

mos integrated circuit $\mu PD75P3018$

4-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD75P3018 replaces the μ PD753017's internal mask ROM with a one-time PROM, and features expanded ROM capacity.

Because the μ PD75P3018 supports programming by users, it is suitable for use in evaluations of systems in development stages using the μ PD753012, 753016, or 753017, and for use in small-scale production.

The following document describes further details of the functions. Please make sure to read this document before starting design.

μPD753017 User's Manual : U11282E

FEATURES

- Compatible with µPD753017
- O Memory capacity:

PROM: 32768 x 8 bitsRAM: 1024 x 4 bits

- Can operate in same power supply voltage as the mask version µPD753017
 - $V_{DD} = 2.2 \text{ to } 5.5 \text{ V}$

O LCD controller/driver

ORDERING INFORMATION

Part Number	Package	PROM (× 8 bits)
μPD75P3018GC-3B9	80-pin plastic QFP (14 x 14 mm, 0.65-mm pitch)	32768
μPD75P3018GK-BE9	80-pin plastic TQFP (fine pitch) (12 x 12 mm, 0.5-mm pitch)	32768

Caution Mask-option pull-up resistors are not provided in this device.

The information in this document is subject to change without notice.

*

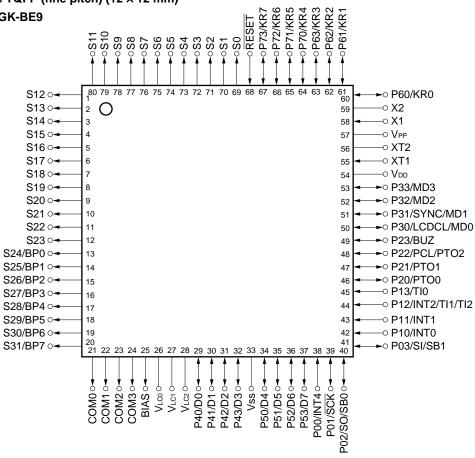
FUNCTION OUTLINE

Item		Function			
Instruction execution time		 0.95, 1.91, 3.81, 15.3 μs (main system clock: at 4.19 MHz operation) 0.67, 1.33, 2.67, 10.7 μs (main system clock: at 6.0 MHz operation) 122 μs (subsystem clock: at 32.768 kHz operation) 			
Internal memory PROM		32768	x 8 bits		
	RAM	1024 x	4 bits		
General-purpose r	register		operation: 8 × 4 banks operation: 4 × 4 banks		
Input/output port	CMOS input	8	On-chip pull-up resistor connection can be specified by using software: 23		
	CMOS input/output	16			
	CMOS output	8	Also used for segment pins		
	N-ch open drain input/output	8	13-V breakdown voltage		
	Total	40			
LCD controller/driv	ver		• Segment number selection : 24/28/32 segments (can be changed to CMOS output port in 4 time-unit; max. 8) • Display mode selection : Static 1/2 duty (1/2 bias) 1/3 duty (1/2 bias) 1/3 duty (1/3 bias) 1/4 duty (1/3 bias)		
Timer		5 channels: • 8-bit timer/event counter: 3 channels (can be used for 16-bit timer/event counter) • Basic interval timer/watchdog timer: 1 channel • Watch timer: 1 channel			
Serial interface		3-wire serial I/O mode MSB or LSB can be selected for transferring top bit 2-wire serial I/O mode SBI mode			
Bit sequential buff	er (BSB)	16 bits			
Clock output (PCL	.)	 Φ, 524, 262, 65.5 kHz (main system clock: at 4.19 MHz operation) Φ, 750, 375, 93.8 kHz (main system clock: at 6.0 MHz operation) 			
Buzzer output (BU	IZ)	• 2, 4, 32 kHz (main system clock: at 4.19 MHz operation or subsystem clock: at 32.768 kHz operation) • 2.86, 5.72, 45.8 kHz (main system clock: at 6.0 MHz operation)			
Vectored interrupts		• External : 3 • Internal : 5			
Test input		External : 1 Internal : 1			
System clock oscillator		Ceramic or crystal oscillator for main system clock oscillation Crystal oscillator for subsystem clock oscillation			
Standby function		STOP	/HALT mode		
Power supply volta	age	V _{DD} = 2	2.2 to 5.5 V		
Package		80-pin plastic QFP (14 x 14 mm) 80-pin plastic TQFP (fine pitch) (12 x 12 mm)			

*

*

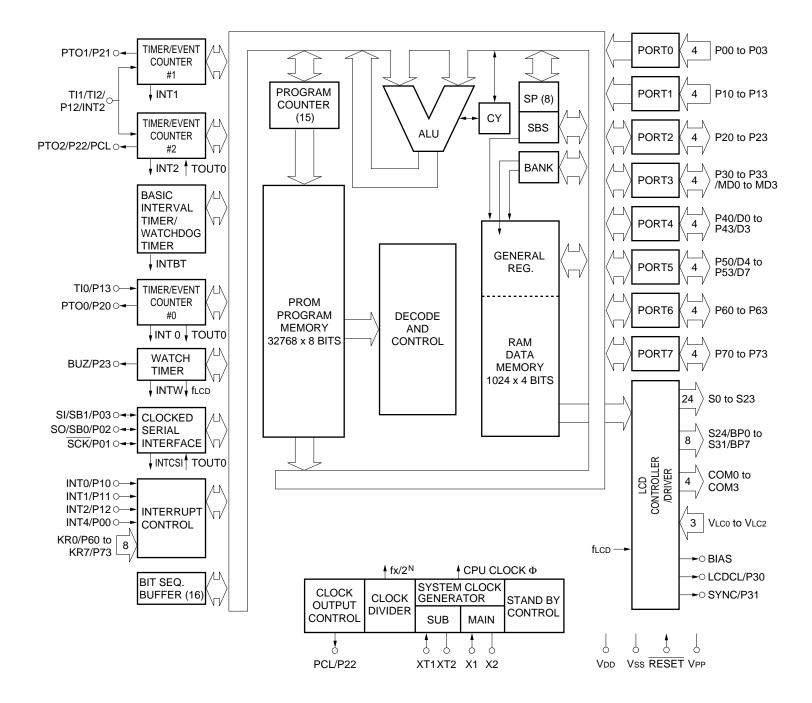
CONTENTS


1.	PIN CONFIGURATION (Top View)	4	ļ
2.	BLOCK DIAGRAM	5	;
3.	PIN FUNCTIONS	6	5
	3.1 Port Pins	6	;
	3.2 Non-port Pins	8	3
	3.3 Pin Input/Output Circuits	10)
	3.4 Recommended Connection for Unused Pins	12	2
4.	SWITCHING FUNCTION BETWEEN Mk I AND Mk II MODE	13	}
	4.1 Difference between Mk I Mode and Mk II Mode	13	3
	4.2 Setting of Stack Bank Selection Register (SBS)	14	ı
5.	DIFFERENCES BETWEEN μPD75P3018 AND μPD753012, 753016, AND 753017	15	5
6.	MEMORY CONFIGURATION	16	;
7.	INSTRUCTION SET	20)
8.	ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY	30)
	8.1 Operation Modes for Program Memory Write/Verify	30)
	8.2 Program Memory Write Procedure	31	
	8.3 Program Memory Read Procedure	32	2
	8.4 One-time PROM Screening	33	3
9.	ELECTRICAL CHARACTERISTICS	34	*
10.	. PACKAGE DRAWINGS	48	3
11.	. RECOMMENDED SOLDERING CONDITIONS	50	*
ΑP	PPENDIX A µPD75316B, 753017 AND 75P3018 FUNCTION LIST	51	
ΑP	PPENDIX B DEVELOPMENT TOOLS	53	3
ΑP	PPENDIX C RELATED DOCUMENTS	57	′ *

1. PIN CONFIGURATION (Top View)

• 80-pin plastic QFP (14 × 14 mm) μPD75P3018GC-3B9

• 80-pin plastic TQFP (fine pitch) (12 × 12 mm) μPD75P3018GK-BE9



PIN IDENTIFICATIONS

P00-P03	: Port0	S0-31	: Segment Output 0-31
P10-P13	: Port1	COM0-3	: Common Output 0-3
P20-P23	: Port2	VLC0-2	: LCD Power Supply 0-2
P30-P33	: Port3	BIAS	: LCD Power Supply Bias Control
P40-P43	: Port4	LCDCL	: LCD Clock
P50-P53	: Port5	SYNC	: LCD Synchronization
P60-P63	: Port6	TI0-2	: Timer Input 0-2
P70-P73	: Port7	PTO0-2	: Programmable Timer Output 0-2
BP0-BP7	: Bit Port 0-7	BUZ	: Buzzer Clock
KR0-KR7	: Key Return 0-7	PCL	: Programmable Clock
SCK	: Serial Clock	INT0, 1, 4	: External Vectored Interrupt 0, 1, 4
SI	: Serial Input	INT2	: External Test Input 2
SO	: Serial Output	X1, 2	: Main System Clock Oscillation 1, 2
SB0, 1	: Serial Bus 0,1	XT1, 2	: Subsystem Clock Oscillation 1, 2
RESET	: Reset	VPP	: Programming Power Supply
MD0-MD3	: Mode Selection 0-3	VDD	: Positive Power Supply
D0-D7	: Data Bus 0-7	Vss	: Ground

2. BLOCK DIAGRAM

3. PIN FUNCTIONS

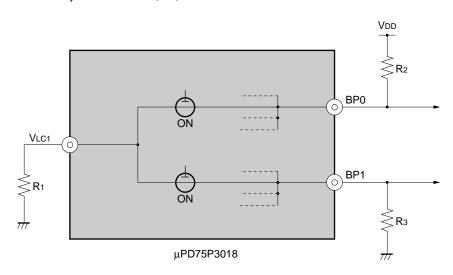
3.1 Port Pins (1/2)

Pin name	I/O	Shared by	Function	8-bit I/O	Status after reset	I/O circuit type Note 1
P00	Input	INT4	This is a 4-bit input port (PORTO).	_	Input	
P01	I/O	SCK	P01 to P03 are 3-bit pins for which an internal pull-up resistor connection can be specified by software.			<f>-A</f>
P02	I/O	SO/SB0	by software.			<f>-B</f>
P03	I/O	SI/SB1				<m>-C</m>
P10	Input	INT0	This is a 4-bit input port (PORT1). These are 4-bit pins for which an internal pull-up	_	Input	-C
P11		INT1	resistor connection can be specified by software. INTO includes noise elimination function.			
P12		TI1/TI2/INT2	INTO includes hoise elimination function.			
P13		TI0				
P20	I/O	PTO0	This is a 4-bit I/O port (PORT2).	_	Input	E-B
P21		PTO1	These are 4-bit pins for which an internal pull-up resistor connection can be specified by software.			
P22		PCL/PTO2				
P23		BUZ				
P30	I/O	LCDCL/MD0	This is a programmable 4-bit I/O port (PORT3).	_	Input	E-B
P31		SYNC/MD1	Input and output in single-bit units can be specified. When set for 4-bit units, an internal pull-up resistor connection can be specified by software.			
P32		MD2				
P33		MD3				
P40 Note 2	I/O	D0	This is an N-ch open-drain 4-bit I/O port (PORT4).	š	High	M-E
P41 Note 2		D1	When set to open-drain, voltage is 13 V. Also functions as data I/O pin (lower 4 bits) for program memory (PROM) write/verify.		impedance	
P42 Note 2		D2				
P43 Note 2		D3				
P50 Note 2	I/O	D4	This is an N-ch open-drain 4-bit I/O port (PORT5).		High	M-E
P51 Note 2		D5	When set to open-drain, voltage is 13 V. Also functions as data I/O pin (upper 4 bits)		impedance	
P52 Note 2		D6	for program memory (PROM) write/verify.			
P53 Note 2		D7				

- Notes 1. Circuit types enclosed in brackets indicate Schmitt trigger input.
 - 2. Low-level input leakage current increases when input instructions or bit manipulation instructions are executed.

*

*


3.1 Port Pins (2/2)

Pin name	I/O	Shared by	Function	8-bit I/O	Status after reset	I/O circuit type Note 1
P60	I/O	KR0	This is a programmable 4-bit I/O port (PORT6). Input and output in single-bit units can be specified.	š	Input	<f>-A</f>
P61		KR1	When set for 4-bit units, an internal pull-up resistor connection can be specified by software.			
P62		KR2	connection can be specified by software.			
P63		KR3				
P70	I/O	KR4	This is a 4-bit I/O port (PORT7).		Input	<f>-A</f>
P71		KR5	When set for 4-bit units, an internal pull-up resistor connection can be specified by software.			
P72		KR6				
P73		KR7				
BP0	Output	S24	1-bit I/O port (BIT PORT). These pins are also used	_	Note 2	H-A
BP1		S25	as segment output pin.			
BP2		S26				
BP3		S27				
BP4	Output	S28				
BP5		S29				
BP6		S30				
BP7		S31				

Notes 1. Circuit types enclosed in brackets indicate Schmitt trigger input.

2. VLc1 is selected as the input source for BP0 to BP7. The output level varies depending on the external circuit for BP0 to BP7 and VLc1.

Example: As shown below, BP0 to BP7 are mutually connected via the μ PD75P3018, so the output levels of BP0 to BP7 are determined by the sizes of R₁, R₂, and R₃.

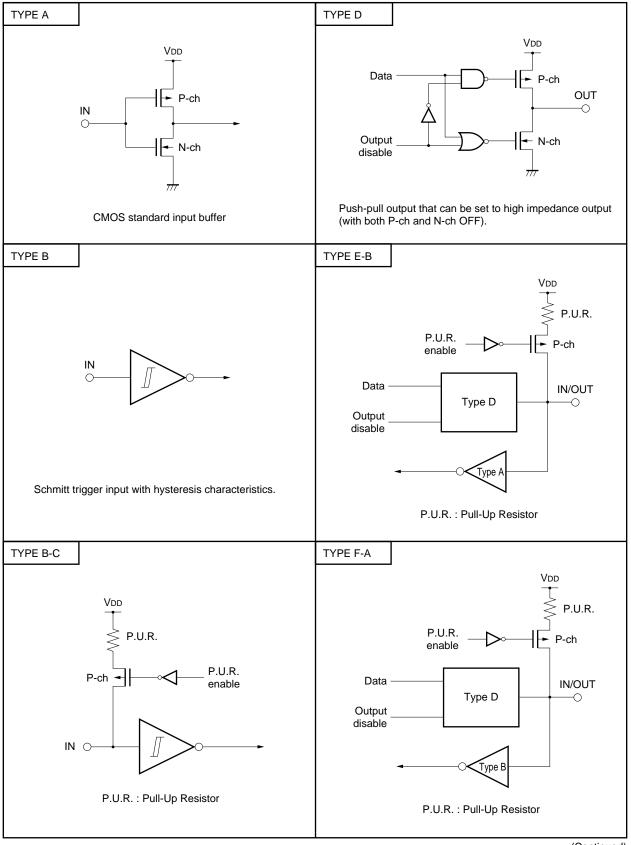
3.2 Non-port Pins (1/2)

Pin name	I/O	Shared by	Function		Status after reset	I/O circuit type ^{Note}
TI0	Input	P13	External event pulse input to timer/even	t counter	Input	-C
TI1, TI2	Input	P12/INT2				
PTO0	I/O	P20	Timer/event counter output		Input	E-B
PTO1		P21				
PTO2		P22				
PCL	Output	P22	Clock output		Input	E-B
BUZ	I/O	P23	Frequency output (for buzzer or system	clock trimming)	Input	E-B
SCK	I/O	P01	Serial clock I/O		Input	<f>-A</f>
SO/SB0	I/O	P02	Serial data output Serial data bus I/O		Input	<f>-B</f>
SI/SB1	I/O	P03	Serial data input Serial data bus I/O		Input	<m>-C</m>
INT4	Input	P00	Edge detection vectored interrupt input (valid for detecting both rising and falling edges)		Input	
INT0	Input	P10	Edge detection vectored interrupt input (detected edge is selectable)	Clock synch/asynch is selectable	Input	-C
INT1		P11		Asynch		
INT2	Input	P12/TI1/TI2	Rising edge detection test input	Asynch	Input	-C
KR0-KR3	I/O	P60-P63	Parallel falling edge detection test input		Input	<f>-A</f>
KR4-KR7	I/O	P70-P73	Parallel falling edge detection test input		Input	<f>-A</f>
X1	Input	_	Ceramic/crystal oscillation circuit connection for main system clock. If using an external clock, input to X1 and input		_	_
X2	_		inverted phase to X2.			
XT1	Input	_	Crystal oscillation circuit connection for If using an external clock, input to XT1 a		_	_
XT2	_		phase to XT2. <u>XT1 can be used as a 1-</u>			
RESET	Input		System reset input			
MD0	I/O	P30/LCDCL	Mode selection for program memory (P	ROM) write/verify	Input	E-B
MD1		P31/SYNC				
MD2, MD3		P32, P33				
D0-D3	I/O	P40-P43	Data bus for program memory (PROM) write/verify		Input	M-E
D4-D7		P50-P53				
VPP	_	-	Programmable power supply voltage for program memory (PROM) write/verify. For normal operation, connect directly to VDD. Apply +12.5 V for PROM write/verify.		-	_
VDD	_	_	Positive power supply			_
Vss	_	<u> </u>	Ground			_

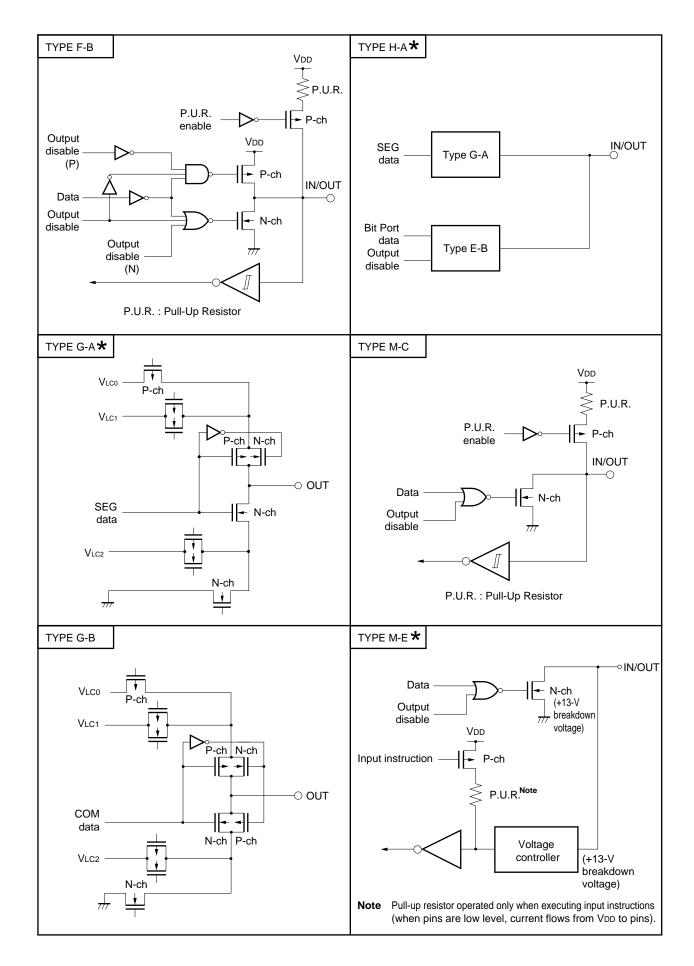
Note Circuit types enclosed in brackets indicate Schmitt trigger input.

3.2 Non-port Pins (2/2)

Pin name	I/O	Shared by	Function	Status after reset	I/O circuit type
S0-S23	Output	_	Segment signal output	Note 1	G-A
S24-S31	Output	BP0-BP7	Segment signal output	Note 1	H-A
COM0-COM3	Output	_	Common signal output	Note 1	G-B
VLC0-VLC2	_	_	Power source for LCD driver	_	_
BIAS	Output	_	Output for external split resistor cut	High impedance	_
LCDCLNote 2	I/O	P30	Clock output for driving external expansion driver	Input	E-B
SYNCNote 2	I/O	P31	Clock output for synchronization of external expansion driver		E-B


Notes 1. The V_{LCX} (X = 0, 1, 2) shown below are selected as the input source for the display outputs. S0-S31: V_{LC1} , COM0-COM2: V_{LC2} , COM3: V_{LC0}

2. These pins are provided for future system expansion. Currently, only P30 and P31 are used.


3.3 Pin Input/Output Circuits

The input/output circuits for the $\mu PD75P3018$'s pins are shown in abbreviated form below.

(Continued)

3.4 Recommended Connection for Unused Pins

Pin	Recommended connection		
P00/INT4	Connect to Vss or VDD		
P01/SCK	Connect to Vss or VDD		
P02/SO/SB0			
P03/SI/SB1	Connect to Vss		
P10/INT0, P11/INT1	Connect to Vss or VDD		
P12/TI1/TI2/INT2			
P13/TI0			
P20/PTO0	Input status :connect to Vss or Vpp through		
P21/PTO1	individual resistor		
P22/PTO2/PCL	Output status :open		
P23/BUZ			
P30/LCDCL/MD0			
P31/SYNC/MD1			
P32/MD2, P33/MD3			
P40-P43			
P50-P53			
P60/KR0-P63/KR3			
P70/KR4-P73/KR7			
S0-S23	Open		
S24/BP0-S31/BP7			
COM0-COM3			
VLC0-VLC2	Connect to Vss		
BIAS	Connect to Vss only when VLc0 to VLc2 are allnot used. In other cases, leave open.		
XT1 Note	Connect to Vss		
XT2 Note	Open		

Note When subsystem clock is not used, specify SOS.0 = 1 (indicates that internal feedback resistor is disconnected).

*

4. SWITCHING FUNCTION BETWEEN Mk I AND Mk II MODE

Setting a stack bank selection (SBS) register for the µPD75P3018 enables the program memory to be switched between Mk I mode and Mk II mode. This function is applicable when using the μPD75P3018 to evaluate the μPD753012, 753016, or 753017.

When the SBS bit 3 is set to 1: sets Mk I mode (supports Mk I mode for µPD753012, 753016, and 753017) When the SBS bit 3 is set to 0: sets Mk II mode (supports Mk II mode for µPD753012, 753016, and 753017)

4.1 Difference between Mk I Mode and Mk II Mode

Table 4-1 lists points of difference between the Mk I mode and the Mk II mode for the µPD75P3018.

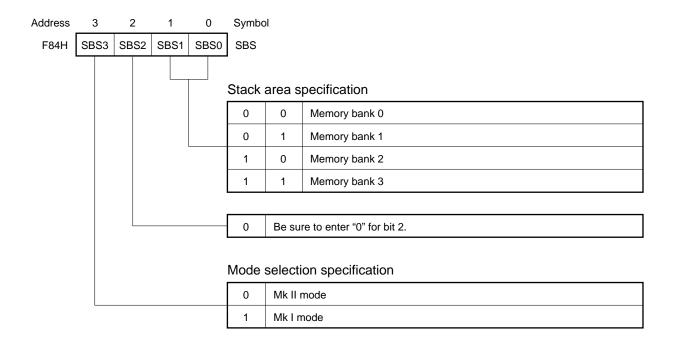
Table 4-1. Difference between Mk I Mode and Mk II Mode

Item		Mk I Mode	Mk II Mode	
Program counter		PC ₁₃₋₀ PC ₁₄ is fixed at 0	PC14-0	
Program memo	ory (bytes)	16384	32768	
Data memory (oits)	1024 x 4		
Stack Stack bank		Selectable via memory banks 0 to 3		
	No. of stack bytes	2 bytes	3 bytes	
Instruction	BRA !addr1 instruction CALLA !addr1 instruction	Use disabled	Use enabled	
Instruction CALL !addr instruction		3 machine cycles	4 machine cycles	
execution time CALLF !faddr instruction		2 machine cycles	3 machine cycles	
Supported mas	k ROMs	When set to Mk I mode: μPD753012, 753016, and 753017 When set to Mk II mode: μPD753012, 753016, and 753017		

Caution The Mk II mode supports a program area exceeding 16 Kbytes for the 75X and 75XL series. Therefore, this mode is effective for enhancing software compatibility with products that have a program area of more than 16 Kbytes.

With regard to the number of stack bytes during execution of subroutine call instructions, the usable area increases by 1 byte per stack compared to the Mk I mode when the Mk II mode is selected. However, when the CALL !addr and CALLF !faddr instructions are used, the machine cycle becomes longer by 1 machine cycle. Therefore, if more emphasis is placed on RAM use efficiency and processing performance than on software compatibility, the Mk I mode should be used.

*


4.2 Setting of Stack Bank Selection Register (SBS)

Use the stack bank selection register to switch between Mk I mode and Mk II mode. **Figure 4-1** shows the format for doing this.

The stack bank selection register is set using a 4-bit memory manipulation instruction. When using the Mk I mode, be sure to initialize the stack bank selection register to 10XXB^{Note} at the beginning of the program. When using the Mk II mode, be sure to initialize it to 00XXB^{Note}.

Note Set the desired value for XX.

Figure 4-1. Format of Stack Bank Selection Register

- Cautions 1. SBS3 is set to "1" after RESET input, and consequently the CPU operates in Mk I mode. When using instructions for Mk II mode, set SBS3 to "0" and set Mk II mode before using the instructions.
 - 2. When using Mk II mode, execute a subroutine call instruction and an interrupt instruction after RESET input and after setting the stack bank selection register.

5. DIFFERENCES BETWEEN μPD75P3018 AND μPD753012, 753016, AND 753017

The μ PD75P3018 replaces the internal mask ROM in the μ PD753012, 753016, and 753017 with a one-time PROM and features expanded ROM capacity. The μ PD75P3018's Mk I mode supports the Mk I mode in the μ PD753012, 753016, and 753017 and the μ PD75P3018's Mk II mode supports the Mk II mode in the μ PD753016, and 753017.

Table 5-1 lists differences among the μ PD75P3018 and the μ PD753012, 753016, and 753017. Be sure to check the differences among these products before using them with PROMs for debugging or prototype testing of application systems or, later, when using them with a mask ROM for full-scale production.

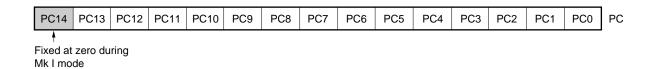
For the CPU functions and internal hardwares, refer to µPD753017 User's Manual (U11282E).

Table 5-1. Differences between µPD75P3018 and µPD753012, 753016, and 753017

	Item	μPD753012	μPD753016	μPD753017	μPD75P3018
Program counter	Program counter		14 bits		
Program memory	Program memory (bytes)		Mask ROM		
	During Mk I mode		16384	16384	16384
	During Mk II mode	12288	16384	24576	32768
Data memory (x 4	bits)	1024			
Mask options Pull-up resistor for PORT4 and PORT5		Yes (Can be specified whether to incorporate or not)			No (Cannot incorporate)
	LCD split resistor				
	Feed back resistor for subsystem clock	Yes (Can be specif incorporate or not)	No (Cannot incorporate)		
	Wait time during RESET	Yes (Can be specif	No (Fixed at 2 ¹⁵ /fx) Note		
Pin configuration	Pin Nos. 29 to 32	P40 to P43			P40/D0 to P43/D3
	Pin Nos. 34 to 37	P50 to P53			P50/D4 to P53/D7
	Pin No. 50	P30/LCDCL	P30/LCDCL/MD0		
	Pin No. 51	P31/SYNC			P31/SYNC/MD1
	Pin Nos. 52 and 53	P32, P33			P32/MD2, P33/MD3
	Pin No. 57	IC	VPP		
Other		Noise resistance and noise radiation may differ due to the different circuit sizes and mask layouts.			

Note For 2¹⁷/fx, during 6.0 MHz operation is 21.8 ms, and during 4.19 operation is 31.3 ms. For 2¹⁵/fx, during 6.0 MHz operation is 5.46 ms, and during 4.19 operation is 7.81 ms.

Caution Noise resistance and noise radiation are different in PROM and mask ROMs. In transferring to mask ROM versions from the PROM version in a processe between prototype development and full production, be sure to fully evaluate the mask ROM version's CS (not ES).


6. MEMORY CONFIGURATION

6.1 Program Counter (PC) ... 15 bits

This is a 15-bit binary counter that stores program memory address data.

Bit 15 is valid during Mk II mode. But PC14 is fixed at zero during Mk I mode, and the lower 14 bits are all valid.

Figure 6-1. Configuration of Program Counter

6.2 Program Memory (PROM) ... 32768 x 8 bits

The program memory consists of 32768 x 8-bit one-time PROM. The program memory address can be selected as shown below by setting the stack bank selection (SBS) register.

	Mk I mode	Mk II mode
Usable address	0000H to 3FFFH	0000H to 7FFFH

Figures 6-2 and **6-3** show the addressing ranges for the program memory and branch instruction and the subroutine call instruction, during Mk I and Mk II modes.

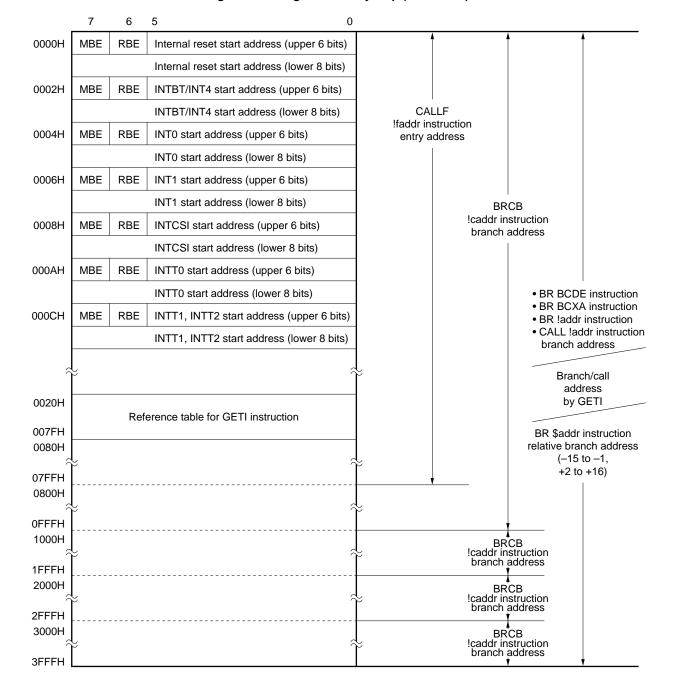
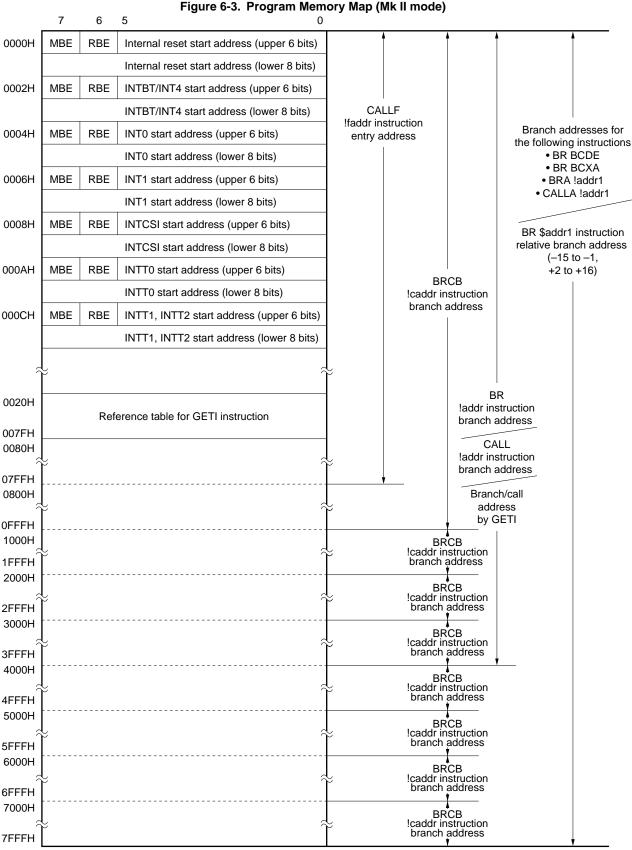
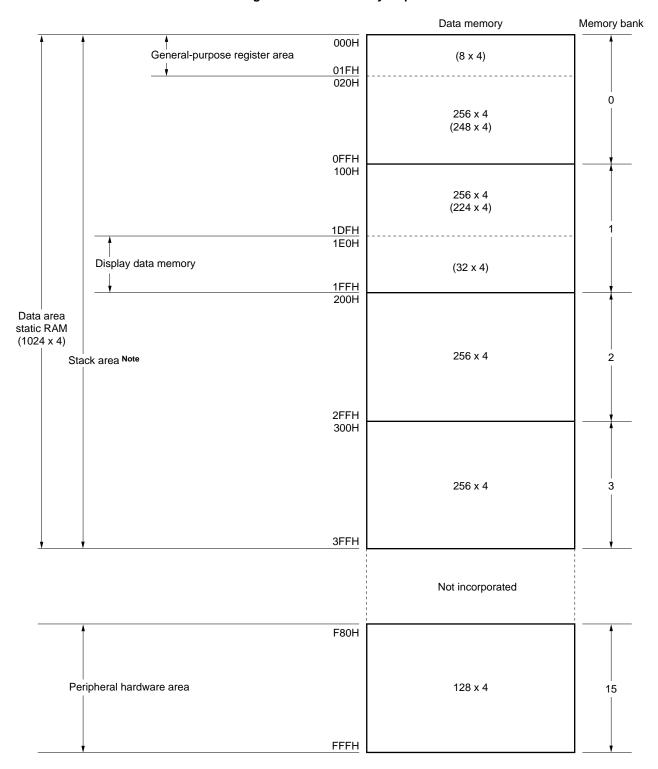



Figure 6-2. Program Memory Map (Mk I mode)

Remark For instructions other than those noted above, the BR PCDE and BR PCXA instructions can be used to branch to addresses with changes in the PC's lower 8 bits only.

Caution To allow the vectored interrupt's 14-bit start address (noted above), set the address within a 16-K area (0000H to 3FFFH).

For instructions other than those noted above, the BR PCDE and BR PCXA instructions can be used to branch Remark to addresses with changes in the PC's lower 8 bits only. 18



6.3 Data Memory (RAM) ... 1024 x 4 bits

Figure 6-4 shows the data memory configuration.

Data memory consists of a data area and a peripheral hardware area. The data area consists of 1024 x 4-bit static RAM.

Figure 6-4. Data Memory Map

Note Memory bank 0, 1, 2, or 3 can be selected as the stack area.

7. INSTRUCTION SET

(1) Representation and coding formats for operands

In the instruction's operand area, use the following coding format to describe operands corresponding to the instruction's operand representations (for further description, see the RA75X Assembler Package User's Manual – Language (EEU-1363)). When there are several codes, select and use just one. Codes that consist of upper-case letters and + or – symbols are key words that should be entered as they are.

For immediate data, enter an appropriate numerical value or label.

Enter register flag symbols as label descriptors instead of mem, fmem, pmem, bit, etc. (For details, refer to the **User's Manual**). The number of labels that can be entered for fmem and pmem are restricted.

Representation	Coding format
reg	X, A, B, C, D, E, H, L
reg1	X, B, C, D, E, H, L
rp	XA, BC, DE, HL
rp1	BC, DE, HL
rp2	BC, DE
rp'	XA, BC, DE, HL, XA', BC', DE', HL'
rp'1	BC, DE, HL, XA', BC', DE', HL'
rpa	HL, HL+, HL-, DE, DL
rpa1	DE, DL
n4	4-bit immediate data or label
n8	8-bit immediate data or label
mem	8-bit immediate data or label ^{Note}
bit	2-bit immediate data or label
fmem	FB0H-FBFH, FF0H-FFFH immediate data or label
pmem	FC0H-FFFH immediate data or label
addr	0000H-3FFFH immediate data or label (Mk I mode and Mk II mode)
addr1	0000H-7FFFH immediate data or label (Mk II mode only)
caddr	12-bit immediate data or label
faddr	11-bit immediate data or label
taddr	20H-7FH immediate data (however, bit0 = 0) or label
PORTn	PORT0-PORT7
IEXXX	IEBT, IECSI, IET0, IET1, IET2, IE0-IE2, IE4, IEW
RBn	RB0-RB3
MBn	MB0-MB3, MB15

Note When processing 8-bit data, only even-numbered addresses can be specified.

(2) Operation legend

A : A register; 4-bit accumulator

B : B register
C : C register
D : D register
E : E register
H : H register
L : L register
X : X register

XA : Register pair (XA); 8-bit accumulator

BC : Register pair (BC)
DE : Register pair (DE)
HL : Register pair (HL)

XA' : Expansion register pair (XA')
BC' : Expansion register pair (BC')
DE' : Expansion register pair (DE')
HL' : Expansion register pair (HL')

PC: Program counter SP: Stack pointer

CY : Carry flag; bit accumulator
PSW : Program status word
MBE : Memory bank enable flag
RBE : Register bank enable flag

PORTn : Port n (n = 0 to 7)

IME : Interrupt master enable flag
IPS : Interrupt priority selection register

IEXXX : Interrupt enable flag

RBS : Register bank selection register
MBS : Memory bank selection register
PCC : Processor clock control register
. : Delimiter for address and bit

(XX) : Addressed dataXXH : Hexadecimal data

(3) Description of symbols used in addressing area

	MB = MBE • MBS	†
*1	MBS = 0-3, 15	
*2	MB = 0	
*3	MBE = 0 : MB = 0 (000H-07FH)	
	MB = 15 (F80H-FFFH)	Data memory addressing
	MBE = 1 : MB = MBS	
	MBS = 0-3, 15	
*4	MB = 15, fmem = FB0H-FBFH, FF0H-FFFH	
*5	MB = 15, pmem = FC0H-FFFH	
*6	addr = 0000H-3FFFH	•
*7	addr, addr1 = (Current PC) -15 to (Current PC) -1	
	(Current PC) +2 to (Current PC) +16	
*8	caddr = 0000H-0FFFH (PC14, 13, 12 = 000B: Mk I or Mk II mode) or	
	1000H-1FFFH (PC14, 13, 12 = 001B: Mk I or Mk II mode) or	
	2000H-2FFFH (PC14, 13, 12 = 010B: Mk I or Mk II mode) or	
	3000H-3FFFH (PC14, 13, 12 = 011B: Mk I or Mk II mode) or	_
	4000H-4FFFH (PC14, 13, 12 = 100B: Mk II mode) or	Program memory addressing
	5000H-5FFFH (PC14, 13, 12 = 101B: Mk II mode) or	
	6000H-6FFFH (PC14, 13, 12 = 110B: Mk II mode) or	
	7000H-7F7FH (PC14, 13, 12 = 111B: Mk II mode)	
*9	faddr = 0000H-07FFH	
*10	taddr = 0020H-007FH	
*11	addr1 = 0000H-7FFFH (Mk II mode only)	•

Remarks 1. MB indicates access-enabled memory banks.

- 2. In area *2, MB = 0 for both MBE and MBS.
- 3. In areas *4 and *5, MB = 15 for both MBE and MBS.
- **4.** Areas *6 to *11 indicate corresponding address-enabled areas.

(4) Description of machine cycles

S indicates the number of machine cycles required for skipping of skip-specified instructions. The value of S varies as shown below.

- Skipped instruction is 1-byte or 2-byte instruction.... S = 1

Note 3-byte instructions: BR !addr, BRA !addr1, CALL !addr, CALLA !addr1

Caution The GETI instruction is skipped for one machine cycle.

One machine cycle equals one cycle (= tcy) of the CPU clock Φ . Use the PCC setting to select among four cycle times.

Instruction group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Transfer	MOV	A, #n4	1	1	A<-n4		String-effect A
		reg1, #n4	2	2	reg1<-n4		
		XA, #n8	2	2	XA<-n8		String-effect A
		HL, #n8	2	2	HL<-n8		String-effect B
		rp2, #n8	2	2	rp2<-n8		
		A, @HL	1	1	A<-(HL)	*1	
		A, @HL+	1	2+S	A<-(HL), then L<-L+1	*1	L=0
		A, @HL-	1	2+S	A<-(HL), then L<-L-1	*1	L=FH
		A, @rpa1	1	1	A<-(rpa1)	*2	
		XA, @HL	2	2	XA<-(HL)	*1	
		@HL, A	1	1	(HL)<-A	*1	
		@HL, XA	2	2	(HL)<-XA	*1	
		A, mem	2	2	A<-(mem)	*3	
		XA, mem	2	2	XA<-(mem)	*3	
		mem, A	2	2	(mem)<-A	*3	
		mem, XA	2	2	(mem)<-XA	*3	
		A, reg1	2	2	A<-reg1		
		XA, rp'	2	2	XA<-rp'		
		reg1, A	2	2	reg1<-A		
		rp'1, XA	2	2	rp'1<-XA		
	XCH	A, @HL	1	1	A<->(HL)	*1	
		A, @HL+	1	2+S	A<->(HL), then L<-L+1	*1	L=0
		A, @HL-	1	2+S	A<->(HL), then L<-L-1	*1	L=FH
		A, @rpa1	1	1	A<->(rpa1)	*2	
		XA, @HL	2	2	XA<->(HL)	*1	
		A, mem	2	2	A<->(mem)	*3	
		XA, mem	2	2	XA<->(mem)	*3	
		A, reg1	1	1	A<->reg1		
		XA, rp'	2	2	XA<->rp'		
Table	MOVT	XA, @PCDE	1	3	XA<-(PC13-8+DE)ROM		
reference		XA, @PCXA	1	3	XA<-(PC13-8+XA)ROM		
		XA, @BCDE	1	3	XA<-(BCDE)ROM Note	*11	
		XA, @BCXA	1	3	XA<-(BCXA)ROM Note	*11	

Note Only the lower 3 bits in the B register are valid.

Instruction group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Bit transfer	MOV1	CY, fmem.bit	2	2	CY<-(fmem.bit)	*4	
		CY, pmem.@L	2	2	CY<-(pmem7-2+L3-2.bit(L1-0))	*5	
		CY, @H+mem.bit	2	2	CY<-(H+mem ₃ -0.bit)	*1	
		fmem.bit, CY	2	2	(fmem.bit)<-CY	*4	
		pmem.@L, CY	2	2	(pmem7-2+L3-2.bit(L1-0))<-CY	*5	
		@H+mem.bit, CY	2	2	(H+mem ₃₋₀ .bit)<-CY	*1	
Arithmetic	ADDS	A, #n4	1	1+S	A<-A+n4		carry
		XA, #n8	2	2+S	XA<-XA+n8		carry
		A, @HL	1	1+S	A<-A+(HL)	*1	carry
		XA, rp'	2	2+S	XA<-XA+rp'		carry
		rp'1, XA	2	2+S	rp'1<-rp'1+XA		carry
	ADDC	A, @HL	1	1	A, CY<-A+(HL)+CY	*1	
		XA, rp'	2	2	XA, CY<-XA+rp'+CY		
		rp'1, XA	2	2	rp'1, CY<-rp'1+XA+CY		
	SUBS	A, @HL	1	1+S	A<-A-(HL)	*1	borrow
		XA, rp'	2	2+S	XA<-XA-rp'		borrow
		rp'1, XA	2	2+S	rp'1<-rp'1–XA		borrow
	SUBC	A, @HL	1	1	A, CY<-A-(HL)-CY	*1	
		XA, rp'	2	2	XA, CY<-XA-rp'-CY		
		rp'1, XA	2	2	rp'1, CY<-rp'1–XA–CY		
	AND	A, #n4	2	2	A<-Ann4		
		A, @HL	1	1	A<-A _Λ (HL)	*1	
		XA, rp'	2	2	XA<-XA^rp'		
		rp'1, XA	2	2	rp'1<-rp'1^XA		
	OR	A, #n4	2	2	A<-Avn4		
		A, @HL	1	1	A<-Av(HL)	*1	
		XA, rp'	2	2	XA<-XAvrp'		
		rp'1, XA	2	2	rp'1<-rp'1vXA		
	XOR	A, #n4	2	2	A<-A v n4		
		A, @HL	1	1	A<-A v (HL)	*1	
		XA, rp'	2	2	XA<-XA v rp'		
		rp'1, XA	2	2	rp'1<-rp'1₩XA		
Accumulator	RORC	А	1	1	CY<-A0, A3<-CY, An-1<-An		
nanipulation	NOT	Α	2	2	A<-Ā		
ncrement/	INCS	reg	1	1+S	reg<-reg+1		reg=0
decrement		rp1	1	1+S	rp1<-rp1+1		rp1=00H
		@HL	2	2+S	(HL)<-(HL)+1	*1	(HL)=0
		mem	2	2+S	(mem)<-(mem)+1	*3	(mem)=0
	DECS	reg	1	1+S	reg<-reg-1		reg=FH
		rp'	2	2+S	rp'<-rp'-1		rp'=FFH

Instruction group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Comparison	SKE	reg, #n4	2	2+S	Skip if reg=n4		reg=n4
		@HL, #n4	2	2+S	Skip if (HL)=n4	*1	(HL)=n4
		A, @HL	1	1+S	Skip if A=(HL)	*1	A=(HL)
		XA, @HL	2	2+S	Skip if XA=(HL)	*1	XA=(HL)
		A, reg	2	2+S	Skip if A=reg		A=reg
		XA, rp'	2	2+S	Skip if XA=rp'		XA=rp'
Carry flag	SET1	CY	1	1	CY<-1		
manipulation	CLR1	CY	1	1	CY<-0		
	SKT	CY	1	1+S	Skip if CY=1		CY=1
	NOT1	CY	1	1	CY<-CY		
Memory bit	SET1	mem.bit	2	2	(mem.bit)<-1	*3	
manipulation		fmem.bit	2	2	(fmem.bit)<-1	*4	
		pmem.@L	2	2	(pmem7-2+L3-2.bit(L1-0))<-1	*5	
		@H+mem.bit	2	2	(H+mem3-0.bit)<-1	*1	
	CLR1	mem.bit	2	2	(mem.bit)<-0	*3	
		fmem.bit	2	2	(fmem.bit)<-0	*4	
		pmem.@L	2	2	(pmem7-2+L3-2.bit(L1-0))<-0	*5	
		@H+mem.bit	2	2	(H+mem3-0.bit)<-0	*1	
	SKT	mem.bit	2	2+S	Skip if(mem.bit)=1	*3	(mem.bit)=1
		fmem.bit	2	2+S	Skip if(fmem.bit)=1	*4	(fmem.bit)=1
		pmem.@L	2	2+S	Skip if(pmem7-2+L3-2.bit(L1-0))=1	*5	(pmem.@L)=1
		@H+mem.bit	2	2+S	Skip if(H+mem ₃₋₀ .bit)=1	*1	(@H+mem.bit)=1
	SKF	mem.bit	2	2+S	Skip if(mem.bit)=0	*3	(mem.bit)=0
		fmem.bit	2	2+S	Skip if(fmem.bit)=0	*4	(fmem.bit)=0
		pmem.@L	2	2+S	Skip if(pmem7-2+L3-2.bit(L1-0))=0	*5	(pmem.@L)=0
		@H+mem.bit	2	2+S	Skip if(H+mem ₃₋₀ .bit)=0	*1	(@H+mem.bit)=0
	SKTCLR	fmem.bit	2	2+S	Skip if(fmem.bit)=1 and clear	*4	(fmem.bit)=1
		pmem.@L	2	2+S	Skip if(pmem7-2+L3-2.bit (L1-0))=1 and clear	*5	(pmem.@L)=1
		@H+mem.bit	2	2+S	Skip if(H+mem ₃₋₀ .bit)=1 and clear	*1	(@H+mem.bit)=1
	AND1	CY, fmem.bit	2	2	CY<-CYA(fmem.bit)	*4	
		CY, pmem.@L	2	2	CY<-CY^(pmem7-2+L3-2.bit(L1-0))	*5	
		CY, @H+mem.bit	2	2	CY<-CYA(H+mem3-0.bit)	*1	
	OR1	CY, fmem.bit	2	2	CY<-CYv(fmem.bit)	*4	
		CY, pmem.@L	2	2	CY<-CYv(pmem7-2+L3-2.bit(L1-0))	*5	
		CY, @H+mem.bit	2	2	CY<-CYv(H+mem3-0.bit)	*1	
	XOR1	CY, fmem.bit	2	2	CY<-CY+ (fmem.bit)	*4	
		CY, pmem.@L	2	2	CY<-CY v (pmem7-2+L3-2.bit(L1-0))	*5	
		CY, @H+mem.bit	2	2	CY<-CY v (H+mem ₃₋₀ .bit)	*1	

Instruction group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Branch	BR Note 1	addr	_	_	PC14<-0, PC13-0<-addr Use the assembler to select the most appropriate instruction among the following. • BR !addr • BRCB !caddr • BR \$addr	*6	
		addr1	_	_	PC14-0<-addr1 Use the assembler to select the most appropriate instruction among the following. • BRA !addr1 • BR !addr • BRCB !caddr • BR \$addr1	*11	
		!addr	3	3	PC14<-0, PC13-0<-addr	*6	
		\$addr	1	2	PC14<-0, PC13-0<-addr	*7	
		\$addr1	1	2	PC14<-0, PC13-0<-addr1		
					PC14-0<-addr1		
		PCDE	2	3	PC14<-0, PC13-0<-PC13-8+DE		
					PC14-0<-PC14-8+DE		
		PCXA	2	3	PC14<-0, PC13-0<-PC13-8+XA		
					PC14-0<-PC14-8+XA		
		BCDE	2	3	PC14<-0, PC13-0<-BCDE Note 2	*11	
					PC14-0<-BCDE Note 2		
		BCXA	2	3	PC14<-0, PC13-0<-BCXA Note 2	*11	
					PC14-0<-BCXA Note 2		
	BRA Note 1	!addr1	3	3	PC14-0<-addr1	*11	
	BRCB	!caddr	2	2	PC14<-0, PC13-0<-PC13, 12+caddr11-0	*8	
					PC14-0<-PC14, 13, 12+caddr11-0		

Notes 1. Shaded areas indicate support for Mk II mode only.

2. The only following bits are valid in the B register.

For Mk I mode: Lower 2 bits For Mk II mode: Lower 3 bits

Instruction group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Subroutine	CALLA Note	!addr1	3	3	(SP-5)<-0, PC14-12	*11	
stack control					(SP-6)(SP-3)(SP-4)<-PC11-0		
					(SP-2)<-X, X, MBE, RBE		
					PC14-0<-addr1, SP<-SP-6		
	CALL ^{Note}						
					(SP-3)<-MBE, RBE, PC13, 12		
					PC14<-0, PC13-0<-addr, SP<-SP-4		
				4	(SP-5)<-0, PC14-12		
					(SP-6)(SP-3)(SP-4)<-PC11-0		
					(SP-2)<-X, X, MBE, RBE		
					PC14<-0, PC13-0<-addr, SP<-SP-6		
	CALLF Note	!faddr	2	2	(SP-4)(SP-1)(SP-2)<-PC11-0	*9	
					(SP-3)<-MBE, RBE, PC13, 12		
					PC14<-0, PC13-0<-000+faddr, SP<-SP-4		
				3	(SP-5)<-0, PC14-12		
					(SP-6)(SP-3)(SP-4)<-PC11-0		
					(SP-2)<-X, X, MBE, RBE		
					PC14-0<-0000+faddr, SP<-SP-6		
	RET Note		1	3	MBE, RBE, PC13, 12<-(SP+1)		
					PC11-0<-(SP)(SP+3)(SP+2)		
					PC14<-0, SP<-SP+4		
					X, X, MBE, RBE<-(SP+4)		
					0, PC14-12<-(SP+1)		
					PC11-0<-(SP)(SP+3)(SP+2)		
					SP<-SP+6		
	RETS Note		1	3+S	MBE, RBE, PC13, 12<-(SP+1)		Unconditional
					PC11-0<-(SP)(SP+3)(SP+2)		
					PC14<-0, SP<-SP+4		
					then skip unconditionally		
					X, X, MBE, RBE<-(SP+4)		
					0, PC14-12<-(SP+1)		
					PC11-0<-(SP)(SP+3)(SP+2)		
					SP<-SP+6		
					then skip unconditionally		
	RETI Note		1	3	PC13, 12<-(SP+1)1, 0, PC14<-0		
					PC11-0<-(SP)(SP+3)(SP+2)		
					PSW<-(SP+4)(SP+5), SP<-SP+6		
					0, PC14-12<-(SP+1)]	
					PC11-0<-(SP)(SP+3)(SP+2)		
					PSW<-(SP+4)(SP+5), SP<-SP+6		

Note Shaded areas indicate support for Mk II mode only. Other areas indicate support for Mk I mode only.

Instruction group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Subroutine	PUSH	rp	1	1	(SP-1)(SP-2)<-rp, SP<-SP-2		
stack control		BS	2	2	(SP-1)<-MBS, (SP-2)<-RBS, SP<-SP-2		
	POP	rp	1	1	rp<-(SP+1)(SP), SP<-SP+2		
		BS	2	2	MBS<-(SP+1), RBS<-(SP), SP<-SP+2		
Interrupt	EI		2	2	IME(IPS.3)<-1		
control		IEXXX	2	2	IEXXX<-1		
	DI		2	2	IME(IPS.3)<-0		
		IEXXX	2	2	IEXXX<-0		
I/O	IN Note 1	A, PORTn	2	2	A<-PORTn (n=0-7)		
		XA, PORTn	2	2	XA<-PORTn+1, PORTn (n=4, 6)		
	OUT Note 1	PORTn, A	2	2	PORTn<-A (n=2-7)		
		PORTn, XA	2	2	PORTn+1, PORTn<-XA (n=4, 6)		
CPU control	HALT		2	2	Set HALT Mode(PCC.2<-1)		
	STOP		2	2	Set STOP Mode(PCC.3<-1)		
	NOP		1	1	No Operation		
Special	SEL	RBn	2	2	RBS<-n (n=0-3)		
		MBn	2	2	MBS<-n (n=0-3, 15)		
	GETI Note 2, 3	taddr	1	3	When using TBR instruction	*10	
					PC13-0<-(taddr)5-0+(taddr+1), PC14<-0		
					When using TCALL instruction		
					(SP-4)(SP-1)(SP-2)<-PC ₁₁₋₀		
					(SP-3)<-MBE, RBE, PC13, 12, PC14<-0		
					PC13-0<-(taddr)5-0+(taddr+1)		
					SP<-SP-4		
					When using instruction other than TBR or TCALL Execute (taddr)(taddr+1) instructions		Determined by referenced instruction
			1	3	When using TBR instruction	*10	
					PC13-0<-(taddr)5-0+(taddr+1), PC14<-0		
				4	When using TCALL instruction	_	
					(SP-5)<-0, PC14-12		
					(SP-6)(SP-3)(SP-4)<-PC ₁₁₋₀		
					(SP-2)<-X, X, MBE, RBE, PC14<-0		
					PC13-0<-(taddr)5-0+(taddr+1)		
					SP<-SP-6		
				3	When using instruction other than TBR or TCALL Execute (taddr)(taddr+1) instructions		Determined by referenced instruction

Notes 1. Before executing the IN or OUT instruction, set MBE to 0 or 1 and set MBS to 15.

- 2. TBR and TCALL are assembler pseudo-instructions for the GETI instruction's table definitions.
- 3. Shaded areas indicate support for Mk II mode only. Other areas indicate support for Mk I mode only.

8. ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY

The program memory contained in the μ PD75P3018 is a 32768 x 8-bit one-time PROM that can be electrically written one time only. The pins listed in the table below are used for this PROM's write/verify operations. Clock input from the X1 pin is used instead of address input as a method for updating addresses.

Pin	Function
VPP	Pin where program voltage is applied during program memory write/verify (usually VDD potential)
X1, X2	Clock input pins for address updating during program memory write/verify. Input the X1 pin's inverted signal to the X2 pin.
MD0-MD3	Operation mode selection pin for program memory write/verify
D0/P40 to D3/P43 (lower 4 bits) D4/P50 to D7/P53 (upper 4 bits)	8-bit data I/O pins for program memory write/verify
VDD	Pin where power supply voltage is applied. Applies V _{DD} = 2.2 to 5.5 V in normal operation mode and +6 V for program memory write/verify.

Caution Pins not used for program memory write/verify should be connected to Vss.

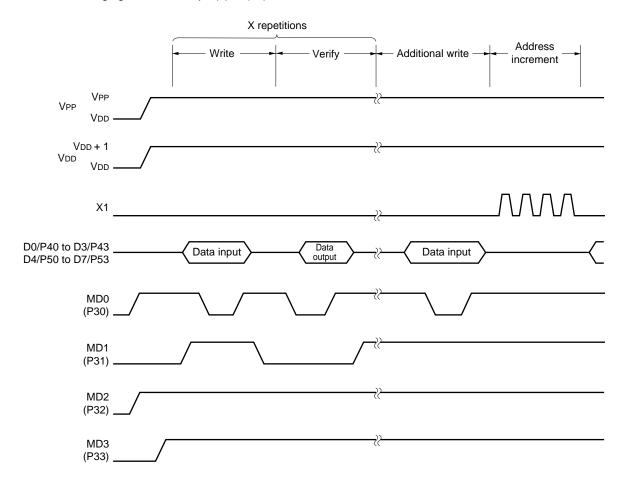
8.1 Operation Modes for Program Memory Write/Verify

When +6 V is applied to the V_{DD} pin and +12.5 V to the V_{PP} pin, the $\mu PD75P3018$ enters the program memory write/verify mode. The following operation modes can be specified by setting pins MD0 to MD3 as shown below.

Op	Operation mode specification					Operation mode
VPP	VDD	MD0	MD1	MD2	MD3	
+12.5 V	+6 V	Н	L	Н	L	Zero-clear program memory address
		L	Н	Н	Н	Write mode
		L	L	Н	Н	Verify mode
		Н	Х	Н	Н	Program inhibit mode

X: L or H

*

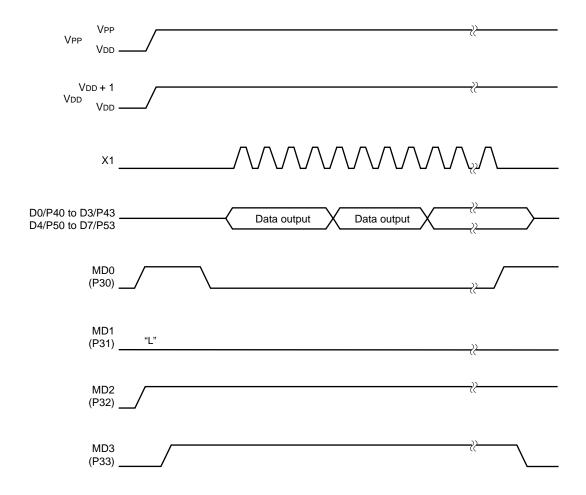


8.2 Program Memory Write Procedure

Program memory can be written at high speed using the following procedure.

- (1) Pull unused pins to Vss through resistors. Set the X1 pin low.
- (2) Supply 5 V to the VDD and VPP pins.
- (3) Wait 10 µs.
- (4) Select the zero-clear program memory address mode.
- (5) Supply 6 V to the VDD and 12.5 V to the VPP pins.
- (6) Select the program inhibit mode.
- (7) Write data in the 1 ms write mode.
- (8) Select the program inhibit mode.
- (9) Select the verify mode. If the data is correct, go to step (10) and if not, repeat steps (7) to (9).
- (10) (X: number of write operations from steps (7) to (9)) x 1 ms additional write.
- (11) Select the program inhibit mode.
- (12) Apply four pulses to the X1 pin to increment the program memory address by one.
- (13) Repeat steps (7) to (12) until the end address is reached.
- (14) Select the zero-clear program memory address mode.
- (15) Return the VDD and VPP pins back to 5 V.
- (16) Turn off the power.

The following figure shows steps (2) to (12).



8.3 Program Memory Read Procedure

The µPD75P3018 can read program memory contents using the following procedure.

- (1) Pull unused pins to Vss through resistors. Set the X1 pin low.
- (2) Supply 5 V to the VDD and VPP pins.
- (3) Wait 10 µs.
- (4) Select the zero-clear program memory address mode.
- (5) Supply 6 V to the VDD and 12.5 V to the VPP pins.
- (6) Select the program inhibit mode.
- (7) Select the verify mode. Apply four pulses to the X1 pin. Every four clock pulses will output the data stored in one address.
- (8) Select the program inhibit mode.
- (9) Select the zero-clear program memory address mode.
- (10) Return the VDD and VPP pins back to 5 V.
- (11) Turn off the power.

The following figure shows steps (2) to (9).

8.4 One-time PROM Screening

Due to its structure, the one-time PROM cannot be fully tested before shipment by NEC. Therefore, NEC recommends that after the required data is written and the PROM is stored under the temperature and time conditions shown below, the PROM should be verified via a screening.

Storage temperature	Storage time
125°C	24 hours

* 9. ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (T_A = 25 °C)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{DD}		-0.3 to +7.0	V
PROM supply voltage	VPP		-0.3 to +13.5	V
Input voltage	Vıı	Other than ports 4 and 5	−0.3 to V _{DD} + 0.3	V
	V ₁₂	Ports 4 and 5 (During N-ch open drain)	−0.3 to +14	V
Output voltage	Vo		−0.3 to V _{DD} + 0.3	V
High-level output current	Іон	Per pin	-10	mA
		Total of all pins	-30	mA
Low-level output current	loL	Per pin	30	mA
		Total of all pins	220	mA
Operating ambient temperature	ТА		-40 to +85	°C
Storage temperature	T _{stg}		-65 to +150	°C

Caution If the absolute maximum rating of even one of the parameters is exceeded even momentarily, the quality of the product may be degraded. The absolute maximum ratings are therefore values which, when exceeded, can cause the product to be damaged. Be sure that these values are never exceeded when using the product.

Capacitance (T_A = 25 °C, V_{DD} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	CIN	f = 1 MHz			15	pF
Output capacitance	Соит	Unmeasured pins returned to 0 V			15	pF
I/O capacitance	Сю				15	pF

Main System	Clock Oscillation	Circuit Characteristics	(T _A = -40 to +85 °C)	,
-------------	-------------------	-------------------------	----------------------------------	---

Resonator	Recomended Constants	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	$V_{DD} = 2.2 \text{ to } 5.5 \text{ V}$ $X1 \qquad X2$ $C1 \qquad \qquad C2$	Oscillation frequency (fx) Note 1		1.0		6.0 Note 2	MHz
		Oscillation stabilization time Note 3	After V _{DD} has reached MIN. value of oscillation voltage range			4	ms
resonator	$V_{DD} = 2.2 \text{ to } 5.5 \text{ V}$ $X1 \qquad X2$ $C1 \qquad \qquad C2$	Oscillation frequency (fx) Note 1		1.0		6.0 Note 2	MHz
		Oscillation stabilization time Note 3	V _{DD} = 4.5 to 5.5 V			10	ms
						30	
External clock	V _{DD} = 1.8 to 5.5 V X1	X1 input frequency (fx) Note 1		1.0		6.0 Note 2	MHz
		X1 input high-/ low-level widths (txH, txL)		83.3		500	ns

Notes 1. The oscillation frequency and X1 input frequency shown above indicate characteristics of the oscillation circuit only. For the instruction execution time, refer to AC Characteristics.

- 2. When the supply voltage is $1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$ and the oscillation frequency is $4.19 \text{ MHz} < \text{fx} \le 6.0 \text{ MHz}$, do not select processor clock control register (PCC) = 0011 as the instruction execution time. If PCC = 0011, one machine cycle is less than $0.95 \ \mu\text{s}$, falling short of the rated value of $0.95 \ \mu\text{s}$.
- 3. The oscillation stabilization time is the time required for oscillation to be stabilized after VDD has been applied or STOP mode has been released.

Caution When using the main system clock oscillation circuit, wire the portion enclosed in the broken line in the above figure as follows to prevent adverse influences due to wiring capacitance:

- Keep the wiring length as short as possible.
- Do not cross the wiring with other signal lines.
- Do not route the wiring in the vicinity of a line through which a high alternating current flows.
- Always keep the ground point of the capacitor of the oscillation circuit at the same potential as VDD.
- Do not ground to a power supply pattern through which a high current flows.
- Do not extract signals from the oscillation circuit.

Subsystem Clock Oscillation Circuit Characteristics (TA = -40 to +85 °C, VDD = 2.2 to 5.5 V)

Resonator	Recomended Constants	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	XT1 XT2 R C3 C4	Oscillation frequency (fxt) Note 1		32	32.768	35	kHz
		Oscillation stabilization time Note 2	V _{DD} = 4.5 to 5.5 V		1.0	2	S
			V _{DD} ≥2.2 V			10	
External clolck		XT1 input frequency (fxt) Note 1		32		100	kHz
		XT1 input high-/ low-level widths (txth, txtl)		5		15	μs

- **Notes 1.** The oscillation frequency and XT1 input frequency shown above indicate characteristics of the oscillation circuit only. For the instruction execution time, refer to AC Characteristics.
 - 2. The oscillation stabilization time is the time required for oscillation to be stabilized after VDD has been applied.

Caution When using the subsystem clock oscillation circuit, wire the portion enclosed in the broken line in the above figure as follows to prevent adverse influences due to wiring capacitance:

- Keep the wiring length as short as possible.
- Do not cross the wiring with other signal lines.
- Do not route the wiring in the vicinity of a line through which a high alternating current flows.
- Always keep the ground point of the capacitor of the oscillation circuit at the same potential as VDD.
- Do not ground to a power supply pattern through which a high current flows.
- Do not extract signals from the oscillation circuit.

The subsystem clock oscillation circuit has a low amplification factor to reduce current dissipation and is more susceptible to noise than the main system clock oscillation circuit. Therefore, exercise utmost care in wiring the subsystem clock oscillation circuit.

DC Characteristics (T_A = -40 to +85 °C, V_{DD} = 2.2 to 5.5 V)

Parameter	Symbol		Conditions			MIN.	TYP.	MAX.	Unit
Low-level output	loL	Per pin						15	mA
current		Total of all pi	ns					150	mA
High-level input	V _{IH1}	Ports 2, 3		2.7 V	≤V _{DD} ≤5.5 V	0.7 V _{DD}		V _{DD}	V
voltage				2.2 V	≤V _{DD} < 2.7 V	0.9 V _{DD}		V _{DD}	V
	V _{IH2}	Ports 0, 1, 6,	7, RESET	2.7 V	≤V _{DD} ≤5.5 V	0.8 V _{DD}		V _{DD}	V
				2.2 V	≤V _{DD} < 2.7 V	0.9 V _{DD}		V _{DD}	V
	VIH3	Ports 4, 5		2.7 V	≤V _{DD} ≤5.5 V	0.7 V _{DD}		13	V
		(During N-ch	open drain)	2.2 V	≤V _{DD} < 2.7 V	0.9 V _{DD}		13	V
	V _{IH4}	X1, XT1	, XT1			V _{DD} - 0.1		V _{DD}	V
Low-level input	V _{IL1}	Ports 2, 3, 4,	5 2.7 V ≤V _{DD} ≤5.5 V			0		0.3 V _{DD}	V
voltage				2.2 V	≤V _{DD} < 2.7 V	0		0.1 V _{DD}	V
	V _{IL2}	Ports 0, 1, 6,	7, RESET	2.7 V	≤V _{DD} ≤5.5 V	0		0.2 V _{DD}	V
				2.2 V	≤V _{DD} < 2.7 V	0		0.1 V _{DD}	V
	V _{IL3}	X1, XT1				0		0.1	V
High-level output	Vон	SCK, SO/SB), SB1, Ports 2, 3, 6, 7, BP0 to 7			V _{DD} - 0.5			V
voltage		Iон = −1 mA							
Low-level output	V _{OL1}	SCK, SO, Po	orts 2, 3, 4, 5, 6, 7,	lol =	15 mA		0.2	2.0	V
voltage		BP0 to 7		V _{DD} =	4.5 to 5.5 V				
			IoL = 1.6 mA					0.4	V
	V _{OL2}	SB0, SB1	0, SB1 During N-ch open drain					0.2 V _{DD}	V
			Pull-up resistor ≥ 1	kΩ					
High-level input	Ішнт	VIN = VDD	Pins other than X1	, XT1				3	μΑ
leakage current	I _{LIH2}	-	X1, XT1					20	μΑ
	Ішнз	V _{IN} = 13 V	Ports 4, 5 (During	N-ch o	oen drain)			20	μΑ
Low-level input	ILIL1	Vin = 0 V	Pins other than X1	, XT1,	Ports 4, 5			-3	μΑ
leakage current	I _{LIL2}	-	X1, XT1					-20	μΑ
	ILIL3	-	Ports 4, 5 (During	N-ch op	pen drain)			-30	μΑ
			When input instruc	tion	V _{DD} = 5.0 V		-10	-27	μΑ
			is executed		V _{DD} = 3.0 V		-3	-8	μΑ
High-level output	Ісонт	Vout = Vdd	SCK, SO/SB0, SB	1, Ports	2, 3, 6, 7			3	μA
leakage current	1ьон2	Vоит = 13 V	Ports 4, 5 (During	N-ch or	oen drain)			20	μΑ
Low-level output	ILOL	Vout = 0 V	1		-			-3	<u>μ</u> Α
leakage current									-
Internal pull-up	R _{L1}	Vin = 0 V	Ports 0, 1, 2, 3, 6,	7 (exce	ept P00 pin)	50	100	200	kΩ
resistor				•					

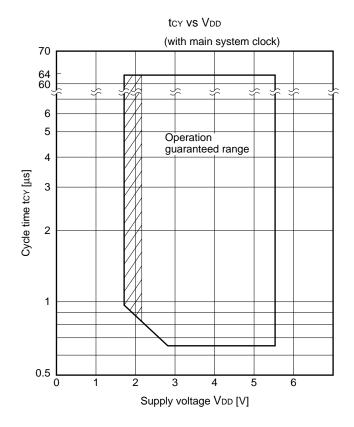
DC Characteristics ($T_A = -40 \text{ to } +85 \text{ °C}$, $V_{DD} = 2.2 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol		(Conditio	ns		MIN.	TYP.	MAX.	Unit
LCD drive voltage	VLCD	VAC0 = 0					2.2		V _{DD}	V
LCD output voltage deviation Note 1 (common)	Vodc	lo = ±5 μA		VLCD × Z			0		±0.2	V
LCD output voltage deviation Note 1 (segment)	Vods	Io = ±1 μA		· VLCD - '			0		±0.2	V
Supply current Note 2	I _{DD1}	6.0 MHz Note 3 crystal oscillation C1 = C2 = 22 pF	V _{DD} = 3	0.0 V ±10) % Note 5) %		3.7 0.73 0.92 0.30	11.0 2.2 2.6 0.9	mA mA mA
	I _{DD1}	4.19 MHz Note 3 crystal	V _{DD} = 5) % Note 4			2.7 0.57	8.0	mA mA
	I _{DD2}	oscillation C1 = C2 = 22 pF	HALT mode		.0 V ±10			0.90 0.28	2.5 0.8	mA mA
	I _{DD3}	32.768 kHz Note 6 crystal		V _{DD} = 2				42 37 42	126 110 84	μΑ μΑ μΑ
		oscillation	Low power dissipation	V _{DD} = 3	6.0 V ±10	0 %		39	117	μΑ
	I _{DD4}		mode Note 8 HALT mode	Low-	V _{DD} = 3	= 25 °C 3.0 V ±10 % 2.5 V ±10 %		39 8.5 5.8	78 25 17	μA μA μA
				mode Note 7	V _{DD} = 3	3.0 V, T _A = 25 °C		8.5	17	μΑ
				discipation		3.0 V ±10 % 3.0 V, T _A = 25 °C		3.5	7	μA μA
	I _{DD5}	XT1 = 0 V Note 9 STOP mode						0.05 0.02	10 5	μA μA
						T _A = 25 °C		0.02	3	μA

Notes 1. Voltage deviation is the difference between the ideal values (V_{LCDn} ; n = 0, 1, 2) of the segment and common outputs and the output voltage.

- 2. The current flowing through the internal pull-up resistor is not included.
- 3. Including the case when the subsystem clock oscillates.
- 4. When the device operates in high-speed mode with the processor clock control register (PCC) set to 0011.
- 5. When the device operates in low-speed mode with PCC set to 0000.
- **6.** When the device operates on the subsystem clock, with the system clock control register (SCC) set to 1001 and oscillation of the main system clock stopped.
- 7. When the sub-oscillation control register (SOS) is set to 0000.
- **8.** When the SOS is set to 0010.
- 9. When the SOS is set to 0011.

AC Characteristics ($T_A = -40 \text{ to } +85 ^{\circ}\text{C}$	$V_{DD} = 2.2 \text{ to } 5.5 \text{ V}$
-----------------------------	--	--


Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
CPU clock cycle time Note 1	t cy	Operation	When ceramic	V _{DD} = 2.7 to 5.5 V	0.67		64	μs
(minimum instruction		with	or crystal is used	V _{DD} = 2.2 to 5.5 V	0.85		64	μs
execution time		main system	When external	V _{DD} = 2.7 to 5.5 V	0.67		64	μs
= 1 machine cycle)		clock	clock is used		0.95		64	μs
		Operation wi	th subsystem		114	122	125	μs
		clock						
TI0, TI1, TI2 input frequency	fτι	V _{DD} = 2.7 to 5	5.5 V		0		1	MHz
					0		275	kHz
TI0, TI1, TI2 high-/low-level	tтін, tтіL	$V_{DD} = 2.7 \text{ to } 3$	5.5 V		0.48			μs
widths					1.8			μs
Interrupt input high-/low-level	tinth, tintl	INT0			Note 2			μs
widths		INT1, 2, 4			10			μs
		KR0-7			10			μs
RESET low-level width	trsL				10			μs

Notes 1. The cycle time of the CPU clock

 (Φ) is determined by the oscillation frequency of the connected resonator (and external clock), the system clock control register (SCC), and processor clock control register (PCC).

The figure on the right shows the supply voltage V_{DD} vs. cycle time tc_Y characteristics when the device operates with the main system clock.

2. 2tcy or 128/fx depending on the setting of the interrupt mode register (IM0).

Remark The shaded portion indicates the range when the external clock is used.

Serial transfer operation

2-wire and 3-wire serial I/O modes (\overline{SCK} ... internal clock output): (T_A = -40 to +85 °C, V_{DD} = 2.2 to 5.5 V)

Parameter	Symbol	Conditi	Conditions			MAX.	Unit
SCK cycle time	tkcY1	V _{DD} = 2.7 to 5.5 V	V _{DD} = 2.7 to 5.5 V				ns
				3800			ns
SCK high-/low-level widths	tkl1, tkH1	V _{DD} = 2.7 to 5.5 V	V _{DD} = 2.7 to 5.5 V				ns
				tkcy1/2-150			ns
SI Note 1 setup time (to SCK 1)	tsik1	V _{DD} = 2.7 to 5.5 V		150			ns
				500			ns
SI Note 1 hold time (from SCK 1)	t KSI1	V _{DD} = 2.7 to 5.5 V		400			ns
				600			ns
$\overline{\operatorname{SCK}} \downarrow \to \operatorname{SO}^{\operatorname{Note 1}}$ output	tkso1	$R_L = 1 \text{ k}\Omega$ Note 2	V _{DD} = 2.7 to 5.5 V	0		250	ns
delay time		C _L = 100 pF		0		1000	ns

2-wire and 3-wire serial I/O modes $\overline{(SCK ... external clock input)}$: (TA = -40 to +85 °C, VDD = 2.2 to 5.5 V)

Parameter	Symbol	Conditi	Conditions			MAX.	Unit
SCK cycle time	tKCY2	V _{DD} = 2.7 to 5.5 V	V _{DD} = 2.7 to 5.5 V				ns
							ns
SCK high-/low-level widths	t KL2, t KH2	V _{DD} = 2.7 to 5.5 V		400			ns
				1600			ns
SI Note 1 setup time (to SCK 1)	tsik2	V _{DD} = 2.7 to 5.5 V		100			ns
				150			ns
SI Note 1 hold time (from SCK 1)	tksi2	V _{DD} = 2.7 to 5.5 V		400			ns
				600			ns
$\overline{\operatorname{SCK}} \downarrow \to \operatorname{SO}^{\operatorname{Note 1}}$ output	tkso2	$R_L = 1 \text{ k}\Omega$, Note 2	V _{DD} = 2.7 to 5.5 V	0		300	ns
delay time		C _L = 100 pF		0		1000	ns

Notes 1. In 2-wire serial I/O mode, read SB0 or SB1 instead.

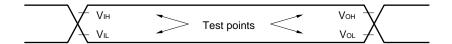
2. RL and CL respectively indicate the load resistance and load capacitance of the SO output line.

40

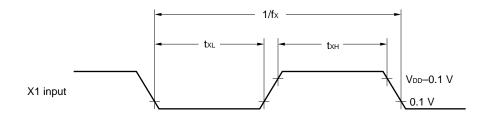
SBI mode (SCK ... internal clock output (master)): (TA = -40 to +85 °C, VDD = 2.2 to 5.5 V)

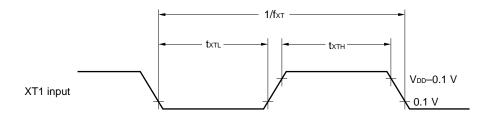
Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
SCK cycle time	t ксүз	V _{DD} = 2.7 to 5.5 V		1300			ns
				3800			ns
SCK high-/low-level widths	t кьз, t кнз	V _{DD} = 2.7 to 5.5 V		tксүз/2-50			ns
				tксүз/2-150			ns
SB0, 1 setup time	t sık3	V _{DD} = 2.7 to 5.5 V		150			ns
(to SCK ↑)				500			ns
SB0, 1 hold time (from SCK ↑)	t KSI3			tксүз/2			ns
$\overline{SCK}\downarrow \to SB0$, 1 output	tкsоз	$R_L = 1 \text{ k}\Omega$ Note	V _{DD} = 2.7 to 5.5 V	0		250	ns
delay time		C _L = 100 pF		0		1000	ns
$\overline{SCK} \uparrow \to SB0, 1 \downarrow$	t KSB			tксүз			ns
SB0, 1 $\downarrow \rightarrow \overline{\text{SCK}} \downarrow$	t sbk			tксүз			ns
SB0, 1 low-level width	t SBL			tксүз			ns
SB0, 1 high-level width	tsвн			tксүз			ns

SBI mode (\overline{SCK} ... external clock input (slave)): (TA = -40 to +85 °C, VDD = 2.2 to 5.5 V)

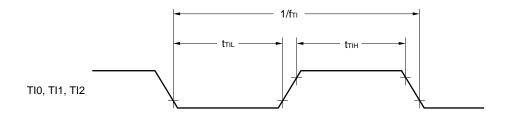

Parameter	Symbol	Condi	tions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcy4	V _{DD} = 2.7 to 5.5 V		800			ns
				3200			ns
SCK high-/low-level widths	tkl4, tkH4	V _{DD} = 2.7 to 5.5 V		400			ns
				1600			ns
SB0, 1 setup time	tsik4	V _{DD} = 2.7 to 5.5 V		100			ns
(to SCK ↑)				150			ns
SB0, 1 hold time (from SCK ↑)	t KSI4			tkcy4/2			ns
$\overline{SCK}\downarrow \to SB0$, 1 output	tkso4	$R_L = 1 \text{ k}\Omega$, Note	V _{DD} = 2.7 to 5.5 V	0		300	ns
delay time		C _L = 100 pF		0		1000	ns
$\overline{SCK} \uparrow \to SB0, 1 \downarrow$	tкsв			tkcy4			ns
SB0, $1 \downarrow \rightarrow \overline{SCK} \downarrow$	t sbk			tkcy4			ns
SB0, 1 low-level width	t sbl			tkcy4			ns
SB0, 1 high-level width	t sвн			tkcy4			ns

Note RL and CL respectively indicate the load resistance and load capacitance of the SB0, 1 output line.

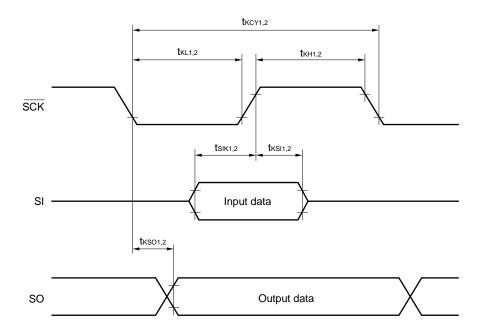

41

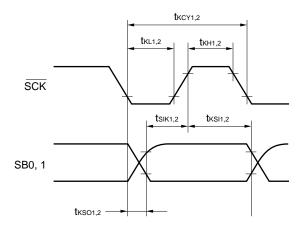


AC Timing Test Points (except X1 and XT1 inputs)



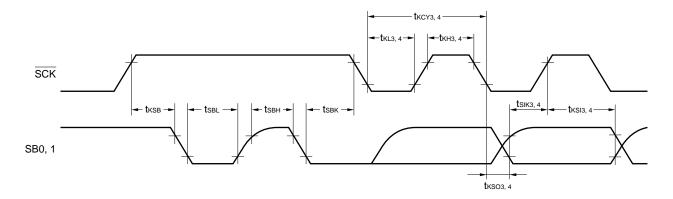
Clock Timing

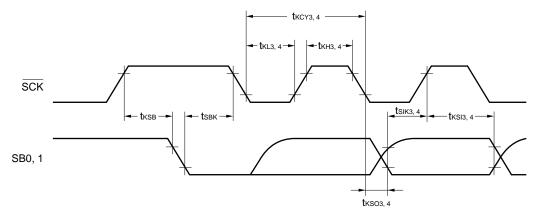

TI0, TI1, TI2 Timing



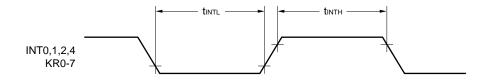
Serial Transfer Timing

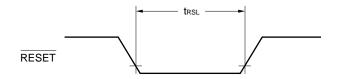
3-wire Serial I/O Mode


2-wire Serial I/O Mode



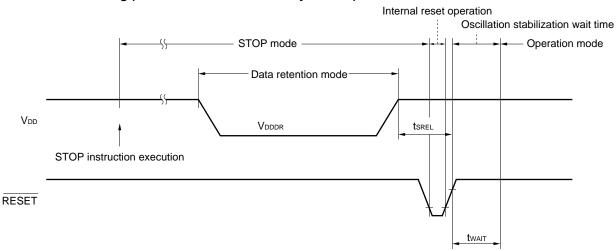
Serial Transfer Timing


Bus Release Signal Transfer

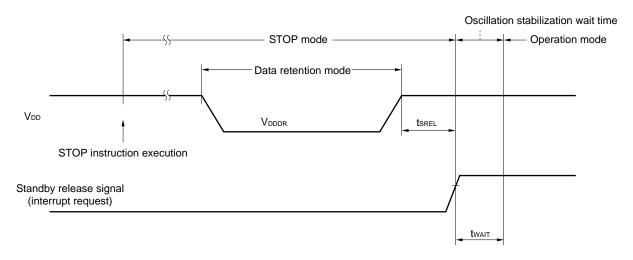

Command Signal Transfer

Interrupt Input Timing

RESET Input Timing


Data retention characteristics of data memory in STOP mode and at low supply voltage (TA = -40 to +85 °C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Release signal setup time	tsrel		0			μs
Oscillation stabilization	twait	Released by RESET		2 ¹⁵ /fx		ms
wait time Note 1		Released by interrupt request		Note 2		ms


- **Notes 1.** The oscillation stabilization wait time is the time during which the CPU stops operating to prevent unstable operation when oscillation is started.
 - 2. Set by the basic interval timer mode register (BTM). (Refer to the table below.)

втмз	BTM2	BTM1	BTM0	Wait	time
DINS	DIWZ	DIWII	D I IVIU	fx = 4.19 MHz	fx = 6.0 MHz
_	0	0	0	2 ²⁰ /fx (approx. 250 ms)	2 ²⁰ /fx (approx. 175 ms)
_	0	1	1	217/fx (approx. 31.3 ms)	217/fx (approx. 21.8 ms)
_	1	0	1	215/fx (approx. 7.81 ms)	2 ¹⁵ /fx (approx. 5.46 ms)
_	1	1	1	213/fx (approx. 1.95 ms)	2 ¹³ /fx (approx. 1.37 ms)

Data Retention Timing (when STOP mode released by RESET)

Data Retention Timing (standby release signal: when STOP mode released by interrupt signal)

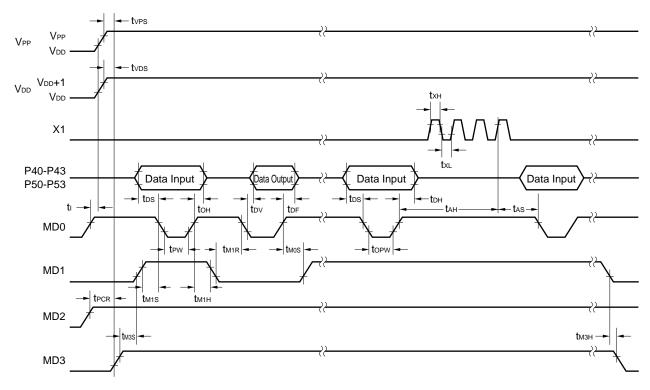
DC Programming Characteristics (TA = 25 ± 5 °C, VDD = 6.0 ± 0.25 V, VPP = 12.5 ± 0.3 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage high	V _{IH1}	Except X1, X2	0.7 V _{DD}		V _{DD}	٧
	V _{IH2}	X1, X2	V _{DD} - 0.5		V _{DD}	V
Input voltage low	VIL1	Except X1, X2	0		0.3 V _{DD}	V
	V _{IL2}	X1, X2	0		0.4	V
Input leakage current	Li	VIN = VIL OR VIH			10	μΑ
Output voltage high	Vон	Iон = -1 mA	V _{DD} – 1.0			V
Output voltage low	Vol	IoL = 1.6 mA			0.4	V
V _{DD} supply current	IDD				30	mA
VPP supply current	I PP	MD0 = V _{IL} , MD1 = V _{IH}			30	mA

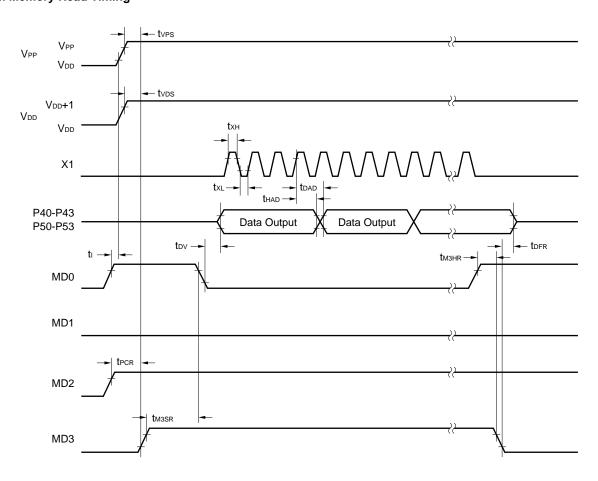
Cautions 1. Ensure that VPP does not exceed +13.5 V including overshoot.

2. VDD must be applied before VPP, and cut after VPP.

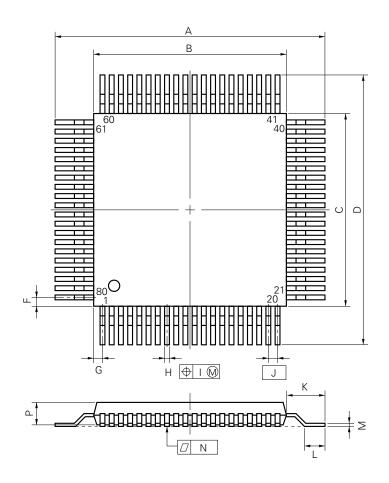
AC Programming Characteristics (TA = 25 ± 5 °C, VDD = 6.0 ± 0.25 V, VPP = 12.5 ± 0.3 V, Vss = 0 V)

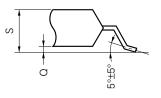

Parameter	Symbol	Note 1	Conditions	MIN.	TYP.	MAX.	Unit
Address setup time Note 2 (to MD0↓)	tas	tas		2			μs
MD1 setup time (to MD0↓)	t _{M1} s	toes		2			μs
Data setup time (to MD0↓)	tos	tos		2			μs
Address hold time Note 2 (from MD0↑)	t AH	t AH		2			μs
Data hold time (from MD0↑)	t DH	t DH		2			μs
MD0↑→Data output float delay time	tor	tor		0		130	ns
V _{PP} setup time (to MD3↑)	tvps	tvps		2			μs
V _{DD} setup time (to MD3↑)	tvos	tvcs		2			μs
Initial program pulse width	t PW	tpw		0.95	1.0	1.05	ms
Additional program pulse width	topw	topw		0.95		21.0	ms
MD0 setup time (to MD1↑)	tmos	tces		2			μs
MD0↓→Data output delay time	tov	tov	MD0 = MD1 = VIL			1	μs
MD1 hold time (from MD0↑)	t м1H	tоен	t 1 t > FO 40	2			μs
MD1 recovery time (from MD0↓)	t M1R	tor	tм1н + tм1R ≥50 <i>μ</i> s	2			μs
Program counter reset time	t PCR	_		10			μs
X1 input high-/low-level width	tхн, tхь	_		0.125			μs
X1 input frequency	fx	_				4.19	MHz
Initial mode setting time	tı	_		2			μs
MD3 setup time (to MD1↑)	tмзs	_		2			μs
MD3 hold time (from MD1 \downarrow)	tмзн	_		2			μs
MD3 setup time (to MD0 \downarrow)	tмзsr	_	Program memory read	2			μs
Data output delay time from address Note 2	t DAD	tacc	Program memory read			2	μs
Data output hold time from address Note 2	t HAD	tон	Program memory read	0		130	μs
MD3 hold time (from MD0↑)	tмзнк	_	Program memory read	2			μs
MD3↓→Data output float delay time	tdfR	_	Program memory read			2	μs

Notes 1. Symbol of corresponding μ PD27C256A


2. The internal address signal is incremented by 1 on the 4th rise of the X1 input, and is not connected to a pin.

Program Memory Write Timing

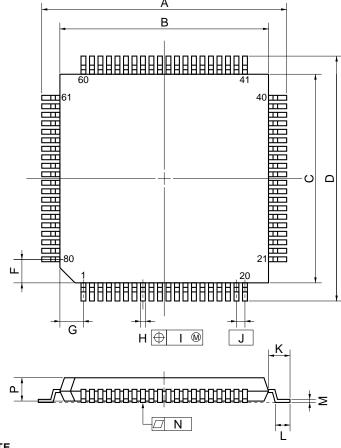

Program Memory Read Timing



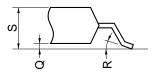
10. PACKAGE DRAWINGS

80 PIN PLASTIC QFP (□14)

detail of lead end


NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.


S80GC-65-3B9-3

ITEM	MILLIMETERS	INCHES
А	17.2±0.4	0.677±0.016
В	14.0±0.2	0.551+0.009
С	14.0±0.2	0.551+0.009
D	17.2±0.4	0.677±0.016
F	0.8	0.031
G	0.8	0.031
Н	0.30±0.10	$0.012^{+0.004}_{-0.005}$
I	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
K	1.6±0.2	0.063±0.008
L	0.8±0.2	0.031+0.009
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
S	3.0 MAX.	0.119 MAX.

80 PIN PLASTIC TQFP (FINE PITCH) (\square 12)

detail of lead end

NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	14.0±0.2	0.551+0.009
В	12.0±0.2	$0.472^{+0.009}_{-0.008}$
С	12.0±0.2	$0.472^{+0.009}_{-0.008}$
D	14.0±0.2	0.551+0.009
F	1.25	0.049
G	1.25	0.049
Н	$0.22^{+0.05}_{-0.04}$	0.009±0.002
1	0.10	0.004
J	0.5 (T.P.)	0.020 (T.P.)
K	1.0±0.2	$0.039^{+0.009}_{-0.008}$
L	0.5±0.2	$0.020^{+0.008}_{-0.009}$
М	0.145 ^{+0.055} _{-0.045}	0.006±0.002
N	0.10	0.004
Р	1.05	0.041
Q	0.05±0.05	0.002±0.002
R	5°±5°	5°±5°
S	1.27 MAX.	0.050 MAX.

P80GK-50-BE9-4

★ 11. RECOMMENDED SOLDERING CONDITIONS

Solder the $\mu PD75P3018$ under the following recommended conditions.

For the details on the recommended soldering conditions, refer to Information Document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For the soldering methods and conditions other than those recommended, consult NEC.

Table 11-1. Soldering Conditions of Surface Mount Type

(1) μ PD75P3018GC-3B9: 80-pin plastic QFP (14 × 14 mm)

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Package peak temperature: 235 °C, Time: 30 seconds max. (210 °C min.), Number of times: 3 max.	IR35-00-3
VPS	Package peak temperature: 215 °C, Time: 40 seconds max. (200 °C min.), Number of times: 3 max.	VP15-00-3
Wave soldering	Solder temperature: 260 °C max., Time: 10 seconds max., Number of times: 1 Preheating temperature: 120 °C max. (package surface temperature)	WS60-00-1
Pin partial heating	Pin temperature: 300 °C max., Time: 3 seconds max. (per side of device)	_

Caution Do not use two or more soldering methods in combination (except the pin partial heating method).

(2) μ PD75P3018GK-BE9: 80-pin plastic TQFP (fine pitch) (12 × 12 mm)

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Package peak temperature: 235 °C, Time: 30 seconds max. (210 °C min.), Number of times: 2 max., Exposure limit: 7 days Note (After that, prebaking is necessary at 125 °C for 10 hours.)	IR35-107-2
VPS	Package peak temperature: 215 °C, Time: 40 seconds max. (200 °C min.), Number of times: 2 max., Exposure limit: 7 days Note (After that, prebaking is necessary at 125 °C for 10 hours.)	VP15-107-2
Wave soldering	Solder temperature: 260 °C max., Time: 10 seconds max., Number of times: 1, Preheating temperature: 120 °C max. (package surface temperature) Exposure limit: 7 days Note (After that, prebaking is necessary at 125 °C for 10 hours.)	WS60-107-1
Pin partial heating	Pin temperature: 300 °C max., Time: 3 seconds max. (per side of device)	_

Note The number of days for storage after the dry pack has been opened. The storage conditions are 25 °C, 65 % RH max.

Caution Do not use two or more soldering methods in combination (except the pin partial heating method).

50

APPENDIX A $\,\mu$ PD75316B, 753017 AND 75P3018 FUNCTION LIST

Parameter		<i>µ</i> РD75316В	μPD753017	μPD75P3018	
Program memor	у	Mask ROM 0000H-3F7FH (16256 × 8 bits)	Mask ROM 0000H-5FFFH (24576 × 8 bits)	One-time PROM 0000H-7FFFH (32768 × 8 bits)	
Data memory		000H-3FFH (1024 × 4 bits)			
CPU		75X Standard	75XL CPU		
Instruction execution time	When main system clock is selected	0.95, 1.91, or 15.3 μs (at 4.19 MHz operation) • 0.95, 1.91, 3.81, or 15.3 μs (at 4.19 • 0.67, 1.33, 2.67, or 10.7 μs (at 6.0 N			
	When subsystem clock is selected	122 <i>μ</i> s (at 32.768 kHz opera	ation)		
Pin connection	29 to 32	P40 to P43		P40/D0 to P43/D3	
	34 to 37	P50 to P53		P50/D4 to P53/D7	
	44	P12/INT2	P12/INT2/TI1/TI2		
	47	P21	P21/PTO1		
	48	P22/PCL	P22/PCL/PTO2		
	50 to 53	P30 to P33		P30/MD0 to P33/MD3	
	57	IC		VPP	
Stack	SBS register	None	SBS.3 = 1; Mk I mode selection SBS.3 = 0; Mk II mode selection		
•	Stack area	000H-0FFH	n00H-nFFH (n = 0-3)		
	Subroutine call instruction stack operation	2-byte stack	Mk I mode: 2-byte stack Mk II mode: 3-byte stack		
Instruction	BRA !addr1 CALLA !addr1	Unavailable Mk I mode: unavailable Mk II mode: available			
	MOVT XA, @BCDE MOVT XA, @BCXA BR BCDE BR BCXA		Available		
	CALL !addr	3 machine cycles	Mk I mode: 3 machine cycles	, Mk II mode: 4 machine cycles	
	CALLF !faddr	2 machine cycles	Mk I mode: 2 machine cycles	, Mk II mode: 3 machine cycle	
Mask option		Yes		None	
Timer		3 channels: • Basic interval timer : 1 channel • 8-bit timer/event counter : 1 channel • Watch timer: 1 channel	5 channels: • Basic interval timer/watchc • 8-bit timer/event counter: 3 (can be used as 16-bit time • Watch timer: 1 channel	3 channels	

51

μPD75P3018

Clock output (PCL)

Parameter

		at 4.19 MHz operation)	• Φ, 750, 375, 93.8 kHz (Main system clock: at 6.0 MHz operation)
BUZ output (BUZ)		2 kHz (Main system clock: at 4.19 MHz operation)	2, 4, 32 kHz (Main system clock: at 4.19 MHz operation or subsystem clock: at 32.768 kHz operation) 2.86, 5.72, 45.8 kHz (Main system clock: at 6.0 MHz operation)
Serial interface		3 modes are available • 3-wire serial I/O mode MSB/LSB can be selected for transfer top bit • 2-wire serial I/O mode • SBI mode	
SOS register Feedback resistor cut flag (SOS.0)		None	Provided
	Sub-oscillator current cut flag (SOS.1)	None	Provided
Register bank	selection register (RBS)	None	Yes
Standby releas	e by INT0	No	Yes
Vectored interrupt		External: 3, Internal: 3	External: 3, Internal: 5
Supply voltage		V _{DD} = 2.0 to 6.0 V	V _{DD} = 2.2 to 5.5 V
Operating amb	ient temperature	$T_A = -40 \text{ to } +85 ^{\circ}\text{C}$	

• 80-pin plastic TQFP (fine pitch) (12 x 12 mm) • 80-pin plastic QFP (14 x 14 mm)

μPD75316B

Φ, 524, 262, 65.5 kHz

(Main system clock:

μPD753017

(Main system clock: at 4.19 MHz operation)

• Ф, 524, 262, 65.5 kHz

*

Package

*

*

APPENDIX B DEVELOPMENT TOOLS

The following development tools have been provided for system development using the µPD75P3018. In the 75XL Series, the relocatable assembler common to series is used in combination with the device file of each type.

RA75X relocatable assembler	Host machine			Part No. (name)
		os	Supply medium	
	PC-9800 Series	MS-DOS™	3.5" 2HD	μS5A13RA75X
		(Ver.3.30 to Ver.6.2 Note	5" 2HD	μS5A10RA75X
	IBM PC/AT™	Refer to "OS for	3.5" 2HC	μS7B13RA75X
	or compatible	IBM PCs"	5" 2HC	μS7B10RA75X

Device file	Host machine			Part No. (name)
		OS	Supply medium	
	PC-9800 Series	MS-DOS	3.5" 2HD	μS5A13DF753017
		(Ver.3.30 to Ver.6.2 Note	5" 2HD	μS5A10DF753017
	IBM PC/AT	Refer to "OS for	3.5" 2HC	μS7B13DF753017
	or compatible	IBM PCs"	5" 2HC	μS7B10DF753017

Note Ver. 5.00 or later includes a task swapping function, but this software is not able to use that function.

Remark Operation of the assembler and device file is guaranteed only when using the host machine and OS described above.

Hardware	PG-1500	This is a PROM programmer that can program single-chip microcontroller with PROM in stand alone mode or under control of host machine when connected with supplied accessory board and optional programmer adapter. It can also program typical PROMs in capacities ranging from 256 K to 4 M bits.				
	PA-75P316BGC	, ,	ammer adapter for the μ onnected to a PG-1500.	PD75P316BGC and μPl	D75P3018GC.	
	PA-75P316BGK	This is a PROM programmer adapter for the µPD75P316BGK and µPD75P3018GK. It can be used when connected to a PG-1500.				
Software	PG-1500 controller	Connects PG-1500 to host machine with serial and parallel interface and controls PG-1500 host machine.				
		Host machine			Part No. (name)	
			OS	Supply medium		
		PC-9800 Series	MS-DOS	3.5" 2HD	μS5A13PG1500	
		(Ver.3.30 to Ver.6.2 Note) 5" 2HD μS5A10PG150 IBM PC/AT Refer to "OS for 3.5" 2HD μS7B13PG150				
		or compatible	IBM PCs"	5" 2HC	μS7B10PG1500	

Note Ver. 5.00 or later includes a task swapping function, but this software is not able to use that function.

Remark Operation of the PG-1500 controller is guaranteed only when using the host machine and OS described above.

Debugging Tools

In-circuit emulators (IE-75000-R and IE-75001-R) are provided as program debugging tools for the μ PD75P3018. Various system configurations using these in-circuit emulators are listed below.

Hardware	IE-7	5000-R Note 1	development of applications for development of the 75300-R-EM) and emulification debugging programmer.	ation systems using the μPD75P3018, the IE-75 Jlation probe (EP-75301 ging can be performed	sed for hardware and soft 75X or 75XL Series pro 000-R is used with option 8GC-R or EP-753018GI when connected to hos on board (IE-75000-R-E	ducts. all emulation board (IE-K-R). t machine and PROM	
	IE-7	5001-R	The IE-75001-R is an in-circuit emulator to be used for hardware and software debugging during development of application systems using the 75X or 75XL Series products. The IE-75001-R is used with optional emulation board (IE-75300-R-EM) and emulation probe (EP-753018GC-R or EP-753018GK-R). Highly efficient debugging can be performed when connected to host machine and PROM programmer.				
	IE-7	5300-R-EM Note 2		This is an emulation board for evaluating application systems using the μPD75P3018. It is used in combination with the IE-75000-R or IE-75001-R.			
	EP-753018GC-R		This is an emulation probe for the μPD75P3018GC. When being used, it is connected with the IE-75000-R or IE-75001-R and the IE-75300-R-EM.				
		EV-9200GC-80	It includes a 80-pin conversion socket (EV-9200GC-80) to facilitate connections with target system.				
	EP-	753018GK-R	This is an emulation probe for the µPD75P3018GK. When being used, it is connected with the IE-75000-R or IE-75001-R and the IE-75300-R-EM			nd the IE-75300-R-EM.	
		EV-9500GK-80	It includes a 80-pin co system.	nversion adapter (EV-98	500GK-80) to facilitate c	onnections with target	
Software	IE c	ontrol program			75001-R on a host mach C or Centronics interface		
			Host machine			Part No. (name)	
				OS	Supply medium		
			PC-9800 Series	MS-DOS	3.5" 2HD	μS5A13IE75X	
				(Ver.3.30 to Ver.6.2 Note 3	5" 2HD	μS5A10IE75X	
			IBM PC/AT	Refer to "OS for	3.5" 2HC	μS7B13IE75X	
			or compatible	IBM PCs"	5" 2HC	μS7B10IE75X	

Notes 1. This is a maintenance product.

- 2. The IE-75300-R-EM is sold separately.
- **3.** Ver. 5.00 or later includes a task swapping function, but this software is not able to use that function.

Remark Operation of the IE control program is guaranteed only when using the host machine and OS described above.

*

OS for IBM PCs

The following operating systems for the IBM PC are supported.

* * *

os	Version	
PC DOS™	Ver.3.1 to Ver.6.3	
MS-DOS	Ver.5.0 to Ver.6.22	
	5.0/V to 6.2/V	
IBM DOS™	J5.02/V	

Caution Ver. 5.0 or later includes a task swapping function, but this software is not able to use that function.

APPENDIX C RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Device Related Documents

Document Name	Document No.	
Document Name	Japanese	English
μPD753012, 753016, 753017 Data Sheet	IC-9016	U10140E
μPD75P3018 Data Sheet	U10956J	U10956E
		(This document)
μPD753017 User's Manual	U11282J	IEU-1425
μPD753017 Instruction Table	IEM-5598	_
75XL Series Selection Guide	U10453J	U10453E

Development Tool Related Documents

Document Name			Document No.	
			Japanese	English
Hardware	IE-75000-R/IE-75001-R User's Manual		EEU-846	EEU-1416
	IE-75300-R-EM User's Manual		U11354J	EEU-1493
	EP-753017GC/GK-R User's Manual		EEU-967	IEU-1495
	PG-1500 User's Manual		EEU-651	EEU-1335
Software	RA75X Assembler Package	Operation	EEU-731	EEU-1346
	User's Manual	Language	EEU-730	EEU-1363
	PG-1500 Controller User's Manual	PC-9800 Series (MS-DOS) base	EEU-704	EEU-1291
		IBM PC Series (PC DOS) base	EEU-5008	U10540E

Other Related Documents

Document Name	Document No.	
Document Name	Japanese	English
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Devices	IEI-620	IEI-1209
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Electrostatic Discharge (ESD) Test	MEM-539	_
Guide to Quality Assurance for Semiconductor Devices	MEI-603	MEI-1202
Guide for Products Related to Microcomputer: Other Companies	MEI-604	_

Caution The above related documents are subject to change without notice. For design purpose, etc., be sure to use the latest documents.

NOTES FOR CMOS DEVICES-

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- · Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Mountain View, California Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby Sweden Tel: 8-63 80 820 Fax: 8-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130

Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

J96. 3

NEC

MS-DOS is a trademark of Microsoft Corporation.

IBM DOS, PC DOS, and PC/AT are trademarks of International Business Machines Corporation.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5