARE FUNCTION FEATURES

5.1 Ports

The following 3 types of I/O ports are available.

٠	CMOS input (port 1):	8
•	CMOS I/O (ports 0, 2, 4 to 7, P34 to P36):	39
•	N-channel open-drain I/O (P30 to P33):	4
	Total:	51

Table 5-1. Port Functions

Name	Pin Name	Function
Port 0	P00 to P03	I/O port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be used by setting software.
Port 1	P10 to P17	Input-only port.
Port 2	P20 to P25	I/O port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be used by setting software.
Port 3	P30 to P33	N-channel open-drain I/O port. Input/output can be specified in 1-bit units. A pull-up resistor can be specified by mask option. LEDs can be driven directly.
	P34 to P36	I/O port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be used by setting software.
Port 4	P40 to P47	I/O port. Input/output can be specified in 1-bit units.An on-chip pull-up resistor can be used by setting software.The interrupt request flag (KRIF) is set to 1 by falling edge detection.
Port 5	P50 to P57	I/O port. Input/output can be specified in 1-bit units.An on-chip pull-up resistor can be used by setting software.LEDs can be driven directly.
Port 6	P64 to P67	I/O port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be used by setting software.
Port 7	P70 to P75	I/O port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be used by setting software.

5.2 Clock Generator

A system clock generator is incorporated.

The minimum instruction execution time can be changed.

Expanded-specification products of μPD780031A(A), 780032A(A), 780033A(A), 780034A(A)

0.166 μs/0.333 μs/0.666 μs/1.33 μs/2.66 μs

(@12 MHz, V_{DD} = 4.5 to 5.5 V operation with main system clock)

122 μ s (@32.768 kHz, VDD = 4.0 to 5.5 V operation with subsystem clock)

μPD780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A), and conventional products of μPD780031A(A), 780032A(A), 780033A(A), 780034A(A)

0.238 μ s/0.48 μ s/0.95 μ s/1.91 μ s/3.81 μ s (@8.38 MHz, V_{DD} = 4.0 to 5.5 V operation with main system clock) 122 μ s (@32.768 kHz, V_{DD} = 4.0 to 5.5 V operation with subsystem clock)

XT1 © Subsystem fхт clock Watch timer, clock oscillator XT2 (0) output function Prescaler 1/2 X1 (0) Main system <u>fx</u> Clock to peripheral clock Prescaler 2 fx oscillator hardware X2 🛇 <u>fx</u> 2 $\frac{f_x}{2^2}$ $\frac{f_x}{2^3}$ $\frac{fx}{2^4}$ Standby Wait CPU clock STOP Selector controller controller (fcpu) HALT

Figure 5-1. Clock Generator Block Diagram

5.3 Timer/Counter

Five timer/counter channels are incorporated.

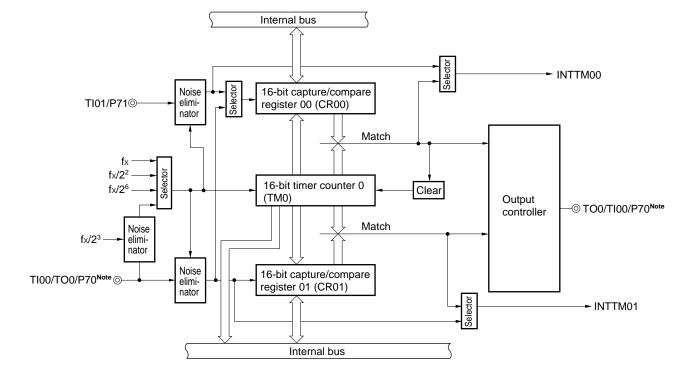
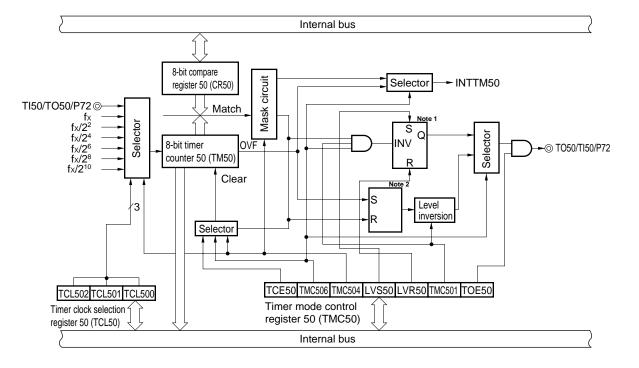

- 16-bit timer/event counter: 1 channel
- 8-bit timer/event counter: 2 channels
- Watch timer: 1 channel
- Watchdog timer: 1 channel

Table 5-2. Operations of Timer/Event Counter

		16-Bit Timer/ Event Counter 0	8-Bit Timer/ Event Counters 50, 51	Watch Timer	Watchdog Timer				
Ope	Operation mode								
	Interval timer	1 channel	2 channels	1 channel ^{Note 1}	1 channel ^{Note 2}				
	External event counter	1 channel	2 channels	_	_				
Function									
	Timer outputs	1 output	2 outputs	—	_				
	PPG outputs	1 output	—	_	_				
	PWM output	—	2 outputs		_				
	Pulse width measurement	2 inputs	—	—	_				
	Square-wave outputs	1 output	2 outputs	_	_				
	Interrupt sources	2 outputs	2 outputs	2	1				


Notes 1. The watch timer can perform both watch timer and interval timer functions at the same time.

2. The watchdog timer has watchdog timer and interval timer functions. However, use the watchdog timer by selecting either the watchdog timer function or the interval timer function.

Figure 5-2. Block Diagram of 16-Bit Timer/Event Counter 0

★ Note TI00 input and TO0 output cannot be used at the same time.

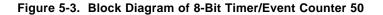
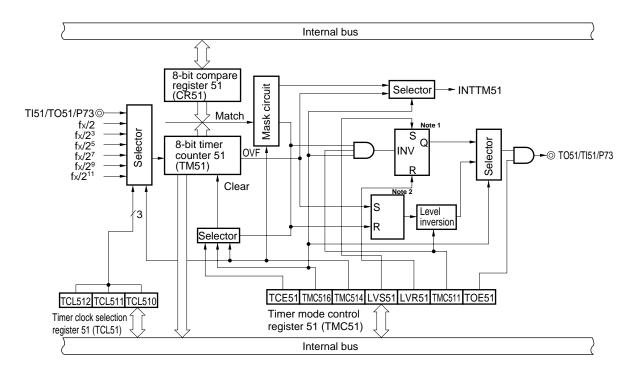



Figure 5-4. Block Diagram of 8-Bit Timer/Event Counter 51

Notes 1. Timer output F/F

2. PWM output F/F

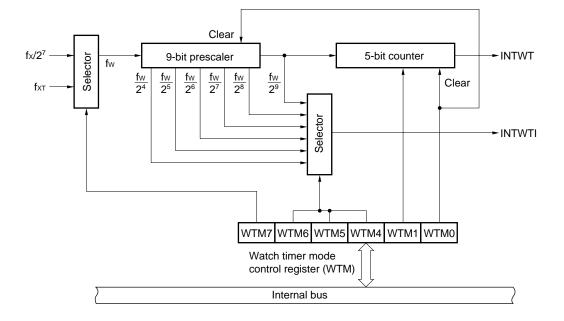
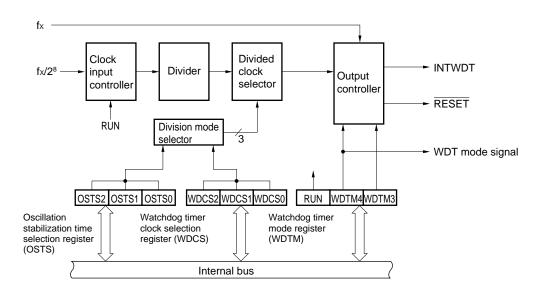



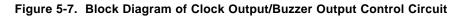
Figure 5-5. Watch Timer Block Diagram

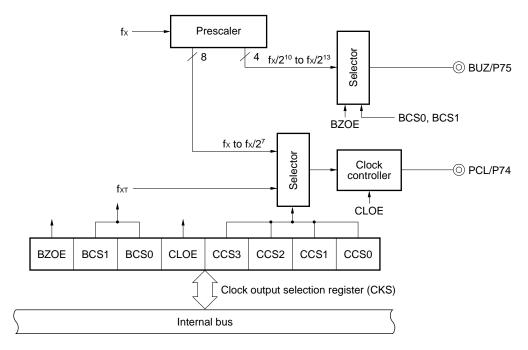
Figure 5-6. Watchdog Timer Block Diagram

5.4 Clock Output/Buzzer Output Controller

A clock output/buzzer output controller is incorporated. Clocks with the following frequencies can be output as clock output.

*

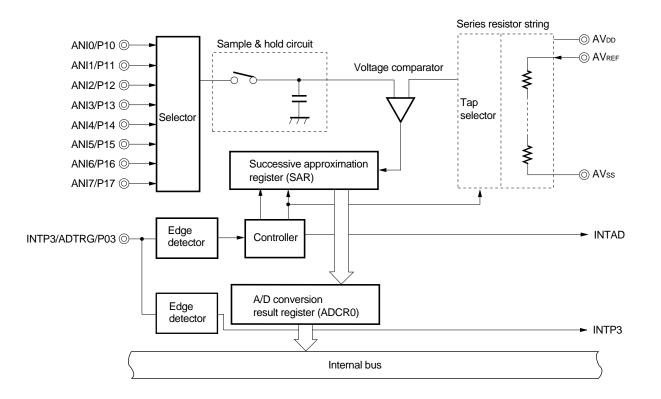

• Expanded-specification products of µPD780031A(A), 780032A(A), 780033A(A), 780034A(A)


- 93.75 kHz/187.5 kHz/375 kHz/750 kHz/1.25 MHz/3 MHz/6 MHz/12 MHz (@12 MHz operation with main system clock)
- 32.768 kHz (@32.768 kHz operation with subsystem clock)
- μPD780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A), and conventional products of μPD780031A(A), 780032A(A), 780033A(A), 780034A(A)
 - 65.5 kHz/131 kHz/262 kHz/524 kHz/1.05 MHz/2.10 MHz/4.19 MHz/8.38 MHz (@8.38 MHz operation with main system clock)
 - 32.768 kHz (@32.768 kHz operation with subsystem clock)

Clocks with the following frequencies can be output as buzzer output.

- Expanded-specification products of μPD780031A(A), 780032A(A), 780033A(A), 780034A(A)
 1.46 kHz/2.93 kHz/5.86 kHz/11.7 kHz (@12 MHz operation with main system clock)
 - μPD780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A), and conventional products of μPD780031A(A), 780032A(A), 780033A(A), 780034A(A)
 4.00 kHz/2 0.05 kHz/4 40 kHz/2 (20.00 kHz/2 0.00 kHz/2 0.00

1.02 kHz/2.05 kHz/4.10 kHz/8.19 kHz (@8.38 MHz operation with subsystem clock)



5.5 A/D Converter

An A/D converter consisting of eight 10-bit resolution channels is incorporated. The following two A/D conversion operation startup methods are available.

- Hardware start
- Software start

5.6 Serial Interface

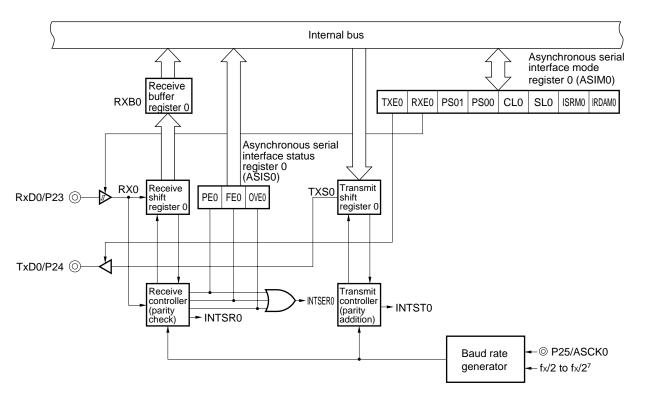
Three serial interface channels are incorporated.

•	μ PD780034A Subseries	
	Serial interface UART0:	1 channel
	Serial interface SIO30, SIO31:	2 channels
•	μ PD780034AY Subseries	
	Serial interface UART0:	1 channel

Serial interface SIO30:	1 channel
Serial interface IIC0	1 channel

(1) Serial interface UART0

Serial interface UART0 has two modes: asynchronous serial interface (UART) mode and infrared data transfer mode.


• Asynchronous serial interface (UART) mode

This mode enables full-duplex operation wherein one byte of data starting from the start bit is transmitted and received.

The on-chip UART-dedicated baud-rate generator enables communication using a wide range of selectable baud rates. In addition, a baud rate can also be defined by dividing the clock input to the ASCK0 pin. The UART-dedicated baud-rate generator can also be used to generate a MIDI-standard baud rate (31.25 kbps).

Infrared data transfer mode

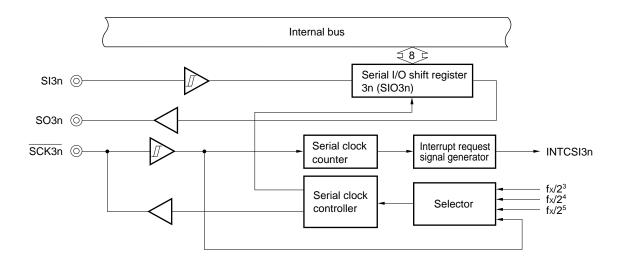
This mode enables pulse output and pulse reception in data format. This mode can be used for office equipment applications such as personal computers.

Figure 5-9. Block Diagram of Serial Interface UART0

(2) Serial interface SIO3n

Serial interface SIO3n has one mode: 3-wire serial I/O mode.

• 3-wire serial I/O mode (fixed as MSB first)


This is an 8-bit data transfer mode using three lines: a serial clock line (SCK3n), serial output line (SO3n), and serial input line (SI3n).

Since simultaneous transmit and receive operations are enabled in the 3-wire serial I/O mode, the processing time for data transfer is reduced.

The first bit in 8-bit data in the serial transfer is fixed as MSB.

The 3-wire serial I/O mode is useful for connection to peripheral I/O devices, and display controllers, etc., that include a clocked serial interface.

Figure 5-10. Block Diagram of Serial Interface SIO3n

Remark μ PD780034A Subseries: n = 0, 1 μ PD780034AY Subseries: n = 0

(3) Serial interface IIC0 (µPD780034AY Subseries only)

Serial interface IIC0 has one mode: I²C (Inter IC) bus mode (supporting multimaster).

• I²C bus mode (supporting multimaster)

This is an 8-bit data transfer mode using two lines: a serial clock line (SCL0) and a serial data bus line (SDA0).

This mode complies with the l²C bus format, and can output a "start condition", "data", and a "stop condition" during transmission via the serial data bus. This data is automatically detected by hardware during reception.

Since SCL0 and SDA0 are open-drain outputs in IIC0, pull-up resistors for the serial clock line and the serial data bus line are required.

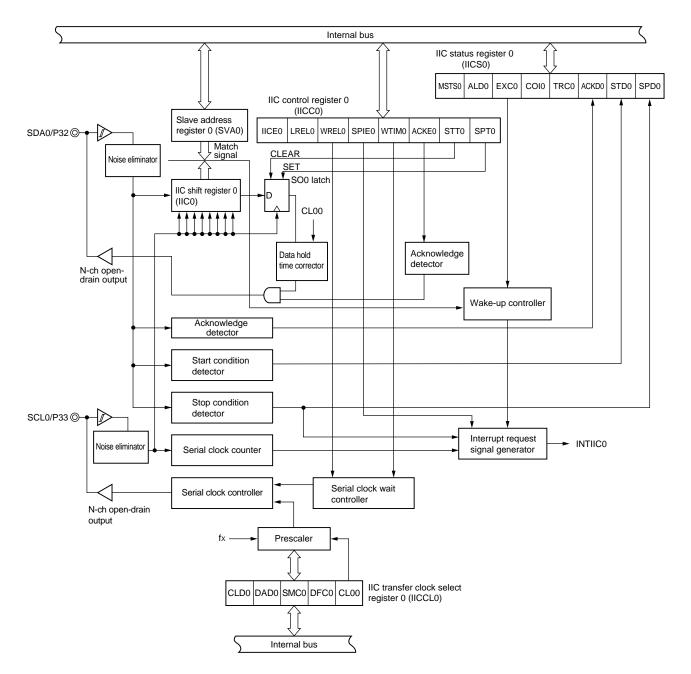


Figure 5-11. Block Diagram of Serial Interface IIC0

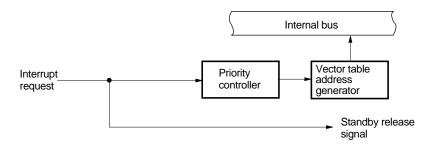
6. INTERRUPT FUNCTIONS

1

A total of 20 interrupt sources are provided, divided into the following three types.

- Non-maskable: 1
- Maskable: 18
- Software:

Interrupt	Default Priority ^{Note 1}		Interrupt Source	Internal/	Vector Table	Basic Configuration
Туре		Name	Trigger	External	Address	Type ^{Note 2}
Non- maskable	_	INTWDT	Watchdog timer overflow (with watchdog timer mode 1 selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Watchdog timer overflow (with interval timer mode selected)			(B)
	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1			0008H	
	3	INTP2			000AH	
	4	INTP3			000CH	
	5	INTSER0	Serial interface UART0 reception error generation	Internal	000EH	(B)
	6	INTSR0	End of serial interface UART0 reception		0010H	
	7	INTST0	End of serial interface UART0 transmission		0012H	1
	8	INTCSI30	End of serial interface SIO30 transfer		0014H	
	9	INTCSI31	End of serial interface SIO31 transfer [Only for μ PD780034A Subseries]		0016H	
	10	INTIIC0	End of serial interface IIC0 transfer [Only for μ PD780034AY Subseries]		0018H	
	11	INTWTI	Reference time interval signal from watch timer		001AH	
	12	INTTM00	Match between TM0 and CR00 (when CR00 is specified as compare register) Detection of TI01 valid edge (when CR00 is specified as capture register)	•	001CH	
	13	INTTM01	Match between TM0 and CR01 (when CR01 is specified as compare register) Detection of TI00 valid edge (when CR01 is specified as capture register)		001EH	
	14	INTTM50	Match between TM50 and CR50		0020H	7
	15	INTTM51	Match between TM51 and CR51		0022H]
	16	INTAD0	End of A/D conversion		0024H	
	17	INTWT	Watch timer overflow		0026H	
	18	INTKR	Port 4 falling edge detection	External	0028H	(D)
Software	_	BRK	BRK instruction execution	_	003EH	(E)


Table 6-1. Interrupt Source List

Notes 1. The default priority is the priority when several maskable interrupt requests are generated at the same time. 0 is the highest, and 18 is the lowest.

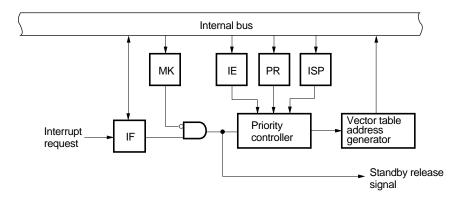
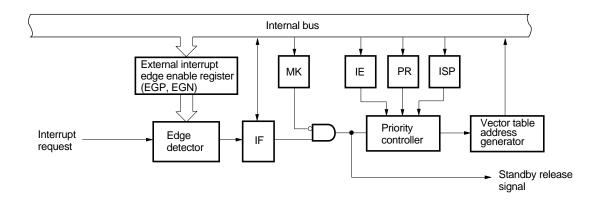
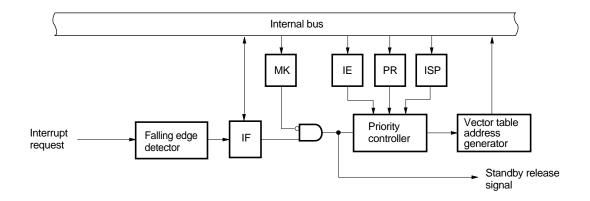

- 2. Basic configuration types (A) to (E) correspond to (A) to (E) in Figure 6-1.
- **Remark** The watchdog timer interrupt (INTWDT) can be selected from a non-maskable interrupt or a maskable interrupt (internal).

Figure 6-1. Basic Configuration of Interrupt Function (1/2)


(A) Internal non-maskable interrupt

(B) Internal maskable interrupt



(C) External maskable interrupt (INTP0 to INTP3)

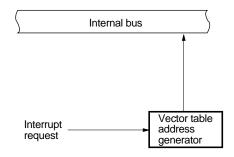


Figure 6-1. Basic Configuration of Interrupt Function (2/2)

(D) External maskable interrupt (INTKR)

(E) Software interrupt

- IF: Interrupt request flag
- IE: Interrupt enable flag
- ISP: In-service priority flag
- MK: Interrupt mask flag
- PR: Priority specification flag

7. EXTERNAL DEVICE EXPANSION FUNCTION

The external device expansion function is for connecting external devices to areas other than the internal ROM, RAM, and SFR areas. Ports 4 to 6 are used for external device connection.

8. STANDBY FUNCTION

The following two standby modes are available for further reduction of system power consumption.

- HALT mode: In this mode, the CPU operation clock is stopped. The average power consumption can be reduced by intermittent operation by combining this mode with the normal operation mode.
- STOP mode: In this mode, oscillation of the main system clock is stopped. All the operations performed on the main system clock are suspended, and only the subsystem clock is used, resulting in extremely small power consumption. This can be used only when the main system clock is operating (the subsystem clock oscillation cannot be stopped).

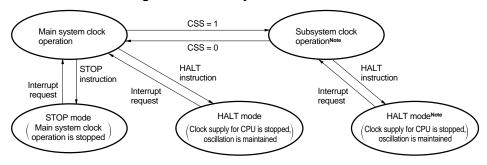


Figure 8-1. Standby Function

- **Note** The power consumption can be reduced by stopping the main system clock. When the CPU is operating on the subsystem clock, set bit 7 (MCC) of the processor clock control register (PCC). The STOP instruction cannot be used.
- Caution When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

9. RESET FUNCTION

The following two reset methods are available.

- External reset by RESET signal input
- Internal reset by watchdog timer program loop time detection

10. MASK OPTION

Table 10-1 Pin Mask Option Selection

Subseries Name	Pins	Mask Option
µPD780034A Subseries	P30 to P33	An on-chip pull-up resistor can be specified in 1-bit units.
µPD780034AY Subseries	P30 and P31	

The mask option can be used to specify the connection of an on-chip pull-up resistor to P30 to P33^{Note}, in 1-bit units.

Note The μ PD780034AY Subseries has P30 and P31 only.

11. INSTRUCTION SET

(1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

2nd Operand 1st	#byte	A	r ^{Note}	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL + byte] [HL + B]	\$addr16	1	None
Operand										[HL + C]			
А	ADD		MOV	MOV	MOV	MOV	MOV	MOV	MOV	MOV		ROR	
	ADDC		ХСН	XCH	хсн	ХСН		ХСН	XCH	хсн		ROL	
	SUB		ADD		ADD	ADD			ADD	ADD		RORC	
	SUBC		ADDC		ADDC	ADDC			ADDC	ADDC		ROLC	
	AND		SUB		SUB	SUB			SUB	SUB			
	OR		SUBC		SUBC	SUBC			SUBC	SUBC			
	XOR		AND		AND	AND			AND	AND			
	CMP		OR XOR		OR XOR	OR XOR			OR XOR	OR XOR			
			CMP		CMP	CMP			CMP	CMP			
	1001		Civir		Civir	Civir			Civir	Civir			
r	MOV	MOV ADD											INC DEC
		ADDC											DLU
		SUB											
		SUBC											
		AND											
		OR											
		XOR											
		CMP											
B, C											DBNZ		
sfr	MOV	MOV											
saddr	MOV ADD	MOV									DBNZ		INC DEC
	ADDC												_
	SUB												
	SUBC												
	AND												
	OR												
	XOR												
	CMP												
!addr16		MOV											
PSW	MOV	MOV											PUSH POP
[DE]		MOV											
[HL]		MOV											ROR4 ROL4
[HL + byte]		MOV		<u> </u>									
[HL + B]													
[HL + C]													
х													MULU
С													DIVUW

Note Except r = A

(2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

2nd Operand 1st Operand	#word	AX	rp ^{Note}	sfrp	saddrp	!addr16	SP	None
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVW ^{Note}						INCW, DECW PUSH, POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Note Only when rp = BC, DE or HL

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

2nd Operand 1st Operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	BT BF BTCLR	SET1 CLR1
sfr.bit						MOV1	BT BF BTCLR	SET1 CLR1
saddr.bit						MOV1	BT BF BTCLR	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	SET1 CLR1
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
СҮ	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1

(4) Call instructions/branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

2nd Operand 1st Operand	AX	!addr16	!addr11	[addr5]	\$addr16
Basic instruction	BR	CALL BR	CALLF	CALLT	BR, BC, BNC BZ, BNZ
Compound instruction					BT, BF BTCLR DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

*** 12. ELECTRICAL SPECIFICATIONS**

12.1 Expanded-Specification Products of *µ*PD780031A(A), 780032A(A), 780033A(A), 780034A(A)

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol		Conditions		Ratings	Unit
Supply voltage	Vdd				-0.3 to +6.5	V
	AVdd				-0.3 to VDD + 0.3 ^{Note}	V
	AVREF				-0.3 to VDD + 0.3 ^{Note}	V
	AVss				-0.3 to +0.3	V
Input voltage	VI1		10 to P17, P20 to P2 4 to P67, P70 to P75	5, P34 to P36, P40 to P47, 5, X1, X2, XT1, XT2,	–0.3 to V _{DD} + 0.3 ^{Note}	V
	Vı2	P30 to P33	N-ch open-drain	Without pull-up resistor	-0.3 to + 6.5	V
				With pull-up resistor	-0.3 to VDD + 0.3 ^{Note}	V
Output voltage	Vo				-0.3 to V_DD + 0.3^{Note}	V
Analog input voltage	Van	P10 to P17		AVss – 0.3 to AVREF + 0.3^{Note} and –0.3 to VDD + 0.3^{Note}	V	
Output current,	Іон	Per pin			-10	mA
high		Total for P00 to P03, P40 to P47, P50 to P57, P64 to P67, P70 to P75			-15	mA
		Total for P20	to P25, P30 to P3	6	-15	mA
Output current,	Iol	Per pin for P	00 to P03, P20 to I	P25, P34 to	20	mA
low		P36, P40 to I	P47, P64 to P67, P			
		Per pin for P	30 to P33, P50 to I	30	mA	
		Total for P00	to P03, P40 to P4	7,	50	mA
		P64 to P67, I	P70 to P75			
		Total for P20	to P25		20	mA
		Total for P30	to P36		100	mA
		Total for P50	to P57		100	mA
Operating ambient temperature	TA				-40 to +85	°C
Storage temperature	Tstg				-65 to +150	°C

Note 6.5 V or below

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless otherwise specified, the characteristic of alternate-function pins are the same as those of port pins.

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input capacitance	CIN	f = 1 MHz Unmeasured pins returned to 0 V.				15	pF
I/O capacitance	Сю	f = 1 MHz Unmeasured pins returned to 0 V.	P00 to P03, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75			15	pF
			P30 to P33			20	pF

Capacitance (TA = 25°C, VDD = Vss = 0 V)

Remark Unless otherwise specified, the characteristic of alternate-function pins are the same as those of port pins.

Main System Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic		Oscillation	$4.5~V \le V_{\text{DD}} \le 5.5~V$	1.0		12.0	MHz
resonator	IC X2 X1	frequency (fx) ^{Note 1}	$3.0~\text{V} \leq \text{V}_{\text{DD}} < 4.5~\text{V}$	1.0		8.38	
	101-→		$1.8~V \leq V_{\text{DD}} < 3.0~V$	1.0		5.0	
	C2 = C1 =	Oscillation	After VDD reaches			4	ms
		stabilization time ^{Note 2}	oscillation voltage range				
	///		MIN.				
Crystal	IC X2 X1	Oscillation	$4.5~V \le V_{\text{DD}} \le 5.5~V$	1.0		12.0	MHz
resonator		frequency (fx) ^{Note 1}	$3.0~\text{V} \leq \text{V}_{\text{DD}} < 4.5~\text{V}$	1.0		8.38	
	C2 = C1 =		$1.8~\text{V} \leq \text{V}_{\text{DD}} < 3.0~\text{V}$	1.0		5.0	
		Oscillation	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			10	ms
	·	stabilization time ^{Note 2}	$1.8~\text{V} \leq \text{V}_{\text{DD}} < 4.0~\text{V}$			30	
External		X1 input	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		12.0	MHz
clock	X2 X1	frequency (fx) ^{Note 1}	$3.0~\text{V} \leq \text{V}_\text{DD} < 4.5~\text{V}$	1.0		8.38	
			$1.8~V \leq V_{\text{DD}} < 3.0~V$	1.0		5.0	
		X1 input	$4.5~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	38		500	ns
	Å	high-/low-level width	$3.0~\text{V} \leq \text{V}_\text{DD} < 4.5~\text{V}$	50		500	
		(txH, txL)	$1.8~V \leq V_{\text{DD}} < 3.0~V$	85		500	

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2. Time required to stabilize oscillation after reset or STOP mode release.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss1.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. When the main system clock is stopped and the system is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	XT2 XT1 IC	Oscillation frequency (f _{XT}) ^{Note 1}		32	32.768	35	kHz
		Oscillation	$4.0~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$		1.2	2	s
		stabilization time ^{Note 2}	$1.8~V \leq V_{\text{DD}} < 4.0~V$			10	
External clock	XT2 XT1	XT1 input frequency (f _{XT}) ^{Note 1}		32		38.5	kHz
		XT1 input high-/low-level width (txтн , txть)		12		15	μs

Subsystem Clock Oscillator Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = 1.8 to 5.5 V)

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2. Time required to stabilize oscillation after VDD reaches oscillation voltage range MIN.

Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss1.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- The subsystem clock oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.
- **Remark** For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Recommended Oscillator Constant

Manufacturer	Part Number	Frequency	Recomme	Recommended Circuit Constant			Oscillation Voltage Range		
		(MHz)	C1 (pF)	C2 (pF)	R1 (kΩ)	MIN. (V)	MAX. (V)		
Murata Mfg.	CSBFB1M00J58	1.00	100	100	2.2	1.8	5.5		
Co., Ltd.	CSBLA1M00J58	1.00	100	100	2.2	1.8	5.5		
	CSTCC2M00G56	2.00	On-chip	On-chip	0	1.8	5.5		
	CSTLS2M00G56	2.00	On-chip	On-chip	0	1.8	5.5		
	CSTCC3M58G53	3.58	On-chip	On-chip	0	1.8	5.5		
	CSTLS3M58G53	3.58	On-chip	On-chip	0	1.8	5.5		
	CSTCR4M00G53	4.00	On-chip	On-chip	0	1.8	5.5		
	CSTLS4M00G53	4.00	On-chip	On-chip	0	1.8	5.5		
	CSTCR4M19G53	4.19	On-chip	On-chip	0	1.8	5.5		
	CSTLS4M19G53	4.19	On-chip	On-chip	0	1.8	5.5		
	CSTCR4M91G53	4.91	On-chip	On-chip	0	1.8	5.5		
	CSTLS4M91G53	4.91	On-chip	On-chip	0	1.8	5.5		
	CSTCR5M00G53	5.00	On-chip	On-chip	0	1.8	5.5		
	CSTLS5M00G53	5.00	On-chip	On-chip	0	1.8	5.5		
	CSTCE8M00G52	8.00	On-chip	On-chip	0	3.0	5.5		
	CSTLS8M00G53	8.00	On-chip	On-chip	0	3.0	5.5		
	CSTCE8M38G52	8.38	On-chip	On-chip	0	3.0	5.5		
	CSTLS8M38G53	8.38	On-chip	On-chip	0	3.0	5.5		
	CSTCE10M0G52	10.00	On-chip	On-chip	0	4.5	5.5		
	CSTLS10M0G53	10.00	On-chip	On-chip	0	4.5	5.5		
	CSTCE12M0G52	12.00	On-chip	On-chip	0	4.5	5.5		
	CSTLA12M0T55	12.00	On-chip	On-chip	0	4.5	5.5		
TDK	CCR3.58MC3	3.58	On-chip	On-chip	0	1.8	5.5		
	CCR4.19MC3	4.19	On-chip	On-chip	0	1.8	5.5		
	CCR5.0MC3	5.00	On-chip	On-chip	0	1.8	5.5		
	CCR8.0MC5	8.00	On-chip	On-chip	0	2.0	5.5		
	CCR8.38MC5	8.38	On-chip	On-chip	0	2.0	5.5		

Main system clock: Ceramic resonator ($T_A = -40$ to +85°C)

Caution The oscillator constant is a reference value based on evaluation in specific environments by the resonator manufacturer. If the oscillator characteristics need to be optimized in the actual application, request the resonator manufacturer for evaluation on the implementation circuit. Note that the oscillation voltage and oscillation frequency merely indicate the characteristics of the oscillator. Use the internal operation conditions of the μ PD780034A Subseries within the specifications of the DC and AC characteristics.

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Conditions	5	MIN.	TYP.	MAX.	Unit
Output current,	Іон	Per pin				-1	mA
high		All pins				-15	mA
Output current,	lo∟	Per pin for P00 to P03, P20 to P	25, P34 to P36,			10	mA
low		P40 to P47, P64 to P67, P70 to	P75				I
		Per pin for P30 to P33, P50 to P	257			15	mA
		Total for P00 to P03, P40 to P47,			20	mA	
		Total for P20 to P25				10	mA
		Total for P30 to P36			70	mA	
		Total for P50 to P57				70	mA
Input voltage,	VIH1	P10 to P17, P21, P24, P35,	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.7Vdd		Vdd	V
high		P40 to P47, P50 to P57,	1.8 V ≤ Vdd < 2.7 V	0.8Vdd		Vdd	V
		P64 to P67, P74, P75	1.0 V ≤ V 00 < 2.7 V	0.0000		VDD	v
	VIH2	P00 to P03, P20, P22, P23, P25,	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.8Vdd		Vdd	V
	P34, P36, P70 to P73, RESET		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.85Vdd		Vdd	V
	Vінз	P30 to P33	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.7Vdd		5.5	V
		(N-ch open-drain)	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.8Vdd		5.5	V
	VIH4	X1, X2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	Vdd - 0.5		Vdd	V
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	Vdd - 0.2		VDD	V
	VIH5	XT1, XT2	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.8Vdd		VDD	V
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	0.9Vdd		Vdd	V
Input voltage,	VIL1	P10 to P17, P21, P24, P35,	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0		0.3Vdd	V
low		P40 to P47, P50 to P57,					
		P64 to P67, P74, P75	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0		0.2Vdd	V
	VIL2	P00 to P03, P20, P22, P23, P25,	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0		0.2Vdd	V
		P34, P36, P70 to P73, RESET	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0		0.15Vdd	V
	VIL3	P30 to P33	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0		0.3Vdd	V
			$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	0		0.2Vdd	V
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0		0.1Vdd	V
	VIL4	X1, X2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0		0.4	V
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0		0.2	V
	VIL5	XT1, XT2	$4.0~\text{V} \leq \text{V}_\text{DD} \leq 5.5~\text{V}$	0		0.2Vdd	V
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	0		0.1Vdd	V
Output voltage,	Vон1	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Ioh} = -1 \text{ mA}$	N.	Vdd - 1.0		Vdd	V
high		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, \text{ Ioh} = -100 \text{ /}$	иA	Vdd - 0.5		Vdd	V
Output voltage,	Vol1	P30 to P33	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$			2.0	V
low		P50 to P57	lo∟ = 15 mA		0.4	2.0	V
		P00 to P03, P20 to P25, P34 to P36,	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$			0.4	V
		P40 to P47, P64 to P67, P70 to P75 Io∟ = 1.6 mA					l
	Vol2	lo∟ = 400 μA				0.5	V

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішні	Vin = Vdd	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET			3	μA
	ILIH2		X1, X2, XT1, XT2			20	μA
	Ілнз	VIN = 5.5 V	P30 to P33 ^{Note}			3	μA
Input leakage current, low	Ilil1	V _{IN} = 0 V	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET			-3	μΑ
	ILIL2		X1, X2, XT1, XT2			-20	μA
	ILIL3		P30 to P33 ^{Note}			-3	μA
Output leakage current, high	Ігон	Vout = Vdd				3	μA
Output leakage current, low	Ilol	Vout = 0 V				-3	μA
Mask option pull-up resistance	R1	V _{IN} = 0 V, P30, P31, P32, P33		15	30	90	kΩ
Software pull- up resistance	R2	V _{IN} = 0 V, P00 to P03, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75		15	30	90	kΩ

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

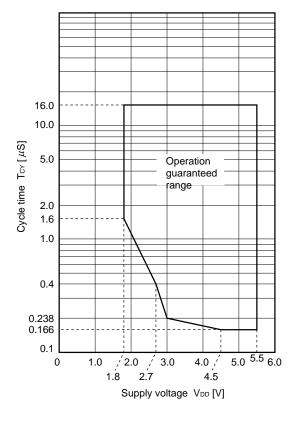
Note When pull-up resistors are not connected to P30 to P33 (specified by the mask option).

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Power supply current ^{Note 1}	_{DD1} Note 2	12.0 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When A/D converter is stopped		8.5	17	mA
		operating mode		When A/D converter is operating ^{Note 7}		9.5	19	mA
		8.38 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When A/D converter is stopped		5.5	11	mA
		operating mode		When A/D converter is operating ^{Note 7}		6.5	13	mA
			$V_{DD} = 3.0 \text{ V} + 10\%^{\text{Notes 3, 6}}$	When A/D converter is stopped		3	6	mA
				When A/D converter is operating ^{Note 7}		4	8	mA
		5.00 MHz crystal oscillation	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When A/D converter is stopped		2	4	mA
		operating mode		When A/D converter is operating ^{Note 7}		3	6	mA
			$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 4}}$	When A/D converter is stopped		0.4	1.5	mA
				When A/D converter is operating ^{Note 7}		1.4	4.2	mA
	IDD2	12.0 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When peripheral functions are stopped		2	4	mA
		HALT mode		When peripheral functions are operating			10	mA
		8.38 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When peripheral functions are stopped		1.1	2.2	mA
		HALT mode		When peripheral functions are operating			4.7	mA
			$V_{DD} = 3.0 \text{ V} + 10\%^{\text{Notes 3, 6}}$	When peripheral functions are stopped		0.5	1	mA
				When peripheral functions are operating			4	mA
		5.00 MHz crystal oscillation	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When peripheral functions are stopped		0.35	0.7	mA
		HALT mode		When peripheral functions are operating			1.7	mA
			$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 4}}$	When peripheral functions are stopped		0.15	0.4	mA
				When peripheral functions are operating			1.1	mA
	IDD3	32.768 kHz crysta	al oscillation	Vdd = 5.0 V ±10%		40	80	μA
		operating mode ^{No}	te 5	Vdd = 3.0 V ±10%		20	40	μA
				Vdd = 2.0 V ±10%		10	20	μA
	IDD4	32.768 kHz crysta	al oscillation	Vdd = 5.0 V ±10%		30	60	μA
		HALT mode ^{Note 5}		Vdd = 3.0 V ±10%		6	18	μA
				Vdd = 2.0 V ±10%		2	10	μA
	DD5	XT1 = VDD STOP	mode	Vdd = 5.0 V ±10%		0.1	30	μΑ
		When feedback resis		Vdd = 3.0 V ±10%		0.05	10	μA
				Vdd = 2.0 V ±10%		0.05	10	μA

DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

- **Notes 1.** Total current through the internal power supply (VDD0, VDD1) (except the current through pull-up resistors of ports).
 - 2. IDD1 includes the peripheral operation current.
 - 3. When the processor clock control register (PCC) is set to 00H.
 - 4. When PCC is set to 02H.
 - **5.** When main system clock operation is stopped.
 - **6.** The values show the specifications when $V_{DD} = 3.0$ to 3.3 V. The value in the TYP. column show the specifications when $V_{DD} = 3.0$ V.
 - 7. Includes the current through the AVDD pin.


AC Characteristics

(1) Basic Operation	$(T_A = -40 \text{ to } +85^{\circ}C)$, VDD = 1.8 to 5.5 V)
---------------------	--	-----------------------

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Cycle time	Тсч	Operating with	$4.5~V \le V_{\text{DD}} \le 5.5~V$	0.166		16	μs
(Min. instruction		main system clock	$3.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	0.238		16	μs
execution time)			$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 3.0 \text{ V}$	0.4		16	μs
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1.6		16	μs
		Operating with subs	system clock	103.9 ^{Note 1}	122	125	μs
TI00, TI01 input	ttiho, ttilo	$3.0~V \leq V_{\text{DD}} \leq 5.5~V$					μs
high-/low-level		$2.7~V \leq V_{\text{DD}} < 3.0~V$					μs
width		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$		2/fsam+0.5 ^{Note 2}			μs
TI50, TI51 input	fti5	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		0		4	MHz
frequency		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$		0		275	kHz
TI50, TI51 input	t⊤iH5, t⊤iL5	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		100			ns
high-/low-level width		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$		1.8			ns
Interrupt request	tinth, tintl	INTP0 to INTP3,	$2.7~V \le V_{\text{DD}} \le 5.5~V$	1			μs
input high-/low- level width		P40 to P47	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	2			μs
RESET	trsl	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$				μs
low-level width		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$		20			μs

Notes 1. Value when the external clock is used. When a crystal resonator is used, it is 114 μ s (MIN.).

Selection of fsam = fx, fx/4, fx/64 is possible using bits 0 and 1 (PRM00, PRM01) of prescaler mode register 0 (PRM0). However, if the TI00 valid edge is selected as the count clock, the value becomes fsam = fx/8.

TCY vs. VDD (main system clock operation)

(2) Read/Write Operation ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 4.0$ to 5.5 V)

(2) Read/Write Operation (T _A =	–40 to +85	$^{\circ}$ C, V _{DD} = 4.0 to	5.5 V)		(1/3)
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	t asth		0.3tcr		ns
Address setup time	tads		20		ns
Address hold time	tadh		6		ns
Data input time from address	tadd1			(2 + 2n)tcy – 54	ns
	tadd2			(3 + 2n)tcy - 60	ns
Address output time from $\overline{\text{RD}} \downarrow$	trdad		0	100	ns
Data input time from $\overline{RD} \downarrow$	trdd1			(2 + 2n)tcy - 87	ns
	trdd2			(3 + 2n)tcy – 93	ns
Read data hold time	t rdh		0		ns
RD low-level width	trdl1		(1.5 + 2n)tcr – 33		ns
	trdl2		(2.5 + 2n)tcr - 33		ns
Input time from $\overline{\text{RD}} \downarrow$ to $\overline{\text{WAIT}} \downarrow$	trdwt1			tcy – 43	ns
	trdwt2			tcy – 43	ns
Input time from $\overline{WR}{\downarrow}$ to $\overline{WAIT}{\downarrow}$	twrwt			tcy – 25	ns
WAIT low-level width	tw⊤∟		(0.5 + n)tcr + 10	(2 + 2n)tcr	ns
Write data setup time	twos		60		ns
Write data hold time	twdн		6		ns
WR low-level width	twrl1		(1.5 + 2n)tcr – 15		ns
Delay time from ASTB \downarrow to $\overline{RD}\downarrow$	t ASTRD		6		ns
Delay time from ASTB \downarrow to $\overline{WR}\downarrow$	t astwr		2tcy – 15		ns
Delay time from	t rdast		0.8tcy - 15	1.2tcy	ns
$\overline{RD} \uparrow$ to $ASTB \uparrow$ at external fetch					
Address hold time from	t rdadh		0.8tcy - 15	1.2tcy + 30	ns
RD↑ at external fetch					
Write data output time from $\overline{RD} \uparrow$	trdwd		40		ns
Write data output time from $\overline{WR} {\downarrow}$	twrwd		10	60	ns
Address hold time from $\overline{WR} \uparrow$	twradh		0.8tcy - 15	1.2tcy + 30	ns
Delay time from $\overline{\text{WAIT}}\uparrow$ to $\overline{\text{RD}}\uparrow$	twtrd		0.8tcy	2.5tcy + 25	ns
Delay time from $\overline{\text{WAIT}} \uparrow$ to $\overline{\text{WR}} \uparrow$	twtwr		0.8tcy	2.5tcy + 25	ns

Caution Tcr can only be used when the MIN. value is 0.238 μ s.

- 2. n indicates the number of waits.
- 3. $C_{L} = 100 \text{ pF}$ (C_{L} indicates the load capacitance of the AD0 to AD7, A8 to A15, \overline{RD} , \overline{WR} , \overline{WAIT} , and ASTB pins.)

(2) Read/Write Operation (TA = -40 to +85°C, V_{DD} = 2.7 to 4.0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	t asth		0.3tcy		ns
Address setup time	tads		30		ns
Address hold time	tadh		10		ns
Input time from address to data	tadd1			(2 + 2n)tcy - 108	ns
	tadd2			(3 + 2n)tcy – 120	ns
Output time from $\overline{RD} \downarrow$ to address	trdad		0	200	ns
Input time from $\overline{RD} \downarrow$ to data	trdd1			(2 + 2n)tcy – 148	ns
	trdd2			(3 + 2n)tcy – 162	ns
Read data hold time	t rdh		0		ns
RD low-level width	tRDL1		(1.5 + 2n)tcy - 40		ns
	trdl2		(2.5 + 2n)tcy - 40		ns
Input time from $\overline{RD} \downarrow$ to $\overline{WAIT} \downarrow$	trdwt1			tcy – 75	ns
	trdwt2			tcy - 60	ns
Input time from $\overline{WR} \downarrow$ to $\overline{WAIT} \downarrow$	t wrwt			tcy – 50	ns
WAIT low-level width	tw⊤∟		(0.5 + 2n)tcr + 10	(2 + 2n)tcr	ns
Write data setup time	twos		60		ns
Write data hold time	twdн		10		ns
WR low-level width	twrl1		(1.5 + 2n)tcy - 30		ns
Delay time from ASTB \downarrow to $\overline{RD}\downarrow$	t ASTRD		10		ns
Delay time from <code>ASTB\downarrow</code> to $\overline{WR}\downarrow$	t ASTWR		2tcy - 30		ns
Delay time from RD↑ to ASTB↑ at external fetch	t rdast		0.8tcy - 30	1.2tcv	ns
Hold time from RD↑ to address at external fetch	trdadh		0.8tcy - 30	1.2tcy + 60	ns
Write data output time from \overline{RD}	trdwd		40		ns
Write data output time from $\overline{WR} \downarrow$	twrwd		20	120	ns
Hold time from \overline{WR}^\uparrow to address	twradh		0.8tcy - 30	1.2tcy + 60	ns
Delay time from \overline{WAIT} to \overline{RD}	twtrd		0.5tcy	2.5tcy + 50	ns
Delay time from \overline{WAIT} to \overline{WR}	twtwr		0.5tcy	2.5tcy + 50	ns

Caution Tcy can only be used when the MIN. value is 0.4 μ s.

- 2. n indicates the number of waits.
- **3.** $C_{L} = 100 \text{ pF}$ (C_{L} indicates the load capacitance of the AD0 to AD7, AD8 to AD15, \overline{RD} , \overline{WR} , \overline{WAIT} , and ASTB pins.)

(2) Read/Write Operation (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 2.7 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	t ASTH		0.3tcy		ns
Address setup time	tads		120		ns
Address hold time	tadh		20		ns
Input time from address to data	tADD1			(2 + 2n)tcy - 233	ns
	tadd2			(3 + 2n)tcr – 240	ns
Output time from $\overline{RD}\downarrow$ to address	trdad		0	400	ns
Input time from $\overline{RD}\downarrow$ to data	trdd1			(2 + 2n)tcr – 325	ns
	trdd2			(3 + 2n)tcr – 332	ns
Read data hold time	t RDH		0		ns
RD low-level width	trdL1		(1.5 + 2n)tcy – 92		ns
	trdl2		(2.5 + 2n)tcy - 92		ns
Input time from $\overline{RD}\downarrow$ to $\overline{WAIT}\downarrow$	trdwt1			tcy – 350	ns
	trdwt2			tcy – 132	ns
Input time from $\overline{WR}\downarrow$ to $\overline{WAIT}\downarrow$	twrwt			tcy - 100	ns
WAIT low-level width	tw⊤∟		(0.5 + 2n)tcr + 10	(2 + 2n)tcr	ns
Write data setup time	twos		60		ns
Write data hold time	twdн		20		ns
WR low-level width	twRL1		(1.5 + 2n)tcy – 60		ns
Delay time from ASTB \downarrow to $\overline{RD}\downarrow$	t ASTRD		20		ns
Delay time from ASTB \downarrow to $\overline{WR}\downarrow$	t ASTWR		2tcy - 60		ns
Delay time from	trdast		0.8tcy - 60	1.2tcy	ns
\overline{RD}^{\uparrow} to ASTB $^{\uparrow}$ at external fetch					
Hold time from	trdadh		0.8tcy - 60	1.2tcr + 120	ns
\overline{RD}^\uparrow to address at external fetch					
Write data output time from \overline{RD} \uparrow	trdwd		40		ns
Write data output time from $\overline{WR} \downarrow$	twrwd		40	240	ns
Hold time from \overline{WR}^\uparrow to address	twradh		0.8tcy - 60	1.2tcy + 120	ns
Delay time from \overline{WAIT} to \overline{RD}	twtrd		0.5tcr	2.5tcy + 100	ns
Delay time from WAIT↑ to WR↑	twtwr		0.5tcr	2.5tcy + 100	ns

Caution Tcr can only be used when the MIN. value is 1.6 μ s.

- 2. n indicates the number of waits.
- **3.** $C_{L} = 100 \text{ pF}$ (C_{L} indicates the load capacitance of the AD0 to AD7, AD8 to AD15, \overline{RD} , \overline{WR} , \overline{WAIT} , and ASTB pins.)

(3) Serial Interface (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
SCK3n	tkcy1	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	V	666			ns
cycle time		$3.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5$	$3.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$				ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 3.0$	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 3.0 \text{ V}$				ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7$	$1.8 \text{ V} \le \text{Vdd} < 2.7 \text{ V}$				ns
SCK3n high-/	tĸнı, tĸ∟ı	$3.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	$3.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$				ns
low-level width		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.0$	V	tксү1/2 – 100			ns
SI3n setup time	tsik1	$3.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	$3.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$				ns
(to SCK3n↑)		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 3.0$	V	150			ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7$	V	300			ns
SI3n hold time	tksi1	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	V	300			ns
(from SCK3n↑)		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 4.5$	V	400			ns
Delay time from	tkso1	C = 100 pF ^{Note}	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			200	ns
SCK3n↓ to SO3n			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$			300	ns
output							

(a) 3-wire serial I/O mode (SCK3n... Internal clock output)

Note C is the load capacitance of the SCK3n and SO3n output lines.

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
SCK3n	tксү2	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	V	666			ns
cycle time		$3.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5$	$3.0 V \le V_{DD} < 4.5 V$ $2.7 V \le V_{DD} < 3.0 V$				ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 3.0$					ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7$	3200			ns	
SCK3n high-/	tкн2, tкL2	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$				ns
low-level width		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		400			ns
				800			ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7$	V	1600			ns
SI3n setup time (to SCK3n↑)	tsık2			100			ns
SI3n hold time	tksi2	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	V	300			ns
(from SCK3n↑)		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 4.5$	V	400			ns
Delay time from	tkso2	C = 100 pF ^{Note}	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$			200	ns
SCK3n↓ to SO3n			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$			300	ns
output							

(b) 3-wire serial I/O mode (SCK3n... External clock input)

Note C is the load capacitance of the SO3n output line.

Remark n = 0, 1

(c) UART mode (dedicated baud-rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.5~V \leq V_{\text{DD}} \leq 5.5~V$			187500	bps
		$3.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$			131031	bps
		$2.7~\text{V} \leq \text{V}_{\text{DD}} < 3.0~\text{V}$			78125	bps
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			39063	bps

(d) UART mode (external clock input)

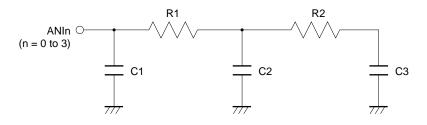
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK0 cycle time	tксүз	$4.0~\text{V} \leq \text{V}_\text{DD} \leq 5.5~\text{V}$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	1600			ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	3200			ns
ASCK0 high-/low-level width	tкнз,	$4.0~\text{V} \leq \text{V}_\text{DD} \leq 5.5~\text{V}$	400			ns
	tкLз	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	800			ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1600			ns
Transfer rate		$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			39063	bps
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$			19531	bps
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			9766	bps

(e) UART mode (infrared data transfer mode)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Transfer rate		$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		131031	bps
Allowable bit rate error		$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		±0.87	%
Output pulse width		$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	1.2	0.24/fbr ^{Note}	μs
Input pulse width		$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	4/fx		μs

Note fbr: Specified baud rate

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			10	10	10	bit
Overall error ^{Notes 1, 2}		$4.0 \text{ V} \leq AV_{REF} \leq 5.5 \text{ V}$		±0.2	±0.4	%FSR
		$2.7 \text{ V} \leq AV_{REF} < 4.0 \text{ V}$		±0.3	±0.6	%FSR
		$1.8 \text{ V} \leq AV_{REF} < 2.7 \text{ V}$		±0.6	±1.2	%FSR
Conversion time	tconv	$4.5 \text{ V} \leq AV_{DD} \leq 5.5 \text{ V}$	12		96	μs
		$4.0 \text{ V} \leq \text{AV}_{\text{DD}} < 4.5 \text{ V}$	14		96	μs
		$2.7~V \leq AV_{\text{DD}} < 4.0~V$	17		96	μs
		$1.8 \text{ V} \leq AV_{DD} < 2.7 \text{ V}$	28		96	μs
Zero-scale errorNotes 1, 2		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±0.4	%FSR
		$2.7 \text{ V} \leq AV_{REF} < 4.0 \text{ V}$			±0.6	%FSR
		$1.8 \text{ V} \leq AV_{REF} < 2.7 \text{ V}$			±1.2	%FSR
Full-scale error ^{Notes 1, 2}		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±0.4	%FSR
		$2.7 \text{ V} \leq AV_{REF} < 4.0 \text{ V}$			±0.6	%FSR
		$1.8 \text{ V} \leq \text{AV}_{\text{REF}} < 2.7 \text{ V}$			±1.2	%FSR
Integral linearity error ^{Note 1}		$4.0 \text{ V} \leq AV_{REF} \leq 5.5 \text{ V}$			±2.5	LSB
		$2.7 \text{ V} \leq AV_{REF} < 4.0 \text{ V}$			±4.5	LSB
		$1.8 \text{ V} \leq AV_{REF} < 2.7 \text{ V}$			±8.5	LSB
Differential linearity error		$4.0 \text{ V} \leq AV_{REF} \leq 5.5 \text{ V}$			±1.5	LSB
		$2.7 \text{ V} \leq AV_{REF} < 4.0 \text{ V}$			±2.0	LSB
		$1.8 \text{ V} \leq \text{AV}_{\text{REF}} < 2.7 \text{ V}$			±3.5	LSB
Analog input voltage	VIAN		0		AVREF	V
Reference voltage	AVREF		1.8		AVDD	V
Resistance between AVREF and AVss	RREF	When A/D conversion is not performed.	20	40		kΩ


A/D Converter Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = AV_{DD} = 1.8 to 5.5 V, AV_{SS} = V_{SS} = 0 V)

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio to the full-scale value.

Remark The impedance of the analog input pins is shown below.

[Equivalent circuit]

[Parameter value]

					(TYP.)
AVdd	R1	R2	C1	C2	C3
2.7 V	12 kΩ	8.0 kΩ	3.0 pF	3.0 pF	2.0 pF
4.5 V	4 kΩ	2.7 kΩ	3.0 pF	1.4 pF	2.0 pF

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	Vdddr		1.6		5.5	V
Data retention power supply current	Idddr	Subsystem clock stop (XT1 = V _{DD}) and feed-back resistor disconnected		0.1	30	μΑ
Release signal set time	tsrel		0			μs
Oscillation stabilization	twait	Release by RESET		2 ¹⁷ /fx		S
time		Release by interrupt request		Note		S

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (T_A = -40 to +85°C)

Note Selection of 2¹²/fx and 2¹⁴/fx to 2¹⁷/fx is possible using bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS).

12.2 μPD780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A), and Conventional Products of μPD780031A(A), 780032A(A), 780033A(A), 780034A(A)

The μ PD780031AY(A), 780032AY(A), 780033AY(A), and 780034AY(A) are under development.

The electrical specifications of the above products are simply target values, so mass-production products do not always satisfy these ratings.

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

Parameter	Symbol		Conditions		Ratings	Unit
Supply voltage	Vdd				-0.3 to +6.5	V
	AVDD				-0.3 to VDD + 0.3 ^{Note}	V
	AVREF				-0.3 to VDD + 0.3 ^{Note}	V
	AVss				-0.3 to +0.3	V
Input voltage	VI1	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, X1, X2, XT1, XT2, RESET			–0.3 to V _{DD} + 0.3 ^{Note}	V
	V ₁₂	P30 to P33	P30 to P33 N-ch open-drain Without pu		-0.3 to + 6.5	V
				With pull-up resistor	-0.3 to VDD + 0.3 ^{Note}	V
Output voltage	Vo				-0.3 to V_DD + 0.3 ^{Note}	V
Analog input voltage	Van	P10 to P17		$AV_{SS} - 0.3 \text{ to } AV_{\text{REF0}} + 0.3^{\text{Note}}$ and -0.3 to V_{DD} + 0.3^{\text{Note}}	V	
Output current, high	Іон	Per pin			-10	mA
		Total for P00 to	P03, P40 to P47, P50 t	to P57, P64 to P67, P70 to P75	-15	mA
		Total for P20	to P25, P30 to P3	-15	mA	
Output current, low	lo∟	·	00 to P03, P20 to I P47, P64 to P67, P	20	mA	
			30 to P33, P50 to I	30	mA	
		Total for P00	to P03, P40 to P4	7,	50	mA
		P64 to P67, I	P70 to P75			
		Total for P20	to P25		20	mA
		Total for P30	to P36		100	mA
		Total for P50	to P57		100	mA
Operating ambient temperature	TA				-40 to +85	°C
Storage temperature	Tstg				-65 to +150	°C

Note 6.5 V or below

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless otherwise specified, the characteristic of alternate-function pins are the same as those of port pins.

Capacitance (T_A = 25°C, V_{DD} = V_{SS} = 0 V)

Parameter	Symbol	(MIN.	TYP.	MAX.	Unit	
Input capacitance	CIN	f = 1 MHz Unmeasured pins returned to 0 V.				15	pF
I/O capacitance	Сю	f = 1 MHz Unmeasured pins returned to 0 V.	P00 to P03, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75			15	pF
			P30 to P33			20	pF

Remark Unless otherwise specified, the characteristic of alternate-function pins are the same as those of port pins.

Main System Clock Oscillator Characteristics ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 1.8$ to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic		Oscillation	$4.0~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	1.0		8.38	MHz
resonator	IC X2 X1	frequency (fx) ^{Note 1}	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	1.0		5.0	
		Oscillation	After VDD reaches			4	ms
		stabilization timeNote 2	oscillation voltage range				
	#		MIN.				
Crystal	IC X2 X1	Oscillation	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		8.38	MHz
resonator		frequency (fx) ^{Note 1}	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	1.0		5.0	
	C2 = C1 =	Oscillation	$4.0~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$			10	ms
		stabilization timeNote 2	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$			30	
External		X1 input	$4.0~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	1.0		8.38	MHz
clock	X2 X1	frequency (fx) ^{Note 1}	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	1.0		5.0	
		X1 input	$4.0~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	50		500	ns
	$\overset{\circ}{\bigtriangleup}$	high-/low-level width	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	85		500	
	T	(tхн, tх∟)					

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

- 2. Time required to stabilize oscillation after reset or STOP mode release.
- Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss1.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. When the main system clock is stopped and the system is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	XT2 XT1 IC	Oscillation frequency (f _{XT}) ^{Note 1}		32	32.768	35	kHz
	=C4 =C3	Oscillation	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		1.2	2	S
	iii 777	stabilization time ^{Note 2}	$1.8~V \leq V_{\text{DD}} < 4.0~V$			10	
External clock	XT2 XT1	XT1 input frequency (f _{XT}) ^{Note 1}		32		38.5	kHz
		XT1 input high-/low-level width (txтн , txть)		12		15	μs

Subsystem Clock Oscillator Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = 1.8 to 5.5 V)

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 2. Time required to stabilize oscillation after VDD reaches oscillation voltage range MIN.
- Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss1.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. The subsystem clock oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.
 - **Remark** For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Recommended Oscillator Constant

Main system clock: Ceramic resonator ($T_A = -40$ to +85°C)

Manufacturer	Part Number	Frequency	Recomm	ended Circuit	Constant	Oscillation V	oltage Range
		(MHz)	C1 (pF)	C2 (pF)	R1 (kΩ)	MIN. (V)	MAX. (V)
Murata Mfg.	CSBFB1M00J58	1.00	100	100	2.2	1.8	5.5
Co., Ltd.	CSBLA1M00J58	1.00	100	100	2.2	1.8	5.5
	CSTCC2M00G56	2.00	On-chip	On-chip	0	1.8	5.5
	CSTLS2M00G56	2.00	On-chip	On-chip	0	1.8	5.5
	CSTCC3M58G53	3.58	On-chip	On-chip	0	1.8	5.5
	CSTLS3M58G53	3.58	On-chip	On-chip	0	1.8	5.5
	CSTCR4M00G53	4.00	On-chip	On-chip	0	1.8	5.5
	CSTLS4M00G53	4.00	On-chip	On-chip	0	1.8	5.5
	CSTCR4M19G53	4.19	On-chip	On-chip	0	1.8	5.5
	CSTLS4M19G53	4.19	On-chip	On-chip	0	1.8	5.5
	CSTCR4M91G53	4.91	On-chip	On-chip	0	1.8	5.5
	CSTLS4M91G53	4.91	On-chip	On-chip	0	1.8	5.5
	CSTCR5M00G53	5.00	On-chip	On-chip	0	1.8	5.5
	CSTLS5M00G53	5.00	On-chip	On-chip	0	1.8	5.5
	CSTCE8M00G52	8.00	On-chip	On-chip	0	3.0	5.5
	CSTLS8M00G53	8.00	On-chip	On-chip	0	3.0	5.5
	CSTCE8M38G52	8.38	On-chip	On-chip	0	3.0	5.5
	CSTLS8M38G53	8.38	On-chip	On-chip	0	3.0	5.5
	CSTCE10M0G52	10.00	On-chip	On-chip	0	4.5	5.5
	CSTLS10M0G53	10.00	On-chip	On-chip	0	4.5	5.5
TDK	CCR3.58MC3	3.58	On-chip	On-chip	0	1.8	5.5
	CCR4.19MC3	4.19	On-chip	On-chip	0	1.8	5.5
	CCR5.0MC3	5.00	On-chip	On-chip	0	1.8	5.5
	CCR8.0MC5	8.00	On-chip	On-chip	0	2.0	5.5
	CCR8.38MC5	8.38	On-chip	On-chip	0	2.0	5.5

Caution The oscillator constant is a reference value based on evaluation in specific environments by the resonator manufacturer. If the oscillator characteristics need to be optimized in the actual application, request the resonator manufacturer for evaluation on the implementation circuit. Note that the oscillation voltage and oscillation frequency merely indicate the characteristics of the oscillator. Use the internal operation conditions of the μ PD780034A, 780034AY Subseries within the specifications of the DC and AC characteristics.

DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Conditions	3	MIN.	TYP.	MAX.	Unit
Output current,	Іон	Per pin				-1	mA
high		All pins				-15	mA
Output current,	lo∟	Per pin for P00 to P03, P20 to P	25, P34 to P36,			10	mA
low		P40 to P47, P64 to P67, P70 to	P75				
		Per pin for P30 to P33, P50 to P	57			15	mA
		Total for P00 to P03, P40 to P47,	P64 to P67, P70 to P75			20	mA
		Total for P20 to P25				10	mA
		Total for P30 to P36				70	mA
		Total for P50 to P57			70	mA	
Input voltage,	VIH1	P10 to P17, P21, P24, P35,	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.7Vdd		Vdd	V
high		P40 to P47, P50 to P57,	1.8 V ≤ Vdd < 2.7 V	0.8Vdd		Vdd	V
		P64 to P67, P74, P75	$1.0 V \leq V D \leq 2.7 V$	0.00		VDD	v
	VIH2	P00 to P03, P20, P22, P23, P25,	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.8Vdd		Vdd	V
		P34, P36, P70 to P73, RESET	1.8 V ≤ Vdd < 2.7 V	0.85Vdd		Vdd	V
	Vінз	P30 to P33	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.7Vdd		5.5	V
		(N-ch open-drain)	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.8Vdd		5.5	V
	VIH4	X1, X2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	V _{DD} – 0.5		Vpp	v
V 11 1**		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	V _{DD} – 0.2			V	
		XT1, XT2	$4.0 V \le V_{DD} \le 5.5 V$	0.8VDD		Vdd Vdd	v
Vih5	ATT, ATZ	$4.0 V \le VDD \le 5.5 V$ $1.8 V \le VDD < 4.0 V$				V	
				0.9Vdd			
Input voltage,	VIL1	P10 to P17, P21, P24, P35,	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0		0.3Vdd	V
low		P40 to P47, P50 to P57, P64 to P67, P74, P75	$1.8~V \leq V_{DD} < 2.7~V$	0		0.2Vdd	V
	VIL2	P00 to P03, P20, P22, P23, P25,	$2.7~V \le V_{\text{DD}} \le 5.5~V$	0		0.2VDD	V
		P34, P36, P70 to P73, RESET	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0		0.15Vdd	V
	Vil3	P30 to P33	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.3Vdd	V
			$2.7~V \leq V_{\text{DD}} < 4.0~V$	0		0.2Vdd	V
			$1.8~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$	0		0.1Vdd	V
	VIL4	X1, X2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.4	V
			$1.8~V \leq V_{\text{DD}} < 2.7~V$	0		0.2	V
	VIL5	XT1, XT2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.2VDD	V
			$1.8~V \leq V_{\text{DD}} < 4.0~V$	0		0.1Vdd	V
Output voltage,	Vон1	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Ioh} = -1 \text{ mA}$		Vdd - 1.0		Vdd	V
high		1.8 V \leq Vdd < 4.0 V, Ioh = -100 μ	ιA	V _{DD} - 0.5		Vdd	V
Output voltage,	Vol1	P30 to P33	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$			2.0	V
low		P50 to P57	lo∟ = 15 mA		0.4	2.0	V
		P00 to P03, P20 to P25, P34 to P36,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$			0.4	V
		P40 to P47, P64 to P67, P70 to P75	lo∟ = 1.6 mA				
	Vol2	lo∟ = 400 μA				0.5	V

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (TA = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ilih1	Vin = Vdd	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET			3	μΑ
	ILIH2		X1, X2, XT1, XT2			20	μA
	Іцнз	VIN = 5.5 V	P30 to P33 ^{Note 1}			3	μA
Input leakage current, low	ILIL1	Vin = 0 V	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET			-3	μΑ
	ILIL2		X1, X2, XT1, XT2			-20	μA
	Ililis		P30 to P33 ^{Note 1}			-3	μA
Output leakage current, high	Ігон	Vout = Vdd				3	μA
Output leakage current, low	Ilol	Vout = 0 V				-3	μA
Mask option pull-up resistance	R1	V _{IN} = 0 V, P30, P31, P32 ^{Note 2} , P33 ^{Note 2}		15	30	90	kΩ
Software pull- up resistance	R2	V _{IN} = 0 V, P00 to P03, P20 to P25 P50 to P57, P64 to P67	, P34 to P36, P40 to P47, , P70 to P75	15	30	90	kΩ

Notes 1. μPD780031A(A), 780032A(A), 780033A(A), 780034A(A):

When pull-up resistors are not connected to P30 to P33 (specified by the mask option). μ PD780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A):

When pull-up resistors are not connected to P30 and P31 (specified by the mask option).

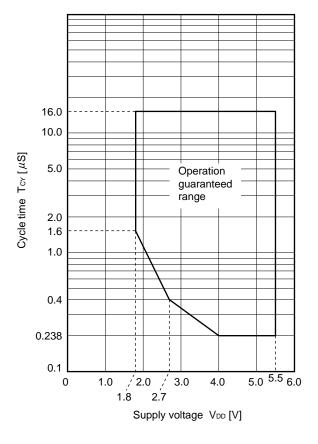
2. Only for the µPD780031A(A), 780032A(A), 780033A(A), and 780034A(A).

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Power supply current ^{Note 1}	DD1 ^{Note 2}	8.38 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When A/D converter is stopped		5.5	11	mA
		operating mode		When A/D converter is operating ^{Note 6}		6.5	13	mA
		5.00 MHz crystal oscillation	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When A/D converter is stopped		2	4	mA
		operating mode		When A/D converter is operating ^{Note 6}		3	6	mA
			VDD = 2.0 V ±10% ^{Note 4}	When A/D converter is stopped		0.4	1.5	mA
				When A/D converter is operating ^{Note 6}		1.4	4.2	mA
	IDD2	8.38 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When peripheral functions are stopped		1.1	2.2	mA
		HALT mode		When peripheral functions are operating			4.7	mA
	5.00 MHz crystal oscillation	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When peripheral functions are stopped		0.35	0.7	mA	
		HALT mode		When peripheral functions are operating			1.7	mA
			$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 4}}$	When peripheral functions are stopped		0.15	0.4	mA
				When peripheral functions are operating			1.1	mA
	IDD3	32.768 kHz cry	stal oscillation	Vdd = 5.0 V ±10%		40	80	μA
		operating mode	Note 5	Vdd = 3.0 V ±10%		20	40	μA
				Vdd = 2.0 V ±10%		10	20	μA
	IDD4	32.768 kHz cry	stal oscillation	Vdd = 5.0 V ±10%		30	60	μA
		HALT mode ^{Note}	5	Vdd = 3.0 V ±10%		6	18	μA
				Vdd = 2.0 V ±10%		2	10	μA
	IDD5	XT1 = VDD STO	P mode	Vdd = 5.0 V ±10%		0.1	30	μA
		When feedback re	sistor is not used	Vdd = 3.0 V ±10%		0.05	10	μA
				Vdd = 2.0 V ±10%		0.05	10	μA

DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

- **Notes 1.** Total current through the internal power supply (VDD0, VDD1) (except the current through pull-up resistors of ports).
 - 2. IDD1 includes the peripheral operation current.
 - 3. When the processor clock control register (PCC) is set to 00H.
 - 4. When PCC is set to 02H.
 - 5. When main system clock operation is stopped.
 - 6. Includes the current through the AVDD pin.


AC Characteristics

(1) Basic Operation (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	C	Conditions		MIN.	TYP.	MAX.	Unit
Cycle time	Тсч	Operating with	$4.0 V \leq V_{DD}$	o ≤ 5.5 V	0.238		16	μs
(Min. instruction		main system clock	2.7 V ≤ VDD	o < 4.0 V	0.4		16	μs
execution time)			1.8 V ≤ VD	o < 2.7 V	1.6		16	μs
		Operating with subs	perating with subsystem clock			122	125	μs
TI00, TI01 input	ttiho, ttilo	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			2/f _{sam} +0.1 ^{Note 2}			μs
high-/low-level		$2.7~V \leq V_{\text{DD}} < 4.0~V$	$.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$					μs
width		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$			2/fsam+0.5 ^{Note 2}			μs
TI50, TI51 input	ft15	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$				4	MHz
frequency		$1.8~V \leq V_{\text{DD}} < 2.7~V$			0		275	kHz
TI50, TI51 input high-/low-level	t⊤iH5, t⊤iL5	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			100			ns
width		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			1.8			ns
Interrupt request	tinth, tintl	INTP0 to INTP3,	2.7	$7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	1			μs
input high-/low- level width		P40 to P47	1.8	$8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	2			μs
RESET	trsl	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	$1.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$					μs
low-level width		$1.8~V \leq V_{\text{DD}} < 2.7~V$			20			μs

Notes 1. Value when the external clock is used. When a crystal resonator is used, it is 114 μ s (MIN.).

Selection of fsam = fx, fx/4, fx/64 is possible using bits 0 and 1 (PRM00, PRM01) of prescaler mode register 0 (PRM0). However, if the TI00 valid edge is selected as the count clock, the value becomes fsam = fx/8.

TCY vs. VDD (main system clock operation)

(2) Read/Write Operation (T_A = -40 to +85°C, V_{DD} = 4.0 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.3tcy		ns
Address setup time	tads		20		ns
Address hold time	tadh		6		ns
Data input time from address	tADD1			(2 + 2n)tcr – 54	ns
	tADD2			(3 + 2n)tcy - 60	ns
Address output time from $\overline{RD} \downarrow$	trdad		0	100	ns
Data input time from $\overline{RD} \downarrow$	trdd1			(2 + 2n)tcy – 87	ns
	trdd2			(3 + 2n)tcr – 93	ns
Read data hold time	t RDH		0		ns
RD low-level width	trdl1		(1.5 + 2n)tcy - 33		ns
	tRDL2		(2.5 + 2n)tcy - 33		ns
Input time from $\overline{RD} \downarrow$ to $\overline{WAIT} \downarrow$	trdwt1			tcy – 43	ns
	trdwt2			tcy – 43	ns
Input time from $\overline{WR} \downarrow$ to $\overline{WAIT} \downarrow$	t wrwt			tcy – 25	ns
WAIT low-level width	tw⊤∟		(0.5 + n)tcr + 10	(2 + 2n)t cy	ns
Write data setup time	twos		60		ns
Write data hold time	twdн		6		ns
WR low-level width	twrl1		(1.5 + 2n)tcy – 15		ns
Delay time from ASTB \downarrow to $\overline{RD}\downarrow$	t ASTRD		6		ns
Delay time from <code>ASTB\downarrow</code> to $\overline{WR}\downarrow$	t ASTWR		2tcy – 15		ns
Delay time from \overline{RD} ↑ to ASTB↑ at external fetch	t rdast		0.8tcy - 15	1.2tcy	ns
Address hold time from RD↑ at external fetch	trdadh		0.8tcr - 15	1.2tcy + 30	ns
Write data output time from \overline{RD}	trdwd		40		ns
Write data output time from $\overline{WR} \downarrow$	twrwd		10	60	ns
Address hold time from \overline{WR}^\uparrow	twradh		0.8tcy - 15	1.2tcy + 30	ns
Delay time from \overline{WAIT} to \overline{RD}	twtrd		0.8tcy	2.5tcy + 25	ns
Delay time from $\overline{WAIT}^{\uparrow}$ to \overline{WR}^{\uparrow}	twtwr		0.8tcy	2.5tcy + 25	ns

Caution Tcy can only be used when the MIN. value is 0.238 μ s.

- 2. n indicates the number of waits.
- 3. $C_{L} = 100 \text{ pF}$ (C_{L} indicates the load capacitance of the AD0 to AD7, A8 to A15, \overline{RD} , \overline{WR} , \overline{WAIT} , and ASTB pins.)

(2) Read/Write Operation (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 2.7 to 4.0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.3tcy		ns
Address setup time	tads		30		ns
Address hold time	tadh		10		ns
Input time from address to data	tADD1			(2 + 2n)tcy - 108	ns
	tADD2			(3 + 2n)tcr – 120	ns
Output time from $\overline{RD} \downarrow$ to address	trdad		0	200	ns
Input time from $\overline{RD} \downarrow$ to data	trdd1			(2 + 2n)tcr – 148	ns
	trdd2			(3 + 2n)tcr – 162	ns
Read data hold time	t RDH		0		ns
RD low-level width	trdl1		(1.5 + 2n)tcy – 40		ns
	tRDL2		(2.5 + 2n)tcy - 40		ns
Input time from $\overline{RD} \downarrow$ to $\overline{WAIT} \downarrow$	trdwt1			tcy - 75	ns
	trdwt2			tcy - 60	ns
Input time from $\overline{WR} \downarrow$ to $\overline{WAIT} \downarrow$	twrwt			tcy - 50	ns
WAIT low-level width	tw⊤∟		(0.5 + 2n)tcr + 10	(2 + 2n)tcr	ns
Write data setup time	twos		60		ns
Write data hold time	twoн		10		ns
WR low-level width	twrl1		(1.5 + 2n)tcy – 30		ns
Delay time from ASTB \downarrow to $\overline{RD}\downarrow$	t ASTRD		10		ns
Delay time from ASTB \downarrow to $\overline{WR}\downarrow$	t astwr		2tcy - 30		ns
Delay time from	t RDAST		0.8tcy - 30	1.2tcr	ns
\overline{RD} to ASTB t external fetch					
Hold time from	t RDADH		0.8tcy - 30	1.2tcy + 60	ns
\overline{RD} to address at external fetch					
Write data output time from \overline{RD} \uparrow	trdwd		40		ns
Write data output time from $\overline{WR} \downarrow$	twrwd		20	120	ns
Hold time from \overline{WR}^\uparrow to address	twradh		0.8tcy - 30	1.2tcy + 60	ns
Delay time from \overline{WAIT} to \overline{RD}	twtrd		0.5tcr	2.5tcy + 50	ns
Delay time from \overline{WAIT} to \overline{WR}	twtwr		0.5tcy	2.5tcy + 50	ns

Caution Tcr can only be used when the MIN. value is 0.4 μ s.

- 2. n indicates the number of waits.
- **3.** $C_{L} = 100 \text{ pF}$ (C_{L} indicates the load capacitance of the AD0 to AD7, AD8 to AD15, \overline{RD} , \overline{WR} , \overline{WAIT} , and ASTB pins.)

(2) Read/Write Operation ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 1.8$ to 2.7 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.3tcr		ns
Address setup time	tads		120		ns
Address hold time	tadh		20		ns
Input time from address to data	tadd1			(2 + 2n)tcy - 233	ns
	tadd2			(3 + 2n)tcy - 240	ns
Output time from $\overline{RD} \downarrow$ to address	trdad		0	400	ns
Input time from $\overline{RD}\downarrow$ to data	trdd1			(2 + 2n)tcr – 325	ns
	trdd2			(3 + 2n)tcr – 332	ns
Read data hold time	t RDH		0		ns
RD low-level width	trdl1		(1.5 + 2n)tcr – 92		ns
	tRDL2		(2.5 + 2n)tcr – 92		ns
Input time from $\overline{RD}\downarrow$ to $\overline{WAIT}\downarrow$	trdwt1			tcy - 350	ns
	trdwt2			tcy – 132	ns
Input time from $\overline{WR}\downarrow$ to $\overline{WAIT}\downarrow$	twrwt			tcy - 100	ns
WAIT low-level width	tw⊤∟		(0.5 + 2n)tcr + 10	(2 + 2n)tcr	ns
Write data setup time	twos		60		ns
Write data hold time	twdн		20		ns
WR low-level width	twRL1		(1.5 + 2n)tcr - 60		ns
Delay time from ASTB \downarrow to $\overline{\mathtt{RD}}\downarrow$	tastrd		20		ns
Delay time from ASTB \downarrow to $\overline{WR}\downarrow$	t ASTWR		2tcy - 60		ns
Delay time from	t RDAST		0.8tcy - 60	1.2tcy	ns
\overline{RD}^{\uparrow} to ASTB $^{\uparrow}$ at external fetch					
Hold time from	t rdadh		0.8tcy - 60	1.2tcr + 120	ns
\overline{RD}^\uparrow to address at external fetch					
Write data output time from \overline{RD} \uparrow	trdwd		40		ns
Write data output time from $\overline{WR} \downarrow$	twrwd		40	240	ns
Hold time from \overline{WR}^\uparrow to address	twradh		0.8tcy - 60	1.2tcy + 120	ns
Delay time from $\overline{WAIT}^{\uparrow}$ to \overline{RD}^{\uparrow}	twtrd		0.5tcy	2.5tcy + 100	ns
Delay time from \overline{WAIT} to \overline{WR}	twrwr		0.5tcr	2.5tcr + 100	ns

Caution Tcr can only be used when the MIN. value is 1.6 μ s.

- 2. n indicates the number of waits.
- **3.** $C_{L} = 100 \text{ pF}$ (C_{L} indicates the load capacitance of the AD0 to AD7, AD8 to AD15, \overline{RD} , \overline{WR} , \overline{WAIT} , and ASTB pins.)

(3) Serial Interface (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK3n	tkCY1	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	954			ns
cycle time		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	1600			ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	3200			ns
SCK3n high-/	tĸнı, tĸ∟ı	$4.0~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	tксү1/2 – 50			ns
low-level width		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	tксү1/2 − 100			ns
SI3n setup time	tsik1	$4.0~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	100			ns
(to SCK3n↑)		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	150			ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	300			ns
SI3n hold time (from SCK3n↑)	tksii		400			ns
Delay time from SCK3n↓ to SO3n output	tkso1	C = 100 pF ^{Note}			300	ns

(a) 3-wire serial I/O mode (SCK3n... Internal clock output)

Note C is the load capacitance of the SCK3n and SO3n output lines.

(b) 3-wire serial I/O mode (SCK3n... External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK3n	tксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	800			ns
cycle time		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	1600			ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	3200			ns
SCK3n high-/	tkh2, tkl2	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	400			ns
low-level width		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	800			ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1600			ns
SI3n setup time (to SCK3n↑)	tsik2		100			ns
SI3n hold time (from SCK3n↑)	tksi2		400			ns
Delay time from SCK3n↓ to SO3n output	tkso2	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the SO3n output line.

Remark Conventional products of μPD780031A(A), 780032A(A), 780033A(A), 780034A(A): n = 0 or 1 μPD780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A): n = 0

(c) UART mode (dedicated baud-rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.0~\text{V} \leq \text{V}_\text{DD} \leq 5.5~\text{V}$			131031	bps
		$2.7~V \leq V_{\text{DD}} < 4.0~V$			78125	bps
		$1.8~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$			39063	bps

(d) UART mode (external clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK0 cycle time	tксүз	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	1600			ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	3200			ns
ASCK0 high-/low-level width	t кнз,	$4.0~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	400			ns
	tкlз	$2.7~\text{V} \leq \text{V}_{\text{DD}} < 4.0~\text{V}$	800			ns
		$1.8 \text{ V} \leq \text{Vdd} < 2.7 \text{ V}$	1600			ns
Transfer rate		$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			39063	bps
		$2.7~\textrm{V} \leq \textrm{V}_\textrm{DD} < 4.0~\textrm{V}$			19531	bps
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			9766	bps

(e) UART mode (infrared data transfer mode)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Transfer rate		$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		131031	bps
Allowable bit rate error		$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		±0.87	%
Output pulse width		$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	1.2	0.24/fbr ^{Note}	μs
Input pulse width		$4.0~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	4/fx		μs

Note fbr: Specified baud rate

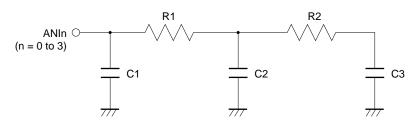
		Quarter	Standa	rd Mode	High-Spe	ed Mode	11-21
Ρ	arameter	Symbol	MIN.	MAX.	MIN.	MAX.	Unit
SCL0 clock free	quency	fськ	0	100	0	400	kHz
Bus free time		t buf	4.7	_	1.3	—	μs
(between stop a	and start conditions)						
Hold time ^{Note 1}		thd:sta	4.0	_	0.6	—	μs
SCL0 clock low	SCL0 clock low-level width		4.7	-	1.3	—	μs
SCL0 clock hig	SCL0 clock high-level width		4.0		0.6	—	μs
Start/restart co	Start/restart condition setup time		4.7		0.6		μs
Data hold time	CBUS-compatible master	t hd:dat	5.0		—	—	μs
	I ² C bus		O ^{Note 2}	_	O ^{Note 2}	0.9 ^{Note 3}	μs
Data setup time	9	tsu:dat	250		100 ^{Note 4}	—	ns
SDA0 and SCL	0 signal rise time	tr		1000	20 + 0.1Cb ^{Note 5}	300	ns
SDA0 and SCL	0 signal fall time	t⊧		300	20 + 0.1Cb ^{Note 5}	300	ns
Stop condition	Stop condition setup time		4.0	_	0.6	_	μs
Spike pulse wid	th controlled by input filter	tsp	_	_	0	50	ns
Capacitive load	per bus line	Cb	_	400	_	400	pF

(f) I²C bus mode (µPD780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A) only)

Notes 1. In the start condition, the first clock pulse is generated after this hold time.

- 2. To fill in the undefined area of the SCL0 falling edge, it is necessary for the device to internally provide at least 300 ns of hold time for the SDA0 signal (which is V_{IHmin}. of the SCL0 signal).
- **3.** If the device does not extend the SCL0 signal low hold time (tLow), only the maximum data hold time tHD:DAT needs to be fulfilled.
- 4. The high-speed mode I²C bus is available in a standard mode I²C bus system. At this time, the conditions described below must be satisfied.
 - If the device does not extend the SCL0 signal low state hold time $t_{\text{SU:DAT}} \geq 250 \text{ ns}$
 - If the device extends the SCL0 signal low state hold time
 Be sure to transmit the next data bit to the SDA0 line before the SCL0 line is released (t_{Rmax}. + t_{SU:DAT} = 1000 + 250 = 1250 ns by standard mode l²C bus specification).
- 5. Cb: Total capacitance per bus line (unit: pF)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			10	10	10	bit
Overall error ^{Notes 1, 2}		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$		±0.2	±0.4	%FSR
		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} < 4.0 \text{ V}$		±0.3	±0.6	%FSR
		$1.8 \text{ V} \leq \text{AV}_{\text{REF}} < 2.7 \text{ V}$		±0.6	±1.2	%FSR
Conversion time	tсолу	$4.0 \text{ V} \leq AV_{DD} \leq 5.5 \text{ V}$	14		96	μs
		$2.7 \text{ V} \leq AV_{DD} < 4.0 \text{ V}$	19		96	μs
		$1.8 \text{ V} \leq \text{AV}_{\text{DD}} < 2.7 \text{ V}$	28		96	μs
Zero-scale error ^{Notes 1, 2}		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±0.4	%FSR
		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} < 4.0 \text{ V}$			±0.6	%FSR
		$1.8 \text{ V} \leq \text{AV}_{\text{REF}} < 2.7 \text{ V}$			±1.2	%FSR
Full-scale error ^{Notes 1, 2}		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±0.4	%FSR
		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} < 4.0 \text{ V}$			±0.6	%FSR
		$1.8 \text{ V} \leq \text{AV}_{\text{REF}} < 2.7 \text{ V}$			±1.2	%FSR
Integral linearity error ^{Note 1}		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±2.5	LSB
		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} < 4.0 \text{ V}$			±4.5	LSB
		$1.8 \text{ V} \leq \text{AV}_{\text{REF}} < 2.7 \text{ V}$			±8.5	LSB
Differential linearity error		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±1.5	LSB
		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} < 4.0 \text{ V}$			±2.0	LSB
		$1.8 \text{ V} \leq \text{AV}_{\text{REF}} < 2.7 \text{ V}$			±3.5	LSB
Analog input voltage	VIAN		0		AVREF	V
Reference voltage	AVREF		1.8		AVDD	V
Resistance between AVREF and AVss	Rref	When A/D conversion is not performed.	20	40		kΩ


A/D Converter Characteristics (T_A = -40 to +85°C, V_{DD} = AV_{DD} = 1.8 to 5.5 V, AV_{SS} = V_{SS} = 0 V)

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

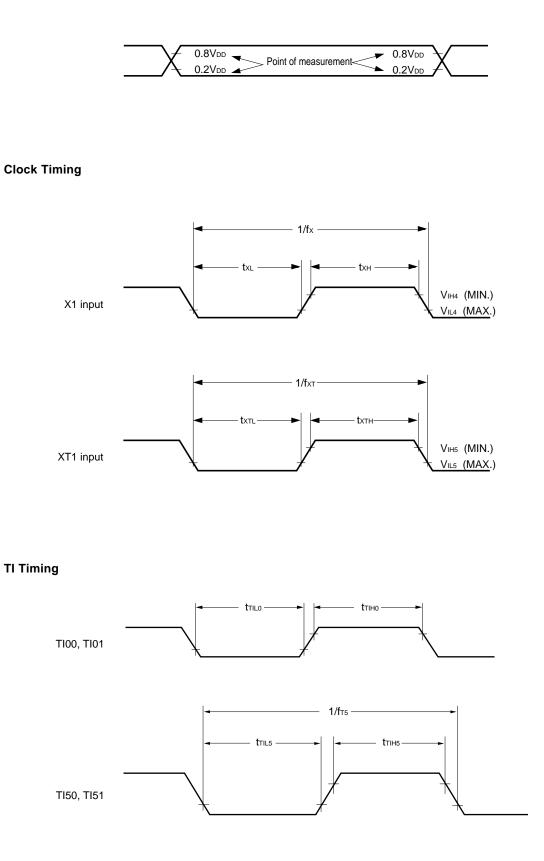
2. This value is indicated as a ratio to the full-scale value.

Remark The impedance of the analog input pins is shown below.

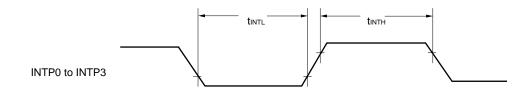
[Equivalent circuit]

[Parameter value]

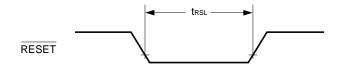
					(TYP.)
AVdd	R1	R2	C1	C2	C3
2.7 V	12 kΩ	8.0 kΩ	3.0 pF	3.0 pF	2.0 pF
4.5 V	4 kΩ	2.7 kΩ	3.0 pF	1.4 pF	2.0 pF


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	Vdddr		1.6		5.5	V
Data retention power supply current	Idddr	Subsystem clock stop (XT1 = V _{DD}) and feed-back resistor disconnected		0.1	30	μΑ
Release signal set time	tsrel		0			μs
Oscillation stabilization	twait	Release by RESET		2 ¹⁷ /fx		S
time		Release by interrupt request		Note		S

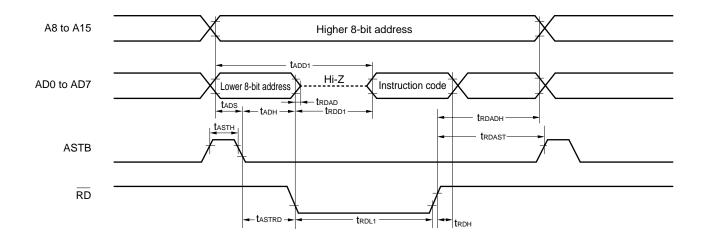
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (T_A = -40 to +85°C)


Note Selection of 2¹²/fx and 2¹⁴/fx to 2¹⁷/fx is possible using bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS).

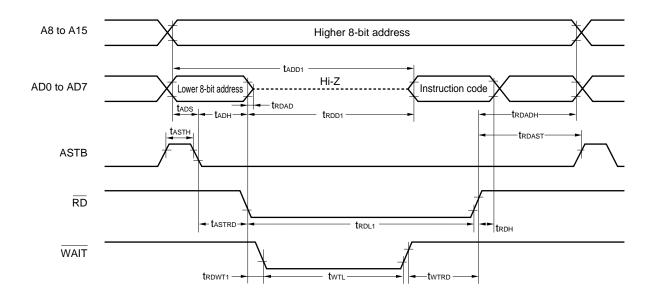
12.3 Timing Chart

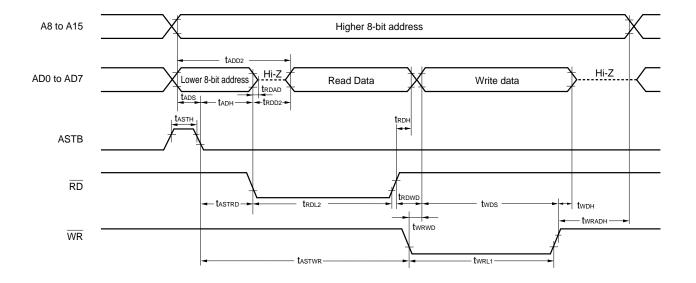

AC Timing Test Points (excluding X1, XT1 inputs)

Interrupt Request Input Timing

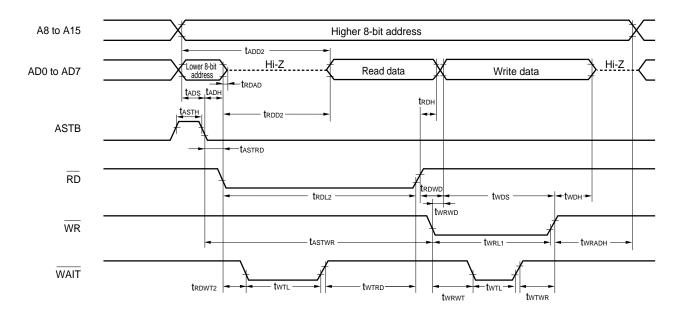


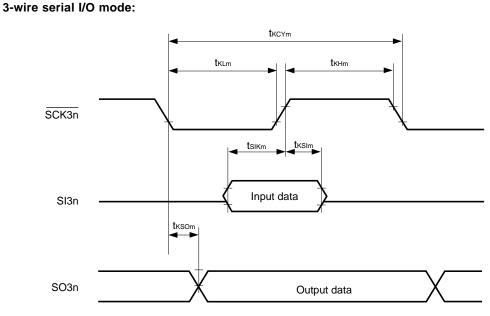
RESET Input Timing




Read/Write Operation

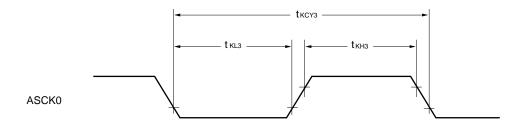
External fetch (no wait):

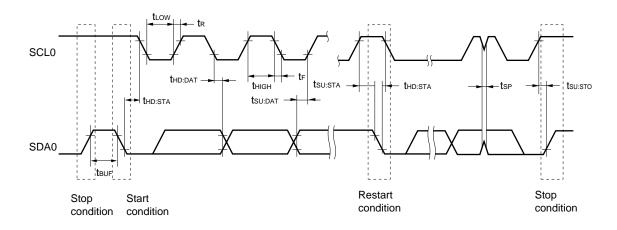

External fetch (wait insertion):



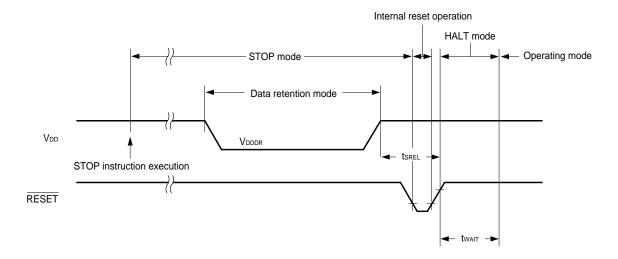
External data access (no wait):

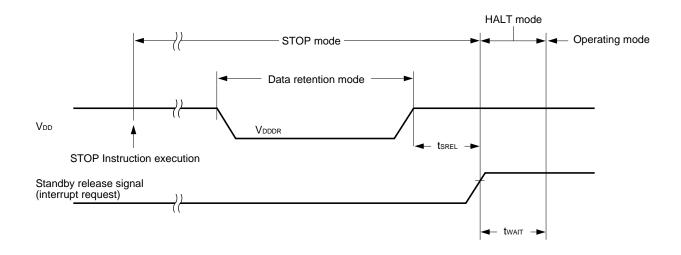
External data access (wait insertion):


Serial Transfer Timing

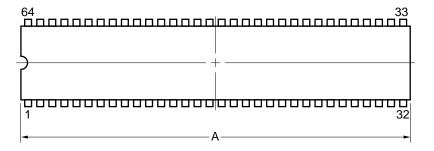

Remarks 1. m = 1, 2

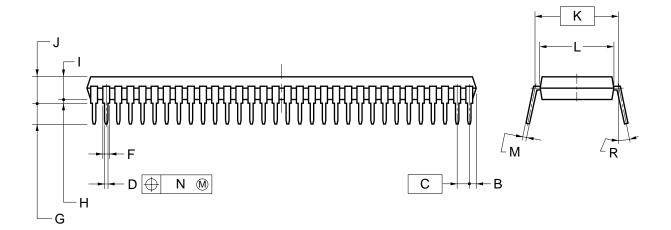
μPD780031A(A), 780032A(A), 780033A(A), 780034A(A): n = 0, 1
 μPD780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A): n = 0


UART mode (external clock input):


I²C bus mode (µPD780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A) only):

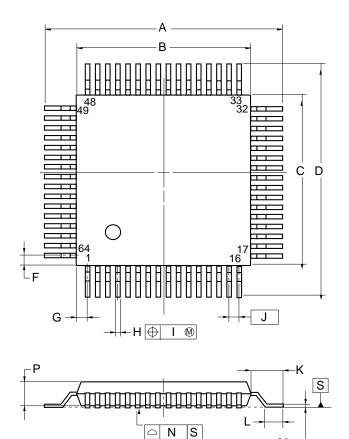
Data Retention Timing (STOP Mode Release by RESET)



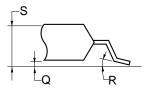

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Request Signal)

13. PACKAGE DRAWINGS

64-PIN PLASTIC SDIP (19.05mm(750))


NOTES

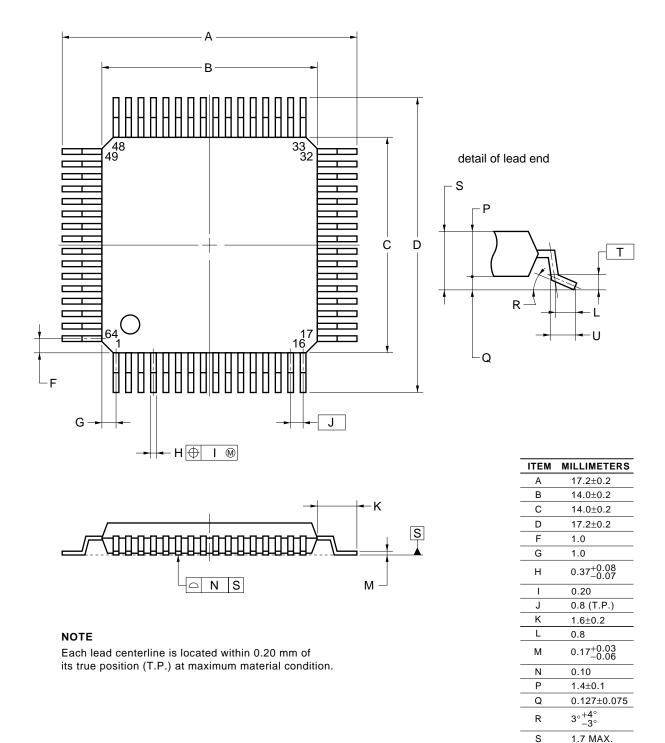

- 1. Each lead centerline is located within 0.17 mm of its true position (T.P.) at maximum material condition.
- 2. Item "K" to center of leads when formed parallel.


ITEM	MILLIMETERS
А	58.0 ^{+0.68}
В	1.78 MAX.
С	1.778 (T.P.)
D	0.50±0.10
F	0.9 MIN.
G	3.2±0.3
Н	0.51 MIN.
I	4.05+0.26
J	5.08 MAX.
К	19.05 (T.P.)
L	17.0±0.2
М	0.25 ^{+0.10} -0.05
N	0.17
R	0 ~ 15°
F	P64C-70-750A,C-4

Remark The external dimensions and materials of the ES version are the same as those of the mass-produced version.

64-PIN PLASTIC QFP (14x14)

NOTE

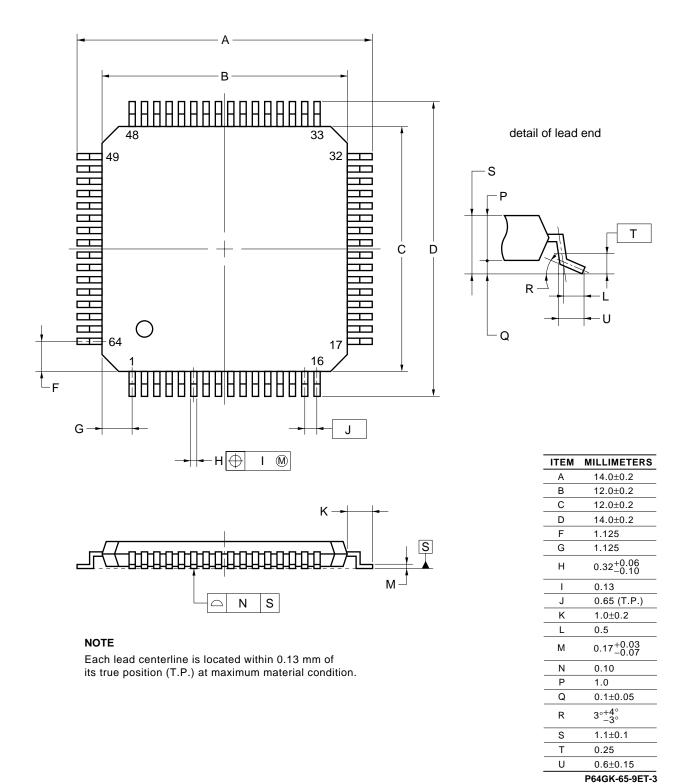

Each lead centerline is located within 0.15 mm of its true position (T.P.) at maximum material condition.

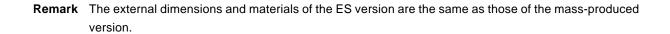
ITEM	MILLIMETERS	
Α	17.6±0.4	
В	14.0±0.2	
С	14.0±0.2	
D	17.6±0.4	
F	1.0	
G	1.0	
Н	0.37 <mark>+0.08</mark> -0.07	
1	0.15	
J	0.8 (T.P.)	
K	1.8±0.2	
L	0.8±0.2	
М	0.17 ^{+0.08} -0.07	
Ν	0.10	
Р	2.55±0.1	
Q	0.1±0.1	
R	5°± 5°	
S	2.85 MAX.	
	P64GC-80-AB8-5	

Remark The external dimensions and materials of the ES version are the same as those of the mass-produced version.

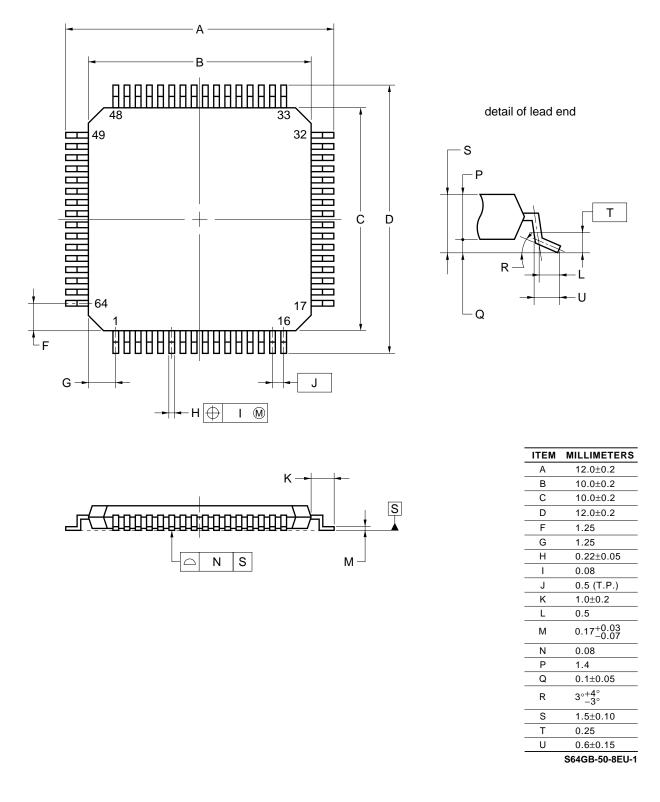
Μ

* 64-PIN PLASTIC LQFP (14x14)




Remark The external dimensions and materials of the ES version are the same as those of the mass-produced version.

0.25


0.886±0.15 P64GC-80-8BS

T U 64-PIN PLASTIC TQFP (12x12)

* 64-PIN PLASTIC LQFP (10x10)

Remark The external dimensions and materials of the ES version are the same as those of the mass-produced version.

14. RECOMMENDED SOLDERING CONDITIONS

The μ PD780031A(A), 780032A(A), 780033A(A), and 780034A(A)^{Note} should be soldered and mounted under the following recommended conditions.

For details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales representative.

Note The μPD780031AY(A), 780032AY(A), 780033AY(A), and 780034AY(A) and the 64-pin plastic LQFP (GB-8EU type) of the μPD780031A(A), 780032A(A), 780033A(A), and 780034A(A) are under development, so their soldering conditions are undetermined.

Table 14-1. Surface Mounting Type Soldering Conditions (1/2)

```
    (1) μPD780031AGC(A)-xxx-AB8: 64-pin plastic QFP (14 x 14)
μPD780032AGC(A)-xxx-AB8: 64-pin plastic QFP (14 x 14)
μPD780033AGC(A)-xxx-AB8: 64-pin plastic QFP (14 x 14)
μPD780034AGC(A)-xxx-AB8: 64-pin plastic QFP (14 x 14)
```

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max.	IR35-00-3
	(at 210°C or higher), Count: Three times or less	
VPS	Package peak temperature: 215°C, Time: 40 seconds max.	VP15-00-3
	(at 200°C or higher), Count: Three times or less	
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max.,	WS60-00-1
	Count: Once, Preheating temperature: 120°C Max. (package surface temperature)	
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Caution Do not use different soldering methods together (except for partial heating).

 (2) μPD780031AGC(A)-xxx-8BS: 64-pin plastic LQFP (14 x 14) μPD780032AGC(A)-xxx-8BS: 64-pin plastic LQFP (14 x 14) μPD780033AGC(A)-xxx-8BS: 64-pin plastic LQFP (14 x 14)
 μPD780034AGC(A)-xxx-8BS: 64-pin plastic LQFP (14 x 14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max.	IR35-00-2
	(at 210°C or higher), Count: Two times or less	
VPS	Package peak temperature: 215°C, Time: 40 seconds max.	VP15-00-2
	(at 200°C or higher), Count: Two times or less	
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max.,	WS60-00-1
	Count: Once, Preheating temperature: 120°C Max. (package surface	
	temperature)	
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Caution Do not use different soldering methods together (except for partial heating).

Table 14-1. Surface Mounting Type Soldering Conditions (2/2)

 μPD780031AGK(A)-xxx-9ET: 64-pin plastic TQFP (12 x 12) μPD780032AGK(A)-xxx-9ET: 64-pin plastic TQFP (12 x 12) μPD780033AGK(A)-xxx-9ET: 64-pin plastic TQFP (12 x 12) μPD780034AGK(A)-xxx-9ET: 64-pin plastic TQFP (12 x 12)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max.	IR35-107-2
	(at 210°C or higher), Count: Two times or less, Exposure limit:	
	7 days ^{Note} (after that, prebake at 125°C for 10 hours)	
VPS	Package peak temperature: 215°C, Time: 40 seconds max.	VP15-107-2
	(at 200°C or higher), Count: Two times or less, Exposure limit:	
	7 days ^{Note} (after that, prebake at 125°C for 10 hours)	
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max.,	WS60-107-1
	Count: Once, Preheating temperature: 120°C Max. (package surface temperature), Exposure limit: 7 days ^{Note} (after that, prebake at 125°C	
	for 10 hours)	
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65%RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Table 14-2. Insertion Type Soldering Conditions

μPD780031ACW(A)-xxx: 64-pin plastic SDIP (19.05 mm (750)) μPD780032ACW(A)-xxx: 64-pin plastic SDIP (19.05 mm (750)) μPD780033ACW(A)-xxx: 64-pin plastic SDIP (19.05 mm (750)) μPD780034ACW(A)-xxx: 64-pin plastic SDIP (19.05 mm (750))

Soldering Method	Soldering Conditions
Wave soldering (only for pins)	Solder bath temperature: 260°C max., Time: 10 seconds max.
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)

Caution Apply wave soldering only to the pins and be careful not to bring solder into direct contact with the package.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD780034A, 780034AY Subseries.

Also refer to (6) Cautions on Using Development Tools.

(1) Software Package

SP78K0	CD-ROM in which various software tools for 78K/0 development are integrated in one
	package

(2) Language Processing Software

RA78K0	Assembler package common to 78K/0 Series
СС78К0	C compiler package common to 78K/0 Series
DF780034	Device file for μ PD780034A, 780034AY Subseries
CC78K0-L	C compiler library source file common to 78K/0 Series

(3) Flash Memory Writing Tools

Flashpro III (FL-PR3, PG-FP3)	Flash programmer dedicated to microcontrollers with on-chip flash memory	
Flashpro IV (FL-PR4, PG-FP4)		
FA-64CW	Adapter for flash n	nemory writing used connected to the Flashpro III/Flashpro IV.
FA-64GC	• FA-64CW:	64-pin plastic SDIP (CW type)
FA-64GC-8BS-A	• FA-64GC:	64-pin plastic QFP (GC-AB8 type)
FA-64GK-9ET	• FA-64GC-8BS-A	: 64-pin plastic LQFP (GC-8BS type)
FA-64GB-8EU	• FA-64GK-9ET:	64-pin plastic TQFP (GK-9ET type)
	• FA-64GB-8EU:	64-pin plastic LQFP (GB-8EU type)

(4) Debugging Tools

 \star

When using in-circuit emulator IE-78K0-NS or IE-78K0-NS-A

IE-78K0-NS	In-circuit emulator common to 78K/0 Series
IE-78K0-NS-PA	Performance board to enhance and expand the functions of IE-78K0-NS
IE-78K0-NS-A	Combination of IE-78K-NS and IE-78K0-NS-PA
IE-70000-MC-PS-B	Power supply unit for IE-78K0-N and IE-78K0-NS-A
IE-70000-98-IF-C	Adapter required when using PC-9800 series as host machine (excluding notebook PCs) (C bus supported)
IE-70000-CD-IF-A	PC card and interface cable when using notebook PC as host machine (PCMCIA socket supported)
IE-70000-PC-IF-C	Adapter required when using IBM PC/AT TM or compatible as host machine (ISA bus supported)
IE-70000-PCI-IF-A	Adapter required when using PC in which PCI bus is incorporated as host machine
IE-780034-NS-EM1	Emulation board to emulate μ PD780034A, 780034AY Subseries
NP-64CW	Emulation probe for 64-pin plastic SDIP (CW type)
NP-H64CW	
NP-64GC	Emulation probe for 64-pin plastic QFP (GC-AB8 type), 64-pin plastic LQFP (GC-8BS type)
NP-64GC-TQ	
NP-H64GC-TQ	
NP-64GK	Emulation probe for 64-pin plastic TQFP (GK-9ET type)
NP-H64GK-TQ	
NP-H64GB-TQ	Emulation probe for 64-pin plastic LQFP (GB-8EU type)
EV-9200GC-64	Conversion socket to connect the NP64GC and a target system board on which a 64-pin plastic QFP (GC-AB8 type), 64-pin plastic LQFP (GC-8BS type) can be mounted.
TGC-064SAP	Conversion adapter to connect the NP-64GC-TQ or NP-H64GC-TQ and a target system board on which a 64-pin plastic QFP (GC-AB8 type), 64-pin plastic LQFP (GC-8BS type) can be mounted
TGK-064SBW	Conversion adapter to connect the NP-64GK or NP-H64GK-TQ and a target system on which a 64- pin plastic TQFP (GK-9ET type) can be mounted
TGB-064SDP	Conversion socket to connect the NP-H64GB-TQ and a target system board on which a 64-pin plastic LQFP (GB-8EU type) can be mounted
ID78K0-NS	Integrated debugger for IE-78K0-NS and IE-78K0-NS-A
SM78K0	System simulator common to 78K/0 Series
DF780034	Device file for µPD780034A, 780034AY Subseries

IE-78001-R-A	In-circuit emulator common to 78K/0 Series
IE-70000-98-IF-C	Adapter required when using PC-9800 series as host machine (excluding notebook PCs) (C bus supported)
IE-70000-PC-IF-C	Interface adapter when using IBM PC/AT or compatible as host machine (ISA bus supported)
IE-70000-PCI-IF-A	Adapter required when using PC in which PCI bus is incorporated as host machine
IE-780034-NS-EM1	Emulation board to emulate μ PD780034A, 780034AY Subseries
IE-78K0-R-EX1	Emulation probe conversion board necessary when using IE-780034-NS-EM1 on IE-78001-R-A
EP-78240CW-R	Emulation probe for 64-pin plastic SDIP (CW type)
EP-78240GC-R	Emulation probe for 64-pin plastic QFP (GC-AB8 type)
EP-78012GK-R	Emulation probe for 64-pin plastic TQFP (GK-9ET type)
EV-9200GC-64	Conversion socket to connect the EP-78240GC-R and a target system board on which a 64-pin plastic QFP (GC-AB8 type) can be mounted
TGK-064SBW	Conversion adapter to connect the EP-78012GK-R and a target system board on which a 64-pin plastic TQFP (GK-9ET type) can be mounted
ID78K0	Integrated debugger for IE-78001-R-A
SM78K0	System simulator common to 78K/0 Series
DF780034	Device file for µPD780034A, 780034AY Subseries

• When using in-circuit emulator IE-78001-R-A

(5) Real-Time OS

RX78K0 Real-time OS for 78K/0 Series

 \star

Caution The 64-pin plastic LQFP (GB-8EU type) does not support the IE-78001-R-A.

***** (6) Cautions on Using Development Tools

- The ID78K0-NS, ID78K0, and SM78K0 are used in combination with the DF780034.
- The CC78K0 and RX78K0 are used in combination with the RA78K0 and the DF780034.
- FL-PR3, FL-PR4, FA-64CW, FA-64GC, FA-64GC-8BS-A, FA-64GK-9ET, FA-64GB-8EU, NP-64CW, NP-H64CW, NP-64GC, NP-64GC-TQ, NP-H64GC-TQ, NP-64GK, NP-H64GK-TQ, and NP-H64GB-TQ are products made by Naito Densei Machida Mfg. Co., Ltd. (+81-45-475-4191).
- TGC-064SAP, TGK-064SBW, and TGB-064SDP are products made by TOKYO ELETECH CORPORA-TION.

Refer to: Daimaru Kogyo, Ltd.

Tokyo Electronic Division (+81-3-3820-7112)

Osaka Electronic Division (+81-6-6244-6672)

- For third-party development tools, see the Single-chip Microcontroller Development Tool Selection Guide (U11069E).
- The host machines and OSs supporting each software are as follows.

Host Machine	PC	EWS
[OS]	PC-9800 series [Japanese Windows™]	HP9000 series 700 [™] [HP-UX [™]]
	IBM PC/AT and compatibles	SPARCstation [™] [SunOS [™] , Solaris [™]]
Software	[Japanese/English Windows]	
RA78K0	Note	\checkmark
CC78K0	Note	\checkmark
ID78K0-NS		_
ID78K0	\checkmark	-
SM78K0	\checkmark	_
RX78K0	Note	\checkmark

Note DOS-based software

APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Document No.
μPD780024A, 780034A, 780024AY, 780034AY Subseries User's Manual	U14046E
μPD780031A, 780032A, 780033A, 780034A, 780031AY, 780032AY, 780033AY, 780034AY Data Sheet	U14044E
μPD780031A(A), 780032A(A), 780033A(A), 780034A(A), 780031AY(A), 780032AY(A), 780033AY(A), 780034AY(A) Data Sheet	This document
μPD78F0034B, 78F0034BY, 78F0034B(A), 78F0034BY(A) Data Sheet	U16369E (Under preparation)
78K/0 Series Instructions User's Manual	U12326E

 \star

★ Documents Related to Development Software Tools (User's Manuals)

Document Name		Document No.
RA78K0 Assembler Package	Operation	U14445E
	Language	U14446E
	Structured Assembly Language	U11789E
CC78K0 C Compiler	Operation	U14297E
	Language	U14298E
SM78K Series System Simulator Ver. 2.30 or Later	Operation (Windows Based)	U15373E
	External Part User Open Interface Specifications	U15802E
ID78K Series Integrated Debugger Ver. 2.30 or Later	Operation (Windows Based)	U15185E
RX78K0 Real-time OS	Fundamentals	U11537E
	Installation	U11536E
Project Manager Ver. 3.12 or Later (Windows Based)		U14610E

Documents Related to Development Hardware Tools (User's Manuals)

Document Name	Document No.
IE-78K0-NS In-Circuit Emulator	U13731E
IE-78K0-NS-A In-Circuit Emulator	U14889E
IE-780034-NS-EM1 Emulation Board	U14642E
IE-78001-R-A In-Circuit Emulator	U14142E
IE-78K0-R-EX1 In-Circuit Emulator	To be prepared

*

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

★ Documents Related to Flash Memory Writing

Document Name	Document No.
PG-FP3 Flash Memory Programmer User's Manual	U13502E
PG-FP4 Flash Memory Programmer User's Manual	U15260E

Other Related Documents

	Document Name	Document No.
*	SEMICONDUCTOR SELECTION GUIDE - Products & Packages -	X13769E
	Semiconductor Device Mounting Technology Manual	C10535E
	Quality Grades on NEC Semiconductor Devices	C11531E
	NEC Semiconductor Device Reliability/Quality Control System	C10983E
	Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

[MEMO]

NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Note: Purchase of NEC Electronics I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

FIP and IEBus are trademarks of NEC Electronics Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United Status and/ or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics America, Inc. (U.S.) • Filiale Italiana

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Europe) GmbH

Duesseldorf, Germany Tel: 0211-65 03 01 Fax: 0211-65 03 327

- Sucursal en España Madrid, Spain Tel: 091-504 27 87 Fax: 091-504 28 60
- Succursale Française Vélizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

Filiale Italiana Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

- Branch The Netherlands Eindhoven, The Netherlands Tel: 040-244 58 45 Fax: 040-244 45 80
- Tyskland Filial Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388
- United Kingdom Branch Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Shanghai, Ltd. Shanghai, P.R. China Tel: 021-6841-1138 Fax: 021-6841-1137

NEC Electronics Taiwan Ltd. Taipei, Taiwan

Tel: 02-2719-2377 Fax: 02-2719-5951

NEC Electronics Singapore Pte. Ltd. Novena Square, Singapore Tel: 6253-8311 Fax: 6250-3583

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of October, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).