DATA SHEET

NEC

MOS INTEGRATED CIRCUIT μPD780021A, 780022A, 780023A, 780024A, 780021AY, 780022AY, 780023AY, 780024AY

8-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The μ PD780021A, 780022A, 780023A, and 780024A are members of the μ PD780024A Subseries of the 78K/0 Series. Only selected functions of the existing μ PD78054 Subseries are provided, and the serial interface is enhanced. The μ PD780021AY, 780022AY, 780023AY, and 780024AY are the μ PD780024A Subseries with a multimaster supporting I²C bus interface, which makes them suitable for AV equipment.

Flash memory versions, the μ PD78F0034A and 78F0034AY, that can operate in the same power supply voltage range as the mask ROM versions, and various development tools, are also supported.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

μΡD780024A, 780034A, 780024AY, 780034AY						
Subseries User's Manual:	U14046E					
78K/0 Series User's Manual Instructions:	U12326E					

FEATURES

Internal ROM and RAM

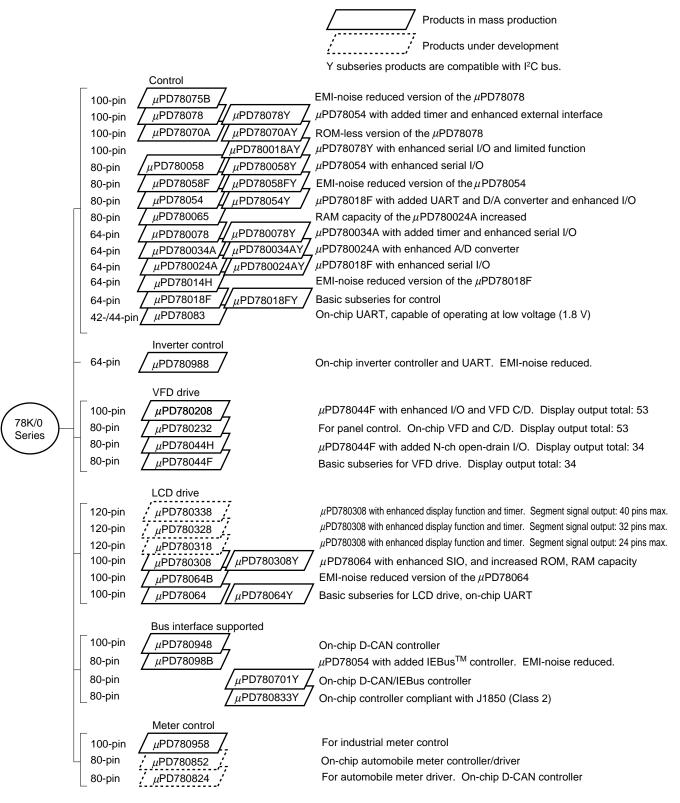
Item Part Number	Program Memory (Internal ROM)	Data Memory (Internal High-Speed RAM)	Package
μPD780021A, 780021AY	8 KB	512 bytes	• 64-pin plastic SDIP (19.05mm (750))
μPD780022A, 780022AY	16 KB		• 64-pin plastic QFP (14×14)
μPD780023A, 780023AY	24 KB	1024 bytes	• 64-pin plastic TQFP (12×12)
μPD780024A, 780024AY	32 KB		

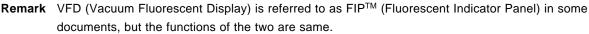
- External memory expansion space: 64 KB
- Minimum instruction execution time: 0.24 μ s (@ fx = 8.38 MHz operation)
- I/O ports: 51 (N-ch open-drain 5 V withstand voltage: 4)
- 8-bit resolution A/D converter: 8 channels (AVDD = 1.8 to 5.5 V)
- Serial interface: 3 channels
 - μPD780021A, 780022A, 780023A, 780024A: UART mode, 3-wire serial I/O mode (2 channels)
 - μPD780021AY, 780022AY, 780023AY, 780024AY: UART mode, 3-wire serial I/O mode, I²C bus mode
- Timer: 5 channels
- Power supply voltage: VDD = 1.8 to 5.5 V

APPLICATIONS

Telephones, household electrical appliances, pagers, AV equipment, car audios, office automation equipment, etc.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.


***** ORDERING INFORMATION


Part Number	Package
μPD780021ACW-×××	64-pin plastic SDIP (19.05 mm (750))
μPD780021AGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)
μ PD780021AGK-×××-9ET	64-pin plastic TQFP (12 $ imes$ 12)
μ PD780022ACW- \times \times	64-pin plastic SDIP (19.05 mm (750))
μPD780022AGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)
μ PD780022AGK- \times -9ET	64-pin plastic TQFP (12 $ imes$ 12)
μ PD780023ACW- \times \times	64-pin plastic SDIP (19.05 mm (750))
μPD780023AGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14)
μ PD780023AGK- \times -9ET	64-pin plastic TQFP (12 $ imes$ 12)
μ PD780024ACW- \times \times	64-pin plastic SDIP (19.05 mm (750))
μPD780024AGC-xxx-AB8	64-pin plastic QFP (14 $ imes$ 14)
μ PD780024AGK- \times -9ET	64-pin plastic TQFP (12 $ imes$ 12)
μ PD780021AYCW- \times ××	64-pin plastic SDIP (19.05 mm (750))
μ PD780021AYGC- \times AB8	64-pin plastic QFP (14 $ imes$ 14)
μ PD780021AYGK-×××-9ET	64-pin plastic TQFP (12 $ imes$ 12)
μ PD780022AYCW- \times	64-pin plastic SDIP (19.05 mm (750))
μ PD780022AYGC- \times +AB8	64-pin plastic QFP (14 $ imes$ 14)
μ PD780022AYGK- \times +9ET	64-pin plastic TQFP (12 $ imes$ 12)
μ PD780023AYCW- \times ××	64-pin plastic SDIP (19.05 mm (750))
μ PD780023AYGC- \times +AB8	64-pin plastic QFP (14 $ imes$ 14)
μ PD780023AYGK-×××-9ET	64-pin plastic TQFP (12 $ imes$ 12)
μ PD780024AYCW- \times	64-pin plastic SDIP (19.05 mm (750))
μ PD780024AYGC- \times +AB8	64-pin plastic QFP (14 $ imes$ 14)
μ PD780024AYGK-×××-9ET	64-pin plastic TQFP (12 $ imes$ 12)

Remark ××× indicates ROM code suffix.

78K/0 SERIES LINEUP

The products in the 78K/0 Series are listed below. The names enclosed in boxes are subseries names.

The major functional differences between the subseries are listed below.

• Non Y subseries

Subseries		ROM			ner		8-bit	10-bit	8-bit	Serial Interface	I/O	VDD MIN.	External
Subseries Name		Capacity	8-bit	16-bit	Watch	WDT	A/D	A/D	D/A	Senai Internace	1/0	Value	Expansion
Control	μPD78075B	32 K to 40 K	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1ch)	88	1.8 V	\checkmark
	μPD78078	48 K to 60 K											
	μPD78070A	-									61	2.7 V	
	μPD780058	24 K to 60 K	2 ch							3ch (time division UART: 1ch)	68	1.8 V	
	μ PD78058F	48 K to 60 K								3 ch (UART: 1ch)	69	2.7 V	
	μPD78054	16 K to 60 K										2.0 V	
	µPD780065	40 K to 48 K							-	4 ch (UART: 1ch)	60	2.7 V	
	μPD780078	48 K to 60 K		2 ch			_	8 ch		3 ch (UART: 2ch)	52	1.8 V	
	μPD780034A	8 K to 32 K		1 ch						3 ch (UART: 1ch)	51		
	µPD780024A						8 ch	-					
	μPD78014H									2 ch	53		
	μPD78018F	8 K to 60 K											
	μPD78083	8 K to 16 K		_	_					1 ch (UART: 1ch)	33		-
Inverter control	μPD780988	16 K to 60 K	3 ch	Note	_	1 ch	-	8 ch	-	3 ch (UART: 2ch)	47	4.0 V	V
VFD	μPD780208	32 K to 60 K	2 ch	1 ch	1ch	1ch	8 ch	_	_	2 ch	74	2.7 V	_
drive	μPD780232	16 K to 24 K	3 ch	-	-		4 ch	-			40	4.5 V	
	μPD78044H	32 K to 48 K	2 ch	1 ch	1ch		8ch			1 ch	68	2.7 V	
	μPD78044F	16 K to 40 K								2 ch			
LCD	μPD780338	48 K to 60 K	3 ch	2ch	1ch	1ch	_	10 ch	1 ch	2 ch (UART: 2 ch)	54	1.8 V	-
drive	μPD780328										62		
	μPD780318										70		
	μPD780308	48 K to 60 K	2 ch	1 ch			8 ch	_	-	3 ch (Time division UART: 1 ch)	57	2.0 V	-
	μPD78064B	32 K								2 ch (UART: 1 ch)			
	μPD78064	16 K to 32 K											
Bus interface	μPD780948	60 K	2 ch	2 ch	1 ch	1 ch	8 ch	_	-	3 ch (UART: 1 ch)	79	4.0 V	\checkmark
supported	μPD78098B	40 K to 60 K		1 ch					2 ch		69	2.7 V	-
Meter control	μPD780958	48 K to 60 K	4 ch	2 ch	-	1 ch	-	-	-	2 ch (UART: 1 ch)	69	2.2 V	-
Dash	μPD780852	32 K to 40 K	3 ch	1 ch	1 ch	1 ch	5 ch	-	_	3 ch (UART: 1 ch)	56	4.0 V	_
board control	μPD780824	32 K to 60 K								2 ch (UART: 1 ch)	59		

Note 16-bit timer: 2 channels

10-bit timer: 1 channel

• Y subseries

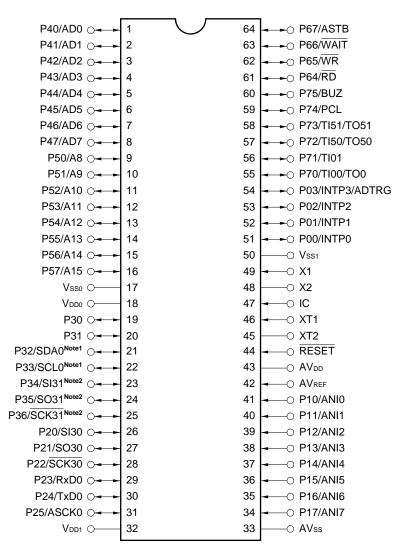
Function		ROM		Tin	ner		8-bit	8-bit 10-bit 8-bit		it Coriol Interface		VDD MIN.	External
Subseries	Name	Capacity	8-bit	16-bit	Watch	WDT	A/D	A/D	D/A	Serial Interface	I/O	Value	Expansion
Control	μPD78078Y	48 K to 60 K	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1ch,	88	1.8 V	\checkmark
	μPD78070AY	-								l²C: 1 ch)	61	2.7 V	
	µPD780018AY	48 K to 60 K							-	3 ch (l ² C 1 ch)	88		
	μPD780058Y	24 K to 60 K	2 ch						2 ch	3 ch (Time division UART: 1 ch, I ² C: 1 ch)	68	1.8 V	
	μPD78058FY	48 K to 60 K								3 ch (UART: 1 ch,	69	2.7 V	
	μPD78054Y	16 K to 60 K								l²C: 1 ch)		2.0 V	
	μPD780078Y	48 K to 60 K		2 ch			-	8 ch	-	4 ch (UART: 2 ch, l²C: 1 ch)	52	1.8 V	
	µPD780034AY	8 K to 32 K		1 ch						3 ch (UART: 1 ch,	51	1	
	µPD780024AY						8 ch	_		I ² C: 1 ch)			
	μPD78018FY	8 K to 60 K								2 ch (l ² C: 1 ch)	53		
LCD drive	µPD780308Y	48 K to 60 K	2 ch	1 ch	1 ch	1 ch	8 ch	-	-	3 ch (Time division UART: 1 ch, I ² C: 1 ch)	57	2.0 V	-
	μPD78064Y	16 K to 32 K								2 ch (UART: 1 ch, l²C: 1 ch)			
For bus	μPD780701Y	60 K	3 ch	2 ch	1 ch	1 ch	16 ch	-	-	4 ch (UART: 1 ch,	67	3.5 V	-
interface	µPD780833Y									l²C: 1 ch)	65	4.5 V	

Remark The functions of non Y subseries and Y subseries products are the same, except for the serial interface.

OVERVIEW OF FUNCTIONS

Item	Part Number	μΡD780021A μΡD780021AY	μΡD780022A μΡD780022AY	μΡD780023A μΡD780023AY	μΡD780024A μΡD780024AY				
Internal	ROM	8 KB	16 KB	24 KB	32 KB				
memory	High-speed RAM	512 bytes	512 bytes 1024 bytes						
Memory spa	ce	64 KB							
General-purp	oose registers	8 bits \times 32 registers	(8 bits \times 8 registers \times	4 banks)					
Minimum ins	truction execution	On-chip minimum ins	truction execution time	e cycle variable functio	n				
time When main system clock selected		0.24 μs/0.48 μs/0.95	μs/1.91 μs/3.81 μs (@	8.38 MHz operation)					
	When subsystem clock selected	122 μs (@ 32.768 k⊦	Iz operation)						
Instruction se	et		ts × 8 bits,16 bits ÷ 8 bits, 16 bits ÷						
I/O ports		Total:		51					
		CMOS input: CMOS I/O: N-ch open-drain I/C) (5-V withstand voltag	8 39 je): 4					
A/D converte	er	 8-bit resolution x 8 channels Low-voltage operation available: AVDD = 1.8 to 5.5 V 							
Serial interfa	ice	 μPD780021A, 780022A, 780023A, 780024A UART mode: 1 channel 3-wire serial I/O mode: 2 channels μPD780021AY, 780022AY, 780023AY, 780024AY UART mode: 1 channel 3-wire serial I/O mode: 1 channel I²C bus mode (multimaster supporting): 1 channel 							
Timers		 16-bit timer/event counter: 1 channel 8-bit timer/event counter: 2 channels Watch timer: 1 channel Watchdog timer: 1 channel 							
Timer output	ts	3 (8-bit PWM output	capable: 2)						
Clock output		 65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.10 MHz, 4.19 MHz, 8.38 MHz (@ 8.38 MHz operation with main system clock) 32.768 kHz (@ 32.768 kHz operation with subsystem clock) 							
Buzzer outpu	ut	1.02 kHz, 2.05 kHz, 4	4.10 kHz, 8.19 kHz (@	8.38 MHz operation w	vith main system clock				
Vectored	Maskable	Internal: 13, external: 5							
interrupt	Non-maskable	Internal: 1							
sources	Software	1							
Power supply	y voltage	V _{DD} = 1.8 to 5.5 V							
Operating ar	mbient temperature	$T_{\rm A} = -40 \text{ to } +85^{\circ}\text{C}$							
Package		 64-pin plastic SDIP (19.05 mm (750)) 64-pin plastic QFP (14 × 14) 64-pin plastic TQFP (12 × 12) 							

★

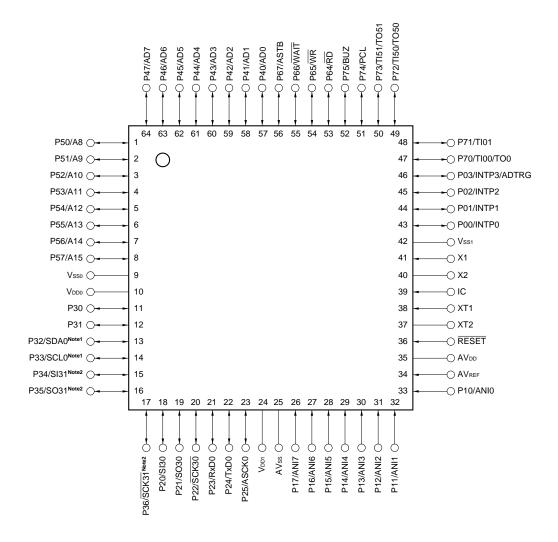

CONTENTS

1.	PIN CONFIGURATION (TOP VIEW)	.8
2.	BLOCK DIAGRAM	11
3.	PIN FUNCTIONS1	12
	3.1 Port Pins	12
	3.2 Non-Port Pins	13
	3.3 Pin I/O Circuits and Recommended Connection of Unused Pins	15
4.	MEMORY SPACE1	17
5.	PERIPHERAL HARDWARE FUNCTION FEATURES1	
	5.1 Ports 1	
	5.2 Clock Generator 1	19
	5.3 Timer/Counter	
	5.4 Clock Output/Buzzer Output Controller	
	5.5 A/D Converter	25
	5.6 Serial Interface	26
6.	INTERRUPT FUNCTIONS	29
7.	EXTERNAL DEVICE EXPANSION FUNCTION	32
8.	STANDBY FUNCTION	32
9.	RESET FUNCTION	32
10.	MASK OPTION	32
11.	INSTRUCTION SET	33
12.	ELECTRICAL SPECIFICATIONS	35
13.	PACKAGE DRAWINGS	57
14.	RECOMMENDED SOLDERING CONDITIONS	30
AP	PENDIX A. DEVELOPMENT TOOLS	52
AP	PENDIX B. RELATED DOCUMENTS	35

1. PIN CONFIGURATION (TOP VIEW)

• 64-pin plastic SDIP (19.05 mm (750))

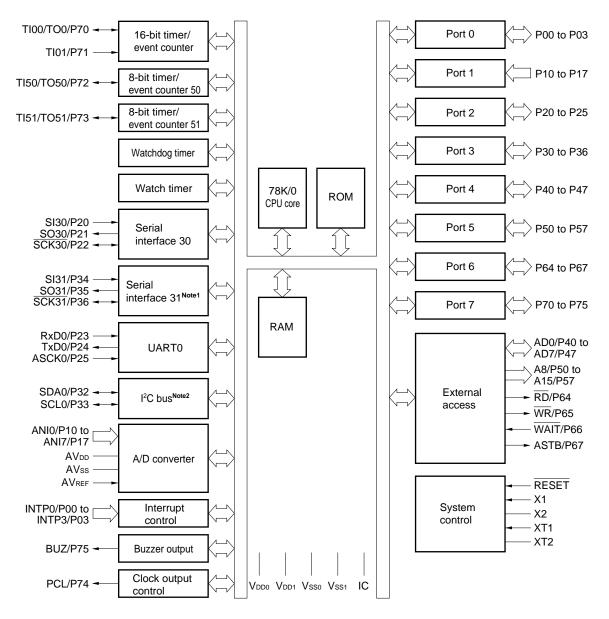
μPD780021ACW-xxx, 780022ACW-xxx, 780023ACW-xxx, 780024ACW-xxx μPD780021AYCW-xxx, 780022AYCW-xxx, 780023AYCW-xxx, 780024AYCW-xxx



Notes 1. SDA0 and SCL0 are incorporated only in the μPD780024AY Subseries.
2. SI31, SO31, and SCK31 are incorporated only in the μPD780024A Subseries.

Cautions 1. Connect the IC (Internally Connected) pin directly to Vsso or Vss1. 2. Connect the AVss pin to Vsso.

Remark When the μPD780021A, 780022A, 780023A, 780024A, 780021AY, 780022AY, 780023AY, and 780024AY are used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} individually and connecting Vss0 and Vss1 to different ground lines, is recommended.


- 64-pin plastic QFP (14 × 14) μPD780021AGC-xxx-AB8, 780022AGCxxx-AB8, 780023AGC-xxx-AB8, 780024AGC-xxx-AB8, μPD780021AYGC-xxx-AB8, 780022AYGC-xxx-AB8, 780023AYGC-xxx-AB8, 780024AYGC-xxx-AB8
- 64-pin plastic TQFP (12 × 12) μPD780021AGK-×××-9ET, 780022AGK×××-9ET, 780023AGK-×××-9ET, 780024AGK-×××-9ET, μPD780021AYGK-×××-9ET, 780022AYGK×××-9ET, 780023AYGK-×××-9ET, 780024AYGK-×××-9ET

- Notes 1. SDA0 and SCL0 are incorporated only in the μPD780024AY Subseries.
 2. SI31, SO31, and SCK31 are incorporated only in the μPD780024A Subseries.
- Cautions 1. Connect the IC (Internally Connected) pin directory to Vsso or Vss1.
 2. Connect the AVss pin to Vsso.
- **Remark** When the μPD780021A, 780022A, 780023A, 780024A, 780021AY, 780022AY, 780023AY, and 780024AY are used in applications where the noise AYgenerated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} individually and connecting Vss0 and Vss1 to different ground lines, is recommended.

	Address Due		-
A8 to A15:	Address Bus	P64 to P67:	Port 6
AD0 to AD7:	Address/Data Bus	P70 to P75:	Port 7
ADTRG:	AD Trigger Input	PCL:	Programmable Clock
ANI0 to ANI7:	Analog Input	RD:	Read Strobe
ASCK0:	Asynchronous Serial Clock	RESET:	Reset
ASTB:	Address Strobe	RxD0:	Receive Data
AVDD:	Analog Power Supply	SCK30, SCK31, SCL0:	Serial Clock
AVREF:	Analog Reference Voltage	SDA0:	Serial Data
AVss:	Analog Ground	SI30, SI31:	Serial Input
BUZ:	Buzzer Clock	SO30, SO31:	Serial Output
IC:	Internally Connected	TI00, TI01, TI50, TI51:	Timer Input
INTP0 to INTP3:	External Interrupt Input	TO0, TO50, TO51:	Timer Output
P00 to P03:	Port 0	TxD0:	Transmit Data
P10 to P17:	Port 1	Vdd0, Vdd1:	Power Supply
P20 to P25:	Port 2	Vsso, Vss1:	Ground
P30 to P36:	Port 3	WAIT:	Wait
P40 to P47:	Port 4	WR:	Write Strobe
P50 to P57:	Port 5	X1, X2:	Crystal (Main System Clock)
		XT1, XT2:	Crystal (Subsystem Clock)

2. BLOCK DIAGRAM

Notes 1. Incorporated only in the μ PD780024A Subseries.

2. Incorporated only in the μ PD780024AY Subseries.

Remark The internal ROM and RAM capacities vary depending on the product.

3. PIN FUNCTIONS

3.1 Port Pins (1/2)

Pin Name	I/O		Function	After	Alternate
				Reset	Function
P00 to P02	I/O	Port 0		Input	INTP0 to
		4-bit I/O port			INTP2
P03		Input/output can be specified in 1 An on-chip pull-up resistor can be	e connected by means of software.		INTP3/ADTRG
P10 to P17	Input	Port 1		Input	ANI0 to ANI7
		8-bit input only port			
P20	I/O	Port 2		Input	SI30
P21	-	6-bit I/O port Input/output can be specified in 1	l_hit unite		SO30
P22	-		e connected by means of software.		SCK30
P23	-				RxD0
P24	-				TxD0
P25					ASCK0
P30	I/O	Port 3	N-ch open-drain I/O port	Input	_
P31		7-bit I/O port	An on-chip pull-up resistor can be		
P32		Input/output can be specified in	specified by the mask option.		SDA0 ^{Note 1}
P33	1	1-bit units.	LEDs can be driven directly.		SCL0 ^{Note 1}
P34			An on-chip pull-up resistor can be		SI31 ^{Note 2}
P35			connected by means of software.		SO31 ^{Note 2}
P36					SCK31 Note 2
P40 to P47	I/O	Port 4		Input	AD0 to AD7
		8-bit I/O port			
		Input/output can be specified in 1			
			e connected by means of software. is set to 1 by falling edge detection.		
			······································		
P50 to P57	I/O	Port 5		Input	A8 to A15
		8-bit I/O port			
		LEDs can be driven directly.			
		Input/output can be specified in 1			
		An on-chip pull-up resistor can be	e connected by means of software.		
P64	I/O	Port 6		Input	RD
P65	1	4-bit I/O port			WR
P66	1	Input/output can be specified in 1			WAIT
P67	1	An on-chip pull-up resistor can be	e connected by means of software.		ASTB

Notes 1. SDA0 and SCL0 are incorporated only in the μ PD780024AY Subseries.

2. SI31, SO31, and $\overline{\text{SCK31}}$ are incorporated only in the μ PD780024A Subseries.

3.1 Port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
P70	I/O	Port 7	Input	TI00/TO0
P71		6-bit I/O port		TI01
P72		Input/output can be specified in 1-bit units.		TI50/TO50
P73		An on-chip pull-up resistor can be connected by means of software.		TI51/TO51
P74				PCL
P75				BUZ

3.2 Non-Port Pins (1/2)

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	External interrupt request input for which the valid edge (rising edge,	Input	P00
INTP2		falling edge, or both rising and falling edges) can be specified	-	P01
INTP2				P02
INTP3				P03/ADTRG
SI30	Input	Serial interface serial data input	Input	P20
SI31 ^{Note 1}			-	P34
SO30	Output	Serial interface serial data output	Input	P21
SO31 ^{Note 1}				P35
SDA0 ^{Note 2}	I/O	Serial Interface serial data input/output	Input	P32
SCK30	I/O	Serial interface serial clock input/output	Input	P22
SCK31 ^{Note 1}			-	P36
SCL0 ^{Note 2}				P33
RxD0	Input	Serial data input for asynchronous serial interface	Input	P23
TxD0	Output	Serial data output for asynchronous serial interface	Input	P24
ASCK0	Input	Serial clock input for asynchronous serial interface	Input	P25
TI00	Input	External count clock input to 16-bit timer/event counter 0	Input	P70/TO0
		Capture trigger input to capture register 01 (CR01) of 16-bit timer/event counter 0		
TI01		Capture trigger input to capture register 00 (CR00) of 16-bit timer/event counter 0		P71
TI50		External count clock input to 8-bit timer/event counter 50		P72/TO50
TI51		External count clock input to 8-bit timer/event counter 51		P73/TO51
TO0	Output	16-bit timer/event counter 0 output	Input	P70/TI00
TO50		8-bit timer/event counter 50 output (also used for 8-bit PWM output)	Input	P72/TI50
TO51		8-bit timer/event counter 51 output (also used for 8-bit PWM output)		P73/TI51
PCL	Output	Clock output (for trimming of main system clock and subsystem clock)	Input	P74
BUZ	Output	Buzzer output	Input	P75
AD0 to AD7	I/O	Lower address/data bus for expanding memory externally	Input	P40 to P47
A8 to A15	Output	Higher address bus for expanding memory externally	Input	P50 to P57
RD	Output	Strobe signal output for reading from external memory	Input	P64
WR	1	Strobe signal output for writing to external memory		P65
WAIT	Input	Wait insertion at external memory access	Input	P66
ASTB	Output	Strobe output that externally latches address information output to ports 4 and 5 to access external memory	Input	P67

Notes 1. SI31, SO31, $\overline{\text{SCK31}}$ are incorporated only in the μ PD780024A Subseries.

2. SDA0 and SCL0 are incorporated only in the μ PD780024AY Subseries.

3.2 Non-Port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
ANI0 to ANI7	Input	A/D converter analog input	Input	P10 to P17
ADTRG	Input	A/D converter trigger signal input	Input	P03/INTP3
AVREF	Input	A/D converter reference voltage input	—	_
AVdd	_	A/D converter analog power supply. Set potential to that of V_{DD0} or V_{DD1}	—	_
AVss	_	A/D converter ground potential. Set potential to that of V_{SS0} or V_{SS1}	_	_
RESET	Input	System reset input	—	_
X1	Input	Connecting crystal resonator for main system clock oscillation	—	_
X2	_		_	_
XT1	Input	Connecting crystal resonator for subsystem clock oscillation	—	_
XT2	_		_	_
V _{DD0}	_	Positive power supply for ports	_	_
Vsso	_	Ground potential of ports	_	_
Vdd1	_	Positive power supply (except ports)	_	_
Vss1	_	Ground potential (except ports)	_	_
IC	—	Internally connected. Connect directly to Vsso or Vss1.	_	_

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the input/output circuit configuration of each type, see Figure 3-1.

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/INTP0 to P02/INTP2	8-C	I/O	Input: Independently connect to Vsso via a resistor.
P03/INTP3/ADTRG			Output: Leave open.
P10/ANI0 to P17/ANI7	25	Input	Connect to VDD0 or VSS0 via a resistor.
P20/S130	8-C	I/O	Input: Independently connect to VDD0 or VSS0 via a resistor.
P21/SO30	5-H		Output: Leave open.
P22/SCK30	8-C		
P23/RxD0			
P24/TxD0	5-H		
P25/ASCK0	8-C		
P30, P31	13-Q	I/O	Input: Independently connect to VDD0 via resistor.
P32, P33 (μPD780024A Subseries only)	13-S		Output: Leave open.
P32/SDA0 (µPD780024AY Subseries only)	13-R		
P33/SCL0 (µPD780024AY Subseries only)			
P34/SI31 ^{Note}	8-C		Input: Independently connect to VDD0 or VSS0 via a resistor.
P35/SO31 ^{Note}	5-H		Output: Leave open.
P36/SCK31 ^{Note}	8-C		
P40/AD0 to P47/AD7	5-H	I/O	Input: Independently connect to VDDO via a resistor. Output: Leave open.
P50/A8 to P57/A15	-	I/O	Input: Independently connect to VDD0 or VSS0 via a resistor.
P64/RD	-	I/O	Output: Leave open.
P65/WR			
P66/WAIT			
P67/ASTB			
P70/TI00/TO0	8-C		
P71/TI01			
P72/TI50/TO50			
P73/TI51/TO51			
P74/PCL	5-H		
P75/BUZ			
RESET	2	Input	_
XT1	16		Connect to VDD0.
XT2	-	_	Leave open.
AVdd	_		Connect to VDD0 or VDD1.
AVREF			Connect to Vsso or Vss1.
AVss			
IC			Connect directly to Vsso or Vss1.

Table 3-1. Types of Pin I/O Circuits

Note SI31, SO31, and $\overline{\text{SCK31}}$ are incorporated only in the μ PD780024A Subseries.

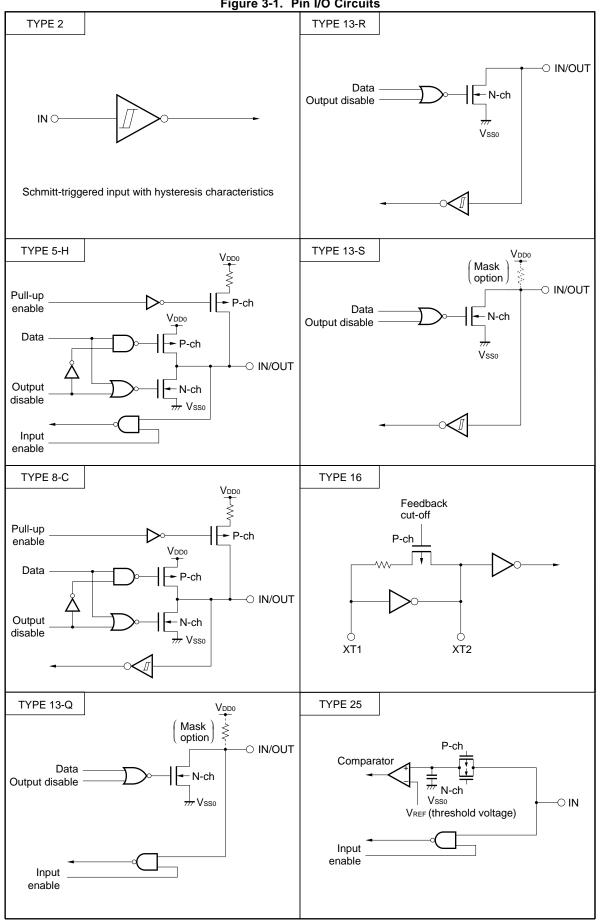
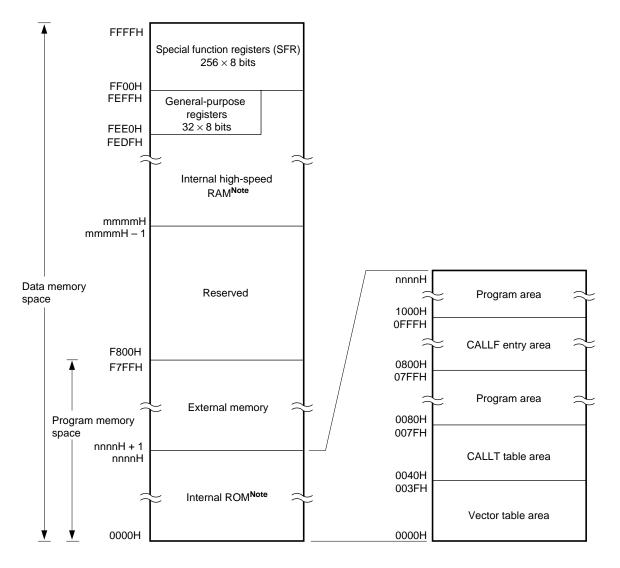



Figure 3-1. Pin I/O Circuits

4. MEMORY SPACE

Figure 4-1 shows the memory map of the μ PD780021A, 780022A, 780023A, 780024A, 780021AY, 780022AY, 780023AY, and 780024AY.

Figure 4-1. Memory Map

Note The internal ROM and internal high-speed RAM capacities vary depending on the products (see the following table).

Part Number	Last Address of Internal ROM nnnnH	Start Address of Internal High-Speed RAM mmmmH
μPD780021A, 780021AY	1FFFH	FD00H
μPD780022A, 780022AY	3FFFH	
μPD780023A, 780023AY	5FFFH	FB00H
μPD780024A, 780024AY	7FFFH	

5. PERIPHERAL HARDWARE FUNCTION FEATURES

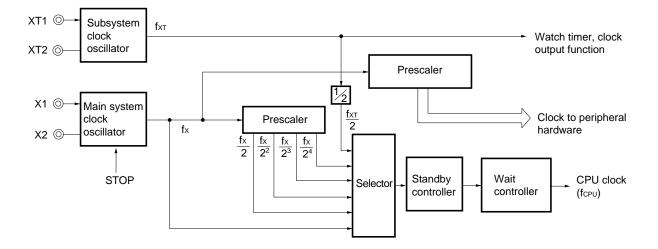
5.1 Ports

The following 3 types of I/O ports are available.

	CMOS input (Port 1): CMOS I/O (Ports 0, 2, 4 to 7, P34 to P36):	8 39
•	N-channel open-drain I/O (P30 to P33):	4
	Total:	51

Table 5-1. Port Functions

Name	Pin Name	Function
Port 0	P00 to P03	I/O port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by means of software.
Port 1	P10 to P17	Input-only port.
Port 2	P20 to P25	I/O port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by means of software.
Port 3	P30 to P33	N-channel open-drain I/O port. Input/output can be specified in 1-bit units. A pull-up resistor can be specified by mask option. LEDs can be driven directly.
	P34 to P36	I/O port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by means of software.
Port 4	P40 to P47	I/O port. Input/output can be specified in 1-bit units.An on-chip pull-up resistor can be specified by means of software.The interrupt request flag (KRIF) is set to 1 by falling edge detection.
Port 5	P50 to P57	I/O port. Input/output can be specified in 1-bit units.An on-chip pull-up resistor can be specified by means of software.LEDs can be driven directly.
Port 6	P64 to P67	I/O port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by means of software.
Port 7	P70 to P75	I/O port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by means of software.


5.2 Clock Generator

A system clock generator is incorporated.

The minimum instruction execution time can be changed.

- 0.24 μ s/0.48 μ s/0.95 μ s/1.91 μ s/3.81 μ s (@ 8.38 MHz operation with main system clock)
- 122 μs (@ 32.768 kHz operation with subsystem clock)

★

5.3 Timer/Counter

Five timer/counter channels are incorporated.

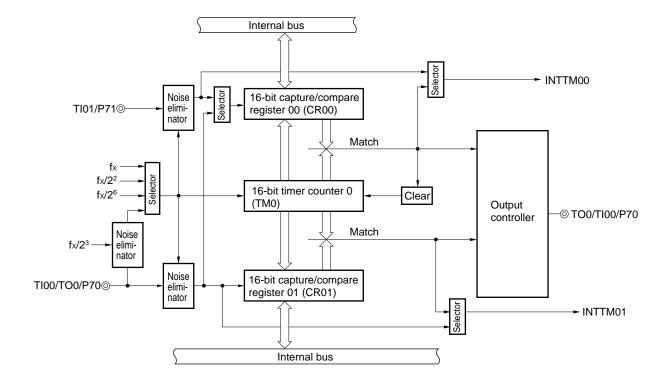

- 16-bit timer/event counter: 1 channel
- 8-bit timer/event counter: 2 channels
- Watch timer: 1 channel
- Watchdog timer: 1 channel

Table 5-2. Operations of Timer/Event Counter

		16-Bit Timer/ Event Counter 0	8-Bit Timer/ Event Counters 50, 51	Watch Timer	Watchdog Timer
Op	eration mode				
	Interval timer	1 channel	2 channels	1 channel ^{Note 1}	1 channel ^{Note 2}
	External event counter	1 channel	2 channels	_	_
Fur	nction				
	Timer outputs	1	2	_	_
	PPG outputs	1	—	—	_
	PWM output	—	2	_	_
	Pulse width measurement	2 inputs	—	_	_
	Square wave outputs	1	2	—	_
	Interrupt sources	2	2	2	1

Notes 1. The watch timer can perform both watch timer and interval timer functions at the same time.

2. The watchdog timer has the watchdog timer and interval timer functions. However, use the watchdog timer by selecting either the watchdog timer function or the interval timer function.

Figure 5-2. Block Diagram of 16-Bit Timer/Event Counter 0

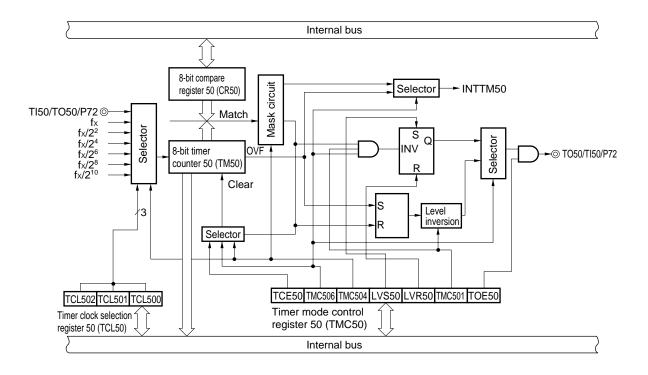
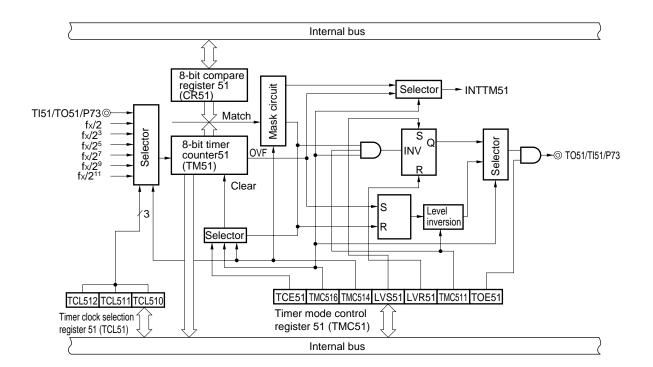



Figure 5-3. Block Diagram of 8-Bit Timer/Event Counter 50

Figure 5-4. Block Diagram of 8-Bit Timer/Event Counter 51

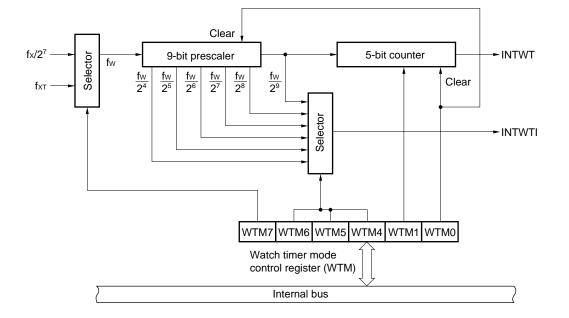
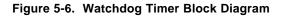
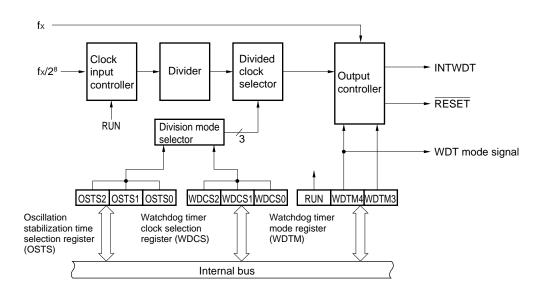
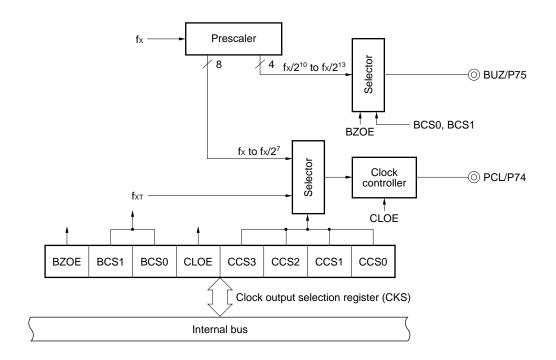




Figure 5-5. Watch Timer Block Diagram

5.4 Clock Output/Buzzer Output Controller

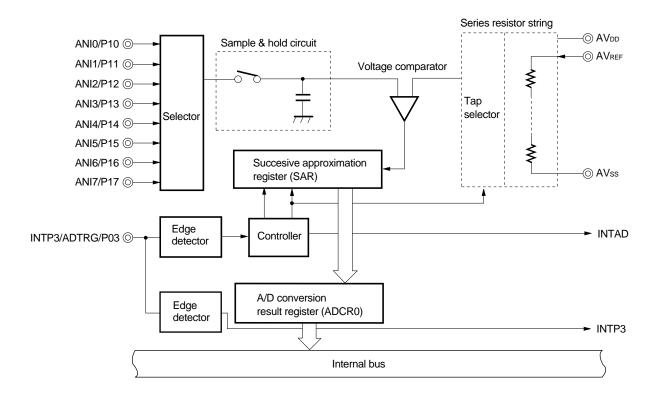

A clock output/buzzer output controller (CKU) is incorporated. Clocks with the following frequencies can be output as clock output.

- 65.5 kHz/131 kHz/262 kHz/524 kHz/1.05 MHz/2.10 MHz/4.19 MHz/8.38 MHz (@ 8.38 MHz operation with main system clock)
- 32.768 kHz (@ 32.768 kHz operation with subsystem clock)

Clocks with the following frequencies can be output as buzzer output.

• 1.02 kHz/2.05 kHz/4.10 kHz/8.19 kHz (@ 8.38 MHz operation with main system clock)

Figure 5-7. Block Diagram of Clock Output/Buzzer Output Control Circuit CKU



5.5 A/D Converter

An A/D converter consisting of eight 8-bit resolution channels is incorporated. The following two A/D conversion operation startup methods are available.

- Hardware start
- Software start

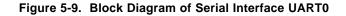
5.6 Serial Interface

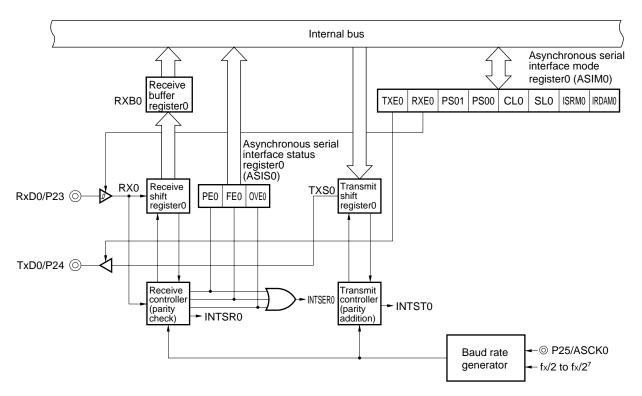
Three serial interface channels are incorporated.

- μPD780024A Subseries
 Serial interface UART0: 1 channel
 Serial interface 30, 31: 2 channels
- μPD780024AY Subseries
 Serial interface UART0: 1 channel
 Serial interface 30: 1 channel
 Serial interface IIC0 1 channel

(1) Serial interface UART0

Serial interface UART0 has two modes: asynchronous serial interface (UART) mode and infrared data transfer mode.


Asynchronous serial interface (UART) mode


This mode enables full-duplex operation wherein one byte of data starting from the start bit is transmitted and received.

The on-chip UART-dedicated baud-rate generator enables communication using a wide range of selectable baud rates. In addition, a baud rate can be also defined by dividing the clock input to the ASCK0 pin. The UART-dedicated baud-rate generator can also be used to generate a MIDI-standard baud rate (31.25 kbps).

Infrared data transfer mode

This mode enables pulse output and pulse reception in data format. This mode can be used for office equipment applications such as personal computers.

(2) Serial interface 3n^{Note}

Serial interface 3n has one mode: 3-wire serial I/O mode.

• 3-wire serial I/O mode (fixed as MSB first)

This is an 8-bit data transfer mode using three lines: a serial clock line (SCK3n), serial output line (SO3n), and serial input line (SI3n).

Since simultaneous transmit and receive operations are enabled in the 3-wire serial I/O mode, the processing time for data transfer is reduced.

The first bit in 8-bit data in the serial transfer is fixed as MSB.

The 3-wire serial I/O mode is useful for connection to a peripheral I/O devices, and display controllers, etc., that include a clocked serial interface.

Figure 5-10. Block Diagram of Serial Interface 3n

Remark μ PD780024A Subseries: n = 0, 1 μ PD780024AY Subseries: n = 0

(3) Serial interface IIC0 (µPD780024AY Subseries only)

Serial interface IIC0 has one mode: I²C (Inter IC) bus mode (supporting multimaster).

• I²C bus mode (supporting multimaster)

This is an 8-bit data transfer mode using two lines: a serial clock line (SCL0) and a serial data bus line (SDA0).

This mode complies with the l²C bus format, and can output a "start condition", "data", and a "stop condition" during transmission via the serial data bus. This data is automatically detected by hardware during reception.

Since SCL0 and SDA0 are open-drain outputs in IIC0, pull-up resistors for the serial clock line and the serial data bus line are required.

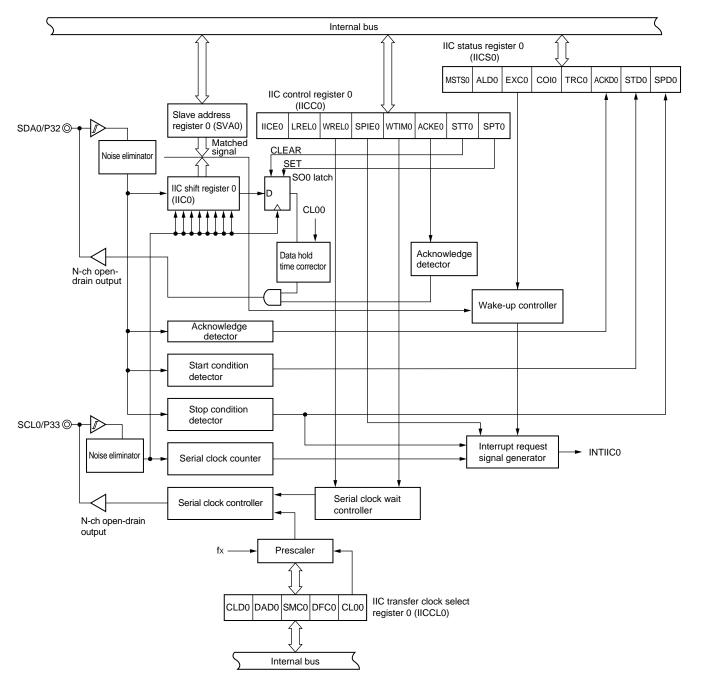


Figure 5-11. Block Diagram of Serial Interface IIC0

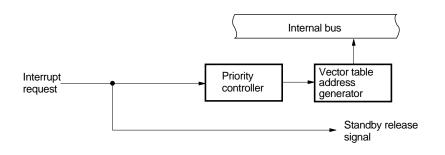
6. INTERRUPT FUNCTIONS

1

A total of 20 interrupt sources are provided, divided into the following three types.

- Non-maskable: 1
- Maskable: 18
- Software:

Table 6-1.	Interrupt	Source List	
------------	-----------	-------------	--


Interrupt	Default		Interrupt Source	Internal/	Vector Table	Basic	
Туре	Priority ^{Note 1}	Name	Trigger	External	Address	Configuration Type ^{Note 2}	
Non- maskable	_	INTWDT	Watchdog timer overflow (with watchdog timer mode 1 selected)	Internal	0004H	(A)	
Maskable	0	INTWDT	Watchdog timer overflow (with interval timer mode selected)			(B)	
	1	INTP0	Pin input edge detection	External	0006H	(C)	
	2	INTP1			0008H		
	3	INTP2			000AH		
	4	INTP3			000CH		
	5	INTSER0	Serial interface UART0 reception error generation	Internal	000EH	(B)	
	6	INTSR0	End of serial interface UART0 reception		0010H		
	7	INTST0	End of serial interface UART0 transmission		0012H		
	8	INTCSI30	End of serial interface 30 transfer		0014H		
	9	INTCSI31	End of serial interface 31 transfer [Only for μ PD780024A Subseries]		0016H		
	10	INTIIC0	End of serial interface IIC0 transfer [Only for μ PD780024AY Subseries]		0018H		
	11	INTWTI	Reference time interval signal from watch timer		001AH		
	12	INTTM00	Match between TM0 and CR00 (when CR00 is specified as compare register) Detection of TI01 valid edge (when CR00 is specified as capture register)		001CH	_	
	13	INTTM01	Match between TM0 and CR01 (when CR01 is specified as compare register) Detection of TI00 valid edge (when CR01 is specified as capture register)		001EH	_	
	14	INTTM50	Match between TM50 and CR50		0020H		
	15	INTTM51	Match between TM51 and CR51]	0022H		
	16	INTAD0	End of A/D conversion]	0024H		
	17	INTWT	Watch timer overflow		0026H		
	18	INTKR	Port 4 falling edge detection	External	0028H	(D)	
Software	_	BRK	BRK instruction execution		003EH	(E)	

Notes 1. The default priority is the priority when several maskable interrupt requests are generated at the same time. 0 is the highest order, and 18 is the lowest.

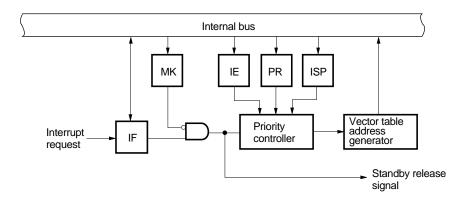
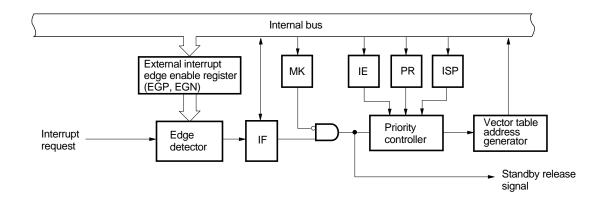
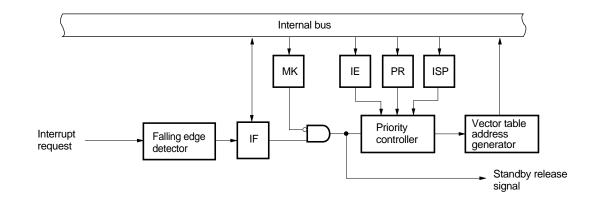

- 2. Basic configuration types (A) to (E) correspond to (A) to (E) in Figure 6-1.
- **Remark** Two watchdog timer interrupt sources (INTWDT): a non-maskable interrupt and a maskable interrupt (internal), are available, either of which can be selected.

Figure 6-1. Basic Configuration of Interrupt Function (1/2)


(A) Internal non-maskable interrupt

(B) Internal maskable interrupt



(C) External maskable interrupt (INTP0 to INTP3)

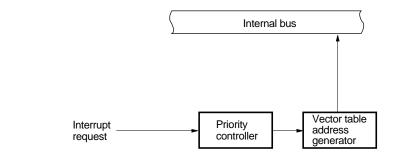
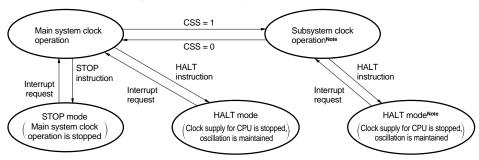


Figure 6-1. Basic Configuration of Interrupt Function (2/2)

(D) External maskable interrupt (INTKR)

(E) Software interrupt

- IF: Interrupt request flag
- IE: Interrupt enable flag
- ISP: In-service priority flag
- MK: Interrupt mask flag
- PR: Priority specification flag


7. EXTERNAL DEVICE EXPANSION FUNCTION

The external device expansion function is for connecting external devices to areas other than the internal ROM, RAM, and SFR. Ports 4 to 6 are used for external device connection.

8. STANDBY FUNCTION

The following two standby modes are available for further reduction of system current consumption.

- HALT mode: In this mode, the CPU operation clock is stopped. The average current consumption can be reduced by intermittent operation by combining this mode with the normal operation mode.
- STOP mode: In this mode, oscillation of the main system clock is stopped. All the operations performed on the main system clock are suspended, and only the subsystem clock is used, resulting in extremely small power consumption. This can be used only when the main system clock is operating (the subsystem clock oscillation cannot be stopped).

- **Note** The current consumption can be reduced by stopping the main system clock. When the CPU is operating on the subsystem clock, set bit 7 (MCC) of the processor clock control register (PCC). The STOP instruction cannot be used.
- Caution When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

9. RESET FUNCTION

The following two reset methods are available.

- External reset by RESET signal input
- · Internal reset by watchdog timer runaway time detection

10. MASK OPTION

Table 10.1 Pin Mask Option Selection

Subseries Name Pins		Mask Option
µPD780024A Subseries	P30 to P33	An on-chip pull-up resistor can be specified in 1-bit units.
µPD780024AY Subseries	P30 and P33	

The mask option can be used to specify the connection of an on-chip pull-up resistor to P30 to P33^{Note}, in 1-bit units.

Note The μ PD780024AY Subseries has P30 and P31 only.

11. INSTRUCTION SET

(1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

2nd Operand 1st Operand	#byte	A	۲ ^{Note}	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL + byte] [HL + B] [HL + C]	\$addr16	1	None
A	ADD ADDC		MOV XCH	MOV XCH	MOV XCH	MOV XCH	MOV	MOV XCH	MOV XCH	MOV XCH		ROR ROL	
	SUB		ADD		ADD	ADD			ADD	ADD		RORC	
	SUBC		ADDC		ADDC	ADDC			ADDC	ADDC		ROLC	
	AND		SUB		SUB	SUB			SUB	SUB			
	OR		SUBC		SUBC	SUBC			SUBC	SUBC			
	XOR		AND		AND	AND			AND	AND			
	CMP		OR		OR	OR			OR	OR			
			XOR		XOR	XOR			XOR	XOR			
			CMP		CMP	CMP			CMP	CMP			
r	MOV	MOV ADD											INC DEC
		ADDC SUB											
		SUBC											
		AND											
		OR											
		XOR											
		CMP											
B, C											DBNZ		
sfr	MOV	MOV											
saddr	MOV ADD	MOV									DBNZ		INC DEC
	ADDC												
	SUB												
	SUBC												
	AND												
	OR												
	XOR												
	CMP												
!addr16		MOV											
PSW	MOV	MOV											PUSH POP
[DE]		MOV											
[HL]		MOV											ROR4 ROL4
[HL + byte]		MOV											KUL4
[HL + B]													
[HL + C]													
Х													MULU
С													DIVUW

Note Except r = A

(2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

2nd Operand 1st Operand	#word	AX	rp ^{Note}	sfrp	saddrp	!addr16	SP	None
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVW ^{Note}						INCW, DECW PUSH, POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Note Only when rp = BC, DE or HL

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

2nd Operand 1st Operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	СҮ	\$addr16	None
A.bit						MOV1	BT BF BTCLR	SET1 CLR1
sfr.bit						MOV1	BT BF BTCLR	SET1 CLR1
saddr.bit						MOV1	BT BF BTCLR	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	SET1 CLR1
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
СҮ	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1

(4) Call instructions/branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

2nd Operand 1st Operand	AX	!addr16	!addr11	[addr5]	\$addr16
Basic instruction	BR	CALL BR	CALLF	CALLT	BR, BC, BNC BZ, BNZ
Compound instruction					BT, BF BTCLR DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

12. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol	Conditions			Ratings	Unit
Supply voltage	Vdd				-0.3 to +6.5	V
	AVdd				-0.3 to V_{DD} + 0.3 ^{Note}	V
	AVREF				-0.3 to V_{DD} + 0.3 ^{Note}	V
	AVss				-0.3 to +0.3	V
Input voltage	VI1	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, X1, X2, XT1, XT2, RESET			–0.3 to V _{DD} + 0.3 ^{Note}	V
	VI2	P30 to P33	N-ch open-drain	Without pull-up resistor	-0.3 to + 6.5	V
				With pull-up resistor	-0.3 to VDD + 0.3 ^{Note}	V
Output voltage	Vo				-0.3 to VDD + 0.3 ^{Note}	v
Analog input voltage	Van	P10 to P17 Analog input pin			$AV_{SS} - 0.3 \text{ to } AV_{\text{REF0}} + 0.3^{\text{Note}}$ and -0.3 to V_{DD} + 0.3^{Note}	V
Output current, high	Іон	Per pin			-10	mA
		Total for P00 to P03, P40 to P47, P50 to P57, P64 to P67, P70 to P75			-15	mA
		Total for P20 to P25, P30 to P36			-15	mA
Output current, low	lol	Per pin for P00 to P03, P20 to P25, P34 to P36, P40 to P47, P64 to P67, P70 to P75		20	mA	
		Per pin for P30 to P33, P50 to P57			30	mA
		Total for P00 to P03, P40 to P47,			50	mA
		P64 to P67, P70 to P75				
		Total for P20 to P25			20	mA
		Total for P30 to P36			100	
		Total for P50 to P57			100	mA
Operating ambient temperature	TA				-40 to +85	°C
Storage temperature	Tstg				-65 to +150	°C

Note 6.5 V or below

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Capacitance (T_A = 25°C, V_{DD} = V_{SS} = 0 V)

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Input capacitance	Cin	f = 1 MHz Unmeasured pins returned to 0 V.				15	pF
I/O capacitance	Сю	f = 1 MHz Unmeasured pins returned to 0 V.	P00 to P03, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75			15	pF
			P30 to P33			20	pF

Remark Unless otherwise specified, the characteristic of alternate-function pins are the same as those of port pins.

Main System Clock Oscillator Characteristics ($T_A = -40$ to $85^{\circ}C$, $V_{DD} = 1.8$ to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic	1 .1	Oscillation frequency (fx) ^{Note 1}	V _{DD} = 4.0 to 5.5 V	1.0		8.38	MHz
resonator	X1 X2 IC			1.0		5.0	
		Oscillation stabilization time ^{Note 2}	After V _{DD} reaches oscillation voltage range MIN.			4	ms
Crystal	stal x1 x2 IC	Oscillation	V _{DD} = 4.0 to 5.5 V	1.0		8.38	MHz
resonator		frequency (fx) ^{Note 1}		1.0		5.0	
	+ <u>C1</u> + <u>C2</u>	Oscillation stabilization time ^{Note 2}	V _{DD} = 4.0 to 5.5 V			10	ms
	·					30	
External	xternal	X1 input	V _{DD} = 4.0 to 5.5 V	1.0		8.38	MHz
clock	X1 X2	frequency (fx)Note 1		1.0		5.0	
	X1 input	V _{DD} = 4.0 to 5.5 V	50		500	ns	
		HCU04 high-/low-level width (txн, tx∟)		85		500	

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.2. Time required to stabilize oscillation after reset or STOP mode release.

Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss1.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. When the main system clock is stopped and the system is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Subsystem Clock Oscillator Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	XIE XIII.	Oscillation frequency (f _{XT}) ^{Note 1}		32	32.768	35	kHz
		Oscillation	V _{DD} = 4.0 to 5.5 V		1.2	2	S
		stabilization time ^{Note 2}				10	
External clock	XT2 XT1	XT1 input frequency (f _{XT}) ^{Note 1}		32		38.5	kHz
		XT1 input high-/low-level width (txтн, txт∟)		5		15	μs

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
2. Time required to stabilize oscillation after Vbb reaches oscillation voltage range MIN.

- Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss1.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. The subsystem clock oscillator is designed as a low-amplitude circuit for reducing current consumption, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.

Recommended Oscillator Constant

Main system clock: Ceramic resonator (T_A = -40 to $+85^{\circ}$ C)

Manufacturer	Part Number	Frequency	Recommende	d Circuit Constant	Oscillation \	/oltage Range
		(MHz)	C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)
Murata Mfg.	CSB1000J	1.00	100	100	1.8	5.5
Co., Ltd.	CSA2.00MG040	2.00	100	100	1.8	5.5
	CST2.00MG040	2.00	On-chip	On-chip	1.8	5.5
	CSA3.58MG	3.58	30	30	1.8	5.5
	CST3.58MGW	3.58	On-chip	On-chip	1.8	5.5
	CSA4.19MG	4.19	30	30	1.8	5.5
	CST4.19MGW	4.19	On-chip	On-chip	1.8	5.5
	CSA5.00MG	5.00	30	30	1.8	5.5
	CST5.00MGW	5.00	On-chip	On-chip	1.8	5.5
	CSA8.00MTZ	8.00	30	30	4.0	5.5
	CST8.00MTW	8.00	On-chip	On-chip	4.0	5.5
	CSA8.00MTZ093	8.00	30	30	4.0	5.5
	CST8.00MTW093	8.00	On-chip	On-chip	4.0	5.5
	CSA8.38MTZ	8.38	30	30	4.0	5.5
	CST8.38MTW	8.38	On-chip	On-chip	4.0	5.5
	CSA8.38MTZ093	8.38	30	30	4.0	5.5
	CST8.38MTW093	8.38	On-chip	On-chip	4.0	5.5
TDK	CCR3.58MC3	3.58	On-chip	On-chip	1.8	5.5
	CCR4.19MC3	4.19	On-chip	On-chip	1.8	5.5
	CCR5.0MC3	5.00	On-chip	On-chip	1.8	5.5
	CCR8.0MC5	8.00	On-chip	On-chip	2.0	5.5
	CCR8.38MC5	8.38	On-chip	On-chip	2.0	5.5

Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation. Oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit. For details, contact directly the manufacturer of the resonator used.

DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Conditions	3	MIN.	TYP.	MAX.	Unit
Output current,	Іон	Per pin				-1	mA
high		All pins				-15	mA
Output current,	lo∟	Per pin for P00 to P03, P20 to P	25, P34 to P36,			10	mA
low		P40 to P47, P64 to P67, P70 to	P75				
		Per pin for P30 to P33, P50 to P	57			15	mA
		Total for P00 to P03, P40 to P47,	P64 to P67, P70 to P75			20	mA
		Total for P20 to P25				10	mA
		Total for P30 to P36				70	mA
		Total for P50 to P57				70	mA
Input voltage,	VIH1	P10 to P17, P21, P24, P35,	VDD = 2.7 to 5.5 V	0.7Vdd		Vdd	V
high		P40 to P47, P50 to P57,		0.0\/		N/	V
		P64 to P67, P74, P75		0.8Vdd		Vdd	v
	VIH2	P00 to P03, P20, P22, P23, P25,	VDD = 2.7 to 5.5 V	0.8Vdd		Vdd	V
		P34, P36, P70 to P73, RESET		0.85Vdd		Vdd	V
	Vінз	P30 to P33	VDD = 2.7 to 5.5 V	0.7Vdd		5.5	V
		(N-ch open-drain)		0.8Vdd		5.5	V
	VIH4	X1, X2	VDD = 2.7 to 5.5 V	Vdd - 0.5		Vpp	V
				Vdd - 0.2		VDD	V
Vine	Vih5	XT1, XT2	VDD = 4.0 to 5.5 V	0.8Vdd		Vdd	V
				0.9Vdd		Vdd	V
Input voltage,	VIL1	P10 to P17, P21, P24, P35,	VDD = 2.7 to 5.5 V	0		0.3Vdd	V
low		P40 to P47, P50 to P57,		0		0.21/	V
		P64 to P67, P74, P75		0		0.2Vdd	V
	VIL2	P00 to P03, P20, P22, P23, P25,	VDD = 2.7 to 5.5 V	0		0.2Vdd	V
		P34, P36, P70 to P73, RESET		0		0.15Vdd	V
	Vils	P30 to P33	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0		0.3Vdd	V
			$2.7~\text{V} \leq \text{V}_{\text{DD}} < 4.0~\text{V}$	0		0.2Vdd	V
			$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	0		0.1Vdd	V
	VIL4	X1, X2	V _{DD} = 2.7 to 5.5 V	0		0.4	V
				0		0.2	V
	VIL5	XT1, XT2	VDD = 4.0 to 5.5 V	0		0.2Vdd	V
				0		0.1Vdd	V
Output voltage,	Vон1	VDD = 4.0 to 5.5 V, IOH = -1 mA		Vdd - 1.0		Vdd	V
high		Іон = -100 µА		Vdd - 0.5		Vdd	V
Output voltage,	Vol1	P30 to P33	V _{DD} = 4.0 to 5.5 V,			2.0	V
low		P50 to P57	lo∟ = 15 mA		0.4	2.0	V
		P00 to P03, P20 to P25, P34 to P36,	V _{DD} = 4.0 to 5.5 V,			0.4	V
		P40 to P47, P64 to P67, P70 to P75	lo∟ = 1.6 mA				
	Vol2	IoL = 400 μA	1			0.5	V

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	C	onditions	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Іцні	Vin = Vdd	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P60 to P67, P70 to P75, RESET			3	μA
	ILIH2		X1, X2, XT1, XT2			20	μA
	Іцнз	VIN = 5.5 V	P30 to P33 ^{Note}			3	μA
Input leakage current, low	Ilil1	V _{IN} = 0 V	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET			-3	μΑ
	ILIL2		X1, X2, XT1, XT2			-20	μA
	ILIL3		P30 to P33 ^{Note1}			-3	μA
Output leakage current, high	Ігон	Vout = Vdd				3	μA
Output leakage current, low	Ilol	Vout = 0 V				-3	μA
Mask option pull-up resistance	R1	V _{IN} = 0 V, P30, P31, P32 ^{Note2} , P33	V _{IN} = 0 V, P30, P31, P32 ^{Note2} , P33 ^{Note2}		30	90	kΩ
Software pull- up resistance	R2	· · ·					kΩ

Notes 1. μPD780021A, 780022A, 780023A, 780024A: When pull-up resistors are not connected to P30 to P33 (specified by the mask option).

 μ PD780021AY, 780022AY, 780023AY, 780024AY: When pull-up resistors are not connected to P30 and P31 (specified by the mask option).

2. Only for the μPD780021A, 780022A, 780023A, and 780024A.

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

 \star

DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Power supply current ^{Note 1}	IDD1	8.38 MHz crystal oscillation	V _{DD} = 5.0 V ±10% ^{Note 2}	When A/D converter is stopped		5.5	11	mA
		operating mode		When A/D converter is operating		6.5	13	mA
		5.00 MHz crystal oscillation	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 2}}$	When A/D converter is stopped		2	4	mA
		operating mode		When A/D converter is operating		3	6	mA
			V _{DD} = 2.0 V ±10% ^{Note 3}	When A/D converter is stopped		0.4	1.5	mA
				When A/D converter is operating		1.4	4.2	mA
	IDD2	8.38 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$	When peripheral functions are stopped		1.1	2.2	mA
		HALT mode		When peripheral functions are operating			4.7	mA
		5.00 MHz crystal oscillation HALT mode	V _{DD} = 3.0 V ±10% ^{Note 2}	When peripheral functions are stopped		0.35	0.7	mA
				When peripheral functions are operating			1.7	mA
			VDD = 2.0 V ±10% ^{Note 3}	When peripheral functions are stopped		0.15	0.4	mA
				When peripheral functions are operating			1.1	mA
	IDD3	32.768 kHz crys	stal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%$		40	80	μA
		operating mode	Note 4	VDD = 3.0 V ±10%		20	40	μA
				Vdd = 2.0 V ±10%		10	20	μA
	IDD4	32.768 kHz cry	stal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%$		30	60	μA
		HALT mode ^{Note}	4	$V_{DD} = 3.0 V \pm 10\%$		6	18	μA
				$V_{DD} = 2.0 V \pm 10\%$		2	10	μA
	IDD5	XT1 = VDD STO	P mode	$V_{DD} = 5.0 \text{ V} \pm 10\%$		0.1	30	μA
		When feedback re	sistor is not used	$V_{DD} = 3.0 V \pm 10\%$		0.05	10	μA
				$V_{DD} = 2.0 V \pm 10\%$		0.05	10	μA

Notes 1. Total current through the internal power supply (VDD0, VDD1), including the peripheral operation current (except the current through pull-up resistors of ports and the AVREF pin).

- 2. When the processor clock control register (PCC) is set to 00H.
- 3. When PCC is set to 02H.
- 4. When main system clock operation is stopped.

AC Characteristics

(1) Basic Operation (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Cycle time	Тсч	Operating with	$4.0~V \leq V_{\text{DD}}$	≤ 5.5 V	0.24		16	μs
(Min. instruction		main system clock	$2.7 \text{ V} \leq \text{V}_{\text{DD}}$	< 4.0 V	0.4		16	μs
execution time)					1.6		16	μs
Op		Operating with subs	Operating with subsystem clock			122	125	μs
TI00, TI01 input	ttiho, ttilo	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			2/fsam+0.1 ^{Note2}			μs
high-/low-level		$2.7~V \leq V_{\text{DD}} < 4.0~V$			2/fsam+0.2 ^{Note2}			μs
width				2/fsam+0.5 ^{Note2}			μs	
TI50, TI51 input	ft15	V _{DD} = 2.7 to 5.5 V		0		4	MHz	
frequency					0		275	kHz
TI50, TI51 input high-/low-level	t⊤iH5, t⊤iL5	V _{DD} = 2.7 to 5.5 V			100			ns
width					1.8			ns
Interrupt request	tinth, tintl	INTP0 to INTP3,		V _{DD} = 2.7 to 5.5 V	1			μs
input high-/low- level width		P40 to P47			2			μs
RESET	trsl	V _{DD} = 2.7 to 5.5 V	V _{DD} = 2.7 to 5.5 V		10			μs
low-level width					20			μs

Notes 1. Value when the external clock is used. When a crystal resonator is used, it is 114 μ s (MIN.).

Selection of fsam = fx, fx/4, fx/64 is possible using bits 0 and 1 (PRM00, PRM01) of prescaler mode register 0 (PRM0). However, if the TI00 valid edge is selected as the count clock, the value becomes fsam = fx/8.

TCY vs. VDD (main system clock operation)

(2) Read/Write Operation ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 4.0$ to 5.5 V)

(1/3)

	· · · ·		1		(1/3
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	t ASTH		0.3tcy		ns
Address setup time	tads		20		ns
Address hold time	tadh		6		ns
Data input time from address	tADD1			(2 + 2n)tcr – 54	ns
	tADD2			(3 + 2n)tcy – 60	ns
Address output time from $\overline{\text{RD}} \downarrow$	trdad		0	100	ns
Data input time from $\overline{RD}\downarrow$	trdd1			(2 + 2n)tcy – 87	ns
	trdd2			(3 + 2n)tcy – 93	ns
Read data hold time	t RDH		0		ns
RD low-level width	trdl1		(1.5 + 2n)ter – 33		ns
	tRDL2		(2.5 + 2n)tcy – 33		ns
Input time from $\overline{\text{RD}}\downarrow$ to $\overline{\text{WAIT}}\downarrow$	trdwt1			tcy – 43	ns
	trdwt2			tcy – 43	ns
Input time from $\overline{WR} {\downarrow}$ to $\overline{WAIT} {\downarrow}$	twrwt			tcy – 25	ns
WAIT low-level width	tw⊤∟		(0.5 + n)tcr + 10	(2 + 2n)tcy	ns
Write data setup time	twos		60		ns
Write data hold time	t wdh		6		ns
WR low-level width	twrL1		(1.5 + 2n)tcr – 15		ns
Delay time from ASTB \downarrow to $\overline{RD}\downarrow$	t ASTRD		6		ns
Delay time from ASTB \downarrow to $\overline{\text{WR}}\downarrow$	t ASTWR		2tcy - 15		ns
Delay time from \overline{RD} to ASTB at external fetch	trdast		0.8tcy – 15	1.2tcy	ns
Address hold time from $\overline{\text{RD}}^{\uparrow}$ at external fetch	trdadh		0.8tcr - 15	1.2tcy + 30	ns
Write data output time from \overline{RD}	trdwd		40		ns
Write data output time from $\overline{WR}\downarrow$	twrwd		10	60	ns
Address hold time from \overline{WR}^\uparrow	twradh		0.8tcy – 15	1.2tcr + 30	ns
Delay time from \overline{WAIT} to \overline{RD}	twrrd		0.8tcy	2.5tcr + 25	ns
Delay time from \overline{WAIT} to \overline{WR}	twtwr		0.8tcy	2.5tcr + 25	ns

Remarks 1. tcy = Tcy/4

2. n indicates the number of waits.

3. $C_{L} = 100 \text{ pF}$ (C_{L} indicates the load capacitance of the AD0 to AD7, A8 to A15, \overline{RD} , \overline{WR} , \overline{WAIT} , and ASTB pins.)

(2) Read/Write Operation (TA = -40 to +85°C, V_{DD} = 2.7 to 4.0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.3tcy		ns
Address setup time	tads		30		ns
Address hold time	tadh		10		ns
Input time from address to data	tadd1			(2 + 2n)tcy - 108	ns
	tadd2			(3 + 2n)tcy - 120	ns
Output time from $\overline{RD} \downarrow$ to address	trdad		0	200	ns
Input time from $\overline{RD} \downarrow$ to data	trdd1			(2 + 2n)tcy - 148	ns
	trdd2			(3 + 2n)tcy - 162	ns
Read data hold time	trdh		0		ns
RD low-level width	trdl1		(1.5 + 2n)tcy - 40		ns
	tRDL2		(2.5 + 2n)tcy - 40		ns
Input time from $\overline{RD} \downarrow$ to $\overline{WAIT} \downarrow$	trdwt1			tcy – 75	ns
	trdwt2			tcy - 60	ns
Input time from $\overline{WR} \downarrow$ to $\overline{WAIT} \downarrow$	twrwt			tcy - 50	ns
WAIT low-level width	tw⊤∟		(0.5 + 2n)tcr + 10	(2 + 2n)tcr	ns
Write data setup time	twos		60		ns
Write data hold time	twoн		10		ns
WR low-level width	twrl1		(1.5 + 2n)tcy - 30		ns
Delay time from ASTB \downarrow to $\overline{RD}\downarrow$	t ASTRD		10		ns
Delay time from ASTB \downarrow to $\overline{WR}\downarrow$	t astwr		2tcy - 30		ns
Delay time from	t RDAST		0.8tcy - 30	1.2tcr	ns
\overline{RD}^{\uparrow} to ASTB $^{\uparrow}$ at external fetch					
Hold time from	t rdadh		0.8tcy - 30	1.2tcy + 60	ns
\overline{RD} to address at external fetch					
Write data output time from \overline{RD} \uparrow	trdwd		40		ns
Write data output time from $\overline{WR} \downarrow$	twrwd		20	120	ns
Hold time from \overline{WR}^\uparrow to address	twradh		0.8tcy - 30	1.2tcy + 60	ns
Delay time from \overline{WAIT} to \overline{RD}	twtrd		0.5tcr	2.5tcy + 50	ns
Delay time from WAIT↑ to WR↑	twtwr		0.5tcy	2.5tcy + 50	ns

Remarks 1. tcy = Tcy/4

2. n indicates the number of waits.

^{3.} $C_{L} = 100 \text{ pF}$ (C_{L} indicates the load capacitance of the AD0 to AD7, AD8 to AD15, \overline{RD} , \overline{WR} , \overline{WAIT} , and ASTB pins.)

(2) Read/Write Operation (T_A = -40 to +85°C, V_{DD} = 1.8 to 2.7 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.3tcy		ns
Address setup time	tads		120		ns
Address hold time	tadh		20		ns
Input time from address to data	tadd1			(2 + 2n)tcr – 233	ns
	tADD2			(3 + 2n)tcr – 240	ns
Output time from $\overline{RD}\downarrow$ to address	trdad		0	400	ns
Input time from $\overline{RD}\downarrow$ to data	trdd1			(2 + 2n)tcr – 325	ns
	trdd2			(3 + 2n)tcr – 332	ns
Read data hold time	t RDH		0		ns
RD low-level width	trdl1		(1.5 + 2n)tcr - 92		ns
	tRDL2		(2.5 + 2n)tcr - 92		ns
Input time from $\overline{\mathrm{RD}}\downarrow$ to $\overline{\mathrm{WAIT}}\downarrow$	trdwt1			tcy – 350	ns
	trdwt2			tcy – 132	ns
Input time from $\overline{WR}\downarrow$ to $\overline{WAIT}\downarrow$	twrwt			tcy - 100	ns
WAIT low-level width	tw⊤∟		(0.5 + 2n)tcr + 10	(2 + 2n)tcr	ns
Write data setup time	twos		60		ns
Write data hold time	twdн		20		ns
WR low-level width	twRL1		(1.5 + 2n)tcr - 60		ns
Delay time from ASTB \downarrow to $\overline{\mathtt{RD}}\downarrow$	t ASTRD		20		ns
Delay time from ASTB \downarrow to $\overline{WR}\downarrow$	t ASTWR		2tcy - 60		ns
Delay time from	t rdast		0.8tcy - 60	1.2tcr	ns
\overline{RD} to ASTB t external fetch					
Hold time from	t rdadh		0.8tcy - 60	1.2tcy + 120	ns
$\overline{RD} \uparrow$ to address at external fetch					
Write data output time from $\overline{\mathtt{RD}}$ (trdwd		40		ns
Write data output time from $\overline{WR} {\downarrow}$	twrwd		40	240	ns
Hold time from \overline{WR}^\uparrow to address	twradh		0.8tcy - 60	1.2tcy + 120	ns
Delay time from $\overline{WAIT}^{\uparrow}$ to \overline{RD}^{\uparrow}	twtrd		0.5tcy	2.5tcy + 100	ns
Delay time from \overline{WAIT} to \overline{WR}	twtwr		0.5tcy	2.5tcr + 100	ns

Remarks 1. tcy = Tcy/4

2. n indicates the number of waits.

3. $C_{L} = 100 pF$ (C_L indicates the load capacitance of the AD0 to AD7, AD8 to AD15, \overline{RD} , \overline{WR} , \overline{WAIT} , and ASTB pins.)

(3) Serial Interface (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK3n	tKCY1	$4.0~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	954			ns
cycle time		$2.7~\text{V} \leq \text{V}_{\text{DD}} < 4.0~\text{V}$	1600			ns
			3200			ns
SCK3n high-/	tкнı, tĸ∟ı	V _{DD} = 4.0 to 5.5 V	tксү1/2 – 50			ns
low-level width			tксү1/2 − 100			ns
SI3n setup time	tsik1	$4.0~V \leq V_{\text{DD}} \leq 5.5V$	100			ns
(to SCK3n↑)		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{V}$	150			ns
			300			ns
SI3n hold time (from SCK3n↑)	tksi1		400			ns
Delay time from SCK3n↓ to SO3n output	tkso1	C = 100 pF ^{Note}			300	ns

(a) 3-wire serial I/O mode (SCK3n... Internal clock output)

Note C is the load to SO3n output capacitance of the SCK3n and SO3n output lines.

(b) 3-wire serial I/O mode (SCK3n... External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK3n	tксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	800			ns
cycle time		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	1600			ns
			3200			ns
SCK3n high-/	tkh2, tkl2	$4.0~\text{V} \leq \text{V}_\text{DD} \leq 5.5~\text{V}$	400			ns
low-level width		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	800			ns
			1600			ns
Sl3n setup time (to SCK3n↑)	tsik2		100			ns
SI3n hold time (from SCK3n↑)	tksi2		400			ns
Delay time from SCK3n↓ to SO3n output	tkso2	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the SO3n output line.

RemarkμPD780021A, 780022A, 780023A, 780024A:n = 0, 1μPD780021AY, 780022AY, 780023AY, 780024AY:n = 0

(c) UART mode (dedicated baud-rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.0~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$			131031	bps
		$2.7~\text{V} \leq \text{V}_{\text{DD}} < 4.0~\text{V}$			78125	bps
					39063	bps

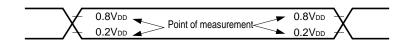
(d) UART mode (external clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK0 cycle time	tксүз	$4.0~\text{V} \leq \text{V}_\text{DD} \leq 5.5~\text{V}$	800			ns
		$2.7~V \leq V_{\text{DD}} < 4.0~V$	1600			ns
			3200			ns
ASCK0 high-/low-level width	tкнз,	$4.0~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	400			ns
	tкLз	$2.7~V \leq V_{\text{DD}} < 4.0~V$	800			ns
			1600			ns
Transfer rate		$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			39063	bps
		$2.7~\text{V} \leq \text{V}_{\text{DD}} < 4.0~\text{V}$			19531	bps
					9766	bps

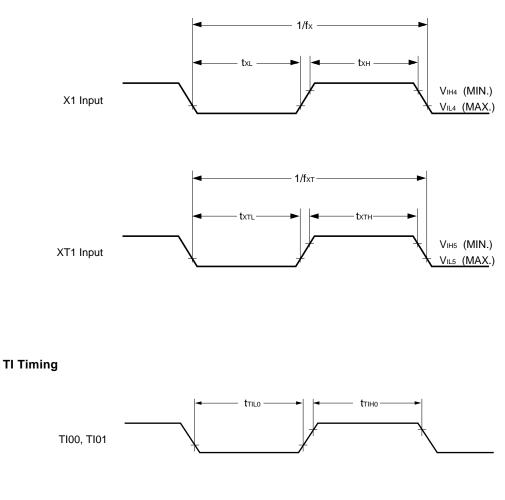
(e) UART mode (infrared data transfer mode)

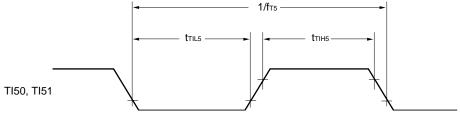
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Transfer rate		V _{DD} = 4.0 to 5.5 V		131031	bps
Bit rate allowable error		V _{DD} = 4.0 to 5.5 V		±0.87	%
Output pulse width		VDD = 4.0 to 5.5 V	1.2	0.24/fbr ^{Note}	μs
Input pulse width		V _{DD} = 4.0 to 5.5 V	4/fx		μs

Note fbr: Specified baud rate

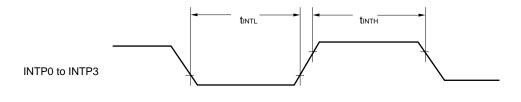

(f) $I^{2}C$ bus mode (μ PD780021AY, 780022AY, 780023AY, 780024AY only)

	Deremeter		Standar	d Mode	High-Spe	ed Mode	Linit
Parameter		Symbol	MIN.	MAX.	MIN.	MAX.	Unit
SCL0 clock free	quency	fськ	0	100	0	400	kHz
Bus free time		t BUF	4.7	_	1.3	_	μs
(between stop a	and start conditions)						
Hold time ^{Note 1}		t hd:sta	4.0	—	0.6	—	μs
SCL0 clock low	-level width	t LOW	4.7	—	1.3	—	μs
SCL0 clock hig	SCL0 clock high-level width		4.0	—	0.6	—	μs
Start/restart condition setup time		tsu:sta	4.7	—	0.6	—	μs
Data hold time	CBUS-compatible master	t hd:dat	5.0	—	—	—	μs
	I ² C bus		O ^{Note 2}		O ^{Note 2}	0.9 ^{Note 3}	μs
Data setup time	Data setup time		250	—	100 ^{Note 4}	—	ns
SDA0 and SCL	SDA0 and SCL0 signal rise time		—	1000	20 + 0.1Cb ^{Note 5}	300	ns
SDA0 and SCL0 signal fall time		t⊧	_	300	20 + 0.1Cb ^{Note 5}	300	ns
Stop condition setup time		tsu:sto	4.0	_	0.6	_	μs
Spike pulse width controlled by input filter		tsp	_	_	0	50	ns
Capacitive load	per bus line	Cb	_	400		400	pF

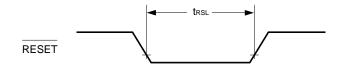

Notes 1. In the start condition, the first clock pulse is generated after this hold time.


- 2. To fill in the undefined area of the SCL0 falling edge, it is necessary for the device to internally provide at least 300 ns of hold time for the SDA0 signal (which is VIHmin. of the SCL0 signal).
- If the device does not extend the SCL0 signal low hold time (tLow), only the maximum data hold time tHD:DAT needs to be fulfilled.
- 4. The high-speed mode I²C bus is available in a standard mode I²C bus system. At this time, the conditions described below must be satisfied.
 - If the device does not extend the SCL0 signal low state hold time $t_{\text{SU:DAT}} \geq 250 \text{ ns}$
 - If the device extends the SCL0 signal low state hold time
 - Be sure to transmit the next data bit to the SDA0 line before the SCL0 line is released (tRmax. + tSU:DAT
 - = 1000 + 250 = 1250 ns by standard mode I^2C bus specification).
- 5. Cb: Total capacitance per bus line (unit: pF)

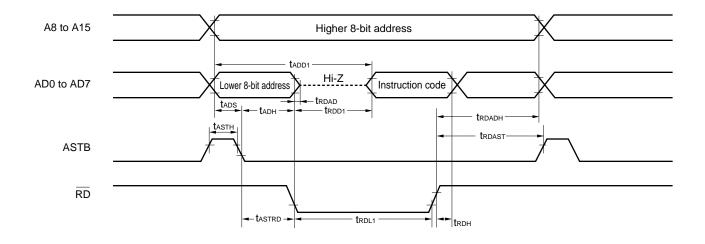
AC Timing Measurement Points (Excluding X1, XT1 Inputs)



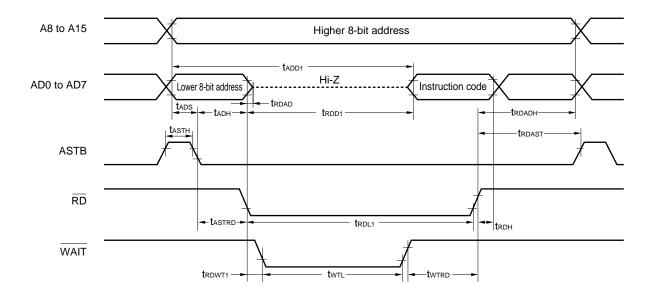
Clock Timing



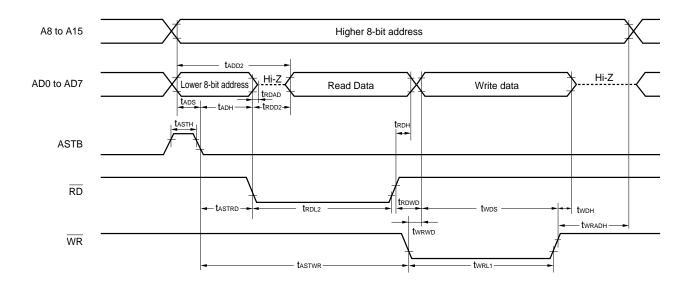
* Interrupt Request Input Timing

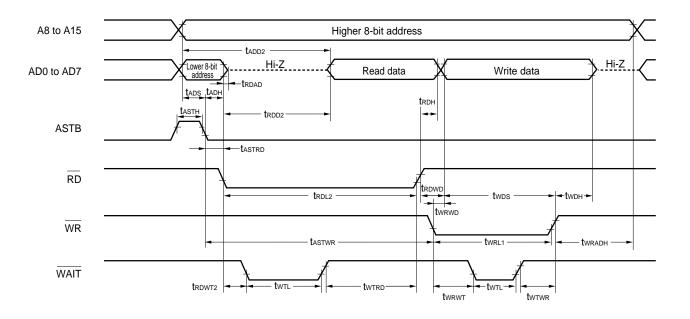


RESET Input Timing

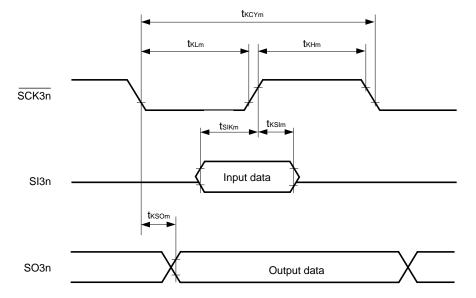


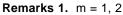
Read/Write Operation


External fetch (no wait):

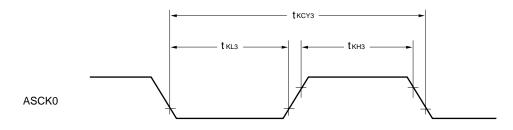

External fetch (wait insertion):

External data access (no wait):




External data access (wait insertion):

Serial Transfer Timing





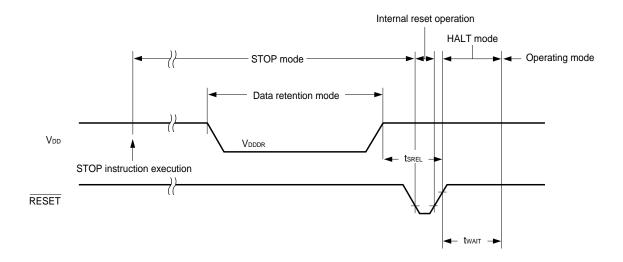
μPD780021A, 780022A, 780023A, 780024A: n = 0, 1
 μPD780021AY, 780022AY, 780023AY, 780024AY: n = 0

UART mode (external clock input):

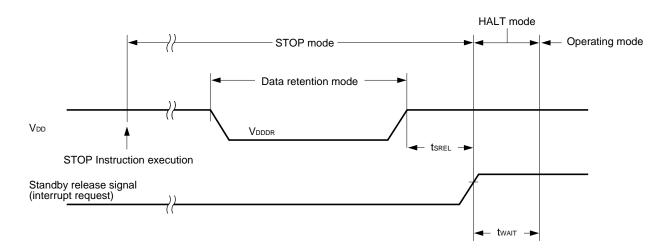
I²C bus mode (µPD780021AY, 780022AY, 780023AY, 780024AY only):

A/D Converter Characteristics (TA = -40 to +85°C, VDD = AVDD = AVREF = 1.8 to 5.5 V, AVss = Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error ^{Note}		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±0.4	%FSR
		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} < 4.0 \text{ V}$			±0.6	%FSR
		$1.8 \text{ V} \leq \text{AV}_{\text{REF}} < 2.7 \text{ V}$			±1.2	%FSR
Conversion time	t CONV	$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$	14		96	μs
		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} < 4.0 \text{ V}$	19		96	μs
		$1.8 \text{ V} \leq \text{AV}_{\text{REF}} < 2.7 \text{ V}$	28		96	μs
Analog input voltage	VIAN		0		AVREF	V
Reference voltage	AVREF		1.8		AVdd	V
Resistance between AVREF and AVss	RREF	When A/D converter not operating	20	40		kΩ

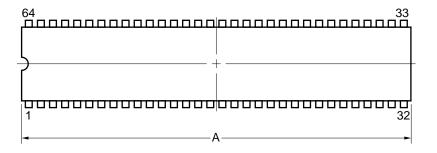

Note Excludes quantization error ($\pm 1/2$ LSB). This value is indicated as a ratio to the full-scale value.

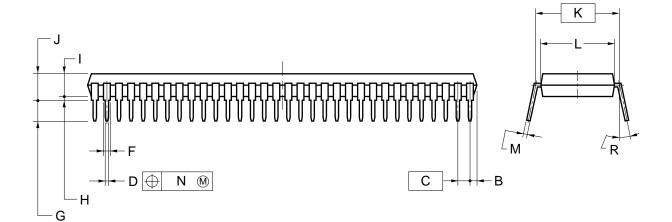
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (T_A = -40 to +85°C)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	Vdddr		1.6		5.5	V
Data retention power supply current	Idddr	Subsystem clock stop (XT1 = VDD) and feed-back resistor disconnected		0.1	30	μA
Release signal set time	t SREL		0			μs
Oscillation stabilization	twait	Release by RESET		2 ¹⁷ /fx		S
time		Release by interrupt request		Note		S

Note Selection of 2¹²/fx and 2¹⁴/fx to 2¹⁷/fx is possible using bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS).

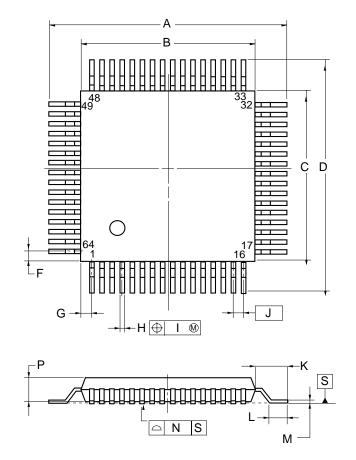
Data Retention Timing (STOP Mode Release by RESET)



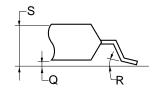

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Request Signal)

13. PACKAGE DRAWINGS

64-PIN PLASTIC SDIP (19.05mm(750))


NOTES

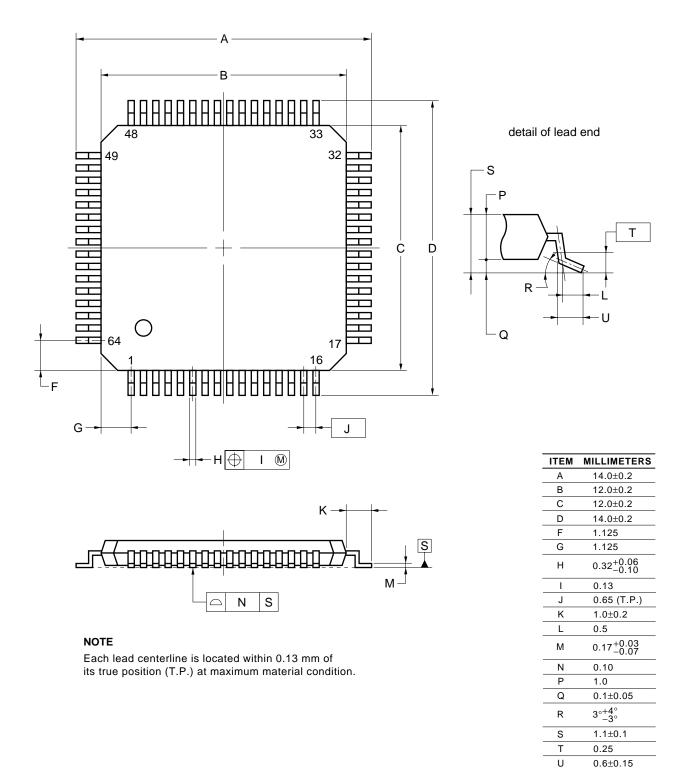
- 1. Each lead centerline is located within 0.17 mm of its true position (T.P.) at maximum material condition.
- 2. Item "K" to center of leads when formed parallel.


ITEM	MILLIMETERS
А	58.0 ^{+0.68} -0.20
В	1.78 MAX.
С	1.778 (T.P.)
D	0.50±0.10
F	0.9 MIN.
G	3.2±0.3
Н	0.51 MIN.
I	4.05+0.26
J	5.08 MAX.
К	19.05 (T.P.)
L	17.0±0.2
М	0.25 ^{+0.10} -0.05
N	0.17
R	0 ~ 15°
I	P64C-70-750A,C-4

Remark The external dimensions and materials of the ES version are the same as those of the mass-produced version.

64-PIN PLASTIC QFP (14x14)

detail of lead end


NOTE

Each lead centerline is located within 0.15 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
	WILLINETERS
A	17.6±0.4
В	14.0±0.2
С	14.0±0.2
D	17.6±0.4
F	1.0
G	1.0
Н	0.37 <mark>+0.08</mark> -0.07
I	0.15
J	0.8 (T.P.)
K	1.8±0.2
L	0.8±0.2
М	0.17 <mark>+0.08</mark> -0.07
Ν	0.10
Р	2.55±0.1
Q	0.1±0.1
R	$5^{\circ}\pm5^{\circ}$
S	2.85 MAX.
	P64GC-80-AB8-5

Remark The external dimensions and materials of the ES version are the same as those of the mass-produced version.

64-PIN PLASTIC TQFP (12x12)

Remark The external dimensions and materials of the ES version are the same as those of the mass-produced version.

P64GK-65-9ET-3

14. RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions.

For details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Table 14-1. Surface Mounting Type Soldering Conditions (1/2)

- (1) μ PD780021AGC-xxx-AB8: 64-pin plastic QFP (14 × 14)
 - μ PD780022AGC- \times AB8: 64-pin plastic QFP (14 \times 14)
 - μ PD780023AGC- \times ××-AB8: 64-pin plastic QFP (14 \times 14)
 - μ PD780024AGC-xxx-AB8: 64-pin plastic QFP (14 × 14)
 - μ PD780021AYGC- \times AB8: 64-pin plastic QFP (14 \times 14)
 - μ PD780022AYGC- \times AB8: 64-pin plastic QFP (14 \times 14)
 - μ PD780023AYGC- \times AB8: 64-pin plastic QFP (14 \times 14)
 - μ PD780024AYGC- \times AB8: 64-pin plastic QFP (14 \times 14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max.	IR35-00-3
	(at 210°C or higher), Count: Three times or less	
VPS	Package peak temperature: 215°C, Time: 40 seconds max.	VP15-00-3
	(at 200°C or higher), Count: Three times or less	
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max.,	WS60-00-1
	Count: Once, Preheating temperature: 120°C Max. (package surface temperature)	
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	

Caution Do not use different soldering methods together (except for partial heating).

Table 14-1. Surface Mounting Type Soldering Conditions (2/2)

 (2) μPD780021AGK-xxx-9ET: 64-pin plastic TQFP (12 × 12) μPD780022AGK-xxx-9ET: 64-pin plastic TQFP (12 × 12) μPD780023AGK-xxx-9ET: 64-pin plastic TQFP (12 × 12) μPD780024AGK-xxx-9ET: 64-pin plastic TQFP (12 × 12) μPD780021AYGK-xxx-9ET: 64-pin plastic TQFP (12 × 12) μPD780022AYGK-xxx-9ET: 64-pin plastic TQFP (12 × 12) μPD780023AYGK-xxx-9ET: 64-pin plastic TQFP (12 × 12) μPD780023AYGK-xxx-9ET: 64-pin plastic TQFP (12 × 12)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max.	IR35-107-2
	(at 210°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	
VPS	Package peak temperature: 215°C, Time: 40 seconds max.	VP15-107-2
	(at 200°C or higher), Count: Two times or less, Exposure limit:	
	7 days ^{Note} (after that, prebake at 125°C for 10 hours)	
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	

Note After opening the dry pack, store it at 25°C or less and 65%RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Table 14-2. Insertion Type Soldering Conditions

μPD780021ACW-xxx: 64-pin plastic SDIP (19.05 mm (750)) μPD780022ACW-xxx: 64-pin plastic SDIP (19.05 mm (750)) μPD780023ACW-xxx: 64-pin plastic SDIP (19.05 mm (750)) μPD780024ACW-xxx: 64-pin plastic SDIP (19.05 mm (750)) μPD780021AYCW-xxx: 64-pin plastic SDIP (19.05 mm (750)) μPD780022AYCW-xxx: 64-pin plastic SDIP (19.05 mm (750)) μPD780023AYCW-xxx: 64-pin plastic SDIP (19.05 mm (750)) μPD780023AYCW-xxx: 64-pin plastic SDIP (19.05 mm (750))

Soldering Method	Soldering Conditions
Wave soldering (only for pins)	Solder bath temperature: 260°C max., Time: 10 seconds max.
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)

Caution Apply wave soldering only to the pins and be careful not to bring solder into direct contact with the package.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD780024A, 780024AY Subseries.

Also refer to (5) Cautions on Using Development Tools.

(1) Language Processing Software

RA78K0	Assembler package common to 78K/0 Series
СС78К0	C compiler package common to 78K/0 Series
DF780024	Device file for μ PD780024A, 780024AY Subseries
CC78K0-L	C compiler library source file common to 78K/0 Series

(2) Flash Memory Writing Tools

Flashpro II (FL-PR2) Flashpro III (FL-PR3, PG-FP3)	Flash programmer dedicated to microcontrollers with on-chip flash memory
FA-64CW	Adapter for flash memory writing
FA-64GC	
FA-64GK-9ET	

(3) Debugging Tools

• When using in-circuit emulator IE-78K0-NS

IE-78K0-NS	In-circuit emulator common to 78K/0 Series
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS
IE-78K0-NS-PA	Performance board to enhance and expand the functions of IE-78K0-NS
IE-70000-98-IF-C	Adapter required when using PC-9800 series as host machine (excluding notebook PCs) (C bus supported)
IE-70000-CD-IF-A	PC card and interface cable when using notebook PC as host machine (PCMCIA socket supported)
IE-70000-PC-IF-C	Adapter required when using IBM PC/AT TM or compatible as host machine (ISA bus supported)
IE-70000-PCI-IF-A	Adapter required when using PC in which PCI bus is incorporated as host machine
IE-780034-NS-EM1	Emulation board to emulate μ PD780024A, 780024AY Subseries
NP-64CW	Emulation probe for 64-pin plastic SDIP (CW type)
NP-64GC	Emulation probe for 64-pin plastic QFP (GC-AB8 type)
NP-64GC-TQ	
NP-64GK	Emulation probe for 64-pin plastic TQFP (GK-9ET type)
EV-9200GC-64	Conversion socket to connect the NP64GC and a target system board on which a 64-pin plastic QFP (GC-AB8 type) can be mounted.
TGC-064SAP	Conversion adapter to connect the NP-64GC-TQ and a target system board on which a 64-pin plastic QFP (GK-AB8 type) can be mounted
TGK-064SBP	Conversion adapter to connect the NP-64GK and a target system on which a 64-pin plastic TQFP (GK-9ET type) can be mounted
ID78K0-NS	Integrated debugger for IE-78K0-NS
SM78K0	System simulator common to 78K/0 Series
DF780024	Device file for µPD780024A, 780024AY Subseries

• When using in-circuit emulator IE-78001-R-A

IE-78001-R-A	In-circuit emulator common to 78K/0 Series
IE-70000-98-IF-C	Adapter required when using PC-9800 series as host machine (excluding notebook PCs) (C bus supported)
IE-70000-PC-IF-C	Interface adapter when using IBM PC/AT or compatible as host machine (ISA bus supported)
IE-70000-PCI-IF-A	Adapter required when using PC in which PCI bus is incorporated as host machine
IE-78000-R-SV3	Interface adapter and cable when using EWS as host machine
IE-780034-NS-EM1	Emulation board to emulate μ PD780024A, 780024AY Subseries
IE-78K0-R-EX1	Emulation probe conversion board necessary when using IE-780034-NS-EM1 on IE-78001-R-A
EP-78240CW-R	Emulation probe for 64-pin plastic SDIP (CW type)
EP-78240GC-R	Emulation probe for 64-pin plastic QFP (GC-AB8 type)
EP-78012GK-R	Emulation probe for 64-pin plastic TQFP (GK-9ET type)
EV-9200GC-64	Conversion socket to connect the EP-78240GC-R and a target system board on which a 64-pin plastic QFP (GC-AB8 type) can be mounted
TGK-064SBP	Conversion adapter to connect the EP-78012GK-R and a target system board on which a 64-pin plastic TQFP (GK-9ET type) can be mounted
ID78K0	Integrated debugger for IE-78001-R-A
SM78K0	System simulator common to 78K/0 Series
DF780024	Device file for μ PD780024A, 780024AY Subseries

(4) Real-Time OS

RX78K0	Real-time OS for 78K/0 Series
MX78K0	OS for 78K/0 Series

- (5) Cautions on Using Development Tools
- The ID78K0-NS, ID78K0, and SM78K0 are used in combinaiton with the DF780024.
- The CC78K0 and RX78K0 are used in combination with the RA78K0 and the DF780024.
- FL-PR2, FL-PR3, FA-64CW, FA-64GC, FA-64GK-9ET, NP-64CW, NP-64GC, NP-64GC-TQ and NP-64GK are products made by Naito Densei Machida Mfg. Co., Ltd. (+81-44-822-3813).
- The TGC-064SAP, and TGK-064SBP are products made by TOKYO ELETECH CORPORATION. Refer to: Daimaru Kogyo, Ltd.

Tokyo Electronic Division (+81-3-3820-7112)

Osaka Electronic Division (+81-6-6244-6672)

- For third-party development tools, see the Single-chip Microcontroller Development Tool Selection Guide (U11069E).
- The host machines and OSs supporting each software are as follows.

Host Machine	PC	EWS
[OS]	PC-9800 series [Japanese Windows™]	HP9000 series 700™ [HP-UX™]
	IBM PC/AT and compatibles	SPARCstation™ [SunOS™, Solaris™]
Software	[Japanese/English Windows]	NEWS™ (RISC) [NEWS-OS™]
RA78K0	Note	1
CC78K0	Note	\checkmark
ID78K0-NS	\checkmark	_
ID78K0	\checkmark	\checkmark
SM78K0	\checkmark	_
RX78K0	Note	
MX78K0	Note	\checkmark

Note DOS-based software

 \star

APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Document No.
μPD780024A, 780034A, 780024AY, 780034AY Subseries User's Manual	U14046E
μPD780021A, 780022A, 780023A, 780024A, 780021AY, 780022AY, 780023AY, 780024AY Data Sheet	This document
μPD780021A(A), 780022A(A), 780023A(A), 780024A(A), 780021AY(A), 780022AY(A), 780023AY(A),	U15131E
780024AY(A) Data Sheet	
μPD78F0034A, 78F0034AY Data Sheet	U14040E
78K/0 Series User's Manual Instructions	U12326E

Documents Related to Development Tools (User's Manuals)

Document Name		Document No.
RA78K0 Assembler Package	Operation	U11802E
	Assembly Language	U11801E
	Structured Assembly Language	U11789E
CC78K0 C Compiler	Operation	U11517E
	Language	U11518E
IE-78K0-NS In-circuit Emulator		U13731E
IE-780034-NS-EM1 Emulation Board		U14642E
EP-78240 Emulation Probe		U10332E
SM78K0S, SM78K0 System Simulator Ver.2.10 or Later Windows	Operation	U14611E
based		
SM78K Series System Simulator Ver.2.10 or Later	External Part User Open Interface Specifications	To be prepared
ID78K0-NS Integrated Debugger Ver.2.00 Later Windows based	Operation	U14379E
ID78K0-NS, ID78K0S-NS Integrated Debugger Ver.2.20 or Later	Operation	U14910E
Windows based		
ID78K0 Integrated Debugger Windows based	Reference	U11539E
	Guide	U11649E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

Documents Related to Embedded Software (User's Manuals)

Document Name		Document No.
78K/0 Series Real-time OS	Fundamentals	U11537E
	Installation	U11536E
78K/0 Series OS MX78K0	Fundamental	U12257E

Other Related Documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE Products & Packages (CD-ROM)	X13769X
Semiconductor Device Mounting Technology Manual	C10535E
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

[MEMO]

- NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Note: Purchase of NEC I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

FIP and IEBus are trademarks of NEC Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/ or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- · Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

Fax: 02-66 75 42 99

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288	NEC Ele Benelux Eindhov Tel: 040 Fax: 040
	NEC EI
NEC Electronics (Germany) GmbH Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490	Velizy-V Tel: 01-3 Fax: 01-
NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290	NEC Ele Madrid (Madrid, 3 Tel: 91-5 Fax: 91-
NEC Electronics Italiana s.r.l. Milano, Italy Tel: 02-66 75 41	NEC Ele Scandina Taeby, S

ectronics (Germany) GmbH Office en. The Netherlands)-2445845 0-2444580

lectronics (France) S.A. /illacoublay, France 30-67 58 00 -30-67 58 99

lectronics (France) S.A. Office Spain 504-2787 -504-2860

ectronics (Germany) GmbH avia Office aeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore Tel: 65-253-8311 Fax: 65-250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A. **Electron Devices Division** Guarulhos-SP Brasil Tel: 55-11-6462-6810 Fax: 55-11-6462-6829

J00.7

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is current as of November, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).