

MOS INTEGRATED CIRCUIT μ PD780021A(A), 780022A(A), 780023A(A), 780024A(A), 780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A)

8-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The μ PD780021A(A), 780022A(A), 780023A(A), 780024A(A), 780021AY(A), 780022AY(A), 780023AY(A) and 780024AY(A) are products to which a quality assurance program more stringent than that used for the μ PD780021A, 780022A, 780023A, 780024A, 780021AY, 780022AY, 780023AY and 780024AY (standard models) is applied (NEC Electronics classifies these products as "special" quality grade models).

The μ PD780021A(A), 780022A(A), 780023A(A), and 780024A(A) are members of the μ PD780024A Subseries of the 78K/0 Series. Only selected functions of the existing μ PD78054 Subseries are provided, and the serial interface is enhanced.

The μ PD780021AY(A), 780022AY(A), 780023AY(A), and 780024AY(A) are the μ PD780024A Subseries with a multimaster supporting I²C bus interface, which makes them suitable for AV equipment.

Flash memory versions, the μ PD78F0034B(A) and 78F0034BY(A), that can operate in the same power supply voltage range as the mask ROM versions, and various development tools, are also available.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

 μ PD780024A, 780034A, 780024AY, 780034AY

Subseries User's Manual: U14046E 78K/0 Series Instructions User's Manual: U12326E

FEATURES

· Internal ROM and RAM

Part Number	Program Memory (Internal ROM)	Data Memory (Internal High-Speed RAM)	Package
μPD780021A(A), 780021AY(A)	8 KB	512 bytes	• 64-pin plastic SDIP (19.05 mm (750))
μPD780022A(A),780022AY(A)	16 KB		• 64-pin plastic QFP (14 x 14)
			• 64-pin plastic LQFP (14 x 14)
μPD780023A(A), 780023AY(A)	24 KB	1024 bytes	• 64-pin plastic TQFP (12 x 12)
μPD780024A(A), 780024AY(A)	32 KB		• 64-pin plastic LQFP (10 x 10)

- External memory expansion space: 64 KB
- Minimum instruction execution time
 - Expanded-specification products of μ PD780021A(A), 780022A(A), 780023A(A), 780024A(A): 0.166 μ s (fx = 12 MHz, V_{DD}= 4.5 to 5.5 V)
 - μPD780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A) and conventional products of μPD780021A(A), 780022A(A), 780023A(A), 780024A(A): 0.238 μs (fx = 8.38 MHz, V_{DD} = 4.0 to 5.5 V)
- I/O ports: 51 (N-ch open-drain (5 V withstanding voltage): 4)
- 8-bit resolution A/D converter: 8 channels (AVDD = 1.8 to 5.5 V)
- · Serial interface: 3 channels
 - μPD780021A(A), 780022A(A), 780023A(A), 780024A(A): UART mode, 3-wire serial I/O mode (2 channels)
 - μPD780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A): UART mode, 3-wire serial I/O mode, I²C bus mode
- Timer: 5 channels
- Power supply voltage: VDD = 1.8 to 5.5 V

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

Document No. U15131EJ3V0DS00 (3rd edition) Date Published February 2003 N CP(K) Printed in Japan

APPLICATIONS

Telephones, household electrical appliances, pagers, AV equipment, car audios, office automation equipment, etc.

ORDERING INFORMATION (1/2)

(1) μPD780024A(A) Subseries

	Part Number	Package
	μPD780021ACW(A)-×××	64-pin plastic SDIP (19.05 mm (750))
	μ PD780021AGC(A)-××-AB8	64-pin plastic QFP (14 x 14)
*	μ PD780021AGC(A)-××-8BS	64-pin plastic LQFP (14 x 14)
	μ PD780021AGK(A)-×××-9ET	64-pin plastic TQFP (12 x 12)
	μ PD780021AGB(A)- \times \times -8EU ^{Note}	64-pin plastic LQFP (10 x 10)
	μ PD780022ACW(A)- $\times\!\!\times\!\!$	64-pin plastic SDIP (19.05 mm (750))
	μ PD780022AGC(A)-××-AB8	64-pin plastic QFP (14 x 14)
*	μ PD780022AGC(A)-××-8BS	64-pin plastic LQFP (14 x 14)
	μ PD780022AGK(A)-×××-9ET	64-pin plastic TQFP (12 x 12)
	μ PD780022AGB(A)- \times \times -8EU ^{Note}	64-pin plastic LQFP (10 x 10)
	μ PD780023ACW(A)- $\times\!\!\times\!\!$	64-pin plastic SDIP (19.05 mm (750))
	μ PD780023AGC(A)-××-AB8	64-pin plastic QFP (14 x 14)
*	μ PD780023AGC(A)- \times \times -8BS	64-pin plastic LQFP (14 x 14)
	μ PD780023AGK(A)-×××-9ET	64-pin plastic TQFP (12 x 12)
	μ PD780023AGB(A)- \times \times -8EU ^{Note}	64-pin plastic LQFP (10 x 10)
	μ PD780024ACW(A)- $\times\!\!\times\!\!$	64-pin plastic SDIP (19.05 mm (750))
	μ PD780024AGC(A)-××-AB8	64-pin plastic QFP (14 x 14)
*	μ PD780024AGC(A)- \times \times -8BS	64-pin plastic LQFP (14 x 14)
	μ PD780024AGK(A)-×××-9ET	64-pin plastic TQFP (12 x 12)
	μ PD780024AGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 x 10)

Note Under development

Remark ××× indicates ROM code suffix.

ORDERING INFORMATION (2/2)

(2) μ PD780024AY(A) Subseries

	Part Number	Package
	μ PD780021AYCW(A)- $\times\times$ ^{Note}	64-pin plastic SDIP (19.05 mm (750))
	μ PD780021AYGC(A)- $\times\times$ -AB8 ^{Note}	64-pin plastic QFP (14 x 14)
*	μ PD780021AYGC(A)- $\times\times$ -8BS ^{Note}	64-pin plastic LQFP (14 x 14)
	μ PD780021AYGK(A)- \times \times -9ET ^{Note}	64-pin plastic TQFP (12 x 12)
	μ PD780021AYGB(A)- \times \times -8EU ^{Note}	64-pin plastic LQFP (10 x 10)
	μ PD780022AYCW(A)- $\times\times$ ^{Note}	64-pin plastic SDIP (19.05 mm (750))
	μ PD780022AYGC(A)- \times \times -AB8 ^{Note}	64-pin plastic QFP (14 x 14)
*	μ PD780022AYGC(A)- \times \times -8BS ^{Note}	64-pin plastic LQFP (14 x 14)
	μ PD780022AYGK(A)- \times \times -9ET Note	64-pin plastic TQFP (12 x 12)
	μ PD780022AYGB(A)- \times \times -8EU ^{Note}	64-pin plastic LQFP (10 x 10)
	μ PD780023AYCW(A)- $\times\times$ ^{Note}	64-pin plastic SDIP (19.05 mm (750))
	μ PD780023AYGC(A)- $\times\times$ -AB8 ^{Note}	64-pin plastic QFP (14 x 14)
*	μ PD780023AYGC(A)- \times \times -8BS ^{Note}	64-pin plastic LQFP (14 x 14)
	μ PD780023AYGK(A)- \times \times -9ET ^{Note}	64-pin plastic TQFP (12 x 12)
	μ PD780023AYGB(A)- \times \times -8EU ^{Note}	64-pin plastic LQFP (10 x 10)
	μ PD780024AYCW(A)- $\times\times$ ^{Note}	64-pin plastic SDIP (19.05 mm (750))
	μ PD780024AYGC(A)- $\times\times$ -AB8 ^{Note}	64-pin plastic QFP (14 x 14)
*	μ PD780024AYGC(A)- \times \times -8BS ^{Note}	64-pin plastic LQFP (14 x 14)
	μ PD780024AYGK(A)- \times \times -9ET ^{Note}	64-pin plastic TQFP (12 x 12)
	μ PD780024AYGB(A)-×××-8EU ^{Note}	64-pin plastic LQFP (10 x 10)

Note Under development

QUALITY GRADE

Special

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

DIFFERENCES BETWEEN μ PD780021A(A), 780022A(A), 780023A(A), 780024A(A), 780021AY(A), 780022AY(A), 780023AY(A) AND 780024AY(A), AND μ PD780021A, 780022A, 780023A, 780024A, 780021AY, 780022AY, 780023AY AND 780024AY

	Product Number	μPD780021A(A), 780022A(A), 780023A(A),	μPD780021A, 780022A, 780023A, 780024A,
		780024A(A), 780021AY(A), 780022AY(A),	780021AY, 780022AY, 780023AY, 780024AY
	Item	780023AY(A), 780024AY(A)	
	Quality grade	Special	Standard
*	Package	64-pin plastic SDIP (19.05 mm (750))	64-pin plastic SDIP (19.05 mm (750))
		64-pin plastic QFP (14 x 14)	64-pin plastic QFP (14 x 14)
		64-pin plastic LQFP (14 x 14)	64-pin plastic LQFP (14 x 14)
		64-pin plastic TQFP (12 x 12)	64-pin plastic TQFP (12 x 12)
		64-pin plastic LQFP (10 x 10)	64-pin plastic LQFP (10 x 10)
			73-pin plastic FBGA (9 x 9)

* EXPANDED-SPECIFICATION PRODUCTS AND CONVENTIONAL PRODUCTS

The expanded-specification product and conventional product refer to the following products.

Expanded-specification product: μPD780021A(A), 780022A(A), 780023A(A), 780024A(A) for which orders

were received after December 1, 2001.

(Products with a rank Note other than K, E, P, X)

Conventional product: Products other than the above expanded specification products.

(Products with rank Note K, E, P, X)

 μ PD780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A)

Note The rank is indicated by the 5th digit from the left in the lot number marked on the package.

Lot number

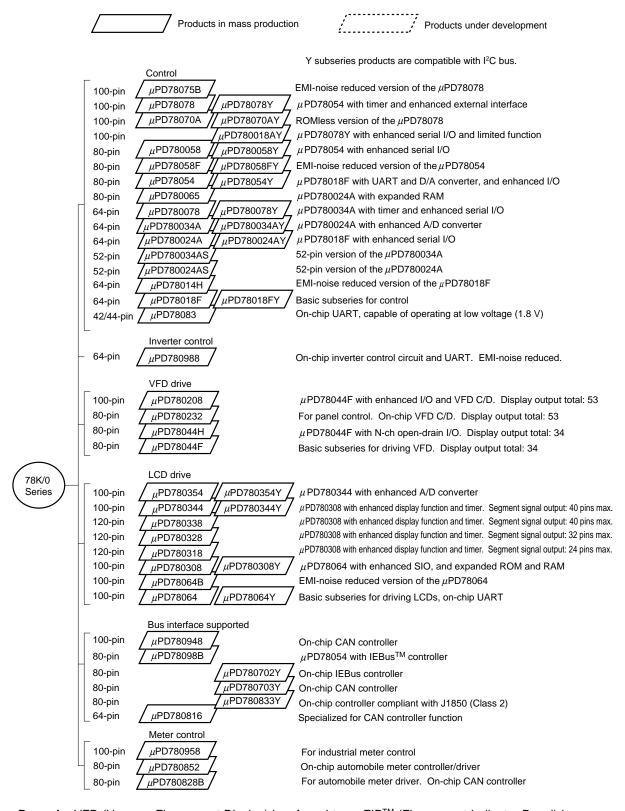
Year Week NEC Electronics code code code control code

Expanded-specification products and conventional products differ in the power supply voltage range and operating frequency ratings.

Power Supply Voltage (VDD)	Guaranteed Operating Speed (Operating Frequency)			
	Conventional Products	Expanded-Specification Products		
4.5 to 5.5 V	8.38 MHz (0.238 μs)	12 MHz (0.166 μs)		
4.0 to 5.5 V	8.38 MHz (0.238 μs)	8.38 MHz (0.238 μs)		
3.0 to 5.5 V	5 MHz (0.4 μs)	8.38 MHz (0.238 μs)		
2.7 to 5.5 V	5 MHz (0.4 μs)	5 MHz (0.4 μs)		
1.8 to 5.5 V	1.25 MHz (1.6 μs)	1.25 MHz (1.6 <i>μ</i> s)		

Remark The parenthesized values indicates the minimum instruction execution time.

* CORRESPONDENCE BETWEEN MASK ROM PRODUCTS AND FLASH MEMORY PRODUCTS


Mask ROM Products	Flash Memory Products
Expanded-specification products of μ PD780021A(A),	μPD78F0034B(A)
780022A(A), 780023A(A), 780024A(A)	
Conventional products of μ PD780021A(A),	
780022A(A), 780023A(A), 780024A(A)	
μPD780021AY(A), 780022AY(A), 780023AY(A),	μPD78F0034BY(A)
780024AY(A)	

Caution The μ PD78F0034B(A) and conventional products of the μ PD780021A(A), 780022A(A), 780023A(A), and 780024A(A) differ in the operating frequency ratings. When using the mask ROM versions in place of the flash memory versions, take note of the power supply voltage and operating frequency used.

★ 78K/0 SERIES LINEUP

The products in the 78K/0 Series are listed below. The names enclosed in boxes are subseries names.

Remark VFD (Vacuum Fluorescent Display) is referred to as FIPTM (Fluorescent Indicator Panel) in some documents, but the functions of the two are same.

The major functional differences among the subseries are listed below.

• Non-Y subseries

	Function	ROM Capacity		Tir	ner		8-Bit	10-Bit	8-Bit	Serial Interface	I/O	V _{DD}	External
Subseries	Name	(Bytes)	8-Bit	16-Bit	Watch	WDT	A/D	A/D	D/A				Expansion
Control	μPD78075B	32 K to 40 K	4 ch	1 ch	1 ch	1 ch	8 ch	_	2 ch	3 ch (UART: 1 ch)	88	1.8 V	V
	μPD78078	48 K to 60 K											
	μPD78070A	ı									61	2.7 V	
	μPD780058	24 K to 60 K	2 ch							3 ch (time-division UART: 1 ch)	68	1.8 V	
	μPD78058F	48 K to 60 K								3 ch (UART: 1 ch)	69	2.7 V	
	μPD78054	16 K to 60 K										2.0 V	
	μPD780065	40 K to 48 K							_	4 ch (UART: 1 ch)	60	2.7 V	
	μPD780078	48 K to 60 K		2 ch			_	8 ch		3 ch (UART: 2 ch)	52	1.8 V	
	μPD780034A	8 K to 32 K		1 ch						3 ch (UART: 1 ch)	51		
	μPD780024A						8 ch	_					
	μPD780034AS						_	4 ch			39		_
	μPD780024AS						4 ch	_					
	μPD78014H						8 ch			2 ch	53		√
	μPD78018F	8 K to 60 K											
	μPD78083	8 K to 16 K		_	_					1 ch (UART: 1 ch)	33		-
Inverter control	μPD780988	16 K to 60 K	3 ch	Note	_	1 ch	_	8 ch	_	3 ch (UART: 2 ch)	47	4.0 V	√
VFD	μPD780208	32 K to 60 K	2 ch	1 ch	1 ch	1 ch	8 ch	_	-	2 ch	74	2.7 V	_
drive	μPD780232	16 K to 24 K	3 ch	_	_		4 ch				40	4.5 V	
	μPD78044H	32 K to 48 K	2 ch	1 ch	1 ch		8 ch			1 ch	68	2.7 V	
	μPD78044F	16 K to 40 K								2 ch			
LCD	μPD780354	24 K to 32 K	4 ch	1 ch	1 ch	1 ch	_	8 ch	_	3 ch (UART: 1 ch)	66	1.8 V	_
drive	μPD780344						8 ch	_					
	μPD780338	48 K to 60 K	3 ch	2 ch			_	10 ch	1 ch	2 ch (UART: 1 ch)	54		
	μPD780328										62		
	μPD780318										70		
	μPD780308	48 K to 60 K	2 ch	1 ch			8 ch	-	_	3 ch (time-division UART: 1 ch)	57	2.0 V	
	μPD78064B	32 K								2 ch (UART: 1 ch)			
	μPD78064	16 K to 32 K											
Bus	μPD780948	60 K	2 ch	2 ch	1 ch	1 ch	8 ch	_	_	3 ch (UART: 1 ch)	79	4.0 V	√
interface	μPD78098B	40 K to 60 K		1 ch					2 ch		69	2.7 V	_
supported	μPD780816	32 K to 60 K		2 ch			12 ch		-	2 ch (UART: 1 ch)	46	4.0 V	
Meter control	μPD780958	48 K to 60 K	4 ch	2 ch	-	1 ch	_	_	_	2 ch (UART: 1 ch)	69	2.2 V	_
Dash-	μPD780852	32 K to 40 K	3 ch	1 ch	1 ch	1 ch	5 ch	-	_	3 ch (UART: 1 ch)	56	4.0 V	_
board control	μPD780828B	32 K to 60 K									59		

Note 16-bit timer: 2 channels 10-bit timer: 1 channel

• Y subseries

	Function	ROM Capacity		Tin	ner		8-Bit	10-Bit	8-Bit	Serial Interface	I/O	V _{DD}	External
Subseries	Name	(Bytes)	8-Bit	16-Bit	Watch	WDT	A/D	A/D	D/A				Expansion
Control	μPD78078Y	48 K to 60 K	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1 ch, I ² C: 1 ch)	88	1.8 V	√
	μPD78070AY	_									61	2.7 V	
	μPD780018AY	48 K to 60 K							ı	3 ch (I ² C: 1 ch)	88		
	μPD780058Y	24 K to 60 K	2 ch						2 ch	3 ch (time-division UART: 1 ch, I ² C: 1 ch)	68	1.8 V	
	μPD78058FY	48 K to 60 K								3 ch (UART: 1 ch, I ² C: 1 ch)	69	2.7 V	
	μPD78054Y	16 K to 60 K										2.0 V	
	μPD780078Y	48 K to 60 K		2 ch			_	8 ch	-	4 ch (UART: 2 ch, I ² C: 1 ch)	52	1.8 V	
	μPD780034AY	8 K to 32 K		1 ch						3 ch (UART: 1 ch, I ² C: 1 ch)	51		
	μPD780024AY						8 ch	_					
	μPD78018FY	8 K to 60 K								2 ch (I ² C: 1 ch)	53		
LCD	μPD780354Y	24 K to 32 K	4 ch	1 ch	1 ch	1 ch	_	8 ch	-	4 ch (UART: 1 ch,	66	1.8 V	-
drive	μPD780344Y						8 ch	_		l ² C: 1 ch)			
	μPD780308Y	48 K to 60 K	2 ch							3 ch (time-division UART: 1 ch, I ² C: 1 ch)	57	2.0 V	
	μPD78064Y	16 K to 32 K								2 ch (UART: 1 ch, I ² C: 1 ch)			
Bus	μPD780701Y	60 K	3 ch	2 ch	1 ch	1 ch	16 ch	_	-	4 ch (UART: 1 ch, I ² C: 1 ch)	67	3.5 V	_
interface	μPD780703Y												
supported	μPD780833Y										65	4.5 V	

Remark The functions of non-Y subseries and Y subseries products are the same, except for the serial interface.

OVERVIEW OF FUNCTIONS (1/2)

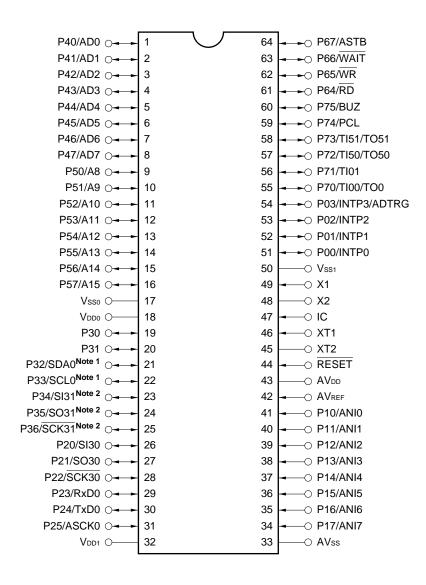
	Part Number	μPD780021A(A)	μPD780022A(A)	μPD780023A(A)	μPD780024A(A)					
Item		μPD780021AY(A)	μPD780022AY(A)	μPD780023AY(A)	μPD780024AY(A)					
Internal	ROM	8 KB	16 KB	24 KB	32 KB					
memory	High-speed RAM	512 bytes		1024 bytes						
Memory spa	ce	64 KB								
General-purp	oose registers	8 bits × 32 registers ((8 bits \times 8 registers \times 4	banks)						
Minimum ins	truction execution	On-chip minimum ins	truction execution time	cycle variable function						
time	When main system clock selected	 Expanded-specification products of μPD780021A(A), 780022A(A), 780023A(A), 780024A(A): 0.166 μs/0.333 μs/0.666 μs/1.33 μs/2.66 μs (@12 MHz, V_{DD} = 4.5 to 5.5 V operation) μPD780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A) and conventional products of μPD780021A(A), 780022A(A), 780023A(A), 780024A(A): 0.238 μs/0.48 μs/0.95 μs/1.91 μs/3.81 μs (@8.38 MHz, V_{DD} = 4.0 to 5.5 V operation) 								
	When subsystem clock selected	122 μs (@ 32.768 kHz operation)								
Instruction se	et	 16-bit operation Multiply/divide (8 bits × 8 bits,16 bits ÷ 8 bits) Bit manipulation (set, reset, test, Boolean operation) BCD adjust, etc. 								
I/O ports		Total:		51						
		CMOS input: CMOS I/O: N-ch open-drain I/O	·							
A/D converte	er er	8-bit resolution × 8 channels Low-voltage operation available: AV _{DD} = 1.8 to 5.5 V								
Serial interface		 μPD780021A(A), 780022A(A), 780023A(A), 780024A(A) UART mode: 1 channel 3-wire serial I/O mode: 2 channels μPD780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A) UART mode: 1 channel 3-wire serial I/O mode: 1 channel I²C bus mode (multimaster supporting): 1 channel 								
Timers		16-bit timer/event counter: 1 channel 8-bit timer/event counter: 2 channels Watch timer: 1 channel Watchdog timer: 1 channel								
Timer output	S	3 (8-bit PWM output	capable: 2)	3 (8-bit PWM output capable: 2)						

۰

OVERVIEW OF FUNCTIONS (2/2)

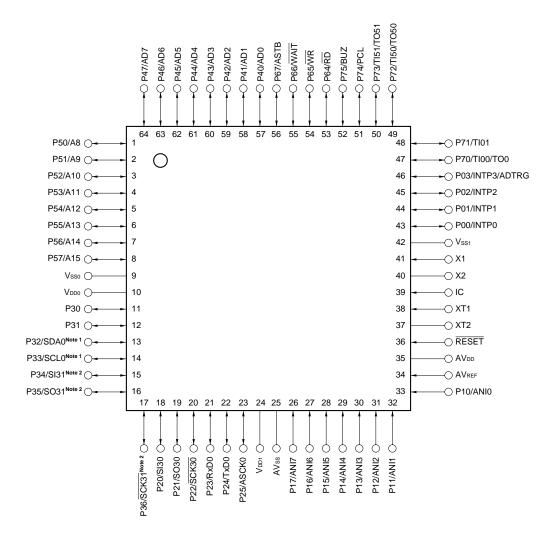
Item	Part Number	μPD780021A(A) μPD780021AY(A)	μPD780022A(A) μPD780022AY(A)	μPD780023A(A) μPD780023AY(A)	μPD780024A(A) μPD780024AY(A)			
Clock outpu	ıt	 Expanded-specification products of μPD780021A(A), 780022A(A), 780023A(A), 780024A(A): 93.75 kHz, 187.5 kHz, 375 kHz, 750 kHz, 1.25 MHz, 3 MHz, 6 MHz, 12 MHz (@12MHz operation with main system clock) 32.768 kHz (@ 32.768 kHz operation with subsystem clock) μPD780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A) and conventional products of μPD780021A(A), 780022A(A), 780023A(A), 780024A(A): 65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.10 MHz, 4.19 MHz, 8.38 MHz (@ 8.38 MHz operation with main system clock) 32.768 kHz (@ 32.768 kHz operation with subsystem clock) 						
Buzzer outp	out	 Expanded-specification products of μPD780021A(A), 780022A(A), 780023A(A), 780024A(A): 1.46 kHz, 2.93 kHz, 5.86 kHz, 11.7 kHz (@ 12 MHz operation with main system clock) μPD780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A) and conventional products of μPD780021A(A), 780022A(A), 780023A(A), 780024A(A): 1.02 kHz, 2.05 kHz, 4.10 kHz, 8.19 kHz (@ 8.38 MHz operation with main system clock) 						
Vectored	Maskable	Internal: 13, external: 5						
interrupt	Non-maskable	Internal: 1						
sources	Software	1						
Power supp	ly voltage	V _{DD} = 1.8 to 5.5 V						
Operating a	mbient temperature	$T_A = -40 \text{ to } +85^{\circ}\text{C}$						
Package		64-pin plastic SDIP	(19.05 mm (750))					
		• 64-pin plastic QFP (14 x 14)						
		• 64-pin plastic LQFP (14 x 14)						
		64-pin plastic TQFP	(12 x 12)					
		• 64-pin plastic LQFP (10 x 10)						

10


CONTENTS

1.	PIN CONFIGURATION (TOP VIEW)	12
2.	BLOCK DIAGRAM	15
3.	PIN FUNCTIONS	16
	3.1 Port Pins	16
	3.2 Non-Port Pins	17
	3.3 Pin I/O Circuits and Recommended Connection of Unused Pins	19
4.	MEMORY SPACE	21
5.	PERIPHERAL HARDWARE FUNCTION FEATURES	22
	5.1 Ports	22
	5.2 Clock Generator	23
	5.3 Timer/Counter	24
	5.4 Clock Output/Buzzer Output Controller	28
	5.5 A/D Converter	29
	5.6 Serial Interface	30
6.	INTERRUPT FUNCTIONS	33
7.	EXTERNAL DEVICE EXPANSION FUNCTION	36
8.	STANDBY FUNCTION	36
9.	RESET FUNCTION	36
10.	MASK OPTION	36
11.	INSTRUCTION SET	37
12.	ELECTRICAL SPECIFICATIONS	39
	12.1 Expanded-Specification Products of μ PD780021A(A), 780022A(A), 780023A(A), 780024A(A)	39
	12.2 μPD780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A), and Conventional Product	
	μPD780021A(A), 780022A(A), 780023A(A), 780024A(A)	
13.	PACKAGE DRAWINGS	77
14.	RECOMMENDED SOLDERING CONDITIONS	82
ΑP	PENDIX A. DEVELOPMENT TOOLS	84
ΑP	PENDIX B. RELATED DOCUMENTS	88

1. PIN CONFIGURATION (TOP VIEW)


• 64-pin plastic SDIP (19.05 mm (750))

- **Notes 1.** SDA0 and SCL0 are incorporated only in the μ PD780024AY Subseries.
 - **2.** SI31, SO31, and $\overline{SCK31}$ are incorporated only in the μ PD780024A Subseries.
- Cautions 1. Connect the IC (Internally Connected) pin directly to Vsso or Vss1.
 - 2. Connect the AVss pin to Vsso.

Remark When the μPD780021A(A), 780022A(A), 780023A(A), 780024A(A), 780021AY(A), 780022AY(A), 780023AY(A), and 780024AY(A) are used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} individually and connecting Vss₀ and Vss₁ to different ground lines, is recommended.

- 64-pin plastic QFP (14 x 14)
- 64-pin plastic LQFP (14 x 14)
 - 64-pin plastic TQFP (12 x 12)
 - 64-pin plastic LQFP (10 x 10)

- **Notes 1.** SDA0 and SCL0 are incorporated only in the μ PD780024AY Subseries.
 - **2.** SI31, SO31, and $\overline{\text{SCK31}}$ are incorporated only in the μ PD780024A Subseries.
- Cautions 1. Connect the IC (Internally Connected) pin directory to Vsso or Vss1.
 - 2. Connect the AVss pin to Vsso.

Remark When the μPD780021A(A), 780022A(A), 780023A(A), 780024A(A), 780021AY(A), 7800022AY(A), 780023AY(A), and 780024AY(A) are used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} individually and connecting V_{SS0} and V_{SS1} to different ground lines, is recommended.

P64 to P67:

A8 to A15: Address bus P70 to P75: Port 7

AD0 to AD7: Address/data bus PCL: Programmable clock

ADTRG: AD trigger input $\overline{\text{RD}}$: Read strobe

ANI0 to ANI7: Analog input RESET: Reset

ASCK0: Asynchronous serial clock RxD0: Receive data
ASTB: Address strobe SCK30, SCK31, SCL0: Serial clock

ASTB: Address strobe SCK30, SCK31, SCL0: Serial clock

AVDD: Analog power supply SDA0: Serial data

AVREF: Analog reference voltage SI30, SI31: Serial input

AVREF: Analog reference voltage SI30, SI31: Serial input
AVss: Analog ground SO30, SO31: Serial output
BUZ: Buzzer clock TI00, TI01, TI50, TI51: Timer input

IC: Internally connected TO0, TO50, TO51: Timer output INTP0 to INTP3: External interrupt input TxD0: Transmit data

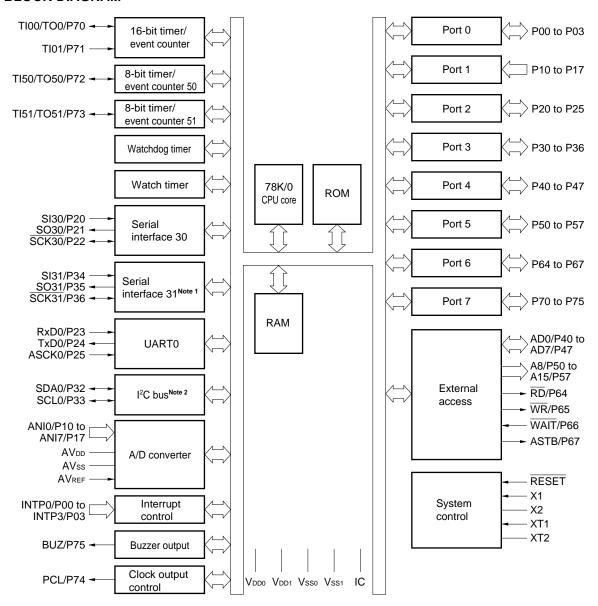
 P00 to P03:
 Port 0
 VDD0, VDD1:
 Power supply

 P10 to P17:
 Port 1
 Vss0, Vss1:
 Ground

 P20 to P25:
 Port 2
 WAIT:
 Wait

Port 6

P30 to P36: Port 3 WR: Write strobe
P40 to P47: Port 4 X1, X2: Crystal (main system clock)


P50 to P57: Port 5 X1, X2: Crystal (main system clock)

X1, X2: Crystal (main system clock)

14

2. BLOCK DIAGRAM

Notes 1. Incorporated only in the μ PD780024A Subseries.

2. Incorporated only in the μ PD780024AY Subseries.

Remark The internal ROM and RAM capacities vary depending on the product.

3. PIN FUNCTIONS

3.1 Port Pins (1/2)

Pin Name	I/O		Function	After	Alternate
				Reset	Function
P00 to P02	I/O	Port 0		Input	INTP0 to
		4-bit I/O port			INTP2
P03		Input/output can be specified in 1 An on-chip pull-up resistor can be			INTP3/ADTRG
		All off-chilp pull-up resistor carr be	s used by setting software.		
P10 to P17	Input	Port 1		Input	ANI0 to ANI7
		8-bit input only port			
P20	I/O	Port 2		Input	SI30
P21		6-bit I/O port			SO30
P22		Input/output can be specified in 1			SCK30
P23		An on-chip pull-up resistor can be	e used by setting software.		RxD0
P24					TxD0
P25					ASCK0
P30	I/O	Port 3	N-ch open-drain I/O port	Input	_
P31		7-bit I/O port	An on-chip pull-up resistor can be		
P32		Input/output can be specified in	specified by the mask option.		SDA0 ^{Note 1}
P33		1-bit units.	LEDs can be driven directly.		SCL0 ^{Note 1}
P34			An on-chip pull-up resistor can be		SI31Note 2
P35			used by setting software.		SO31Note 2
P36					SCK31Note 2
P40 to P47	I/O	Port 4		Input	AD0 to AD7
		8-bit I/O port			
		Input/output can be specified in 1			
		An on-chip pull-up resistor can be The interrupt request flag (KRIF)	is set to 1 by falling edge detection.		
P50 to P57	I/O	Port 5	le dot to 1 by laming dage detection.	Input	A8 to A15
1 00 10 1 07	"	8-bit I/O port		Input	710 10 7110
		LEDs can be driven directly.			
		Input/output can be specified in 1	-bit units.		
		An on-chip pull-up resistor can be	e used by setting software.		
P64	I/O	Port 6		Input	RD
P65		4-bit I/O port			WR
P66		Input/output can be specified in 1 An on-chip pull-up resistor can be			WAIT
P67		An on-only pull-up resistor can be	s used by setting software.		ASTB

Notes 1. SDA0 and SCL0 are incorporated only in the μ PD780024AY Subseries.

2. SI31, SO31, and $\overline{\text{SCK31}}$ are incorporated only in the $\mu\text{PD780024A}$ Subseries.

3.1 Port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
P70	I/O	Port 7	Input	TI00/TO0
P71		6-bit I/O port		TI01
P72		Input/output can be specified in 1-bit units.		TI50/TO50
P73		An on-chip pull-up resistor can be used by setting software.		TI51/TO51
P74				PCL
P75				BUZ

3.2 Non-Port Pins (1/2)

Pin Name	I/O	Function		Alternate Function
INTP0	Input External interrupt request input for which the valid edge (rising edge,		Input	P00
INTP2		falling edge, or both rising and falling edges) can be specified		P01
INTP2				P02
INTP3				P03/ADTRG
SI30	Input	Serial interface serial data input	Input	P20
SI31Note 1				P34
SO30	Output	Serial interface serial data output	Input	P21
SO31 ^{Note 1}	•			P35
SDA0 ^{Note 2}	I/O	Serial Interface serial data input/output	Input	P32
SCK30	I/O	Serial interface serial clock input/output	Input	P22
SCK31Note 1				P36
SCL0 ^{Note 2}				P33
RxD0	Input	Serial data input for asynchronous serial interface	Input	P23
TxD0	Output	Serial data output for asynchronous serial interface		P24
ASCK0	Input	Serial clock input for asynchronous serial interface		P25
TI00	Input	External count clock input to 16-bit timer/event counter 0		P70/TO0
		Capture trigger input to capture register 01 (CR01) of 16-bit timer/event counter 0		
TI01] [Capture trigger input to capture register 00 (CR00) of 16-bit timer/event counter 0		P71
TI50	i i	External count clock input to 8-bit timer/event counter 50		P72/TO50
TI51		External count clock input to 8-bit timer/event counter 51		P73/TO51
TO0	Output	16-bit timer/event counter 0 output	Input	P70/TI00
TO50		8-bit timer/event counter 50 output (also used for 8-bit PWM output)	Input	P72/TI50
TO51		8-bit timer/event counter 51 output (also used for 8-bit PWM output)		P73/TI51
PCL	Output	Clock output (for trimming of main system clock and subsystem clock)	Input	P74
BUZ	Output	Buzzer output	Input	P75
AD0 to AD7	I/O	Lower address/data bus for expanding memory externally	Input	P40 to P47
A8 to A15	Output	Higher address bus for expanding memory externally	Input	P50 to P57
RD	Output	Strobe signal output for reading from external memory	Input	P64
WR		Strobe signal output for writing to external memory		P65
WAIT	Input	Wait insertion at external memory access	Input	P66
ASTB	Output	Strobe output that externally latches address information output to ports 4 and 5 to access external memory	Input	P67

Notes 1. SI31, SO31, and $\overline{\text{SCK31}}$ are incorporated only in the μ PD780024A Subseries.

2. SDA0 and SCL0 are incorporated only in the μ PD780024AY Subseries.

3.2 Non-Port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
ANI0 to ANI7	Input	A/D converter analog input	Input	P10 to P17
ADTRG	Input	A/D converter trigger signal input	Input	P03/INTP3
AVREF	Input	A/D converter reference voltage input	_	_
AV _{DD}	_	A/D converter analog power supply. Set potential to that of VDD0 or VDD1	_	_
AVss	_	A/D converter ground potential. Set potential to that of Vsso or Vss1	_	_
RESET	Input	System reset input		_
X1	Input	Connecting crystal resonator for main system clock oscillation		_
X2	_			_
XT1	Input	Connecting crystal resonator for subsystem clock oscillation		_
XT2	_			_
V _{DD0}	_	Positive power supply for ports		_
Vsso	_	Ground potential of ports		_
V _{DD1}	_	Positive power supply (except ports)		_
Vss ₁	_	Ground potential (except ports)		_
IC	_	Internally connected. Connect directly to Vsso or Vss1.	_	_

★ 3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

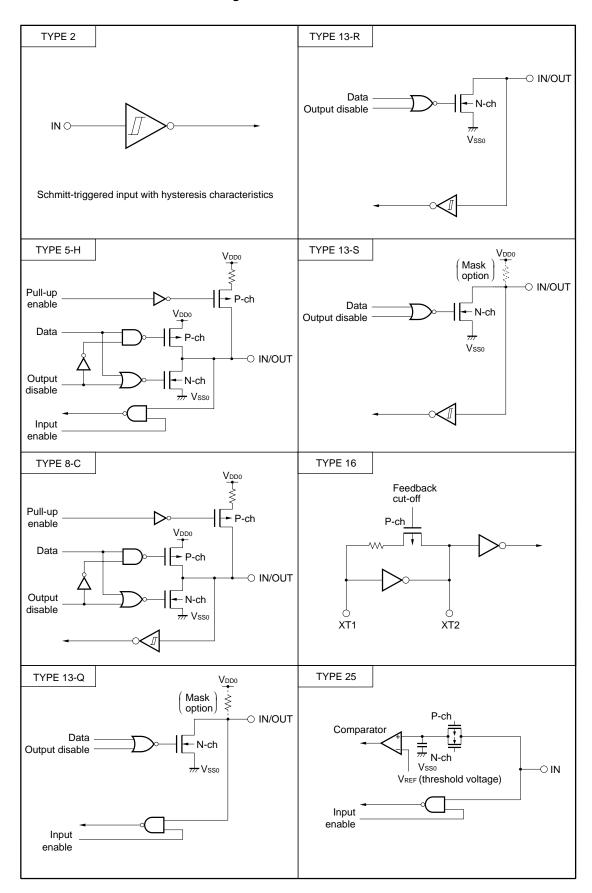

The I/O circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the I/O circuit configuration of each type, see Figure 3-1.

Table 3-1. Types of Pin I/O Circuits

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/INTP0 to P02/INTP2	8-C	I/O	Input: Independently connect to Vsso or Vss1 via a resistor.
P03/INTP3/ADTRG			Output: Leave open.
P10/ANI0 to P17/ANI7	25	Input	Connect directly to VDD0, VDD1, VSS0, or VSS1 via a resistor.
P20/S130	8-C	I/O	Input: Independently connect to VDD0, VDD1, VSS0, or VSS1 via
P21/SO30	5-H	-	a resistor.
P22/SCK30	8-C	-	Output: Leave open.
P23/RxD0			
P24/TxD0	5-H	-	
P25/ASCK0	8-C	-	
P30, P31	13-Q	-	Input: Connect directly to Vsso or Vss1.
P32, P33 (μPD780024A Subseries only)	13-S		Output: Leave open at low-level output.
P32/SDA0 (μPD780024AY Subseries only)	13-R		
P33/SCL0 (μPD780024AY Subseries only)			
P34/SI31 ^{Note}	8-C		Input: Independently connect to VDD0, VDD1, VSS0, or VSS1 via
P35/SO31 ^{Note}	5-H		a resistor.
P36/SCK31Note	8-C		Output: Leave open.
P40/AD0 to P47/AD7	5-H		Input: Independently connect to VDD0 or VDD1 via a resistor. Output: Leave open.
P50/A8 to P57/A15			Input: Independently connect to VDD0, VDD1, VSS0, or VSS1 via
P64/RD			a resistor.
P65/WR			Output: Leave open.
P66/WAIT			
P67/ASTB			
P70/TI00/TO0	8-C	-	
P71/TI01			
P72/TI50/TO50			
P73/TI51/TO51			
P74/PCL	5-H	-	
P75/BUZ			
RESET	2	Input	_
XT1	16	1	Connect directly to VDD0 or VDD1.
XT2		_	Leave open.
AVDD	_	1	Connect to directly VDD0 or VDD1.
AVREF			Connect to directly Vsso or Vss1.
AVss			
IC			

Note SI31, SO31, and $\overline{\text{SCK31}}$ are incorporated only in the μ PD780024A Subseries.

Figure 3-1. Pin I/O Circuits

4. MEMORY SPACE

Figure 4-1 shows the memory map of the μ PD780021A(A), 780022A(A), 780023A(A), 780024A(A), 780021AY(A), 780022AY(A), 780023AY(A), and 780024AY(A).

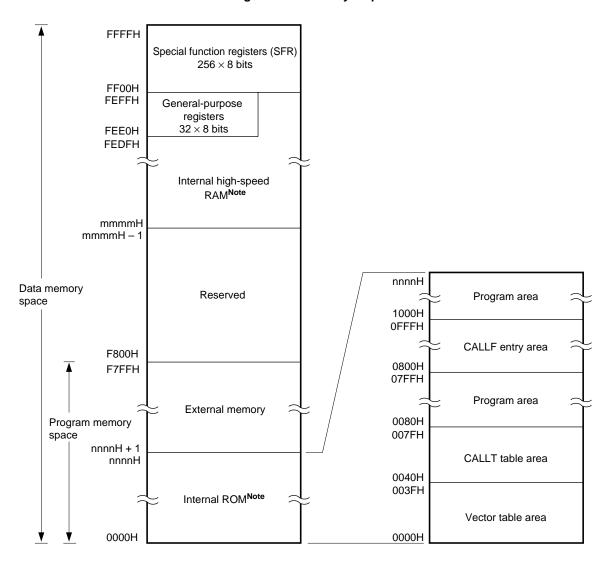


Figure 4-1. Memory Map

Note The internal ROM and internal high-speed RAM capacities vary depending on the product (see the following table).

Part Number	Last Address of Internal ROM nnnnH	Start Address of Internal High-Speed RAM mmmmH
μPD780021A(A), 780021AY(A)	1FFFH	FD00H
μPD780022A(A), 780022AY(A)	3FFFH	
μPD780023A(A), 780023AY(A)	5FFFH	FB00H
μPD780024A(A), 780024AY(A)	7FFFH	

5. PERIPHERAL HARDWARE FUNCTION FEATURES

5.1 Ports

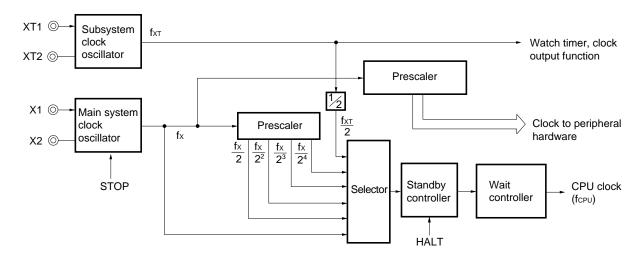
The following 3 types of I/O ports are available.

CMOS input (port 1): 8
 CMOS I/O (ports 0, 2, 4 to 7, P34 to P36): 39
 N-channel open-drain I/O (P30 to P33): 4
 Total: 51

Table 5-1. Port Functions

Name	Pin Name	Function
Port 0	P00 to P03	I/O port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be used by setting software.
Port 1	P10 to P17	Input-only port.
Port 2	P20 to P25	I/O port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be used by setting software.
Port 3	P30 to P33	N-channel open-drain I/O port. Input/output can be specified in 1-bit units. A pull-up resistor can be specified by mask option. LEDs can be driven directly.
	P34 to P36	I/O port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be used by setting software.
Port 4	P40 to P47	I/O port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be used by setting software. The interrupt request flag (KRIF) is set to 1 by falling edge detection.
Port 5	P50 to P57	I/O port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be used by setting software. LEDs can be driven directly.
Port 6	P64 to P67	I/O port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be used by setting software.
Port 7	P70 to P75	I/O port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be used by setting software.

5.2 Clock Generator


A system clock generator is incorporated.

The minimum instruction execution time can be changed.

- Expanded-specification products of μPD780021A(A), 780022A(A), 780023A(A), 780024A(A)
 0.166 μs/0.333 μs/0.666 μs/1.33 μs/2.66 μs
 (@12 MHz, V_{DD} = 4.5 to 5.5 V operation with main system clock)
 122 μs (@32.768 kHz, V_{DD} = 4.0 to 5.5 V operation with subsystem clock)
 - μPD780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A), and conventional products of μPD780021A(A), 780022A(A), 780023A(A), 780024A(A)

0.238 μ s/0.48 μ s/0.95 μ s/1.91 μ s/3.81 μ s (@8.38 MHz, V_{DD} = 4.0 to 5.5 V operation with main system clock) 122 μ s (@32.768 kHz, V_{DD} = 4.0 to 5.5 V operation with subsystem clock)

Figure 5-1. Clock Generator Block Diagram

5.3 Timer/Counter

Five timer/counter channels are incorporated.

16-bit timer/event counter: 1 channel
8-bit timer/event counter: 2 channels
Watch timer: 1 channel
Watchdog timer: 1 channel

Table 5-2. Operations of Timer/Event Counter

		16-Bit Timer/ Event Counter 0	8-Bit Timer/ Event Counters 50, 51	Watch Timer	Watchdog Timer
Ор	eration mode				
	Interval timer	1 channel	2 channels	1 channel ^{Note 1}	1 channel ^{Note 2}
	External event counter	1 channel	2 channels	_	_
Fur	nction				
	Timer outputs	1 output	2 outputs	_	_
	PPG outputs	1 output	_	_	_
	PWM output	_	2 outputs	_	_
	Pulse width measurement	2 inputs	_	_	_
	Square wave outputs	1 output	2 outputs	_	_
	Interrupt sources	2	2	2	1

Notes 1. The watch timer can perform both watch timer and interval timer functions at the same time.

2. The watchdog timer has watchdog timer and interval timer functions. However, use the watchdog timer by selecting either the watchdog timer function or the interval timer function.

Internal bus ► INTTM00 Noise elimi-16-bit capture/compare register 00 (CR00) TI01/P71@ nator Match fx $fx/2^2$ 16-bit timer counter 0 fx/2⁶ Clear (TM0) Output -⊚ TO0/TI00/P70^{Note} controller Match Noise $f_{\rm X}/2^3$ eliminator Noise 16-bit capture/compare TI00/TO0/P70Note © elimiregister 01 (CR01) nator ► INTTM01 Internal bus

Figure 5-2. Block Diagram of 16-Bit Timer/Event Counter 0

★ Note TI00 input and TO0 output cannot be used at the same time.

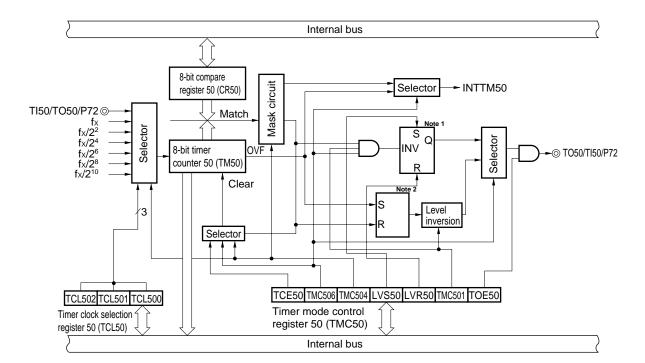
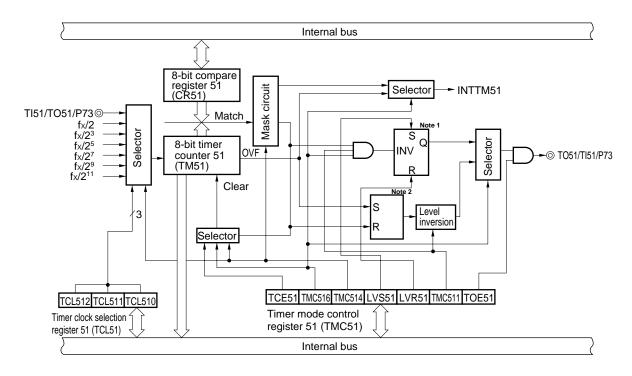
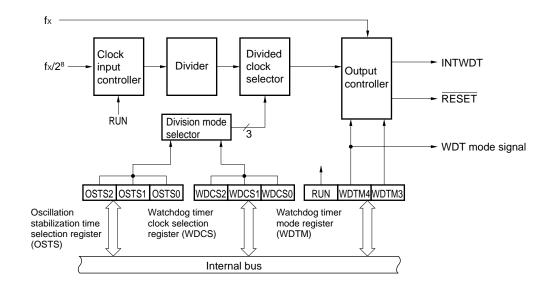



Figure 5-3. Block Diagram of 8-Bit Timer/Event Counter 50

Figure 5-4. Block Diagram of 8-Bit Timer/Event Counter 51


Notes 1. Timer output F/F

2. PWM output F/F

Clear $fx/2^7$ 5-bit counter ►INTWT Selector 9-bit prescaler fw $\frac{\text{fw}}{2^4}$ $\frac{f_W}{2^5}$ $\frac{\text{fw}}{2^7}$ $\frac{f_W}{2^9}$ Clear 2⁶ fхт 2⁸ Selector ►INTWTI WTM7 WTM6 WTM5 WTM4 WTM1 WTM0 Watch timer mode control register (WTM) Internal bus

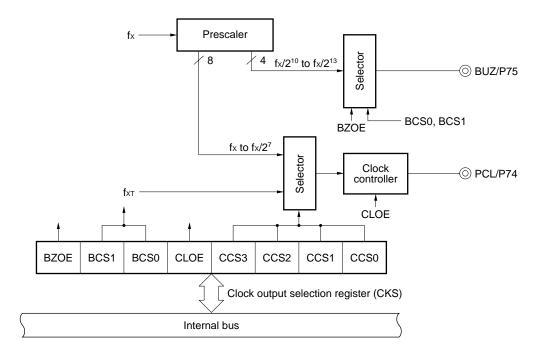
Figure 5-5. Watch Timer Block Diagram

Figure 5-6. Watchdog Timer Block Diagram

5.4 Clock Output/Buzzer Output Controller

A clock output/buzzer output controller is incorporated.

Clocks with the following frequencies can be output as clock output.

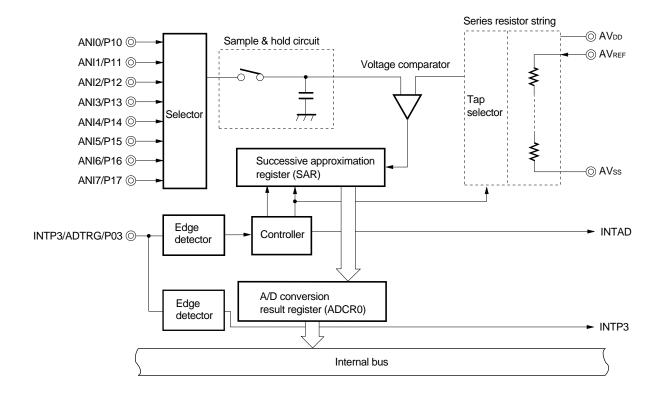

- Expanded-specification products of μPD780021A(A), 780022A(A), 780023A(A), 780024A(A)
 - 93.75 kHz/187.5 kHz/375 kHz/750 kHz/1.25 MHz/3 MHz/6 MHz/12 MHz (@12 MHz operation with main system clock)
 - 32.768 kHz (@32.768 kHz operation with subsystem clock)
- * μ PD780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A), and conventional products of μ PD780021A(A), 780022A(A), 780023A(A), 780024A(A)
 - 65.5 kHz/131 kHz/262 kHz/524 kHz/1.05 MHz/2.10 MHz/4.19 MHz/8.38 MHz (@8.38 MHz operation with main system clock)
 - 32.768 kHz (@32.768 kHz operation with subsystem clock)

Clocks with the following frequencies can be output as buzzer output.

- Expanded-specification products of μPD780021A(A), 780022A(A), 780023A(A), 780024A(A)
 1.46 kHz/2.93 kHz/5.86 kHz/11.7 kHz (@12 MHz operation with main system clock)
- μPD780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A), and conventional products of μPD780021A(A), 780022A(A), 780023A(A), 780024A(A)

1.02 kHz/2.05 kHz/4.10 kHz/8.19 kHz (@8.38 MHz operation with subsystem clock)

Figure 5-7. Block Diagram of Clock Output/Buzzer Output Control Circuit


5.5 A/D Converter

An A/D converter consisting of eight 8-bit resolution channels is incorporated.

The following two A/D conversion operation startup methods are available.

- Hardware start
- · Software start

Figure 5-8. A/D Converter Block Diagram

5.6 Serial Interface

Three serial interface channels are incorporated.

μPD780024A Subseries

Serial interface UART0: 1 channel Serial interface SIO30, SIO31: 2 channels

μPD780024AY Subseries

Serial interface UART0: 1 channel Serial interface SIO30: 1 channel Serial interface IIC0 1 channel

(1) Serial interface UART0

Serial interface UART0 has two modes: asynchronous serial interface (UART) mode and infrared data transfer mode.

Asynchronous serial interface (UART) mode

This mode enables full-duplex operation wherein one byte of data starting from the start bit is transmitted and received.

The on-chip UART-dedicated baud-rate generator enables communication using a wide range of selectable baud rates. In addition, a baud rate can also be defined by dividing the clock input to the ASCK0 pin. The UART-dedicated baud-rate generator can also be used to generate a MIDI-standard baud rate (31.25 kbps).

· Infrared data transfer mode

This mode enables pulse output and pulse reception in data format.

This mode can be used for office equipment applications such as personal computers.

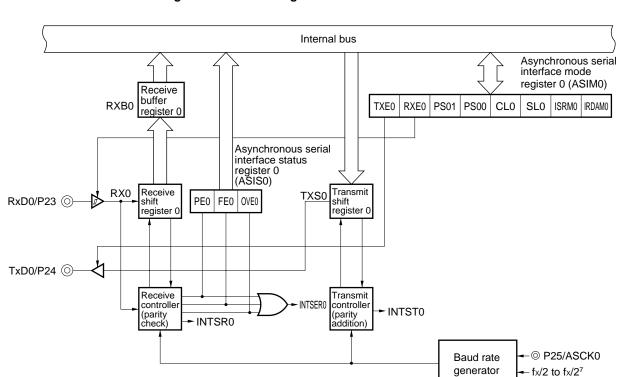


Figure 5-9. Block Diagram of Serial Interface UART0

(2) Serial interface SIO3n

Serial interface SIO3n has one mode: 3-wire serial I/O mode.

• 3-wire serial I/O mode (fixed as MSB first)

This is an 8-bit data transfer mode using three lines: a serial clock line (SCK3n), serial output line (SO3n), and serial input line (SI3n).

Since simultaneous transmit and receive operations are enabled in the 3-wire serial I/O mode, the processing time for data transfer is reduced.

The first bit in 8-bit data in the serial transfer is fixed as MSB.

The 3-wire serial I/O mode is useful for connection to peripheral I/O devices, and display controllers, etc., that include a clocked serial interface.

SI3n Serial I/O shift register 3n (SIO3n)

SCK3n Serial clock counter Interrupt request signal generator

Serial clock controller Selector fx/2³ fx/2⁴ fx/2⁵

Figure 5-10. Block Diagram of Serial Interface SIO3n

Remark μ PD780024A Subseries: n = 0, 1 μ PD780024AY Subseries: n = 0

(3) Serial interface IIC0 (μPD780024AY Subseries only)

Serial interface IIC0 has one mode: I²C (Inter IC) bus mode (supporting multimaster).

I²C bus mode (supporting multimaster)

This is an 8-bit data transfer mode using two lines: a serial clock line (SCL0) and a serial data bus line (SDA0).

This mode complies with the I²C bus format, and can output a "start condition", "data", and a "stop condition" during transmission via the serial data bus. This data is automatically detected by hardware during reception.

Since SCL0 and SDA0 are open-drain outputs in IIC0, pull-up resistors for the serial clock line and the serial data bus line are required.

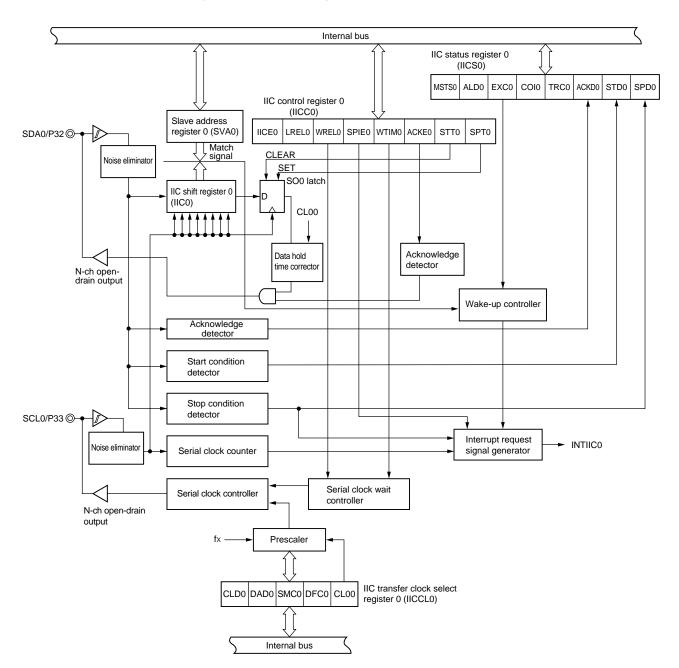


Figure 5-11. Block Diagram of Serial Interface IIC0

6. INTERRUPT FUNCTIONS

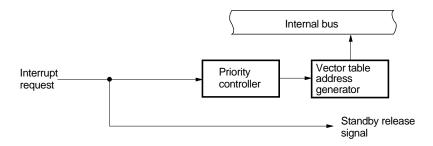
A total of 20 interrupt sources are provided, divided into the following three types.

Non-maskable: 1Maskable: 18Software: 1

Table 6-1. Interrupt Source List

Interrupt	Default		Interrupt Source Name Trigger		Vector Table Address	Basic Configuration Type ^{Note 2}
Type	Priority ^{Note 1}	Name				
Non- maskable	_	INTWDT	Watchdog timer overflow (with watchdog timer mode 1 selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Watchdog timer overflow (with interval timer mode selected)			(B)
	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1			0008H	
	3	INTP2			000AH	
	4	INTP3			000CH	
	5	INTSER0	Serial interface UART0 reception error generation	Internal	000EH	(B)
	6	INTSR0	End of serial interface UART0 reception		0010H	
	7	INTST0	End of serial interface UART0 transmission		0012H	
	8	INTCSI30	End of serial interface SIO30 transfer		0014H	
	9	INTCSI31	End of serial interface SIO31 transfer [Only for μ PD780024A Subseries]		0016H	
	10	INTIIC0	End of serial interface IIC0 transfer [Only for μPD780024AY Subseries]		0018H	
	11	INTWTI	Reference time interval signal from watch timer		001AH	
	12	INTTM00	Match between TM0 and CR00 (when CR00 is specified as compare register) Detection of Tl01 valid edge (when CR00 is specified as capture register)		001CH	
	13	INTTM01	Match between TM0 and CR01 (when CR01 is specified as compare register) Detection of Tl00 valid edge (when CR01 is specified as capture register)		001EH	
	14	INTTM50	Match between TM50 and CR50]	0020H	1
	15	INTTM51	Match between TM51 and CR51		0022H	
	16	INTAD0	End of A/D conversion		0024H	
	17	INTWT	Watch timer overflow]	0026H	7
	18	INTKR	Port 4 falling edge detection	External	0028H	(D)
Software	_	BRK	BRK instruction execution	_	003EH	(E)

Notes 1. The default priority is the priority when several maskable interrupt requests are generated at the same time. 0 is the highest, and 18 is the lowest.


2. Basic configuration types (A) to (E) correspond to (A) to (E) in Figure 6-1.

Remark The watchdog timer interrupt (INTWDT) can be selected from a non-maskable interrupt or a maskable interrupt (internal).

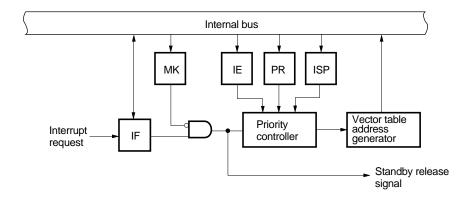


Figure 6-1. Basic Configuration of Interrupt Function (1/2)

(A) Internal non-maskable interrupt

(B) Internal maskable interrupt

(C) External maskable interrupt (INTP0 to INTP3)

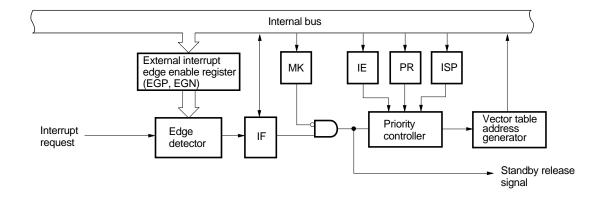
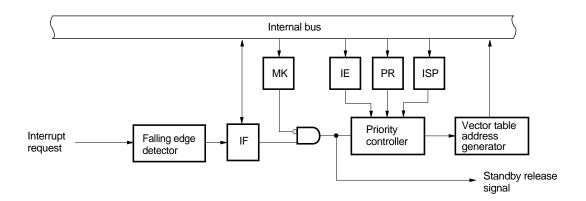
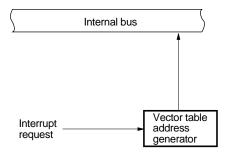




Figure 6-1. Basic Configuration of Interrupt Function (2/2)

(D) External maskable interrupt (INTKR)

(E) Software interrupt

IF: Interrupt request flagIE: Interrupt enable flagISP: In-service priority flagMK: Interrupt mask flagPR: Priority specification flag

*

7. EXTERNAL DEVICE EXPANSION FUNCTION

The external device expansion function is for connecting external devices to areas other than the internal ROM, RAM, and SFR areas. Ports 4 to 6 are used for external device connection.

8. STANDBY FUNCTION

The following two standby modes are available for further reduction of system power consumption.

- HALT mode: In this mode, the CPU operation clock is stopped. The average power consumption can be reduced by intermittent operation by combining this mode with the normal operation mode.
- STOP mode: In this mode, oscillation of the main system clock is stopped. All the operations performed on
 the main system clock are suspended, and only the subsystem clock is used, resulting in
 extremely small power consumption. This can be used only when the main system clock is
 operating (the subsystem clock oscillation cannot be stopped).

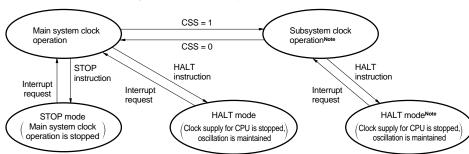


Figure 8-1. Standby Function

Note The power consumption can be reduced by stopping the main system clock. When the CPU is operating on the subsystem clock, set bit 7 (MCC) of the processor clock control register (PCC). The STOP instruction cannot be used.

Caution When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

9. RESET FUNCTION

The following two reset methods are available.

- External reset by RESET signal input
- · Internal reset by watchdog timer program loop time detection

10. MASK OPTION

Table 10-1 Pin Mask Option Selection

Subseries Name	Pins	Mask Option
μPD780024A Subseries	P30 to P33	An on-chip pull-up resistor can be specified in 1-bit units.
μPD780024AY Subseries	P30 and P31	

The mask option can be used to specify the connection of an on-chip pull-up resistor to P30 to P33^{Note}, in 1-bit units.

Note The μ PD780024AY Subseries has P30 and P31 only.

11. INSTRUCTION SET

(1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

2nd Operand 1st Operand	#byte	A	r ^{Note}	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL + byte] [HL + B] [HL + C]		1	None
А	ADD		MOV	MOV	MOV	MOV	MOV	MOV	MOV	MOV		ROR	
	ADDC		XCH	XCH	XCH	XCH		XCH	XCH	XCH		ROL	
	SUB		ADD		ADD	ADD			ADD	ADD		RORC	
	SUBC		ADDC		ADDC	ADDC			ADDC	ADDC		ROLC	
	AND		SUB		SUB	SUB			SUB	SUB			
	OR XOR		SUBC AND		SUBC AND	SUBC AND			SUBC	SUBC AND			
	CMP		OR		OR	OR			OR	OR			
			XOR		XOR	XOR			XOR	XOR			
			CMP		CMP	CMP			CMP	CMP			
r	MOV	MOV											INC
		ADD											DEC
		ADDC											
		SUB											
		SUBC											
		AND											
		OR											
		XOR											
		CMP											
B, C											DBNZ		
sfr	MOV	MOV											
saddr	MOV ADD	MOV									DBNZ		INC DEC
	ADDC												
	SUB												
	SUBC												
	AND OR												
	XOR												
	CMP												
!addr16		MOV											
PSW	MOV	MOV											PUSH POP
[DE]		MOV											
[HL]		MOV											ROR4
													ROL4
[HL + byte]		MOV											
[HL + B]													
[HL + C]													
X													MULU
С													DIVUW

Note Except r = A

(2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

2nd Operand 1st Operand	#word	AX	rp ^{Note}	sfrp	saddrp	!addr16	SP	None
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVW ^{Note}						INCW, DECW PUSH, POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Note Only when rp = BC, DE or HL

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

2nd Operand 1st Operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	BT BF BTCLR	SET1 CLR1
sfr.bit						MOV1	BT BF BTCLR	SET1 CLR1
saddr.bit						MOV1	BT BF BTCLR	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	SET1 CLR1
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
CY	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1

(4) Call instructions/branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

2nd Operand 1st Operand	AX	!addr16	!addr11	[addr5]	\$addr16
Basic instruction	BR	CALL BR	CALLF	CALLT	BR, BC, BNC BZ, BNZ
Compound instruction					BT, BF BTCLR DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

* 12. ELECTRICAL SPECIFICATIONS

12.1 Expanded-Specification Products of μPD780021A(A), 780022A(A), 780023A(A), 780024A(A)

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

Parameter	Symbol		Conditions		Ratings	Unit
Supply voltage	V _{DD}				-0.3 to +6.5	V
	AVDD				-0.3 to V _{DD} + 0.3 ^{Note}	V
	AVREF				-0.3 to V _{DD} + 0.3 ^{Note}	V
	AVss				-0.3 to +0.3	V
Input voltage	VII	•	10 to P17, P20 to P2 64 to P67, P70 to P75	5, P34 to P36, P40 to P47, 5, X1, X2, XT1, XT2,	-0.3 to V _{DD} + 0.3 ^{Note}	V
	V ₁₂	P30 to P33	N-ch open-drain	Without pull-up resistor	-0.3 to + 6.5	V
				With pull-up resistor	-0.3 to V _{DD} + 0.3 ^{Note}	V
Output voltage	Vo				-0.3 to $V_{DD} + 0.3^{Note}$	V
Analog input voltage	Van	P10 to P17		Analog input pin		V
Output current,	Іон	Per pin			-10	mA
high		Total for P00 to	P03, P40 to P47, P50	to P57, P64 to P67, P70 to P75	-15	mA
		Total for P20	to P25, P30 to P3	6	– 15	mA
Output current,	loL	Per pin for P	00 to P03, P20 to I	P25, P34 to	20	mA
low		P36, P40 to I	P47, P64 to P67, P	70 to P75		
		Per pin for Pa	30 to P33, P50 to I	P57	30	mA
		Total for P00	to P03, P40 to P4	7,	50	mA
		P64 to P67, I	P70 to P75			
		Total for P20	to P25		20	mA
		Total for P30	to P36		100	mA
		Total for P50	to P57		100	mA
Operating ambient temperature	Та				-40 to +85	°C
Storage temperature	T _{stg}				-65 to +150	°C

Note 6.5 V or below

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless otherwise specified, the characteristic of alternate-function pins are the same as those of port pins.

Capacitance (TA = 25°C, VDD = Vss = 0 V)

Parameter	Symbol	С	conditions	MIN.	TYP.	MAX.	Unit
Input	Cin	f = 1 MHz				15	pF
capacitance		Unmeasured pins returne	d to 0 V.				
I/O capacitance	Сю	f = 1 MHz Unmeasured pins returned to 0 V.	P00 to P03, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75			15	pF
			P30 to P33			20	pF

Remark Unless otherwise specified, the characteristic of alternate-function pins are the same as those of port pins.

Main System Clock Oscillator Characteristics (T_A = −40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic		Oscillation	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	1.0		12.0	MHz
resonator	IC X2 X1	frequency (fx)Note 1	3.0 V ≤ V _{DD} < 4.5 V	1.0		8.38	
	+10+		1.8 V ≤ V _{DD} < 3.0 V	1.0		5.0	
	C2 = C1 =	Oscillation	After VDD reaches			4	ms
		stabilization timeNote 2	oscillation voltage range				
	///		MIN.				
Crystal	IC X2 X1	Oscillation	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	1.0		12.0	MHz
resonator		frequency (fx)Note 1	$3.0 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	1.0		8.38	
			1.8 V ≤ V _{DD} < 3.0 V	1.0		5.0	
	02 1 01	Oscillation	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			10	ms
	1/17	stabilization timeNote 2	$1.8 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}$			30	
External		X1 input	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	1.0		12.0	MHz
clock	X2 X1	frequency (fx)Note 1	$3.0 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	1.0		8.38	
			1.8 V ≤ V _{DD} < 3.0 V	1.0		5.0	
		X1 input	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	38		500	ns
	Å	high-/low-level width	$3.0 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	50		500	
		(txH, txL)	1.8 V ≤ V _{DD} < 3.0 V	85		500	

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. Time required to stabilize oscillation after reset or STOP mode release.

Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- . Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss1.
- . Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- When the main system clock is stopped and the system is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Subsystem Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	XT2 XT1 IC	Oscillation frequency (fxT)Note 1		32	32.768	35	kHz
	=C4 =C3	Oscillation	4.0 V ≤ V _{DD} ≤ 5.5 V		1.2	2	s
	777	stabilization time ^{Note 2}	1.8 V ≤ V _{DD} < 4.0 V			10	
External clock	XT2 XT1	XT1 input frequency (fxr) ^{Note 1}		32		38.5	kHz
	4	XT1 input high-/low-level width (txth, txtl)		12		15	μs

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. Time required to stabilize oscillation after VDD reaches oscillation voltage range MIN.
- Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - · Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - . Do not route the wiring near a signal line through which a high fluctuating current flows.
 - · Always make the ground point of the oscillator capacitor the same potential as Vss1.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - The subsystem clock oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.

Remark For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Recommended Oscillator Constant

Main system clock: Ceramic resonator ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

Manufacturer	Part Number	Frequency	Recomme	ended Circuit	Constant	Oscillation V	oltage Range
		(MHz)	C1 (pF)	C2 (pF)	R1 (kΩ)	MIN. (V)	MAX. (V)
Murata Mfg.	CSBFB1M00J58	1.00	100	100	2.2	1.8	5.5
Co., Ltd.	CSBLA1M00J58	1.00	100	100	2.2	1.8	5.5
	CSTCC2M00G56	2.00	On-chip	On-chip	0	1.8	5.5
	CSTLS2M00G56	2.00	On-chip	On-chip	0	1.8	5.5
	CSTCC3M58G53	3.58	On-chip	On-chip	0	1.8	5.5
	CSTLS3M58G53	3.58	On-chip	On-chip	0	1.8	5.5
	CSTCR4M00G53	4.00	On-chip	On-chip	0	1.8	5.5
	CSTLS4M00G53	4.00	On-chip	On-chip	0	1.8	5.5
	CSTCR4M19G53	4.19	On-chip	On-chip	0	1.8	5.5
	CSTLS4M19G53	4.19	On-chip	On-chip	0	1.8	5.5
	CSTCR4M91G53	4.91	On-chip	On-chip	0	1.8	5.5
	CSTLS4M91G53	4.91	On-chip	On-chip	0	1.8	5.5
	CSTCR5M00G53	5.00	On-chip	On-chip	0	1.8	5.5
	CSTLS5M00G53	5.00	On-chip	On-chip	0	1.8	5.5
	CSTCE8M00G52	8.00	On-chip	On-chip	0	3.0	5.5
	CSTLS8M00G53	8.00	On-chip	On-chip	0	3.0	5.5
	CSTCE8M38G52	8.38	On-chip	On-chip	0	3.0	5.5
	CSTLS8M38G53	8.38	On-chip	On-chip	0	3.0	5.5
	CSTCE10M0G52	10.00	On-chip	On-chip	0	4.5	5.5
	CSTLS10M0G53	10.00	On-chip	On-chip	0	4.5	5.5
	CSTCE12M0G52	12.00	On-chip	On-chip	0	4.5	5.5
	CSTLA12M0T55	12.00	On-chip	On-chip	0	4.5	5.5
TDK	CCR3.58MC3	3.58	On-chip	On-chip	0	1.8	5.5
	CCR4.19MC3	4.19	On-chip	On-chip	0	1.8	5.5
	CCR5.0MC3	5.00	On-chip	On-chip	0	1.8	5.5
	CCR8.0MC5	8.00	On-chip	On-chip	0	2.0	5.5
	CCR8.38MC5	8.38	On-chip	On-chip	0	2.0	5.5

Caution The oscillator constant is a reference value based on evaluation in specific environments by the resonator manufacturer. If the oscillator characteristics need to be optimized in the actual application, request the resonator manufacturer for evaluation on the implementation circuit. Note that the oscillation voltage and oscillation frequency merely indicate the characteristics of the oscillator. Use the internal operation conditions of the μ PD780024A Subseries within the specifications of the DC and AC characteristics.

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Conditions	S	MIN.	TYP.	MAX.	Unit
Output current,	Іон	Per pin				-1	mA
high		All pins				-15	mA
Output current,	loL	Per pin for P00 to P03, P20 to P	25, P34 to P36,			10	mA
low		P40 to P47, P64 to P67, P70 to	P75				
		Per pin for P30 to P33, P50 to P	57			15	mA
		Total for P00 to P03, P40 to P47,	P64 to P67, P70 to P75			20	mA
		Total for P20 to P25				10	mA
		Total for P30 to P36				70	mA
		Total for P50 to P57				70	mA
Input voltage,	V _{IH1}	P10 to P17, P21, P24, P35,	2.7 V ≤ V _{DD} ≤ 5.5 V	0.7V _{DD}		V _{DD}	V
high		P40 to P47, P50 to P57,	1.8 V ≤ V _{DD} < 2.7 V	0.8V _{DD}		V _{DD}	V
		P64 to P67, P74, P75	1.0 V = VBB \ 2.7 V	0.0100		V 55	v
	V _{IH2}	P00 to P03, P20, P22, P23, P25,	2.7 V ≤ V _{DD} ≤ 5.5 V	0.8V _{DD}		V _{DD}	٧
		P34, P36, P70 to P73, RESET	1.8 V ≤ V _{DD} < 2.7 V	0.85V _{DD}		V _{DD}	V
	V _{IH3}	P30 to P33	2.7 V ≤ V _{DD} ≤ 5.5 V	0.7V _{DD}		5.5	V
		(N-ch open-drain)	1.8 V ≤ V _{DD} < 2.7 V	0.8V _{DD}		5.5	V
	V _{IH4}	X1, X2	2.7 V ≤ V _{DD} ≤ 5.5 V	V _{DD} - 0.5		V _{DD}	V
			1.8 V ≤ V _{DD} < 2.7 V	V _{DD} - 0.2		V _{DD}	V
	V _{IH5}	XT1, XT2	4.0 V ≤ V _{DD} ≤ 5.5 V	0.8V _{DD}		V _{DD}	V
			1.8 V ≤ V _{DD} < 4.0 V	0.9V _{DD}		V _{DD}	V
Input voltage,	VIL1	P10 to P17, P21, P24, P35,	2.7 V ≤ V _{DD} ≤ 5.5 V	0		0.3V _{DD}	V
low		P40 to P47, P50 to P57,	1.8 V ≤ V _{DD} < 2.7 V	0		0.2V _{DD}	V
		P64 to P67, P74, P75	1.0 V \(\text{VDD} \(\text{Z.1 V} \)			0.2000	v
	V _{IL2}	P00 to P03, P20, P22, P23, P25,	2.7 V ≤ V _{DD} ≤ 5.5 V	0		0.2V _{DD}	V
		P34, P36, P70 to P73, RESET	1.8 V ≤ V _{DD} < 2.7 V	0		0.15V _{DD}	V
	VIL3	P30 to P33	4.0 V ≤ V _{DD} ≤ 5.5 V	0		0.3V _{DD}	V
			$2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}$	0		0.2V _{DD}	V
			$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0		0.1Vdd	V
	VIL4	X1, X2	2.7 V ≤ V _{DD} ≤ 5.5 V	0		0.4	V
			1.8 V ≤ V _{DD} < 2.7 V	0		0.2	V
	VIL5	XT1, XT2	4.0 V ≤ V _{DD} ≤ 5.5 V	0		0.2V _{DD}	V
			1.8 V ≤ V _{DD} < 4.0 V	0		0.1V _{DD}	V
Output voltage,	Vон1	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ IoH} = -1 \text{ mA}$	1	V _{DD} - 1.0		VDD	V
high		$1.8 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, \text{ IoH} = -100 $	uA	V _{DD} - 0.5		VDD	V
Output voltage,	Vol1	P30 to P33	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V},$			2.0	V
low		P50 to P57	IoL = 15 mA		0.4	2.0	V
		P00 to P03, P20 to P25, P34 to P36,	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V},$			0.4	V
		P40 to P47, P64 to P67, P70 to P75	IoL = 1.6 mA				
	V _{OL2}	IoL = 400 μA				0.5	V

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	С	onditions	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішн1	Vin = Vdd	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET			3	μΑ
	ILIH2		X1, X2, XT1, XT2			20	μΑ
	Інз	V _{IN} = 5.5 V	P30 to P33 ^{Note}			3	μΑ
Input leakage current, low	ILIL1	Vin = 0 V	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET			- 3	μΑ
	ILIL2		X1, X2, XT1, XT2			-20	μΑ
	Ішз		P30 to P33 ^{Note}			-3	μΑ
Output leakage current, high	Ісон	Vout = Vdd				3	μΑ
Output leakage current, low	Ісос	Vout = 0 V				-3	μΑ
Mask option pull-up resistance	R ₁	V _{IN} = 0 V, P30, P31, P32, P33		15	30	90	kΩ
Software pull- up resistance	R ₂	V _{IN} = 0 V, P00 to P03, P20 to P25 P50 to P57, P64 to P67	, P34 to P36, P40 to P47, , P70 to P75	15	30	90	kΩ

Note When pull-up resistors are not connected to P30 to P33 (specified by the mask option).

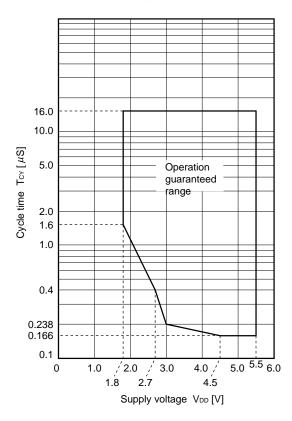
Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Power supply current ^{Note 1}	_{DD1} Note 2	12.0 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V } \pm 10\%^{\text{Note 3}}$	When A/D converter is stopped		8.5	17	mA
		operating mode		When A/D converter is operating Note 7		9.5	19	mA
		8.38 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When A/D converter is stopped		5.5	11	mA
		operating mode		When A/D converter is operating ^{Note 7}		6.5	13	mA
			V _{DD} = 3.0 V + 10% ^{Notes 3, 6}	When A/D converter is stopped		3	6	mA
				When A/D converter is operating ^{Note 7}		4	8	mA
		5.00 MHz crystal oscillation	V _{DD} = 3.0 V ±10% ^{Note 3}	When A/D converter is stopped		2	4	mA
		operating mode		When A/D converter is operating Note 7		3	6	mA
			V _{DD} = 2.0 V ±10% ^{Note 4}	When A/D converter is stopped		0.4	1.5	mA
				When A/D converter is operating ^{Note 7}		1.4	4.2	mA
	IDD2 12.0 MHz crystal oscillat	12.0 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When peripheral functions are stopped		2	4	mA
		HALT mode		When peripheral functions are operating			10	mA
		8.38 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When peripheral functions are stopped		1.1	2.2	mA
		HALT mode		When peripheral functions are operating			4.7	mA
			V _{DD} = 3.0 V + 10% Notes 3, 6	When peripheral functions are stopped		0.5	1	mA
				When peripheral functions are operating			4	mA
		5.00 MHz crystal oscillation	V _{DD} = 3.0 V ±10% ^{Note 3}	When peripheral functions are stopped		0.35	0.7	mA
		HALT mode		When peripheral functions are operating			1.7	mA
			V _{DD} = 2.0 V ±10% ^{Note 4}	When peripheral functions are stopped		0.15	0.4	mA
				When peripheral functions are operating			1.1	mA
	IDD3	32.768 kHz crysta	al oscillation	V _{DD} = 5.0 V ±10%		40	80	μΑ
		operating mode ^{No}		V _{DD} = 3.0 V ±10%		20	40	μA
				V _{DD} = 2.0 V ±10%		10	20	μΑ
	I _{DD4}	32.768 kHz crysta	al oscillation	V _{DD} = 5.0 V ±10%		30	60	μΑ
		HALT modeNote 5		V _{DD} = 3.0 V ±10%		6	18	μΑ
				V _{DD} = 2.0 V ±10%		2	10	<i>μ</i> Α
	I _{DD5}	XT1 = V _{DD} STOP	mode	V _{DD} = 5.0 V ±10%		0.1	30	μA
		When feedback resistor is not used		V _{DD} = 3.0 V ±10%		0.05	10	μΑ
	[V _{DD} = 2.0 V ±10%		0.05	10	μΑ

- **Notes 1.** Total current through the internal power supply (VDD0, VDD1) (except the current through pull-up resistors of ports).
 - 2. IDD1 includes the peripheral operation current.
 - 3. When the processor clock control register (PCC) is set to 00H.
 - 4. When PCC is set to 02H.
 - 5. When main system clock operation is stopped.
 - **6.** The values show the specifications when $V_{DD} = 3.0$ to 3.3 V. The value in the TYP. column show the specifications when $V_{DD} = 3.0$ V.
 - 7. Includes the current through the AVDD pin.

AC Characteristics


(1) Basic Operation ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Cycle time	Тсч	Operating with	$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	0.166		16	μs
(Min. instruction	main system clock	$3.0 \text{ V} \leq \text{V}_{DD} \leq 4.5 \text{ V}$	0.238		16	μs	
execution time)			$2.7 \text{ V} \leq \text{V}_{DD} \leq 3.0 \text{ V}$	0.4		16	μs
			1.8 V ≤ V _{DD} ≤ 2.7 V	1.6		16	μs
		Operating with subs	system clock	103.9Note 1	122	125	μs
TI00, TI01 input	ttiho, ttilo	3.0 V ≤ V _{DD} ≤ 5.5 V	0 V ≤ V _{DD} ≤ 5.5 V				μs
high-/low-level		$2.7~\textrm{V} \leq \textrm{V}_\textrm{DD} < 3.0~\textrm{V}$		2/f _{sam} +0.2 ^{Note 2}		μs	
width		1.8 V ≤ V _{DD} < 2.7 V		2/f _{sam} +0.5 ^{Note 2}			μs
TI50, TI51 input	f T15	2.7 V ≤ V _{DD} ≤ 5.5 V		0		4	MHz
frequency		1.8 V ≤ V _{DD} < 2.7 V		0		275	kHz
TI50, TI51 input	ttihs, ttils	2.7 V ≤ V _{DD} ≤ 5.5 V		100			ns
high-/low-level width		1.8 V ≤ V _{DD} < 2.7 V		1.8			ns
Interrupt request	tinth, tintl	INTP0 to INTP3,	2.7 V ≤ V _{DD} ≤ 5.5 V	1			μs
input high-/low- level width		P40 to P47	1.8 V ≤ V _{DD} < 2.7 V	2			μs
RESET	trsl	2.7 V ≤ V _{DD} ≤ 5.5 V	2.7 V ≤ V _{DD} ≤ 5.5 V				μs
low-level width		1.8 V ≤ V _{DD} < 2.7 V		20			μs

Notes 1. Value when the external clock is used. When a crystal resonator is used, it is 114 μ s (MIN.).

2. Selection of fsam = fx, fx/4, fx/64 is possible using bits 0 and 1 (PRM00, PRM01) of prescaler mode register 0 (PRM0). However, if the TI00 valid edge is selected as the count clock, the value becomes fsam = fx/8.

Tcy vs. VDD (main system clock operation)

(2) Read/Write Operation ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 4.0 \text{ to } 5.5 \text{ V}$)

(1/3)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	t asth		0.3tcy		ns
Address setup time	tads		20		ns
Address hold time	t adh		6		ns
Data input time from address	t _{ADD1}			(2 + 2n)tcy - 54	ns
	t _{ADD2}			(3 + 2n)tcy - 60	ns
Address output time from RD↓	trdad		0	100	ns
Data input time from RD↓	tRDD1			(2 + 2n)tcy - 87	ns
	tRDD2			(3 + 2n)tcy - 93	ns
Read data hold time	t RDH		0		ns
RD low-level width	trdL1		(1.5 + 2n)tcy - 33		ns
	tRDL2		(2.5 + 2n)tcy - 33		ns
Input time from RD↓ to WAIT↓	tRDWT1			tcy - 43	ns
	tRDWT2			tcy - 43	ns
Input time from WR↓ to WAIT↓	twrwt			tcy - 25	ns
WAIT low-level width	t wTL		(0.5 + n)tcy + 10	(2 + 2n)tcy	ns
Write data setup time	twos		60		ns
Write data hold time	twoн		6		ns
WR low-level width	twrL1		(1.5 + 2n)tcy - 15		ns
Delay time from ASTB↓ to RD↓	tastrd		6		ns
Delay time from ASTB↓ to WR↓	tastwr		2tcy - 15		ns
Delay time from	t rdast		0.8tcy - 15	1.2tcy	ns
RD↑ to ASTB↑ at external fetch					
Address hold time from	trdadh		0.8tcy - 15	1.2tcy + 30	ns
RD↑ at external fetch					
Write data output time from RD↑	trdwd		40		ns
Write data output time from WR↓	twrwd		10	60	ns
Address hold time from WR↑	twradh		0.8tcy - 15	1.2tcy + 30	ns
Delay time from WAIT↑ to RD↑	twtrd		0.8tcy	2.5tcy + 25	ns
Delay time from WAIT↑ to WR↑	twrwr		0.8tcy	2.5tcy + 25	ns

Caution Tcy can only be used when the MIN. value is 0.238 μ s.

Remarks 1. tcy = Tcy/4

- 2. n indicates the number of waits.
- 3. $C_L = 100 \text{ pF}$ (C_L indicates the load capacitance of the AD0 to AD7, A8 to A15, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{WAIT}}$, and ASTB pins.)

(2) Read/Write Operation ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 2.7 \text{ to } 4.0 \text{ V}$)

(2/3)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	t asth		0.3tcy		ns
Address setup time	tads		30		ns
Address hold time	t adh		10		ns
Input time from address to data	tADD1			(2 + 2n)tcy - 108	ns
	tADD2			(3 + 2n)tcy - 120	ns
Output time from RD↓ to address	trdad		0	200	ns
Input time from RD↓ to data	tRDD1			(2 + 2n)tcy - 148	ns
	tRDD2			(3 + 2n)tcy - 162	ns
Read data hold time	t RDH		0		ns
RD low-level width	tRDL1		(1.5 + 2n)tcy - 40		ns
	tRDL2		(2.5 + 2n)tcy - 40		ns
Input time from RD↓ to WAIT↓	tRDWT1			tcy - 75	ns
	trdwt2			tcy - 60	ns
Input time from WR↓ to WAIT↓	twrwt			tcy - 50	ns
WAIT low-level width	t wTL		(0.5 + 2n)tcy + 10	(2 + 2n)tcy	ns
Write data setup time	twos		60		ns
Write data hold time	twoн		10		ns
WR low-level width	twrL1		(1.5 + 2n)tcy - 30		ns
Delay time from ASTB \downarrow to $\overline{\text{RD}} \downarrow$	tastrd		10		ns
Delay time from ASTB \downarrow to $\overline{\text{WR}}\downarrow$	tastwr		2tcy - 30		ns
Delay time from	trdast		0.8tcy - 30	1.2tcy	ns
RD↑ to ASTB↑ at external fetch					
Hold time from	trdadh		0.8tcy - 30	1.2tcy + 60	ns
RD↑ to address at external fetch					
Write data output time from RD↑	t RDWD		40		ns
Write data output time from $\overline{\mathrm{WR}} \!\downarrow$	twrwd		20	120	ns
Hold time from WR↑ to address	twradh		0.8tcy - 30	1.2tcy + 60	ns
Delay time from WAIT↑ to RD↑	twtrd		0.5tcy	2.5tcy + 50	ns
Delay time from $\overline{\mathrm{WAIT}}\uparrow$ to $\overline{\mathrm{WR}}\uparrow$	twrwr		0.5tcy	2.5tcy + 50	ns

Caution Tcy can only be used when the MIN. value is 0.4 μ s.

- **Remarks 1.** tcy = Tcy/4
 - 2. n indicates the number of waits.
 - 3. C_L = 100 pF (C_L indicates the load capacitance of the AD0 to AD7, AD8 to AD15, RD, WR, WAIT, and ASTB pins.)

(2) Read/Write Operation ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 2.7 \text{ V}$)

(3/3)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.3tcy		ns
Address setup time	tads		120		ns
Address hold time	tadh		20		ns
Input time from address to data	tADD1			(2 + 2n)tcy - 233	ns
	tADD2			(3 + 2n)tcy - 240	ns
Output time from RD↓ to address	trdad		0	400	ns
Input time from RD↓ to data	trdd1			(2 + 2n)tcy - 325	ns
	trdd2			(3 + 2n)tcy - 332	ns
Read data hold time	trdh		0		ns
RD low-level width	tRDL1		(1.5 + 2n)tcy - 92		ns
	tRDL2		(2.5 + 2n)tcy - 92		ns
Input time from RD↓ to WAIT↓	tRDWT1			tcy - 350	ns
	tRDWT2			tcy - 132	ns
Input time from WR↓ to WAIT↓	twrwt			tcy - 100	ns
WAIT low-level width	twrL		(0.5 + 2n)tcy + 10	(2 + 2n)tcy	ns
Write data setup time	twps		60		ns
Write data hold time	twoн		20		ns
WR low-level width	twrL1		(1.5 + 2n)tcy - 60		ns
Delay time from ASTB↓ to RD↓	tastrd		20		ns
Delay time from ASTB↓ to WR↓	tastwr		2tcy - 60		ns
Delay time from	trdast		0.8tcy - 60	1.2tcy	ns
RD↑ to ASTB↑ at external fetch					
Hold time from	trdadh		0.8tcy - 60	1.2tcy + 120	ns
RD↑ to address at external fetch					
Write data output time from RD↑	trowo		40		ns
Write data output time from $\overline{\mathrm{WR}} \downarrow$	twrwd		40	240	ns
Hold time from WR↑ to address	twradh		0.8tcy - 60	1.2tcy + 120	ns
Delay time from WAIT↑ to RD↑	twtrd		0.5tcY	2.5tcy + 100	ns
Delay time from WAIT↑ to WR↑	twrwr		0.5tcy	2.5tcy + 100	ns

Caution Tcy can only be used when the MIN. value is 1.6 μ s.

Remarks 1. tcy = Tcy/4

- 2. n indicates the number of waits.
- 3. $C_L = 100 \text{ pF}$ (C_L indicates the load capacitance of the AD0 to AD7, AD8 to AD15, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{WAIT}}$, and ASTB pins.)

(3) Serial Interface (TA = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

(a) 3-wire serial I/O mode (SCK3n... Internal clock output)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
SCK3n	tkcy1	4.5 V ≤ V _{DD} ≤ 5.5	V	666			ns
cycle time		3.0 V ≤ V _{DD} < 4.5	V	954			ns
		2.7 V ≤ V _{DD} < 3.0 V		1600			ns
		1.8 V ≤ V _{DD} < 2.7	V	3200			ns
SCK3n high-/	tkH1, tkL1	3.0 V ≤ V _{DD} ≤ 5.5	V	tксү1/2 – 50			ns
low-level width		1.8 V ≤ V _{DD} < 3.0	V	tксү1/2 – 100			ns
SI3n setup time	tsıĸı	3.0 V ≤ V _{DD} ≤ 5.5	V	100			ns
(to SCK3n↑)		2.7 V ≤ V _{DD} < 3.0	V	150			ns
		1.8 V ≤ V _{DD} < 2.7	V	300			ns
SI3n hold time	tksi1	4.5 V ≤ V _{DD} ≤ 5.5	V	300			ns
(from SCK3n↑)		1.8 V ≤ V _{DD} < 4.5	V	400			ns
Delay time from	tkso1	C = 100 pF ^{Note}	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			200	ns
SCK3n↓ to SO3n			1.8 V ≤ V _{DD} < 4.5 V			300	ns
output							

Note C is the load capacitance of the SCK3n and SO3n output lines.

(b) 3-wire serial I/O mode (SCK3n... External clock input)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
SCK3n	tkcy2	4.5 V ≤ V _{DD} ≤ 5.5	V	666			ns
cycle time		3.0 V ≤ V _{DD} < 4.5	$3.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$				ns
		2.7 V ≤ V _{DD} < 3.0	2.7 V ≤ V _{DD} < 3.0 V				ns
		1.8 V ≤ V _{DD} < 2.7	1.8 V ≤ V _{DD} < 2.7 V				ns
SCK3n high-/	tkH2, tkL2	4.5 V ≤ V _{DD} ≤ 5.5	V	333			ns
low-level width		3.0 V ≤ V _{DD} < 4.5	V	400			ns
		2.7 V ≤ V _{DD} < 3.0	V	800			ns
		1.8 V ≤ V _{DD} < 2.7	1.8 V ≤ V _{DD} < 2.7 V				ns
SI3n setup time	tsık2			100			ns
(to SCK3n↑)							
SI3n hold time	tksi2	4.5 V ≤ V _{DD} ≤ 5.5	V	300			ns
(from SCK3n↑)		1.8 V ≤ V _{DD} < 4.5	V	400			ns
Delay time from	tkso2	C = 100 pF ^{Note}	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			200	ns
SCK3n↓ to SO3n			1.8 V ≤ V _{DD} < 4.5 V			300	ns
output							

 $\textbf{Note} \quad \textbf{C} \text{ is the load capacitance of the SO3n output line.}$

Remark n = 0, 1

(c) UART mode (dedicated baud-rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			187500	bps
		$3.0 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$			131031	bps
		2.7 V ≤ V _{DD} < 3.0 V			78125	bps
		1.8 V ≤ V _{DD} < 2.7 V			39063	bps

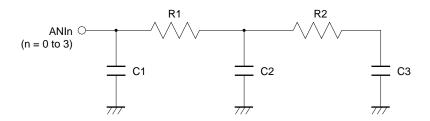
(d) UART mode (external clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK0 cycle time	t _{KCY3}	4.0 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.0 V	1600			ns
		1.8 V ≤ V _{DD} < 2.7 V	3200			ns
ASCK0 high-/low-level width	t кнз,	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	400			ns
	tкьз	2.7 V ≤ V _{DD} < 4.0 V	800			ns
		1.8 V ≤ V _{DD} < 2.7 V	1600			ns
Transfer rate		$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			39063	bps
		$2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}$			19531	bps
		1.8 V ≤ V _{DD} < 2.7 V			9766	bps

(e) UART mode (infrared data transfer mode)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Transfer rate		$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		131031	bps
Allowable bit rate error		$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		±0.87	%
Output pulse width		4.0 V ≤ V _{DD} ≤ 5.5 V	1.2	0.24/fbr ^{Note}	μs
Input pulse width		4.0 V ≤ V _{DD} ≤ 5.5 V	4/fx		μs

Note fbr: Specified baud rate


A/D Converter Characteristics (TA = -40 to +85°C, VDD = AVDD = 1.8 to 5.5 V, AVss = Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error ^{Note}		4.0 V ≤ AV _{REF} ≤ 5.5 V			±0.4	%FSR
		2.7 V ≤ AV _{REF} < 4.0 V			±0.6	%FSR
		1.8 V ≤ AVREF < 2.7 V			±1.2	%FSR
Conversion time	tconv	4.5 V ≤ AV _{DD} ≤ 5.5 V	12		96	μs
		4.0 V ≤ AV _{DD} < 4.5 V	14		96	μs
		2.7 V ≤ AV _{DD} < 4.0 V	17		96	μs
		1.8 V ≤ AV _{DD} < 2.7 V	28		96	μs
Analog input voltage	VIAN		0		AVREF	V
Reference voltage	AVREF		1.8		AVDD	V
Resistance between AVREF and AVss	RREF	When A/D converter not operating	20	40		kΩ

Note Excludes quantization error (±1/2 LSB). This value is indicated as a ratio (%FSR) to the full-scale value.

Remark The impedance of the analog input pins is shown below.

[Equivalent circuit]

[Parameter value]

					(TYP.)
AV _{DD}	R1	R2	C1	C2	C3
2.7 V	12 kΩ	8.0 kΩ	3.0 pF	3.0 pF	2.0 pF
4.5 V	4 kΩ	2.7 kΩ	3.0 pF	1.4 pF	2.0 pF

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = -40 to +85°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	VDDDR		1.6		5.5	٧
Data retention power supply current	IDDDR	Subsystem clock stop (XT1 = V _{DD}) and feed-back resistor disconnected		0.1	30	μΑ
Release signal set time	tsrel		0			μs
Oscillation stabilization	twait	Release by RESET		2 ¹⁷ /fx		S
time		Release by interrupt request		Note		s

Note Selection of 2^{12} /fx and 2^{14} /fx to 2^{17} /fx is possible using bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS).

12.2 μ PD780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A), and Conventional Products of μ PD780021A(A), 780022A(A), 780023A(A), 780024A(A)

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

Parameter	Symbol		Conditions		Ratings	Unit
Supply voltage	V _{DD}				-0.3 to +6.5	V
	AVDD				-0.3 to V _{DD} + 0.3 ^{Note}	V
	AVREF				-0.3 to V _{DD} + 0.3 ^{Note}	V
	AVss				-0.3 to +0.3	V
Input voltage	VII		10 to P17, P20 to P2 64 to P67, P70 to P75	-0.3 to V _{DD} + 0.3 ^{Note}	V	
	V ₁₂	P30 to P33	N-ch open-drain	Without pull-up resistor	-0.3 to + 6.5	V
				With pull-up resistor	-0.3 to V _{DD} + 0.3 ^{Note}	V
Output voltage	Vo				-0.3 to $V_{DD} + 0.3^{Note}$	V
Analog input voltage	Van	P10 to P17		Analog input pin	AVss $-$ 0.3 to AV _{REF0} + 0.3 ^{Note} and $-$ 0.3 to V _{DD} + 0.3 ^{Note}	V
Output current,	Іон	Per pin			-10	mA
high		Total for P00 to P03, P40 to P47, P50 to P57, P64 to P67, P70 to P75			– 15	mA
		Total for P20	to P25, P30 to P3	– 15	mA	
Output current,	Іоь	Per pin for Po	00 to P03, P20 to I	20	mA	
low		P36, P40 to I	P47, P64 to P67, P	70 to P75		
		Per pin for Page	30 to P33, P50 to I	30	mA	
		Total for P00	to P03, P40 to P4	7,	50	mA
		P64 to P67, I	P70 to P75			
		Total for P20	to P25		20	mA
		Total for P30	to P36		100	mA
		Total for P50	to P57		100	mA
Operating ambient temperature	Та				-40 to +85	°C
Storage temperature	Tstg				-65 to +150	°C

Note 6.5 V or below

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless otherwise specified, the characteristic of alternate-function pins are the same as those of port pins.

Capacitance (TA = 25° C, VDD = Vss = 0 V)

Parameter	Symbol	С	MIN.	TYP.	MAX.	Unit	
Input	Cin	f = 1 MHz				15	pF
capacitance		Unmeasured pins returne	Unmeasured pins returned to 0 V.				
I/O capacitance	Сю	f = 1 MHz Unmeasured pins returned to 0 V.	P00 to P03, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75			15	pF
			P30 to P33			20	pF

Remark Unless otherwise specified, the characteristic of alternate-function pins are the same as those of port pins.

Main System Clock Oscillator Characteristics (T_A = −40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic		Oscillation	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	1.0		8.38	MHz
resonator	IC X2 X1	frequency (fx)Note 1	1.8 V ≤ V _{DD} < 4.0 V	1.0		5.0	
	C2 = C1=	Oscillation	After V _{DD} reaches			4	ms
	027 017	stabilization timeNote 2	oscillation voltage range				
	<i>m</i>		MIN.				
Crystal	IC X2 X1	Oscillation	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	1.0		8.38	MHz
resonator		frequency (fx)Note 1	$1.8 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}$	1.0		5.0	
	C2 = C1 =	Oscillation	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			10	ms
		stabilization timeNote 2	$1.8 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}$			30	
External	1	X1 input	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	1.0		8.38	MHz
clock	X2 X1	frequency (fx)Note 1	$1.8 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}$	1.0		5.0	
		X1 input	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	50		500	ns
	<u> </u>	high-/low-level width	1.8 V ≤ V _{DD} < 4.0 V	85		500	
		(txH, txL)					

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. Time required to stabilize oscillation after reset or STOP mode release.

Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- · Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- . Always make the ground point of the oscillator capacitor the same potential as Vss1.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- · Do not fetch signals from the oscillator.
- When the main system clock is stopped and the system is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Subsystem Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	XT2 XT1 IC	Oscillation frequency (fxt)Note 1		32	32.768	35	kHz
	+C4 +C3	Oscillation	4.0 V ≤ V _{DD} ≤ 5.5 V		1.2	2	s
	777	stabilization time ^{Note 2}	1.8 V ≤ V _{DD} < 4.0 V			10	
External clock	XT2 XT1	XT1 input frequency (f _{XT}) ^{Note} 1		32		38.5	kHz
		XT1 input high-/low-level width (txth, txtl)		12		15	μs

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. Time required to stabilize oscillation after VDD reaches oscillation voltage range MIN.
- Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - . Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - . Always make the ground point of the oscillator capacitor the same potential as Vss1.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - The subsystem clock oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.

Remark For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Recommended Oscillator Constant

Main system clock: Ceramic resonator ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

Manufacturer	Part Number	Frequency	Recommo	ended Circuit	Constant	Oscillation V	oltage Range
		(MHz)	C1 (pF)	C2 (pF)	R1 (kΩ)	MIN. (V)	MAX. (V)
Murata Mfg.	CSBFB1M00J58	1.00	100	100	2.2	1.8	5.5
Co., Ltd.	CSBLA1M00J58	1.00	100	100	2.2	1.8	5.5
	CSTCC2M00G56	2.00	On-chip	On-chip	0	1.8	5.5
	CSTLS2M00G56	2.00	On-chip	On-chip	0	1.8	5.5
	CSTCC3M58G53	3.58	On-chip	On-chip	0	1.8	5.5
	CSTLS3M58G53	3.58	On-chip	On-chip	0	1.8	5.5
	CSTCR4M00G53	4.00	On-chip	On-chip	0	1.8	5.5
	CSTLS4M00G53	4.00	On-chip	On-chip	0	1.8	5.5
	CSTCR4M19G53	4.19	On-chip	On-chip	0	1.8	5.5
	CSTLS4M19G53	4.19	On-chip	On-chip	0	1.8	5.5
	CSTCR4M91G53	4.91	On-chip	On-chip	0	1.8	5.5
	CSTLS4M91G53	4.91	On-chip	On-chip	0	1.8	5.5
	CSTCR5M00G53	5.00	On-chip	On-chip	0	1.8	5.5
	CSTLS5M00G53	5.00	On-chip	On-chip	0	1.8	5.5
	CSTCE8M00G52	8.00	On-chip	On-chip	0	3.0	5.5
	CSTLS8M00G53	8.00	On-chip	On-chip	0	3.0	5.5
	CSTCE8M38G52	8.38	On-chip	On-chip	0	3.0	5.5
	CSTLS8M38G53	8.38	On-chip	On-chip	0	3.0	5.5
	CSTCE10M0G52	10.00	On-chip	On-chip	0	4.5	5.5
	CSTLS10M0G53	10.00	On-chip	On-chip	0	4.5	5.5
TDK	CCR3.58MC3	3.58	On-chip	On-chip	0	1.8	5.5
	CCR4.19MC3	4.19	On-chip	On-chip	0	1.8	5.5
	CCR5.0MC3	5.00	On-chip	On-chip	0	1.8	5.5
	CCR8.0MC5	8.00	On-chip	On-chip	0	2.0	5.5
	CCR8.38MC5	8.38	On-chip	On-chip	0	2.0	5.5

Caution The oscillator constant is a reference value based on evaluation in specific environments by the resonator manufacturer. If the oscillator characteristics need to be optimized in the actual application, request the resonator manufacturer for evaluation on the implementation circuit. Note that the oscillation voltage and oscillation frequency merely indicate the characteristics of the oscillator. Use the internal operation conditions of the μ PD780024A, 780024AY Subseries within the specifications of the DC and AC characteristics.

DC Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Conditions	S	MIN.	TYP.	MAX.	Unit
Output current,	Іон	Per pin				-1	mA
high		All pins				-15	mA
Output current,	loL	Per pin for P00 to P03, P20 to P	25, P34 to P36,			10	mA
low		P40 to P47, P64 to P67, P70 to	P75				
		Per pin for P30 to P33, P50 to P	57			15	mA
		Total for P00 to P03, P40 to P47,	P64 to P67, P70 to P75			20	mA
		Total for P20 to P25				10	mA
		Total for P30 to P36				70	mA
		Total for P50 to P57				70	mA
Input voltage,	V _{IH1}	P10 to P17, P21, P24, P35,	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0.7VDD		V _{DD}	V
high		P40 to P47, P50 to P57,	1.8 V ≤ V _{DD} < 2.7 V	0.8V _{DD}		V _{DD}	V
		P64 to P67, P74, P75		0.0133		• • • • • • • • • • • • • • • • • • • •	·
	V _{IH2}	P00 to P03, P20, P22, P23, P25,	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0.8Vpd		V _{DD}	V
		P34, P36, P70 to P73, RESET	1.8 V ≤ V _{DD} < 2.7 V	0.85V _{DD}		V _{DD}	V
	V _{IH3}	P30 to P33	2.7 V ≤ V _{DD} ≤ 5.5 V	0.7V _{DD}		5.5	V
		(N-ch open-drain)	1.8 V ≤ V _{DD} < 2.7 V	0.8Vpd		5.5	V
	V _{IH4}	X1, X2	2.7 V ≤ V _{DD} ≤ 5.5 V	V _{DD} - 0.5		V _{DD}	V
			1.8 V ≤ V _{DD} < 2.7 V	V _{DD} - 0.2		V _{DD}	V
	V _{IH5}	XT1, XT2	4.0 V ≤ V _{DD} ≤ 5.5 V	0.8V _{DD}		V _{DD}	V
			1.8 V ≤ V _{DD} < 4.0 V	0.9V _{DD}		V _{DD}	V
Input voltage,	VIL1	P10 to P17, P21, P24, P35,	2.7 V ≤ V _{DD} ≤ 5.5 V	0		0.3V _{DD}	V
low		P40 to P47, P50 to P57,	407/47/ 077/	0		0.01/	
		P64 to P67, P74, P75	1.8 V ≤ V _{DD} < 2.7 V	0		0.2V _{DD}	V
	V _{IL2}	P00 to P03, P20, P22, P23, P25,	2.7 V ≤ V _{DD} ≤ 5.5 V	0		0.2V _{DD}	V
		P34, P36, P70 to P73, RESET	1.8 V ≤ V _{DD} < 2.7 V	0		0.15V _{DD}	V
	VIL3	P30 to P33	4.0 V ≤ V _{DD} ≤ 5.5 V	0		0.3V _{DD}	V
			$2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}$	0		0.2V _{DD}	٧
			$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0		0.1V _{DD}	V
	VIL4	X1, X2	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0		0.4	V
			$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0		0.2	V
	VIL5	XT1, XT2	4.0 V ≤ V _{DD} ≤ 5.5 V	0		0.2V _{DD}	V
			$1.8 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$	0		0.1V _{DD}	V
Output voltage,	Vон1	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ IoH} = -1 \text{ mA}$	<u> </u>	V _{DD} - 1.0		V _{DD}	V
high		$1.8 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, \text{ IoH} = -100 \mu$	μA	V _{DD} - 0.5		V _{DD}	V
Output voltage,	Vol1	P30 to P33	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V},$			2.0	V
low		P50 to P57	IoL = 15 mA		0.4	2.0	V
		P00 to P03, P20 to P25, P34 to P36,	$4.0 V \leq V_{DD} \leq 5.5 V,$			0.4	V
		P40 to P47, P64 to P67, P70 to P75	IoL = 1.6 mA				
	Vol2	IoL = 400 μA				0.5	V

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	C	Conditions	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішн1	Vin = Vdd	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET			3	μΑ
	ILIH2		X1, X2, XT1, XT2			20	μΑ
	Інз	V _{IN} = 5.5 V	P30 to P33 ^{Note 1}			3	μΑ
Input leakage current, low	ILIL1	Vin = 0 V	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET			-3	μΑ
	ILIL2		X1, X2, XT1, XT2			-20	μΑ
	I LIL3		P30 to P33 ^{Note 1}			-3	μΑ
Output leakage current, high	Ігон	Vout = Vdd				3	μΑ
Output leakage current, low	ILOL	Vout = 0 V				-3	μΑ
Mask option pull-up resistance	R ₁	V _{IN} = 0 V, P30, P31, P32 ^{Note 2} , P33 ^{Note 2}		15	30	90	kΩ
Software pull- up resistance	R ₂	V _{IN} = 0 V, P00 to P03, P20 to P29 P50 to P57, P64 to P6	5, P34 to P36, P40 to P47, 7, P70 to P75	15	30	90	kΩ

Notes 1. μ PD780021A(A), 780022A(A), 780023A(A), 780024A(A):

When pull-up resistors are not connected to P30 to P33 (specified by the mask option). μ PD780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A):

When pull-up resistors are not connected to P30 and P31 (specified by the mask option).

2. Only for the μ PD780021A(A), 780022A(A), 780023A(A), and 780024A(A).

 $\textbf{Remark} \quad \text{Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.}$

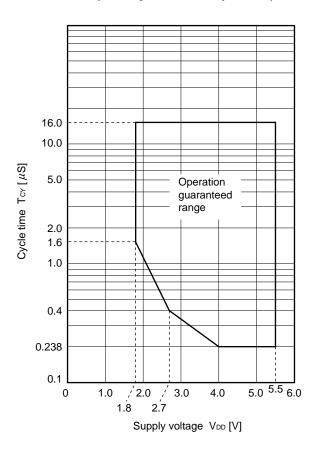
DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Power supply current ^{Note 1}	_{DD1} Note 2	8.38 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V } \pm 10\%^{\text{Note 3}}$	When A/D converter is stopped		5.5	11	mA
		operating mode		When A/D converter is operating Note 6		6.5	13	mA
		5.00 MHz crystal oscillation	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When A/D converter is stopped		2	4	mA
I _{DD2}		operating mode		When A/D converter is operating Note 6		3	6	mA
			V _{DD} = 2.0 V ±10% ^{Note 4}	When A/D converter is stopped		0.4	1.5	mA
			When A/D converter is operating Note 6		1.4	4.2	mA	
	I _{DD2}	8.38 MHz crystal oscillation HALT mode $V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note}}$	V _{DD} = 5.0 V ±10% ^{Note 3}	When peripheral functions are stopped		1.1	2.2	mA
				When peripheral functions are operating			4.7	mA
		5.00 MHz crystal oscillation	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When peripheral functions are stopped		0.35	0.7	mA
		HALT mode	HALT mode	When peripheral functions are operating			1.7	mA
			V _{DD} = 2.0 V ±10%Note 4	When peripheral functions are stopped		0.15	0.4	mA
				When peripheral functions are operating			1.1	mA
	IDD3	32.768 kHz crys	stal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%$		40	80	μΑ
		operating mode	Note 5	$V_{DD} = 3.0 \text{ V} \pm 10\%$		20	40	μΑ
				V _{DD} = 2.0 V ±10%		10	20	μΑ
	I _{DD4}	32.768 kHz crys	stal oscillation	V _{DD} = 5.0 V ±10%		30	60	μΑ
		HALT mode ^{Note}	5	V _{DD} = 3.0 V ±10%		6	18	μΑ
				V _{DD} = 2.0 V ±10%		2	10	μΑ
	I _{DD5}	XT1 = VDD STO	P mode	V _{DD} = 5.0 V ±10%		0.1	30	μΑ
		When feedback re	esistor is not used	V _{DD} = 3.0 V ±10%		0.05	10	μΑ
				V _{DD} = 2.0 V ±10%		0.05	10	μΑ

Notes 1. Total current through the internal power supply (VDD0, VDD1) (except the current through pull-up resistors of ports).

- 2. IDD1 includes the peripheral operation current.
- 3. When the processor clock control register (PCC) is set to 00H.
- 4. When PCC is set to 02H.
- **5.** When main system clock operation is stopped.
- 6. Includes the current through the AVDD pin.

AC Characteristics


(1) Basic Operation (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	C	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time	Тсч	Operating with	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0.238		16	μs
(Min. instruction		main system clock	2.7 V ≤ V _{DD} < 4.0 V	0.4		16	μs
execution time)			1.8 V ≤ V _{DD} < 2.7 V	1.6		16	μs
		Operating with subs	system clock	103.9Note 1	122	125	μs
TI00, TI01 input	ttiho, ttilo	4.0 V ≤ V _{DD} ≤ 5.5 V		2/f _{sam} +0.1 Note 2			μs
high-/low-level		$\boxed{2.7~\text{V} \leq \text{V}_{\text{DD}} < 4.0~\text{V}}$		2/f _{sam} +0.2 ^{Note} 2			μs
width		1.8 V ≤ V _{DD} < 2.7 V		2/f _{sam} +0.5 ^{Note} 2			μs
TI50, TI51 input	fтı5	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		0		4	MHz
frequency		$1.8~\textrm{V} \leq \textrm{V}_\textrm{DD} < 2.7~\textrm{V}$		0		275	kHz
TI50, TI51 input high-/low-level	tTIH5, tTIL5	2.7 V ≤ V _{DD} ≤ 5.5 V		100			ns
width		1.8 V ≤ V _{DD} < 2.7 V		1.8			ns
Interrupt request	tinth, tintl	INTP0 to INTP3,	2.7 V ≤ V _{DD} ≤ 5.	5 V 1			μs
input high-/low- level width		P40 to P47	1.8 V ≤ V _{DD} < 2.	7 V 2			μs
RESET	trsL	2.7 V ≤ V _{DD} ≤ 5.5 V	10			μs	
low-level width		1.8 V ≤ V _{DD} < 2.7 V		20			μs

Notes 1. Value when the external clock is used. When a crystal resonator is used, it is 114 μ s (MIN.).

2. Selection of $f_{sam} = f_x$, $f_x/4$, $f_x/64$ is possible using bits 0 and 1 (PRM00, PRM01) of prescaler mode register 0 (PRM0). However, if the TI00 valid edge is selected as the count clock, the value becomes $f_{sam} = f_x/8$.

Tcy vs. VDD (main system clock operation)

(2) Read/Write Operation (T_A = -40 to +85°C, V_{DD} = 4.0 to 5.5 V)

(1/3)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.3tcy		ns
Address setup time	tads		20		ns
Address hold time	t adh		6		ns
Data input time from address	tADD1			(2 + 2n)tcy - 54	ns
•	tADD2			(3 + 2n)tcy - 60	ns
Address output time from $\overline{RD} \downarrow$	trdad		0	100	ns
Data input time from RD↓	trdd1			(2 + 2n)tcy - 87	ns
	trdd2			(3 + 2n)tcy - 93	ns
Read data hold time	trdh		0		ns
RD low-level width	trdL1		(1.5 + 2n)tcy - 33		ns
	trdl2		(2.5 + 2n)tcy - 33		ns
Input time from RD↓ to WAIT↓	trdwt1			tcy - 43	ns
	trdwt2			tcy - 43	ns
Input time from $\overline{WR} \downarrow$ to $\overline{WAIT} \downarrow$	twrwt			tcy - 25	ns
WAIT low-level width	twTL		(0.5 + n)tcy + 10	(2 + 2n)tcy	ns
Write data setup time	twos		60		ns
Write data hold time	twoh		6		ns
WR low-level width	twrL1		(1.5 + 2n)tcy - 15		ns
Delay time from ASTB↓ to $\overline{\text{RD}}$ ↓	tastrd		6		ns
Delay time from ASTB \downarrow to $\overline{\text{WR}}\downarrow$	tastwr		2tcy - 15		ns
Delay time from	trdast		0.8tcy - 15	1.2tcy	ns
RD↑ to ASTB↑ at external fetch Address hold time from RD↑ at external fetch	trdadh		0.8tcy - 15	1.2tcy + 30	ns
Write data output time from RD↑	trowo		40		ns
Write data output time from WR↓	twrwd		10	60	ns
Address hold time from WR↑	twradh		0.8tcy - 15	1.2tcy + 30	ns
Delay time from WAIT↑ to RD↑	twtrd		0.8tcy	2.5tcy + 25	ns
Delay time from $\overline{\text{WAIT}} \uparrow$ to $\overline{\text{WR}} \uparrow$	twrwr		0.8tcy	2.5tcy + 25	ns

Caution Tcy can only be used when the MIN. value is 0.238 μ s.

- **Remarks 1.** tcy = Tcy/4
 - 2. n indicates the number of waits.
 - 3. $C_L = 100 \text{ pF}$ (C_L indicates the load capacitance of the AD0 to AD7, A8 to A15, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{WAIT}}$, and ASTB pins.)

(2) Read/Write Operation (T_A = -40 to +85°C, V_{DD} = 2.7 to 4.0 V)

(2/3)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.3tcy		ns
Address setup time	tads		30		ns
Address hold time	t ADH		10		ns
Input time from address to data	tADD1			(2 + 2n)tcy - 108	ns
	tADD2			(3 + 2n)tcy - 120	ns
Output time from RD↓ to address	trdad		0	200	ns
Input time from RD↓ to data	tRDD1			(2 + 2n)tcy - 148	ns
	tRDD2			(3 + 2n)tcy - 162	ns
Read data hold time	t RDH		0		ns
RD low-level width	tRDL1		(1.5 + 2n)tcy - 40		ns
	tRDL2		(2.5 + 2n)tcy - 40		ns
Input time from RD↓ to WAIT↓	trdwT1			tcy - 75	ns
	trdwt2			tcy - 60	ns
Input time from WR↓ to WAIT↓	twrwt			tcy - 50	ns
WAIT low-level width	twtL		(0.5 + 2n)tcy + 10	(2 + 2n)tcy	ns
Write data setup time	twos		60		ns
Write data hold time	twoн		10		ns
WR low-level width	twrL1		(1.5 + 2n)tcy - 30		ns
Delay time from ASTB↓ to \overline{RD} ↓	tastrd		10		ns
Delay time from ASTB↓ to WR↓	tastwr		2tcy - 30		ns
Delay time from	trdast		0.8tcy - 30	1.2tcy	ns
RD↑ to ASTB↑ at external fetch					
Hold time from	trdadh		0.8tcy - 30	1.2tcy + 60	ns
RD↑ to address at external fetch					
Write data output time from RD↑	trdwd		40		ns
Write data output time from WR↓	twrwd		20	120	ns
Hold time from WR↑ to address	twradh		0.8tcy - 30	1.2tcy + 60	ns
Delay time from WAIT↑ to RD↑	twtrd		0.5tcY	2.5tcy + 50	ns
Delay time from WAIT↑ to WR↑	twtwr		0.5tcy	2.5tcy + 50	ns

Caution Tcy can only be used when the MIN. value is 0.4 μ s.

- **Remarks 1.** tcy = Tcy/4
 - 2. n indicates the number of waits.
 - 3. $C_L = 100 \text{ pF}$ (C_L indicates the load capacitance of the AD0 to AD7, AD8 to AD15, \overline{RD} , \overline{WR} , \overline{WAIT} , and ASTB pins.)

(2) Read/Write Operation (T_A = -40 to +85°C, V_{DD} = 1.8 to 2.7 V)

(3/3)

					(3/3
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.3tcy		ns
Address setup time	tADS		120		ns
Address hold time	t ADH		20		ns
Input time from address to data	t _{ADD1}			(2 + 2n)tcy - 233	ns
	t _{ADD2}			(3 + 2n)tcy - 240	ns
Output time from $\overline{RD} \downarrow$ to address	trdad		0	400	ns
Input time from RD↓ to data	tRDD1			(2 + 2n)tcy - 325	ns
	tRDD2			(3 + 2n)tcy - 332	ns
Read data hold time	trdh		0		ns
RD low-level width	tRDL1		(1.5 + 2n)tcy - 92		ns
	tRDL2		(2.5 + 2n)tcy - 92		ns
Input time from $\overline{RD} \downarrow$ to $\overline{WAIT} \downarrow$	trdwt1			tcy - 350	ns
	trdwt2			tcy - 132	ns
Input time from $\overline{WR} \downarrow$ to $\overline{WAIT} \downarrow$	twrwt			tcy - 100	ns
WAIT low-level width	twtL		(0.5 + 2n)tcy + 10	(2 + 2n)tcy	ns
Write data setup time	twos		60		ns
Write data hold time	twoн		20		ns
WR low-level width	twrL1		(1.5 + 2n)tcy - 60		ns
Delay time from ASTB \downarrow to $\overline{\text{RD}}\downarrow$	tastrd		20		ns
Delay time from ASTB \downarrow to $\overline{\text{WR}}\downarrow$	tastwr		2tcy - 60		ns
Delay time from	trdast		0.8tcy - 60	1.2tcy	ns
RD↑ to ASTB↑ at external fetch					
Hold time from	trdadh		0.8tcy - 60	1.2tcy + 120	ns
$\overline{\mathrm{RD}} \!\!\uparrow$ to address at external fetch					
Write data output time from RD↑	trowd		40		ns
Write data output time from $\overline{\mathrm{WR}}\!\downarrow$	twrwd		40	240	ns
Hold time from WR↑ to address	twradh		0.8tcy - 60	1.2tcy + 120	ns
Delay time from $\overline{\text{WAIT}}\uparrow$ to $\overline{\text{RD}}\uparrow$	twtrd		0.5tcy	2.5tcy + 100	ns
Delay time from WAIT↑ to WR↑	twrwr		0.5tcy	2.5tcy + 100	ns

Caution Tey can only be used when the MIN. value is 1.6 μ s.

- **Remarks 1.** tcy = Tcy/4
 - 2. n indicates the number of waits.
 - 3. $C_L = 100 \text{ pF}$ (C_L indicates the load capacitance of the AD0 to AD7, AD8 to AD15, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{WAIT}}$, and ASTB pins.)

(3) Serial Interface (TA = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

(a) 3-wire serial I/O mode (SCK3n... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK3n	t KCY1	4.0 V ≤ V _{DD} ≤ 5.5 V	954			ns
cycle time		$2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}$	1600			ns
		1.8 V ≤ V _{DD} < 2.7 V	3200			ns
SCK3n high-/	tkH1, tkL1	4.0 V ≤ V _{DD} ≤ 5.5 V	tксү1/2 – 50			ns
low-level width		1.8 V ≤ V _{DD} < 4.0 V	tксү1/2 - 100			ns
SI3n setup time	tsıĸı	4.0 V ≤ V _{DD} ≤ 5.5 V	100			ns
(to SCK3n ↑)		2.7 V ≤ V _{DD} < 4.0 V	150			ns
		1.8 V ≤ V _{DD} < 2.7 V	300			ns
SI3n hold time (from SCK3n↑)	tksii		400			ns
Delay time from SCK3n↓ to SO3n output	tkso1	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the SCK3n and SO3n output lines.

(b) 3-wire serial I/O mode (SCK3n... External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK3n	tkCY2	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	800			ns
cycle time		2.7 V ≤ V _{DD} < 4.0 V	1600			ns
		1.8 V ≤ V _{DD} < 2.7 V	3200			ns
SCK3n high-/	tkH2, tkL2	4.0 V ≤ V _{DD} ≤ 5.5 V	400			ns
low-level width		2.7 V ≤ V _{DD} < 4.0 V	800			ns
		1.8 V ≤ V _{DD} < 2.7 V	1600			ns
SI3n setup time (to SCK3n↑)	tsık2		100			ns
SI3n hold time (from SCK3n↑)	tksi2		400			ns
Delay time from SCK3n↓ to SO3n output	tkso2	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the SO3n output line.

Remark Conventional products of μ PD780021A(A), 780022A(A), 780023A(A), 780024A(A): n = 0 or 1 μ PD780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A): n = 0

(c) UART mode (dedicated baud-rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.0~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$			131031	bps
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$			78125	bps
		$1.8 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$			39063	bps

(d) UART mode (external clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK0 cycle time	tксүз	$4.0~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	800			ns
		$2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}$	1600			ns
		$1.8 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	3200			ns
ASCK0 high-/low-level width	t кнз,	$4.0~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	400			ns
	tкLз	$2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}$	800			ns
		$1.8 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	1600			ns
Transfer rate		$4.0~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$			39063	bps
		$2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}$			19531	bps
		$1.8 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$			9766	bps

(e) UART mode (infrared data transfer mode)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Transfer rate		$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		131031	bps
Allowable bit rate error		$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		±0.87	%
Output pulse width		$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	1.2	0.24/fbr ^{Note}	μs
Input pulse width		4.0 V ≤ V _{DD} ≤ 5.5 V	4/fx		μs

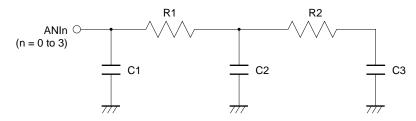
Note fbr: Specified baud rate

(f) I^2C bus mode (μ PD780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A) only)

		0	Standa	d Mode	High-Spe	ed Mode	11
P	arameter	Symbol	MIN.	MAX.	MIN.	MAX.	Unit
SCL0 clock free	quency	fclk	0	100	0	400	kHz
Bus free time		t BUF	4.7	_	1.3	_	μs
(between stop	and start conditions)						
Hold timeNote 1		thd:STA	4.0	_	0.6	_	μs
SCL0 clock low	y-level width	t LOW	4.7	_	1.3	_	μs
SCL0 clock hig	SCL0 clock high-level width		4.0	_	0.6	_	μs
Start/restart co	Start/restart condition setup time		4.7	_	0.6	_	μs
Data hold time	CBUS-compatible master	thd:dat	5.0	_	_	_	μs
	I ² C bus		O ^{Note 2}	_	O ^{Note 2}	0.9 ^{Note 3}	μs
Data setup time	e	tsu:DAT	250	_	100 ^{Note 4}	_	ns
SDA0 and SCL	0 signal rise time	tr		1000	20 + 0.1Cb ^{Note 5}	300	ns
SDA0 and SCL0 signal fall time		tғ		300	20 + 0.1Cb ^{Note 5}	300	ns
Stop condition setup time		tsu:sto	4.0	_	0.6	_	μs
Spike pulse width controlled by input filter		tsp		_	0	50	ns
Capacitive load	I per bus line	Cb	_	400	_	400	pF

- **Notes 1.** In the start condition, the first clock pulse is generated after this hold time.
 - 2. To fill in the undefined area of the SCL0 falling edge, it is necessary for the device to internally provide at least 300 ns of hold time for the SDA0 signal (which is VIHmin. of the SCL0 signal).
 - 3. If the device does not extend the SCL0 signal low hold time (tLOW), only the maximum data hold time thd:Dat needs to be fulfilled.
 - **4.** The high-speed mode I²C bus is available in a standard mode I²C bus system. At this time, the conditions described below must be satisfied.
 - If the device does not extend the SCL0 signal low state hold time $t_{\text{SU:DAT}} \geq 250 \text{ ns}$
 - If the device extends the SCL0 signal low state hold time

 Be sure to transmit the next data bit to the SDA0 line before the SCL0 line is released (trmax. + tsu:DAT = 1000 + 250 = 1250 ns by standard mode I²C bus specification).
 - **5.** Cb: Total capacitance per bus line (unit: pF)


A/D Converter Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = AV_{DD} = 1.8 \text{ to } 5.5 \text{ V}$, $AV_{SS} = V_{SS} = 0 \text{ V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error ^{Note}		4.0 V ≤ AV _{REF} ≤ 5.5 V			±0.4	%FSR
		2.7 V ≤ AV _{REF} < 4.0 V			±0.6	%FSR
		1.8 V ≤ AVREF < 2.7 V			±1.2	%FSR
Conversion time	tconv	4.0 V ≤ AV _{DD} ≤ 5.5 V	14		96	μs
		2.7 V ≤ AV _{DD} < 4.0 V	19		96	μs
		1.8 V ≤ AV _{DD} < 2.7 V	28		96	μs
Analog input voltage	VIAN		0		AVREF	V
Reference voltage	AVREF		1.8		AVDD	V
Resistance between AVREF and AVss	Rref	When A/D converter not operating	20	40		kΩ

Note Excludes quantization error (±1/2 LSB). This value is indicated as a ratio (%FSR) to the full-scale value.

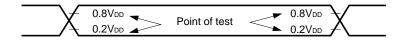
Remark The impedance of the analog input pins is shown below.

[Equivalent circuit]

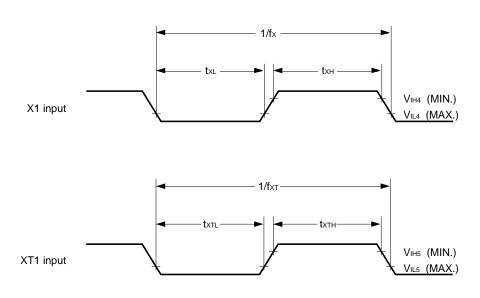
[Parameter value]

					(TYP.)
AV _{DD}	R1	R2	C1	C2	C3
2.7 V	12 kΩ	8.0 kΩ	3.0 pF	3.0 pF	2.0 pF
4.5 V	4 kΩ	2.7 kΩ	3.0 pF	1.4 pF	2.0 pF

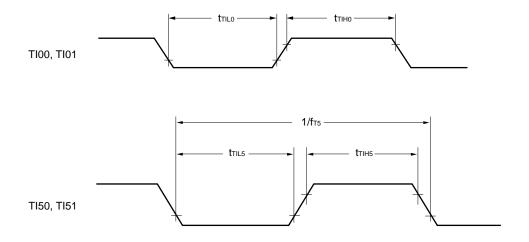
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = -40 to +85°C)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	VDDDR		1.6		5.5	V
Data retention power supply current	IDDDR	Subsystem clock stop (XT1 = V _{DD}) and feed-back resistor disconnected		0.1	30	μΑ
Release signal set time	tsrel		0			μs
Oscillation stabilization	twait	Release by RESET		2 ¹⁷ /fx		s
time		Release by interrupt request		Note		S

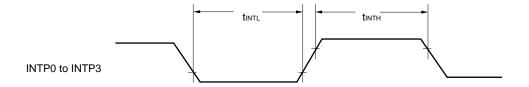
Note Selection of 2^{12} /fx and 2^{14} /fx to 2^{17} /fx is possible using bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS).



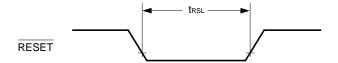
12.3 Timing Chart


AC Timing Test Points (excluding X1, XT1 inputs)

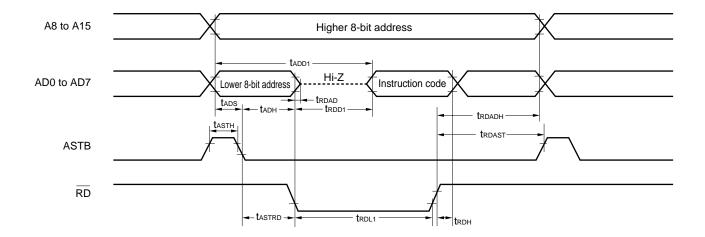
Clock Timing

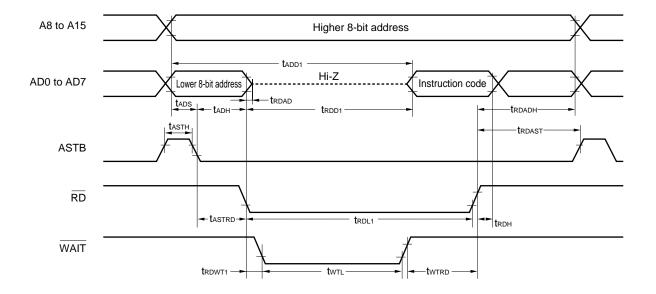


TI Timing



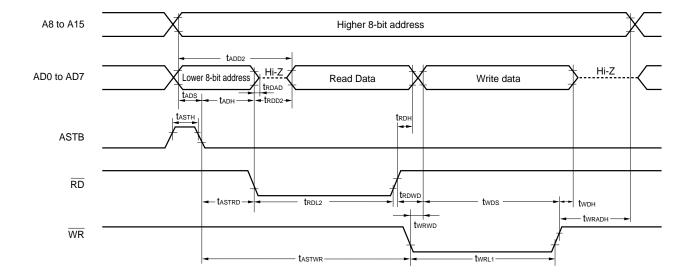
Interrupt Request Input Timing


RESET Input Timing

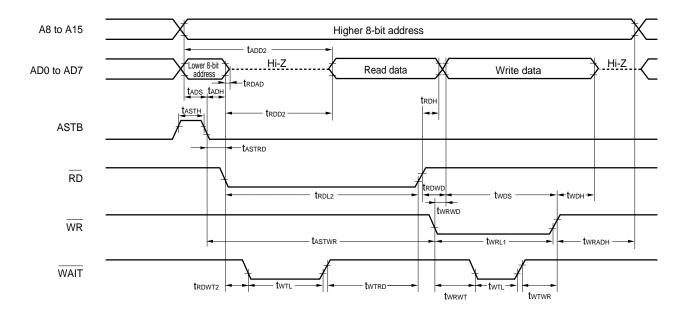


Read/Write Operation

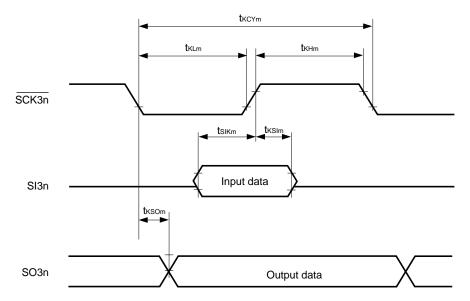
External fetch (no wait):



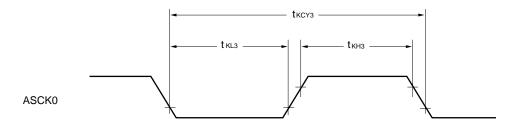
External fetch (wait insertion):

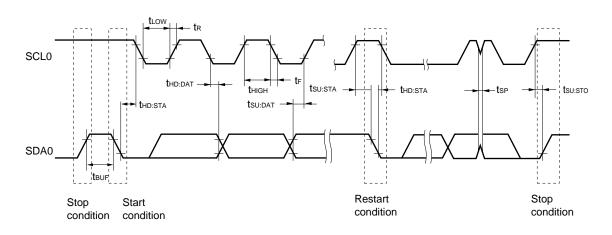


External data access (no wait):


External data access (wait insertion):

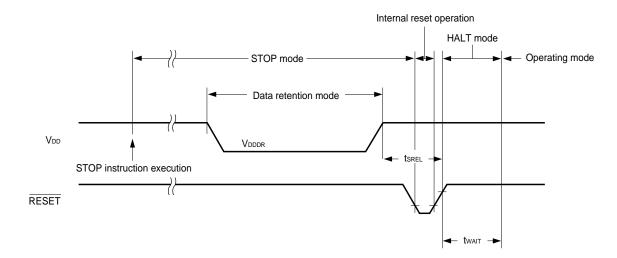
Serial Transfer Timing


3-wire serial I/O mode:

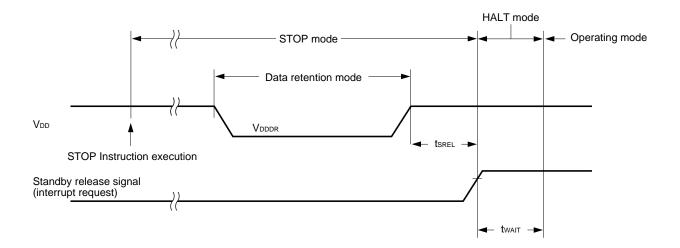

Remarks 1. m = 1, 2

2. μ PD780021A(A), 780022A(A), 780023A(A), 780024A(A): n = 0, 1 μ PD780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A): n = 0

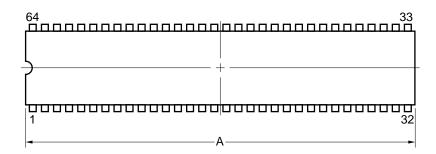
UART mode (external clock input):

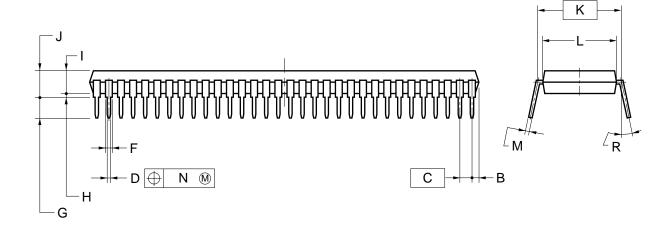


I^2C bus mode (μ PD780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A) only):



Data Retention Timing (STOP Mode Release by RESET)

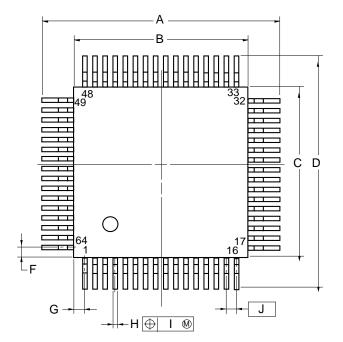

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Request Signal)



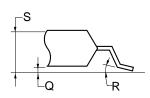
13. PACKAGE DRAWINGS

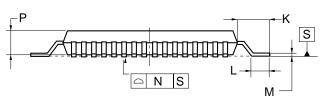
64-PIN PLASTIC SDIP (19.05mm(750))

NOTES


- Each lead centerline is located within 0.17 mm of its true position (T.P.) at maximum material condition.
- 2. Item "K" to center of leads when formed parallel.

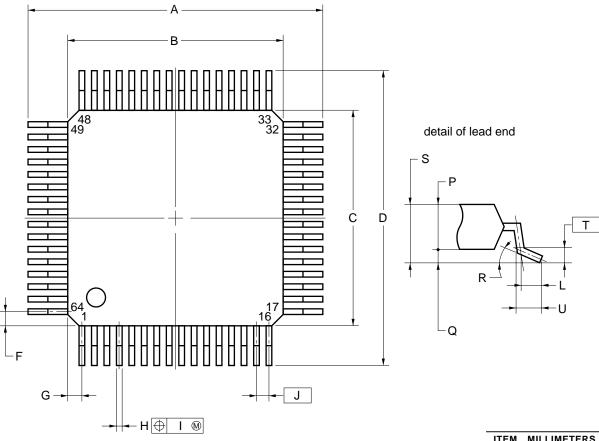
ITEM	MILLIMETERS
Α	58.0 ^{+0.68} _{-0.20}
В	1.78 MAX.
С	1.778 (T.P.)
D	0.50±0.10
F	0.9 MIN.
G	3.2±0.3
Н	0.51 MIN.
I	4.05 ^{+0.26} _{-0.20}
J	5.08 MAX.
K	19.05 (T.P.)
L	17.0±0.2
М	0.25+0.10
N	0.17
R	0 ~ 15°


P64C-70-750A,C-4



64-PIN PLASTIC QFP (14x14)

detail of lead end

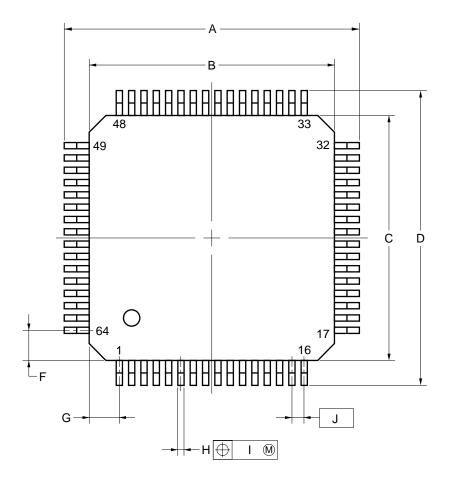


NOTE

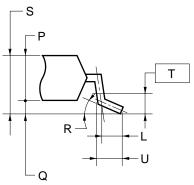
Each lead centerline is located within 0.15 mm of its true position (T.P.) at maximum material condition.

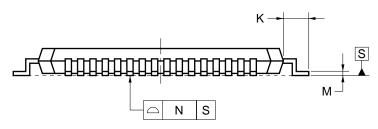
ITEM	MILLIMETERS	
Α	17.6±0.4	
В	14.0±0.2	
С	14.0±0.2	
D	17.6±0.4	
F	1.0	
G	1.0	
Н	0.37 ^{+0.08} _{-0.07}	
ı	0.15	
J	0.8 (T.P.)	
K	1.8±0.2	
L	0.8±0.2	
М	0.17+0.08	
N	0.10	
Р	2.55±0.1	
Q	0.1±0.1	
R	5°± 5°	
S	2.85 MAX.	
	P64GC-80-AB8-5	

64-PIN PLASTIC LQFP (14x14)


NOTE

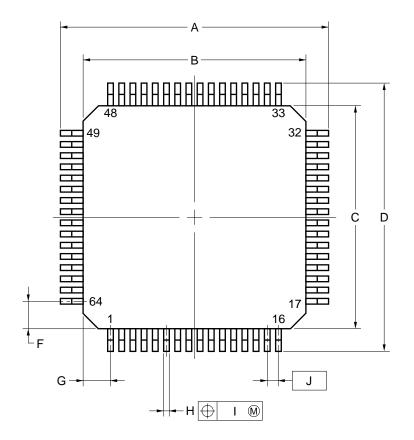
Each lead centerline is located within 0.20 mm of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS	
Α	17.2±0.2	
В	14.0±0.2	
С	14.0±0.2	
D	17.2±0.2	
F	1.0	
G	1.0	
Н	$0.37^{+0.08}_{-0.07}$	
I	0.20	
J	0.8 (T.P.)	
K	1.6±0.2	
L	0.8	
M	$0.17^{+0.03}_{-0.06}$	
N	0.10	
Р	1.4±0.1	
Q	0.127±0.075	
R	3° +4° -3°	
S	1.7 MAX.	
T	0.25	
U	0.886±0.15	
	P64GC-80-8BS	

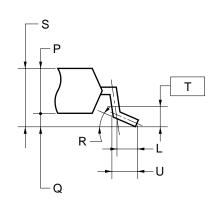


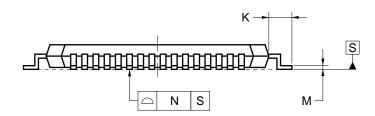
64-PIN PLASTIC TQFP (12x12)

detail of lead end


NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS
Α	14.0±0.2
В	12.0±0.2
С	12.0±0.2
D	14.0±0.2
F	1.125
G	1.125
Н	$0.32^{+0.06}_{-0.10}$
I	0.13
J	0.65 (T.P.)
K	1.0±0.2
L	0.5
М	$0.17^{+0.03}_{-0.07}$
N	0.10
Р	1.0
Q	0.1±0.05
R	3°+4° -3°
S	1.1±0.1
Т	0.25
U	0.6±0.15
	P64GK-65-9ET-3



64-PIN PLASTIC LQFP (10x10)

detail of lead end

ITEM	MILLIMETERS
A	12.0±0.2
В	10.0±0.2
С	10.0±0.2
D	12.0±0.2
F	1.25
G	1.25
Н	0.22±0.05
ı	0.08
J	0.5 (T.P.)
K	1.0±0.2
L	0.5
М	$0.17^{+0.03}_{-0.07}$
N	0.08
Р	1.4
Q	0.1±0.05
R	3°+4°
S	1.5±0.10
Т	0.25
U	0.6±0.15
	S64GB-50-8EU-1

14. RECOMMENDED SOLDERING CONDITIONS

The μ PD780021A(A), 780022A(A), 780023A(A), and 780024A(A)^{Note} should be soldered and mounted under the following recommended conditions.

For details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales representative.

Note The μ PD780021AY(A), 780022AY(A) (except for the 64-pin plastic QFP (GC-AB8 type)), 780023AY(A), and 780024AY(A) and the 64-pin plastic LQFP (GB-8EU type) of the μ PD780021A(A), 780022A(A), 780023A(A), and 780024A(A) are under development, so their soldering conditions are undetermined.

Table 14-1. Surface Mounting Type Soldering Conditions (1/2)

```
(1) μPD780021AGC(A)-xxx-AB8: 64-pin plastic QFP (14 x 14) μPD780022AGC(A)-xxx-AB8: 64-pin plastic QFP (14 x 14) μPD780023AGC(A)-xxx-AB8: 64-pin plastic QFP (14 x 14) μPD780024AGC(A)-xxx-AB8: 64-pin plastic QFP (14 x 14) μPD780022AYGC(A)-xxx-AB8: 64-pin plastic QFP (14 x 14)
```

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Three times or less	IR35-00-3
VPS	Package peak temperature: 215°C, Time: 40 seconds max. VP15-00-3 (at 200°C or higher), Count: Three times or less	
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once, Preheating temperature: 120°C Max. (package surface temperature)	WS60-00-1
Partial heating Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)		_

Caution Do not use different soldering methods together (except for partial heating).

```
* (2) μPD780021AGC(A)-xxx-8BS: 64-pin plastic LQFP (14 x 14) μPD780022AGC(A)-xxx-8BS: 64-pin plastic LQFP (14 x 14) μPD780023AGC(A)-xxx-8BS: 64-pin plastic LQFP (14 x 14) μPD780024AGC(A)-xxx-8BS: 64-pin plastic LQFP (14 x 14)
```

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max.	IR35-00-2
	(at 210°C or higher), Count: Two times or less	
VPS	Package peak temperature: 215°C, Time: 40 seconds max.	VP15-00-2
	(at 200°C or higher), Count: Two times or less	
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max.,	WS60-00-1
	Count: Once, Preheating temperature: 120°C Max. (package surface temperature)	
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Caution Do not use different soldering methods together (except for partial heating).

Table 14-1. Surface Mounting Type Soldering Conditions (2/2)

(3) μ PD780021AGK(A)-xxx-9ET: 64-pin plastic TQFP (12 x 12) μ PD780022AGK(A)-xxx-9ET: 64-pin plastic TQFP (12 x 12) μ PD780023AGK(A)-xxx-9ET: 64-pin plastic TQFP (12 x 12) μ PD780024AGK(A)-xxx-9ET: 64-pin plastic TQFP (12 x 12)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max.	IR35-107-2
	(at 210°C or higher), Count: Two times or less, Exposure limit:	
	7 days ^{Note} (after that, prebake at 125°C for 10 hours)	
VPS	Package peak temperature: 215°C, Time: 40 seconds max.	VP15-107-2
	(at 200°C or higher), Count: Two times or less, Exposure limit:	
	7 days ^{Note} (after that, prebake at 125°C for 10 hours)	
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max.,	WS60-107-1
	Count: Once, Preheating temperature: 120°C Max. (package surface temperature), Exposure limit: 7 days ^{Note} (after that, prebake at 125°C	
	for 10 hours)	
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65%RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Table 14-2. Insertion Type Soldering Conditions

 μ PD780021ACW(A)-xxx: 64-pin plastic SDIP (19.05 mm (750)) μ PD780022ACW(A)-xxx: 64-pin plastic SDIP (19.05 mm (750)) μ PD780023ACW(A)-xxx: 64-pin plastic SDIP (19.05 mm (750)) μ PD780024ACW(A)-xxx: 64-pin plastic SDIP (19.05 mm (750))

Soldering Method	Soldering Conditions	
Wave soldering (only for pins)	Solder bath temperature: 260°C max., Time: 10 seconds max.	
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	

Caution Apply wave soldering only to the pins and be careful not to bring solder into direct contact with the package.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD780024A, 780024AY Subseries.

Also refer to (6) Cautions on Using Development Tools.

(1) Software Package

SP78K0	CD-ROM in which various software tools for 78K/0 development are integrated in one
	package

(2) Language Processing Software

RA78K0	Assembler package common to 78K/0 Series	
CC78K0	C compiler package common to 78K/0 Series	
DF780024	Device file for μPD780024A, 780024AY Subseries	
CC78K0-L	C compiler library source file common to 78K/0 Series	

★ (3) Flash Memory Writing Tools

Flashpro III (FL-PR3, PG-FP3)	Flash programmer dedicated to microcontrollers with on-chip flash memory	
Flashpro IV (FL-PR4, PG-FP4)		
FA-64CW	Adapter for flash memory writing used connected to the Flashpro III/Flashpro IV.	
FA-64GC	• FA-64CW:	64-pin plastic SDIP (CW type)
FA-64GC-8BS-A	• FA-64GC:	64-pin plastic QFP (GC-AB8 type)
FA-64GK-9ET	• FA-64GC-8BS-A: 64-pin plastic LQFP (GC-8BS type)	
FA-64GB-8EU	• FA-64GK-9ET:	64-pin plastic TQFP (GK-9ET type)
	• FA-64GB-8EU:	64-pin plastic LQFP (GB-8EU type)

(4) Debugging Tools

• When using in-circuit emulator IE-78K0-NS or IE-78K0-NS-A

IE-78K0-NS	In-circuit emulator common to 78K/0 Series
IE-78K0-NS-PA	Performance board to enhance and expand the functions of IE-78K0-NS
IE-78K0-NS-A	Combination of IE-78K-NS and IE-78K0-NS-PA
IE-70000-MC-PS-B	Power supply unit for IE-78K0-N and IE-78K0-NS-A
IE-70000-98-IF-C	Adapter required when using PC-9800 series as host machine (excluding notebook PCs) (C bus supported)
IE-70000-CD-IF-A	PC card and interface cable when using notebook PC as host machine (PCMCIA socket supported)
IE-70000-PC-IF-C	Adapter required when using IBM PC/AT TM or compatible as host machine (ISA bus supported)
IE-70000-PCI-IF-A	Adapter required when using PC in which PCI bus is incorporated as host machine
IE-780034-NS-EM1	Emulation board to emulate μ PD780024A, 780024AY Subseries
NP-64CW	Emulation probe for 64-pin plastic SDIP (CW type)
NP-H64CW	
NP-64GC	Emulation probe for 64-pin plastic QFP (GC-AB8 type), 64-pin plastic LQFP (GC-8BS type)
NP-64GC-TQ	
NP-H64GC-TQ	
NP-64GK	Emulation probe for 64-pin plastic TQFP (GK-9ET type)
NP-H64GK-TQ	
NP-H64GB-TQ	Emulation probe for 64-pin plastic LQFP (GB-8EU type)
EV-9200GC-64	Conversion socket to connect the NP64GC and a target system board on which a 64-pin plastic QFP (GC-AB8 type), 64-pin plastic LQFP (GC-8BS type) can be mounted.
TGC-064SAP	Conversion adapter to connect the NP-64GC-TQ or NP-H64GC-TQ and a target system board on which a 64-pin plastic QFP (GC-AB8 type), 64-pin plastic LQFP (GC-8BS type) can be mounted
TGK-064SBW	Conversion adapter to connect the NP-64GK or NP-H64GK-TQ and a target system on which a 64-pin plastic TQFP (GK-9ET type) can be mounted
TGB-064SDP	Conversion socket to connect the NP-H64GB-TQ and a target system board on which a 64-pin plastic LQFP (GB-8EU type) can be mounted
ID78K0-NS	Integrated debugger for IE-78K0-NS and IE-78K0-NS-A
SM78K0	System simulator common to 78K/0 Series
DF780024	Device file for μPD780024A, 780024AY Subseries

• When using in-circuit emulator IE-78001-R-A

	IE-78001-R-A	In-circuit emulator common to 78K/0 Series	
	IE-70000-98-IF-C	Adapter required when using PC-9800 series as host machine (excluding notebook PCs) (C bus supported)	
IE-70000-PC-IF-C Interface adapter when using IBM PC/AT or compatible as host machine (ISA bus supp		Interface adapter when using IBM PC/AT or compatible as host machine (ISA bus supported)	
	IE-70000-PCI-IF-A Adapter required when using PC in which PCI bus is incorporated as host machine		
	IE-780034-NS-EM1	Emulation board to emulate μPD780024A, 780024AY Subseries	
	IE-78K0-R-EX1 Emulation probe conversion board necessary when using IE-780034-NS-EM1 on IE-78001-R		
	EP-78240CW-R	Emulation probe for 64-pin plastic SDIP (CW type)	
	EP-78240GC-R	Emulation probe for 64-pin plastic QFP (GC-AB8 type)	
	EP-78012GK-R	Emulation probe for 64-pin plastic TQFP (GK-9ET type)	
	EV-9200GC-64 Conversion socket to connect the EP-78240GC-R and a target system board on which a 64-p plastic QFP (GC-AB8 type) can be mounted		
*	TGK-064SBW	Conversion adapter to connect the EP-78012GK-R and a target system board on which a 64-pin plastic TQFP (GK-9ET type) can be mounted	
	ID78K0	Integrated debugger for IE-78001-R-A	
	SM78K0	System simulator common to 78K/0 Series	
	DF780024	Device file for µPD780024A, 780024AY Subseries	

(5) Real-Time OS

RX78K0	Real-time OS for 78K/0 Series
--------	-------------------------------

Caution The 64-pin plastic LQFP (GB-8EU type) does not support the IE-78001-R-A.

★ (6) Cautions on Using Development Tools

- The ID78K0-NS, ID78K0, and SM78K0 are used in combination with the DF780024.
- The CC78K0 and RX78K0 are used in combination with the RA78K0 and the DF780024.
- FL-PR3, FL-PR4, FA-64CW, FA-64GC, FA-64GC-8BS-A, FA-64GK-9ET, FA-64GB-8EU, NP-64CW, NP-64CW, NP-64GC, NP-64GC-TQ, NP-H64GC-TQ, NP-64GK, NP-H64GK-TQ, and NP-H64GB-TQ are products made by Naito Densei Machida Mfg. Co., Ltd. (+81-45-475-4191).
- TGC-064SAP, TGK-064SBW, and TGB-064SDP are products made by TOKYO ELETECH CORPORATION.

Refer to: Daimaru Kogyo, Ltd.

Tokyo Electronic Division (+81-3-3820-7112)

Osaka Electronic Division (+81-6-6244-6672)

- For third-party development tools, see the **Single-chip Microcontroller Development Tool Selection Guide** (U11069E).
- The host machines and OSs supporting each software are as follows.

Host Machine	PC	EWS
[OS]	PC-9800 series [Japanese Windows™]	HP9000 series 700™ [HP-UX™]
	IBM PC/AT and compatibles	SPARCstation™ [SunOS™, Solaris™]
Software	[Japanese/English Windows]	
RA78K0	√ Note	√
CC78K0	√ Note	V
ID78K0-NS	V	_
ID78K0	V	_
SM78K0	V	_
RX78K0	√ Note	$\sqrt{}$

Note DOS-based software

APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

	Document Name	Document No.
	μPD780024A, 780034A, 780024AY, 780034AY Subseries User's Manual	U14046E
	μ PD780021A, 780022A, 780023A, 780024A, 780021AY, 780022AY, 780023AY, 780024AY Data Sheet	U14042E
	μ PD780021A(A), 780022A(A), 780023A(A), 780024A(A), 780021AY(A), 780022AY(A), 780023AY(A), 780024AY(A) Data Sheet	This document
*	μPD78F0034B, 78F0034BY, 78F0034B(A), 78F0034BY(A) Data Sheet	U16369E (Under preparation)
	78K/0 Series Instructions User's Manual	U12326E

★ Documents Related to Development Software Tools (User's Manuals)

Document Name		Document No.
RA78K0 Assembler Package	Operation	U14445E
	Language	U14446E
	Structured Assembly Language	U11789E
CC78K0 C Compiler	Operation	U14297E
	Language	U14298E
SM78K Series System Simulator Ver. 2.30 or Later	Operation (Windows Based)	U15373E
	External Part User Open Interface Specifications	U15802E
ID78K Series Integrated Debugger Ver. 2.30 or Later	Operation (Windows Based)	U15185E
RX78K0 Real-time OS	Fundamentals	U11537E
	Installation	U11536E
Project Manager Ver. 3.12 or Later (Windows Based)		U14610E

Documents Related to Development Hardware Tools (User's Manuals)

Document Name	Document No.
IE-78K0-NS In-Circuit Emulator	U13731E
IE-78K0-NS-A In-Circuit Emulator	U14889E
IE-780034-NS-EM1 Emulation Board	U14642E
IE-78001-R-A In-Circuit Emulator	U14142E
IE-78K0-R-EX1 In-Circuit Emulator	To be prepared

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

Documents Related to Flash Memory Writing

Document Name	Document No.
PG-FP3 Flash Memory Programmer User's Manual	U13502E
PG-FP4 Flash Memory Programmer User's Manual	U15260E

Other Related Documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE - Products & Packages -	X13769E
Semiconductor Device Mounting Technology Manual	C10535E
Quality Grades on NEC Semiconductor Devices	
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

NOTES FOR CMOS DEVICES -

1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Note: Purchase of NEC Electronics I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

FIP and IEBus are trademarks of NEC Electronics Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United Status and/ or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- · Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics America, Inc. (U.S.) • Filiale Italiana

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Europe) GmbH

Duesseldorf, Germany Tel: 0211-65 03 01 Fax: 0211-65 03 327

• Sucursal en España

Madrid, Spain Tel: 091-504 27 87 Fax: 091-504 28 60

Succursale Française

Vélizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

• Branch The Netherlands

Eindhoven, The Netherlands Tel: 040-244 58 45 Fax: 040-244 45 80

• Tyskland Filial

Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

United Kingdom Branch

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Shanghai, Ltd.

Shanghai, P.R. China Tel: 021-6841-1138 Fax: 021-6841-1137

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore

Tel: 6253-8311 Fax: 6250-3583

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country.

Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of November, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
 property rights of third parties by or arising from the use of NEC Electronics products listed in this document
 or any other liability arising from the use of such products. No license, express, implied or otherwise, is
 granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of a customer's equipment shall be done under the full
 responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
 customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).