

mos integrated circuit μ PD75218

4-BIT SINGLE-CHIP MICROCOMPUTER

The μ PD75218 is a microcomputer with a CPU capable of 1-, 4-, and 8-bit-wise data processing, ROM, RAM, I/O ports, an FIP controller/driver, a watch timer, a timer/pulse generator capable of outputting 14-bit PWM pulses, a serial interface and a vectored interrupt function integrated on a single chip.

It is most suitable for applications which use fluorescent display tubes as display devices and require the timer/ watch function and high-speed interrupt servicing, such as VCR, CD and ECR. It can help to provide the unit with many functions and to decrease performance costs.

The μ PD75218 has larger ROM and RAM capacity than its predecessor, μ PD75217. So several codes required before have been reduced to only one code in the μ PD75218 specifications.

The one-time PROM product, μ PD75P218 and various development tools (IE-75001-R, assembler, etc.) are available for system development evaluation or small production.

The following manual provides detailed description of the functions of the μ PD75218. Be sure to read this manual when you design an application system.

 μ PD75218 User's Manual: IEU-692

FEATURES

- On-chip large-capacity ROM and RAM
 - Program memory (ROM): 32K × 8 bits
 - Data memory (RAM) : 1K × 4 bits
- Architecture equal to that of an 8-bit microcomputer
- High-speed operation: Minimum instruction execution time : 0.67 μ s (when the microcomputer operates at 6.0 MHz)
- Instruction execution time variable function realizing a wide range of operating voltages
- On-chip programmable fluorescent indication panel (FIP) controller/driver
- Timer function : 4 ch
 - 14-bit PWM output capability with the voltage synthesizer type electronic tuner
- Buzzer output capability
- Interrupt function with importance attached to applications
 - For power-off detection
 - · For reception of remote-controller signal
- Product with an on-chip PROM : μ PD75P218 (on-chip EPROM : WQFN package)

The information in this document is subject to change without notice.

ORDERING INFORMATION

Part number	Package	Quality grade	
μPD75218CW-xxx	64-pin plastic shrink DIP (750 mil)	Standard	
μPD75218GF-xxx-3BE	64-pin plastic QFP (14 × 20 mm)	Standard	

Remark ××× is a ROM code.

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications

LIST OF FUNCTIONS

ltem	Function		
Built-in memory	ROM: 32640×8 bits, RAM: 1024×4 bits		
I/O line (including FIP [®] dual- function pins and excluding FIP dedicated pins)	33 lines • CMOS input : 8 lines • CMOS I/O : 20 lines (LED drive: 8 lines) • CMOS output : 1 line (PWM/pulse output) • P-ch open-drain output with high withstand voltage and high current: 4 lines (LED drive)		
Instruction cycle	 0.67 μs, 1.33 μs, 10.7 μs (with main system clock operating at 6.0 MHz) 0.95 μs, 1.91 μs, 15.3 μs (with main system clock operating at 4.19 MHz) 122 μs (with subsystem clock operating at 32.768 kHz) 		
FIP controller/driver	 Number of segments: 9 to 16 segments Number of digits : 9 to 16 digits Dimmer function : 8 levels Mask option for pull-down resistors Key scan interrupt generation 		
Timer	4 channels • Timer/pulse generator : 14-bit PWM output enabled • Watch timer : Buzzer output enabled • Timer/event counter • Basic interval timer • Basic interval timer : Watchdog timer application capability		
Serial interface	 MSB start/LSB start switchable Serial bus configuration capability 		
Vectored interrupt	External : 3, Internal : 5		
Test input	External : 1, Internal : 1		
System clock oscillator	 Ceramic/crystal oscillator for main system clock oscillation : 6.0 MHz standard Ceramic/crystal oscillator for main system clock oscillation : 4.19 MHz standard Crystal oscillator for subsystem clock oscillation : 32.768 kHz standard 		
Mask option	 High withstand-voltage port (pull-down resistor) Port 6 (pull-down resistor) 		
Operating temperature range	-40 to +85 °C		
Operating supply voltage	2.7 to 6.0 V (standby data hold : 2.0 to 6.0 V)		
Package	 64-pin plastic shrink DIP (750 mil) 64-pin plastic QFP (14 × 20 mm) 		

CONTENTS

1.	PIN CONFIGURATION (TOP VIEW)						
2.	BLOC	K DIAGRAM	6				
3.	PIN F	UNCTIONS	7				
	3.1	PORT PINS	7				
	3.2	NON-PORT PINS	8				
	3.3	PIN INPUT/OUTPUT CIRCUIT LIST	9				
	3.4	HANDLING UNUSED PINS	10				
	3.5	NOTES ON USE OF THE P00/INT4 PIN AND RESET PIN	11				
	3.6	NOTES ON USE OF THE XT1, XT2 AND P50 PIN	11				
4.	MEM	ORY CONFIGURATION	12				
5.	PERIP	HERAL HARDWARE FUNCTIONS	15				
	5.1	PORTS	15				
	5.2	CLOCK GENERATOR	16				
	5.3	BASIC INTERVAL TIMER	17				
	5.4	WATCH TIMER	18				
	5.5	TIMER/EVENT COUNTER	19				
	5.6	TIMER/PULSE GENERATOR	20				
	5.7	SERIAL INTERFACE	21				
	5.8	FIP CONTROLLER/DRIVER	23				
6.	INTEF	RUPT FUNCTIONS	24				
7.	STAN	DBY FUNCTIONS	26				
8.	RESE	T FUNCTIONS	27				
9.	INSTR	RUCTION SET	29				
10.	MASH		38				
11.	APPL	CATION BLOCK DIAGRAM	39				
	11.1	VCR TIMER TUNER	39				
	11.2	COMPACT DISK PLAYER	40				
	11.3	ECR	41				

*	12. ELECTRICAL SPECIFICATIONS	42
*	13. CHARACTERISTIC CURVES (FOR REFERENCE)	53
	14. PACKAGE DIMENSIONS	55
	15. RECOMMENDED SOLDERING CONDITIONS	57
	APPENDIX A FUNCTIONS OF μ PD752×× SERIES PRODUCTS	58
	APPENDIX B DEVELOPMENT TOOLS	59
*	APPENDIX C RELATED DOCUMENTS	60

1. PIN CONFIGURATION (TOP VIEW)

² **BLOCK DIAGRAM**

3. PIN FUNCTIONS

3.1 PORT PINS

Pin	I/O	Dual- function pin		Function	8-bit I/O	After reset	Input / output circuit type ^{Note}
P00	Input	INT4	4-bit input p	ort (PORT0)	×	Input	B
P01	Input/output	SCK					E
P02	Input/output	SO					G
P03	Input	SI					B
P10	Input	INT0		Noise elimination function available		Input	B
P11		INT1		Noise elimination function available]		
P12		INT2	4-bit input p	ort (PORT1)			
P13		T10					
P20	Input/		4-bit input/o	utput port (PORT2)	×	Input	E
P21	output						
P22							
P23	-	BUZ					
P30 to P33	Input/ output		Programmable 4-bit input/ output port (PORT3). Input/output specifiable in 1-bit units.			Input	E
P40 to P43	Input/ output		4-bit input/output port (PORT4). LED direct drive capability.		0	Input	E
P50 to P53	Input/ output		4-bit input/output port (PORT5). LED direct drive capability.			Input	E
P60 to P63	Input/ output		Programmable 4-bit input/output port (PORT6). Input/output specifiable in 1-bit units. On-chip pull-down resistor available (mask option). Suitable for key input.		×	Input	V
PH0	Output	T13/S12	4-bit P-ch op	en-drain output port with high	×	Low level	I
PH1		T12/S13	withstand vo	oltage and high current (PORTH).		(with an on- chip pull-	
PH2		T11/S14	resistor avai	lable (mask option).		down resistor)	
PH3		T10/S15				impedance.	

Note The circuit-type codes enclosed in circles indicate that the corresponding circuits have a Schmitt-triggered input.

3.2 NON-PORT PINS

Pin	I/O	Dual- function pin		Function	After reset	Input / output circuit type ^{Note}
T0 to T9	Output		FIP controller/ Output pins with high withstand voltage driver output and high current for digit output		Low level (with an on-	I
T10/S15 to T13/S12		PH3 to PH0	pins. Pull-down resistor can be incorpo-	Output pins with high withstand voltage and high current also used for digit/seg- ment output Extra pins can be used as PORTH.	down resistor) or high impedance (without a	
T14/S11, T15/S10			rated in bit units (mask option).	Output pins with high withstand voltage and high current also used for digit/ segment output Static output also possible.	pull-down resistor)	
S9				High withstand-voltage output for segment output. Static output also possible.		
S0 to S8				High withstand-voltage output for segment output		
РРО	Output		Timer/pulse ge	enerator pulse output	High impedance	D
Т10	Input	P13	External event	pulse input for timer/event counter		B
SCK	Input/output	P01	Serial clock in	put/output	Input	Ē
SO	Input/output	P02	Serial data out	put or serial data input/output	Input	G
SI	Input	P03	Serial data inp	ut or normal input	Input	B
INT4	Input	P00	Edge-detected vectored interrupt input (rising and falling edge detection).			B
INT0	Input	P10	Edge-detected	vectored interrupt input with noise		B
INT1		P11	elimination fu	nction (detection edge selection possible).		
INT2	Input	P12	Edge-detected	testable input (rising edge detection).		B
BUZ	Input/output	P23	Fixed frequend trimming).	Fixed frequency output (for buzzer or system clock trimming).		E
X1	Input		Crystal/cerami	c connection pin for main system clock		
X2			External clock	oscillation. External clock input to X1 and its inverted clock input to X2.		
XT1	Input		Crystal connection pin for subsystem clock oscillation.			
XT2			External clock input to XT1. Leave XT2 open.			
RESET	Input		System reset i	nput (low level active).		B
Vpre			FIP controller/	driver output buffer power supply.		I
VLOAD			FIP controller/	driver pull-down resistor connection pin.		I
Vdd			Positive powe	r supply.		
Vss			GND potential.			

Note The circuit-type codes enclosed in circles indicate that the corresponding circuits have a Schmitt-triggered input.

★

3.3 PIN INPUT/OUTPUT CIRCUIT LIST

3.4 HANDLING UNUSED PINS

Pin	Recommended connection
P00/INT4	Connect to Vss
P01/SCK	Connect to Vss or VDD
P02/SO	
P03/SI	
P10/INT0 to P12/INT2	Connect to Vss
P13/TI0	
P20 to P22	Input state : Connect to Vss or VDD
P23/BUZ	Output state : Leave open
P30 to P33	
P40 to P43	
P50 to P53	
P60 to P63	
РРО	Leave open
S0 to S9	
T15/S10 to T14/S11	
T0 to T9	
T10/S15/PH3 to T13/S12/PH0	
XT1	Connect to Vss or VDD
XT2	Leave open
VLOAD when there is no on- chip load resistor	Connect to Vss or VDD

3.5 NOTES ON USE OF THE P00/INT4 PIN AND RESET PIN

P00/INT4 and RESET pins have the function (especially for IC test) to test μ PD75218 internal operations in addition to the functions described in sections 3.1 and 3.2.

The test mode is set when a voltage larger than VDD is applied to one of these pins. If noise larger than VDD is applied in normal operation, the test mode may be set thereby adversely affecting normal operation.

Since there is a display output pin having a high-voltage amplitude (35 V) next to the P00/INT4 and RESET pins, if cables for the related signals are routed in parallel, wiring noise larger than VDD may be applied to the P00/INT4 and RESET pins causing errors.

Thus, carry out wiring so that wiring noise can be minimized, If noise still cannot be suppressed, take the measure against noise using the following external components.

Connecting a diode between the pins and VDD

3.6 NOTES ON USE OF THE XT1, XT2 AND P50 PIN

When selecting the 32.768 kHz subsystem clock connected to the XT1 and XT2 pins as the watch timer source clock, the signal to be input or output to the P50 pin next to the XT2 pin must be a signal required to be switched between high and low the minimum number of times (once/second or less).

If the P50 pin signal is switched frequently between high and low, a spike is generated in the XT2 pin because of capacitance coupling of the P50 and XT2 pins and the correct watch functions cannot be achieved (the watch becomes fast).

If it is necessary to allow the P50 pin signal to switch between high and low, mount an external capacitor to the P50 pin as shown below.

4. MEMORY CONFIGURATION

- Program memory (ROM): 32640 words \times 8 bits
 - 0000H and 0001H: Vector table which contains the program start address after reset
 - 0002H to 000FH : Vector table which contains the program start addresses when interrupts occur
 - 0020H to 007FH : Table area referenced by a GETI instruction
- Data memory
 - Data area : 1024 words × 4 bits (000H to 3FFH)
 - + Peripheral hardware area : 128 words \times 4 bits (F80H to FFFH)

Fig. 4-1 Program Memory Map

Caution The start address of an interrupt vector shown above consists of 14 bits. So the start address must be set within a 16K-byte space (0000H to 3FFFH).

Fig. 4-2 Data Memory Map

5. PERIPHERAL HARDWARE FUNCTIONS

5.1 PORTS

The μ PD75218 has the following three types of I/O port:

- 8 CMOS input pins (PORT0 and PORT1)
- 20 CMOS I/O pins (PORT2, PORT3, PORT4, PORT5, and PORT6)
- 4 P-ch open-drain output pins with high withstand voltage and high current (PORTH)

Total: 32 pins

Table 5-1 Functions of Ports

Port	Function	Operation and feature	Remarks
PORT0	4-bit input	Always read or test possible irrespective of the dual-function pin operating mode.	Shares the pins with SI, SO, $\overline{\text{SCK}}$ and INT4.
PORT1		Always read or test possible, P10 and P11 are inputs with the noise elimination function.	Shares the pins with INTO to INT2 and TI0.
PORT2 PORT4 PORT5	4-bit input/output	Can be set to the input or output mode in 4-bit units. Ports 4 and 5 can input/output data in pairs in 8-bit units. Ports 4 and 5 can directly drive LEDs.	P23 shares the pin with BUZ.
PORT3 PORT6		Can be set bit-wise to the input or output mode. Port 6 can incorporate a pull-down resistor by mask option.	
PORTH	4-bit output	P-ch open-drain output port with high withstand voltage and high current. Can drive an FIP and LED directly. Can incorporate a pull-down resistor in bit units by mask option.	Shares the pins with T10/S15 to T13/S12.

NEC

5.2 CLOCK GENERATOR

Operation of the clock generator is specified by the processor clock control register (PCC) and system clock control register (SCC).

The main system clock or subsystem clock can be selected.

The instruction execution time is variable.

0.67 μ s, 1.33 μ s, 10.7 μ s (main system clock: 6.0 MHz)

0.95 μ s, 1.91 μ s, 15.3 μ s (main system clock: 4.19 MHz)

122 μ s (subsystem clock: 32.768 kHz)

- **3.** fxx = System clock frequency
- **4.** Φ = CPU clock
- 5. PCC: Processor clock control register
- 6. SCC: System clock control register
- 7. 1 clock cycle (tcy) of Φ is 1 machine cycle of an instruction. For tcy, see "AC Characteristics" in **Chapter 12**.

×

5.3 BASIC INTERVAL TIMER

The basic interval timer has the following functions:

- · Interval timer operation to generate reference time
- · Watchdog timer application to detect inadvertent program loop
- Wait time select and count upon standby mode release
- · Count contents read

Fig. 5-2 Basic Interval Timer Configuration

Note Instruction execution

5.4 WATCH TIMER

The μ PD75218 incorporates one channel of watch timer. The watch timer has the following functions:

- Sets the test flag (IRQW) at 0.5 sec intervals. The standby mode can be released by IRQW.
- 0.5 second interval can be set with the main system clock and subsystem clock.
- The fast mode enables to set 128-time (3.91 ms) interval useful to program debugging and inspection.
- The fixed frequencies (2.048 kHz) can be output to the P23/BUZ pin for use to generate buzzer sound and trim the system clock oscillator frequency.
- Since the frequency divider can be cleared, the watch can be started from zero second.

Fig. 5-3 Watch Timer Block Diagram

- **Remark** Values when fxx is 4.194304 MHz and fxT is 32.768 kHz are indicated in parentheses.
- Caution When the main system clock operates at 6.0 MHz, a time interval of 0.5 second cannot be produced. Before producing this time interval, the main system clock must be changed to the subsystem clock.

5.5 TIMER/EVENT COUNTER

The μ PD75218 incorporates one channel of timer/event counter. The timer/event counter has the following functions:

- Program interval timer operation
- Event counter operation
- Count state read function

Note Instruction execution

5.6 TIMER/PULSE GENERATOR

The μ PD75218 incorporates one channel of timer/pulse generator which can be used as a timer or a pulse generator. The timer/pulse generator has the following functions:

(a) Functions available in the timer mode

- 8-bit interval timer operation (IRQTPG generation) enabling the clock source to be varied at 5 levels
- Square wave output to PPO pin

(b) Functions available in the PWM pulse generation mode

- 14-bit accuracy PWM pulse output to the PPO pin (Used as a digital-to-analog converter and applicable to tuning)
- Fixed time interval $\left(\frac{2^{15}}{f_x}\right)$ = 5.46 ms when the microcomputer operates at 6.0 MHz)^{Note} interrupt generation

If pulse output is not necessary, the PPO pin can be used as a 1-bit output port.

Note 7.81 ms when the microcomputer operates at 4.19 MHz

Caution If the STOP mode is set while the timer/pulse generator is in operation, erroneous operation may result. To prevent that from occurring, preset the timer/pulse generator to the stop state using its mode register.

Fig. 5-5 Block Diagram of Timer/Pulse Generator (Timer Mode)

Fig. 5-6 Timer/Pulse Generator Block Diagram (PWM Pulse Generation Mode)

Note 7.81 ms when the microcomputer operates at 4.19 MHz.

5.7 SERIAL INTERFACE

The serial interface has the following functions:

- Clock synchronous 8-bit send/receive operation (simultaneous send/receive)
- Clock synchronous 8-bit serial bus operation (data input/output from the SO pin. N-ch open-drain SO output)
- Start LSB/MSB switching

These functions facilitate data communication with another microcomputer of μ PD7500 series or 78K series via a serial bus and coupling with peripheral devices.

Notes 1. CMOS output and N-ch open-drain output switchable output buffer.

2. Instruction execution

22

NEC

5.8 FIP CONTROLLER/DRIVER

The FIP controller/driver in the μ PD75218 has the same functions as that in its predecessor, μ PD75216A:

- The FIP controller/driver outputs the segment signal by automatically reading display data (DMA operation) and automatically generates the digit signal.
- The FIP controller/driver can control the FIP of 9 to 16 segments and 9 to 16 digits with the display mode register (DSPM) and the digit select register (DIGS) (within the range of up to 26 display outputs).
- The display outputs unused for dynamic display can be used as static outputs.
- The dimmer function provides eight levels of intensity.
- Such hardware is contained that a key scan application is possible.
 - A key scan interrupt (IRQKS) is caused. (A key scan timing is detected.)
 - Key scan data can be output from key scan registers (KS0 and KS1) onto a segment output pin.
- A high-voltage output pin (40 V) is provided which can directly drive the FIP.
 - Pins dedicated to segments (S0 to S9): VoD = 40 V, IoD = 3 mA
 - Digit output pins (T0 to T15): Vod = 40 V, lod = 15 mA
- A mask option enables a pull-down resistor to be incorporated for each bit.

Fig. 5-8 FIP Controller/Driver Block Diagram

Caution The FIP controller/driver can only operate at the high and intermediate speeds (PCC = 0011B or 0010B) of the main system clock (SCC.0 = 0). It may cause errors with any other clock or in the standby mode. Thus, be sure to stop FIP controller operation (DSPM.3 = 0) and then shift the unit to any other clock mode or the standby mode.

6. INTERRUPT FUNCTIONS

The μ PD75218 has eight types of interrupt sources and can generate multiple interrupts with priority order. It is also equipped with two types of test sources. INT2 is an edge detected testable input. The μ PD75218 interrupt control circuit has the following functions:

- Hardware-controlled vectored interrupt function which can control interrupt acknowledge with the interrupt enable flag (IExxx) and the interrupt master enable flag (IME).
- Function of setting any interrupt start address.
- Multiple interrupt function which can specify priority order with the interrupt priority select register (IPS).
- Interrupt request flag (IRQxxx) test function. (Interrupt generation can be checked by software.)
- Standby mode release function (Interrupts to be released can be selected by interrupt enable flags.)

Fig. 6-1 Interrupt Control Circuit Block Diagram

Note Noise eliminator

7. STANDBY FUNCTIONS

Two standby modes (STOP mode and HALT mode) are available for the μ PD75218 to decrease power consumption in the program standby mode.

		STOP mode	HALT mode	
Set	instruction	STOP instruction	HALT instruction	
Sys	tem clock when set	Setting enabled only for main system clock	Setting enabled for either main system clock or subsystem clock	
	Clock oscillator	Oscillator stops only for main system clock	Stops only for CPU clock Φ (oscillation continued)	
state	Basic interval timer	Operation stopped	Operation continued (IRQBT set at reference time intervals)	
	Serial interface	Operation enabled only when external SCK input is selected for serial clock	Operation enabled when serial clock other than Φ is specified	
erating	Timer/event counter	Operation enabled only when TI0 pin input is specified for count clock	Operation enabled	
0 0	Timer/pulse generator	Operation stopped	Operation enabled	
	Watch timer	Operation enabled only fxT is selected for count clock	Operation enabled	
	FIP controller/driver	Operation disabled (display off mode set before disabling)		
CPU		Operation stopped		
Release signal		Interrupt request signals (except INT0, INT1, and INT2) from operable hardware enabled by interrupt enable flags, or RESET input.		

Table 7-1 Operation Status in Standby Mode

8. RESET FUNCTIONS

The reset signal ($\overline{\text{RES}}$) generator has a configuration shown in Fig. 8-1.

Fig. 8-1 Reset Signal Generator

Fig. 8-2 shows the reset operation.

Note 31.3 ms when the microcomputer operates at 4.19 MHz

Table 8-1 lists the hardware statuses after reset operation.

		Hardware	RESET input in standby mode	RESET input during operation
Progr	am counter (PC)	Set the low-order six bits at address 0000H in program memory to PC13-8, set the contents of address 0001H to PC7-0, and set PC14 to zero.	Set the low-order six bits at address 0000H in program memory to PC13-8, set the contents of address 0001H to PC7-0, and set PC14 to zero.
PSW	Carry flag (CY)	Retained	Undefined
	Skip flag (SK0	-SK2)	0	0
	Interrupt statu	s flag (IST0, IST1)	0	0
	Bank enable fl	ag (MBE, RBE)	Set bit 6 of address 0000H in program memory to RBE and set bit 7 to MBE.	Set bit 6 of address 0000H in program memory to RBE and set bit 7 to MBE.
Stack	pointer (SP)		Undefined	Undefined
Stack	bank selection	register (SBS)	Undefined	Undefined
Data ı	memory (RAM)		Retained ^{Note}	Undefined
Gener	ral register (X, A	A, H, L, D, E, B, C)	Retained	Undefined
Bank	selection regist	er (MBS, RBS)	0, 0	0, 0
Basic	interval timer	Counter (BT)	Undefined	Undefined
		Mode register (BTM)	0	0
Timer	/event counter	Counter (T0)	0	0
		Modulo register (TMOD0)	FFH	FFH
		Mode register (TM0)	0	0
Timer/pulse generator		Modulo register (MODH, MODL)	Retained	Undefined
		Mode register (TPGM)	0	0
Clock	timer	Mode register (WM)	0	0
Serial	interface	Shift register (SIO)	Retained	Undefined
		Mode register (SIOM)	Set bit 4 to 1 and other bits to 0.	Set bit 4 to 1 and other bits to 0.
Clock	generator	Processor clock control register (PCC)	0	0
		System clock control register (SCC)	0	0
Interr	upt	Interrupt request flag (IRQ×××)	Reset (0)	Reset (0)
		Interrupt enable flag (IE×××)	0	0
		Priority specification flag (IPS)	0	0
		INT0/INT1 mode register (IM0, IM1)	0, 0	0, 0
Digita	l port	Output buffer	Off	Off
		Output latch	Cleared (0)	Cleared (0)
		I/O mode register (PMGA, PMGB)	0	0
PORT H Output latch		Retained	Undefined	
FIP co	ontroller/driver	Display mode register (DSPM)	0	0
		Digit selection register (DIGS)	1000B	1000B
		Dimmer selection register (DIMS)	0	0
		Display data memory	Retained	Undefined
		Output buffer	Off	Off

Table 8-1	Hardware	Statuses	after	Reset	Operation

Note Data from address 0F8H to address 0FDH in the data memory becomes undefined by RESET input.

9. INSTRUCTION SET

(1) Representation format and description method of operands

An operand is described in the operand field of each instruction according to the description method corresponding to the operand representation format of the instruction (refer to "RA75X Assembler Package User's Manual, Language" (EEU-1363) for details). When two or more elements are described in the description method field, select one of them. Uppercase letters, a plus sign (+), and a minus sign (-) are keywords, so they can be used without alteration.

Specify an appropriate numeric value or label for immediate data.

Representa- tion format	Description method
reg	X, A, B, C, D, E, H, L
reg1	X, B, C, D, E, H, L
rp	XA, BC, DE, HL
rp1	BC, DE, HL
rp2	BC, DE
rp'	XA, BC, DE, HL, XA', BC', DE', HL'
rp'1	BC, DE, HL, XA', BC', DE', HL'
rpa	HL, HL+, HL-, DE, DL
rpa1	DE, DL
n4	4-bit immediate data or label
n8	8-bit immediate data or label
mem	8-bit immediate data or label ^{Note}
bit	2-bit immediate data or label
fmem	FB0H-FBFH/FF0H-FFFH immediate data or label
pmem	FC0H-FFFH immediate data or label
addr1	0000H-7F7FH immediate data or label
addr	0000H-3F7FH immediate data or label
caddr	12-bit immediate data or label
faddr	11-bit immediate data or label
taddr	20H-7FH immediate data (bit $0 = 0$) or label
PORTn	PORT0-PORT6
IE×××	IEBT, IESIO, IET0, IETPG, IE0, IE1, IEKS, IEW, IE4
RBn	RB0-RB3
MBn	MB0, MB1, MB2, MB3, MB15

Note Only even addresses can be specified for 8-bit data processing.

(2)	Legen	d	
	А	:	A register, 4-bit accumulator
	В	:	B register, 4-bit accumulator
	С	:	C register, 4-bit accumulator
	D	:	D register, 4-bit accumulator
	Е	:	E register, 4-bit accumulator
	н	:	H register, 4-bit accumulator
	L	:	L register, 4-bit accumulator
	Х	:	X register, 4-bit accumulator
	XA	:	Register pair (XA), 8-bit accumulator
	BC	:	Register pair (BC), 8-bit accumulator
	DE	:	Register pair (DE), 8-bit accumulator
	HL	:	Register pair (HL), 8-bit accumulator
	XA'	:	Extended register pair (XA')
	BC'	:	Extended register pair (BC')
	DE'	:	Extended register pair (DE')
	HL′	:	Extended register pair (HL')
	PC	:	Program counter
	SP	:	Stack pointer
	CY	:	Carry flag, bit accumulator
	PSW	:	Program status word
	MBE	:	Memory bank enable flag
	RBE	:	Register bank enable flag
	PORTr	ו:	Port n (n = 0 to 6)
	IME	:	Interrupt master enable flag
	IPS	:	Interrupt priority specification register
	$IE \times \times \times$:	Interrupt enable flag
	RBS	:	Register bank select register
	MBS	:	Memory bank select register
	PCC	:	Processor clock control register
		:	Address/bit delimiter
	(××)	:	Contents addressed by $\times\!\!\times$
	××Н	:	Hexadecimal data

(3) Explanation of the symbols in the addressing area field

	-	
*1	MB = MBE•MBS	↑
	(MBS = 0, 1, 2, 3, or 15)	
*2	MB = 0	
*3	MBE = 0: MB = 0 (00H-7FH)	
	MB = 15 (80H-FFH)	
	MBE = 1: MB = MBS (MBS = 0, 1, 2, 3, or 15)	addressing
*4	MB = 15, fmem = FB0H-FBFH or	
	FF0H-FFFH	
*5	MB = 15, pmem = FC0H-FFFH	↓ ↓
*6	addr = 0000H-3F7FH	
*7	addr = (Current PC) - 15 to (Current PC) - 1 or	
	(Current PC) + 2 to (Current PC) + 16	
*8	caddr = 0000H-0FFFH (PC14,13,12 = 000B) or	
	1000H-1FFFH (PC14,13,12 = 001B) or	
	2000H-2FFFH (PC14,13,12 = 010B) or	Program
	3000H-3FFFH (PC14,13,12 = 011B) or	memory
	4000H-4FFFH (PC14,13,12 = 100B) or	addressing
	5000H-5FFFH (PC14,13,12 = 101B) or	
	6000H-6FFFH (PC14,13,12 = 110B) or	
	7000H-7F7FH (PC14,13,12 = 111B)	
*9	faddr = 0000H-07FFH	
*10	taddr = 0020H-007FH	
*11	addr1 = 0000H-7F7FH	↓

Remarks 1. MB indicates an accessible memory bank.

- 2. For *2, MB is always 0 irrespective of MBE and MBS.
- 3. For *4 and *5, MB is always 15 irrespective of MBE and MBS.
- 4. *6 to *11 indicate each addressable area.

(4) Explanation of the machine cycle column

S represents the number of machine cycles required when a skip instruction with the skip function performs a skip operation. S assumes one of the following values:

- When no skip operation is performed : S = 0
- When a 1-byte instruction or 2-byte instruction is skipped: S = 1
- When a 3-byte instruction is skipped : S = 2

Caution The GETI instruction is skipped in one machine cycle.

One machine cycle is equal to one cycle of the CPU clock Φ (= tcy), and three types of times are available for selection according to the PCC setting.

Instruction	Mnemonic	Operand	Number of bytes	Machine cycle	Operation	Address- ing area	Skip condition
Transfer	MOV	A,#n4	1	1	$A \leftarrow n4$		StringeffectA
		reg1,#n4	2	2	reg1 ← n4		
		XA,#n8	2	2	$XA \leftarrow n8$		String effect A
		HL,#n8	2	2	$HL \leftarrow n8$		String effect B
		rp2,#n8	2	2	rp2 ← n8		
		A,@HL	1	1	$A \leftarrow (HL)$	*1	
		A,@HL+	1	2 + S	$A \leftarrow (HL)$, then $L \leftarrow L + 1$	*1	L = 0
		A,@HL-	1	2 + S	$A \leftarrow (HL)$, then $L \leftarrow L - 1$	*1	L = FH
		A,@rpa1	1	1	$A \leftarrow (rpa1)$	*2	
		XA,@HL	2	2	$XA \gets (HL)$	*1	
		@HL,A	1	1	$(HL) \leftarrow A$	*1	
		@HL,XA	2	2	$(HL) \leftarrow XA$	*1	
		A,mem	2	2	$A \leftarrow (mem)$	*3	
		XA,mem	2	2	$XA \gets (mem)$	*3	
		mem,A	2	2	$(mem) \gets A$	*3	
		mem,XA	2	2	$(mem) \gets XA$	*3	
		A,reg	2	2	$A \gets reg$		
		XA,rp′	2	2	$XA \gets rp'$		
		reg1,A	2	2	reg1 ← A		
		rp'1,XA	2	2	$rp'1 \leftarrow XA$		
	ХСН	A,@HL	1	1	$A \leftrightarrow (HL)$	*1	
		A,@HL+	1	2 + S	$A \leftrightarrow$ (HL), then $L \leftarrow L$ + 1	*1	L = 0
		A,@HL-	1	2 + S	$A \leftrightarrow (HL),$ then $L \leftarrow L$ - 1	*1	L = FH
		A,@rpa1	1	1	$A \leftrightarrow (rpa1)$	*2	
		XA,@HL	2	2	$XA \leftrightarrow (HL)$	*1	
		A,mem	2	2	$A \leftrightarrow (mem)$	*3	
		XA,mem	2	2	$XA \leftrightarrow (mem)$	*3	
		A,reg1	1	1	$A\leftrightarrowreg1$		
		XA,rp′	2	2	$XA \leftrightarrow rp'$		
Table	MOVT	XA,@PCDE	1	3	$XA \gets (PC_{14-8} + DE)_{ROM}$		
reference		XA,@PCXA	1	3	$XA \leftarrow (PC_{14-8}+XA)_{ROM}$		
		XA, @BCDE	1	3	XA ← (BCDE) _{ROM}	*11	
		XA, @BCXA	1	3	$XA \leftarrow (BCXA)_{ROM}$	*11	

Instruction	Mnemonic	Operand	Number of bytes	Machine cycle	Operation	Address- ing area	Skip condition
Bit	MOV1	CY,fmem.bit	2	2	$CY \gets (fmem.bit)$	*4	
transfer		CY,pmem.@L	2	2	$CY \gets (pmem_{7\text{-}2} + L_{3\text{-}2}.bit(L_{1\text{-}0}))$	*5	
		CY,@H+mem.bit	2	2	CY ← (H+mem₃₋₀.bit)	*1	
		fmem.bit,CY	2	2	$(fmem.bit) \leftarrow CY$	*4	
		pmem.@L,CY	2	2	$(pmem_{7-2}+L_{3-2}.bit(L_{1-0})) \leftarrow CY$	*5	
		@H+mem.bit,CY	2	2	$(H+mem_{3-0}.bit) \leftarrow CY$	*1	
Arithme-	ADDS	A,#n4	1	1 + S	$A \gets A + n4$		carry
tic/logical		XA,#n8	2	2 + S	$XA \leftarrow XA + n8$		carry
		A,@HL	1	1 + S	$A \leftarrow A + (HL)$	*1	carry
		XA,rp′	2	2 + S	$XA \gets XA + rp'$		carry
		rp'1,XA	2	2 + S	$rp'1 \leftarrow rp'1 + XA$		carry
	ADDC	A,@HL	1	1	$A,CY \gets A + (HL) + CY$	*1	
		XA,rp'	2	2	$XA, CY \gets XA + rp' + CY$		
		rp'1,XA	2	2	$rp'1,CY \leftarrow rp'1 + XA + CY$		
	SUBS	A,@HL	1	1 + S	$A \leftarrow A \text{ - (HL)}$	*1	borrow
		XA,rp′	2	2 + S	$XA \gets XA \text{ - } rp'$		borrow
		rp'1,XA	2	2 + S	rp′1 ← rp′1 - XA		borrow
	SUBC	A,@HL	1	1	$A,CY \gets A \text{ - } (HL) \text{ - } CY$	*1	
		XA,rp′	2	2	$XA,CY \gets XA \text{ - } rp' \text{ - } CY$		
		rp'1,XA	2	2	$rp'1,CY \leftarrow rp'1 - XA - CY$		
	AND	A,#n4	2	2	$A \gets A \land n4$		
		A,@HL	1	1	$A \leftarrow A \land (HL)$	*1	
		XA,rp′	2	2	$XA \gets XA \land rp'$		
		rp'1,XA	2	2	$rp'1 \leftarrow rp'1 \land XA$		
	OR	A,#n4	2	2	$A \gets A \lor n4$		
		A,@HL	1	1	$A \leftarrow A \lor (HL)$	*1	
		XA,rp′	2	2	$XA \gets XA \lor rp'$		
		rp'1,XA	2	2	$rp'1 \leftarrow rp'1 \lor XA$		
	XOR	A,#n4	2	2	$A \leftarrow A \not \lnot n4$		
		A,@HL	1	1	$A \leftarrow A \not \forall (HL)$	*1	
		XA,rp′	2	2	$XA \gets XA \not \lnot rp'$		
		rp'1,XA	2	2	$rp'1 \leftarrow rp'1 \forall XA$		
Accumula-	RORC	А	1	1	$CY \leftarrow A_0, A_3 \leftarrow CY, A_{n\text{-}1} \leftarrow A_n$		
tor manipu- lation	NOT	A	2	2	$\overline{A} \leftarrow \overline{A}$		

Instruction	Mnemonic	Operand	Number of bytes	Machine cycle	Operation	Address- ing area	Skip condition
Increment/	INCS	reg	1	1 + S	reg ← reg + 1		reg = 0
decrement		rp1	1	1 + S	rp1 ← rp1 + 1		rp1 = 00H
		@HL	2	2 + S	(HL) ← (HL) + 1	*1	(HL) = 0
		mem	2	2 + S	(mem) ← (mem) + 1	*3	(mem) = 0
	DECS	reg	1	1 + S	reg ← reg - 1		reg = FH
		rp′	2	2 + S	rp' ← rp' - 1		rp' = FFH
Compari-	SKE	reg,#n4	2	2 + S	Skip if reg = n4		reg = n4
son		@HL,#n4	2	2 + S	Skip if (HL) = n4	*1	(HL) = n4
		A,@HL	1	1 + S	Skip if A = (HL)	*1	A = (HL)
		XA,@HL	2	2 + S	Skip if XA = (HL)	*1	XA = (HL)
		A,reg	2	2 + S	Skip if A = reg		A = reg
		XA,rp′	2	2 + S	Skip if XA = rp′		XA = rp'
Carry flag	SET1	СҮ	1	1	$CY \leftarrow 1$		
manipula-	CLR1	СҮ	1	1	$CY \gets 0$		
tion	SKT	CY	1	1 + S	Skip if CY = 1		CY = 1
	NOT1	CY	1	1	$CY \leftarrow \overline{CY}$		

Instruction	Mnemonic	Operand	Number of bytes	Machine cycle	Operation	Address- ing area	Skip condition
Memory	SET1	mem.bit	2	2	(mem.bit) ← 1	*3	
bit		fmem.bit	2	2	(fmem.bit) ← 1	*4	
manıpula- tion		pmem.@L	2	2	$(pmem_{7-2}+L_{3-2}.bit(L_{1-0})) \leftarrow 1$	*5	
		@H+mem.bit	2	2	(H+mem₃₀.bit) ← 1	*1	
	CLR1	mem.bit	2	2	(mem.bit) \leftarrow 0	*3	
		fmem.bit	2	2	(fmem.bit) \leftarrow 0	*4	
		pmem.@L	2	2	$(pmem_{7-2}+L_{3-2}.bit(L_{1-0})) \leftarrow 0$	*5	
		@H+mem.bit	2	2	$(H+mem_{3-0}.bit) \leftarrow 0$	*1	
	SKT	mem.bit	2	2 + S	Skip if (mem.bit) = 1	*3	(mem.bit) = 1
		fmem.bit	2	2 + S	Skip if (fmem.bit) = 1	*4	(fmem.bit) = 1
		pmem.@L	2	2 + S	Skip if (pmem7-2+L3-2.bit(L1-0)) = 1	*5	(pmem.@L) = 1
		@H+mem.bit	2	2 + S	Skip if (H+mem₃₀.bit) = 1	*1	(@H+mem.bit) = 1
	SKF	mem.bit	2	2 + S	Skip if (mem.bit) = 0	*3	(mem.bit) = 0
		fmem.bit	2	2 + S	Skip if (fmem.bit) = 0	*4	(fmem.bit) = 0
		pmem.@L	2	2 + S	Skip if (pmem7-2+L3-2.bit(L1-0)) = 0	*5	(pmem.@L) = 0
		@H+mem.bit	2	2 + S	Skip if (H+mem ₃₋₀ .bit) = 0	*1	(@H+mem.bit) = 0
	SKTCLR	fmem.bit	2	2 + S	Skip if (fmem.bit) = 1 and clear	*4	(fmem.bit) = 1
		pmem.@L	2	2 + S	Skip if (pmem7-2 + L3-2.bit(L1-0)) = 1 and clear	*5	(pmem.@L) = 1
		@H+mem.bit	2	2 + S	Skip if (H+mem3-0.bit) = 1 and clear	*1	(@H+mem.bit) = 1
	AND1	CY,fmem.bit	2	2	$CY \gets CY \land \text{ (fmem.bit)}$	*4	
		CY,pmem.@L	2	2	$CY \leftarrow CY \land (pmem_{7\text{-}2}+L_{3\text{-}2}.bit(L_{1\text{-}0}))$	*5	
		CY,@H+mem.bit	2	2	$CY \gets CY \land (H\text{+}mem_{3\text{-}0}.bit)$	*1	
	OR1	CY,fmem.bit	2	2	$CY \gets CY \lor (fmem.bit)$	*4	
		CY,pmem.@L	2	2	$CY \leftarrow CY \lor (pmem_{7\text{-}2}+L_{3\text{-}2}.bit(L_{1\text{-}0}))$	*5	
		CY,@H+mem.bit	2	2	$CY \leftarrow CY \lor (H+mem_{3-0}.bit)$	*1	
	XOR1	CY,fmem.bit	2	2	$CY \leftarrow CY \not \forall \text{ (fmem.bit)}$	*4	
		CY,pmem.@L	2	2	$CY \leftarrow CY \nleftrightarrow (pmem_{7\text{-}2}+L_{3\text{-}2}.bit(L_{1\text{-}0}))$	*5	
		CY,@H+mem.bit	2	2	CY ← CY ∀ (H+mem₃-₀.bit)	*1	
Branch	BR	addr1		_	$\begin{array}{l} PC_{14\text{-0}} \leftarrow addr1 \\ (The assembler selects an appropriate instruction from the BR laddr, BRA laddr1, BRCB lcaddr, and BR $addr instructions.) \end{array}$	*11	
		\$addr	1	2	PC₁₄₋₀ ← addr	*7	
		!addr	3	3	PC₁₄ ← 0, PC₁₃₋₀ ← !addr	*6	
		PCDE	2	3	$PC_{14-0} \leftarrow PC_{14-8} + DE$		
		PCXA	2	3	PC14-0 ← PC14-8 + XA		
		BCDE	2	3	PC₁₄-0 ← BCDE		
		BCXA	2	3	PC₁₄-0 ← BCXA		
	BRA	!addr1	3	3	PC₁₄-0 ← !addr1	*11	
	BRCB	!caddr	2	2	$PC_{14-0} \leftarrow PC_{14,13,12} + caddr_{11-0}$	*8	

Instruction	Mnemonic	Operand	Number of bytes	Machine cycle	Operation	Address- Skip ing area condition	
Subrou- tine stack control	CALL	!addr	3	4	$\begin{split} (SP-6)(SP-3)(SP-4) &\leftarrow PC_{11\cdot0} \\ (SP-5) &\leftarrow 0, PC_{14}, PC_{13}, \ PC_{12} \\ (SP-2) &\leftarrow \times, \times, MBE, RBE \\ PC_{14} &\leftarrow 0, \ PC_{13\cdot0} \leftarrow addr, \ SP \leftarrow SP - 6 \end{split}$	*6	
	CALLA	!addr1	3	3	$\begin{array}{l} (SP-6)(SP-3)(SP-4) \leftarrow PC_{11\text{-}0} \\ (SP-5) \leftarrow 0, PC_{14}, PC_{13}, \ PC_{12} \\ (SP-2) \leftarrow \times, \times, MBE, RBE \\ PC_{14\text{-}0} \leftarrow addr1, \ SP \leftarrow SP-6 \end{array}$	*11	
	CALLF	!faddr	2	3	$\begin{array}{l} ({\sf SP-6})({\sf SP-3})({\sf SP-4}) \leftarrow {\sf PC}_{11\cdot0} \\ ({\sf SP-5}) \leftarrow 0, {\sf PC}_{14}, {\sf PC}_{13}, {\sf PC}_{12} \\ ({\sf SP-2}) \leftarrow \times, \times, {\sf MBE}, {\sf RBE} \\ {\sf PC}_{14\cdot0} \leftarrow 0000, {\sf faddr}, {\sf SP} \leftarrow {\sf SP-6} \end{array}$	*9	
	RET		1	3	$\begin{array}{l} \times,\times, MBE, RBE \leftarrow (SP+4) \\ PC_{11\cdot 0} \leftarrow (SP)(SP+3)(SP+2) \\ \times, PC_{14}, PC_{13}, PC_{12} \leftarrow (SP+1) \\ SP \leftarrow SP+6 \end{array}$		
	RETS		1	3 + S	$\begin{array}{l} \times,\times,MBE,RBE\leftarrow(SP+4)\\ PC_{11\text{-}0}\leftarrow(SP)(SP+3)(SP+2)\\ \times,PC_{14},PC_{13},PC_{12}\leftarrow(SP+1)\\ SP\leftarrowSP+6\\ \text{then skip unconditionally} \end{array}$		Uncondition- ally
	RETI		1	3	$\begin{array}{l} \times, PC_{14}, PC_{13}, PC_{12} \leftarrow (SP+1) \\ PC_{11-0} \leftarrow (SP)(SP+3)(SP+2) \\ PSW \leftarrow (SP+4)(SP+5), \ SP \leftarrow SP + 6 \end{array}$		
	PUSH	rp	1	1	$(SP-1)(SP-2) \gets rp, SP \gets SP - 2$		
		BS	2	2	$(SP-1) \gets MBS, (SP-2) \gets RBS, SP \gets SP-2$		
	POP	rp	1	1	$rp \leftarrow (SP+1)(SP), SP \leftarrow SP + 2$		
		BS	2	2	$\begin{array}{l} MBS \leftarrow (SP+1), RBS \leftarrow (SP), SP \leftarrow \\ SP+2 \end{array}$		
Interrupt	EI		2	2	$IME(IPS.3) \leftarrow 1$		
control		IE×××	2	2	$IE \times \times \times \leftarrow 1$		
	DI		2	2	$IME(IPS.3) \leftarrow 0$		
		IE×××	2	2	$IE \times \times \times \leftarrow 0$		
I/O	IN ^{Note}	A,PORTn	2	2	$A \leftarrow PORTn (n=0 to 6)$		
		XA,PORTn	2	2	$XA \gets PORTn_{\texttt{+1}}, PORTn \text{ (n=4)}$		
	OUT ^{Note}	PORTn,A	2	2	$PORTn \leftarrow A (n=2 to 6)$		
		PORTn,XA	2	2	$PORTn_{+1}, PORTn \leftarrow XA (n=4)$		

Note MBE = 0, or MBE = 1 and MBS = 15 must be set when an IN/OUT instruction is executed.

Instruction	Mnemonic	Operand	Number of bytes	Machine cycle	Operation	Address- ing area	Skip condition
CPU	HALT		2	2	Set HALT mode (PCC.2 \leftarrow 1)		
control	STOP		2	2	Set STOP mode (PCC.3 \leftarrow 1)		
	NOP		1	1	No operation		
Special	SEL	RBn	2	2	$RBS \leftarrow n (n=0-3)$		
		MBn	2	2	MBS ← n (n=0,1,2,3,15)		
	GETI ^{Note}	taddr	1	3	• For a TBR instruction $PC_{13-0} \leftarrow (taddr)_{5-0} + (taddr+1)$ $PC_{14} \leftarrow 0$ • For a TCALL instruction $(SP-6)(SP-3)(SP-4) \leftarrow PC_{11-0}$ $(SP-5) \leftarrow 0, PC_{14}, PC_{13}, PC_{12}$ $(SP-2) \leftarrow \times, \times, MBE, RBE$ $PC_{13-0} \leftarrow (taddr)_{5-0} + (taddr+1)$ $SP \leftarrow SP-6 PC_{14} \leftarrow 0$	*10	
				3	 For an instruction other than TBR and TCALL Executes the instruction in (taddr)(taddr+1). 		Depends upon the referenced instruction.

Note The TBR and TCALL instructions are table definition assembler pseudo instructions of the GETI instructions.

10. MASK OPTION SELECTION

The μ PD75218 has the following mask options enabling or disabling on-chip components.

Pin	Mask option
P60 to P63	Pull-up resistor incorporation enabled in bit units
Т0/Т9	
T10/S15/PH3 to T13/S12/PH0	
T14/S11, T15/S10	
S0 to S9	
XT1, XT2	The feedback resistor for the subsystem clock oscillator can be removed

Cautions 1. In a system not using subsystem clocks, power consumption in the STOP mode can be decreased by removing the feedback resistor from the oscillator.

2. The feedback resistor must be incorporated when the subsystem clock is used.

11. APPLICATION BLOCK DIAGRAM

11.1 VCR TIMER TUNER

11.2 COMPACT DISK PLAYER

11.3 ECR

***** 12. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)

Parameter	Symbol	Conditions	Rating	Unit
	Vdd		-0.3 to +7.0	V
Power supply voltage	VLOAD		VDD - 40 to VDD + 0.3	V
	Vpre		Vdd - 11 to Vdd + 0.3	V
Input voltage	Vı		-0.3 to VDD + 0.3	V
Output voltage	Vo	Pins except display output pins	-0.3 to VDD + 0.3	V
Output voltage	Vod	Display output pins	VDD - 40 to VDD + 0.3	V
		Per pin except display output pins	-15	mA
		Per pin for S0 to S9	–15	mA
Output high current	Іон	Per pin for T0 to T15	-30	mA
		Total of pins except display output pins	-20	mA
		Total of display output pins	-120	mA
Output low ourropt	la:	Per pin	17	mA
	IOL	Total of pins	60	mA
Total JoseNote 1	D-	Plastic QFP	450	mW
	F I	Plastic shrink DIP	600	mW
Operatingtemperature	Topt		-40 to +85	°C
Storage temperature	Tstg		–65 to +150	°C

OPERATING SUPPLY VOLTAGE (Ta = -40 to +85 °C)

Parameter	Conditions	Min.	Max.	Unit
CPUNote 2		Note 3	6.0	V
Display controller		4.5	6.0	V
Timer/pulse generator		4.5	6.0	V
Other hardware ^{Note 2}		2.7	6.0	V

Notes 1. Calculation of total loss

Design so that the sum of the following three power consumption values for the μ PD75218CW/GF will be less than the total loss PT (It is recommended to use the system with 80 % or less of the rating).

- Output pin loss
 There are normal output pin loss and display output pin loss. It is necessary to add a loss derived from the flow of maximum current to each output pin.
- ③ Pull-down register loss: Power loss due to a pull-down resistor incorporated in the display output pin by mask option.
- ExampleSuppose 4-LED output with 9 segments and 11 digits, VDD = 5 V + 10 % and 4.19 MHz oscillation and let
a maximum of 3 mA, 15 mA and, 10 mA flow to a segment pin, timing pin and LED output pin, respectively.
Further, let the voltage of fluorescent display tube (VLOAD voltage) be -30 V and normal voltage be small.
 - ① CPU loss : 5.5 V \times 9.0 mA = 49.5 mW
 - ② Pin loss : Segment pin 2 V × 3 mA × 9 = 54 mW Timing pin 2 V × 15 mA = 30 mW

LED output
$$\left(\frac{10}{15} \times 2 \text{ V}\right) \times 10 \text{ mA} \times 4 = 53 \text{ mW}$$

③ Pull-down resistor loss $\frac{(30 + 5.5 \text{ V})^2}{25 \text{ k}\Omega} \times 10 = 504.1 \text{ mW}$

```
P_T = 1 + 2 + 3 = 690.6 mW
```

In this example, the power consumption of 690.6 mW is higher than the allowable total loss for the shrink DIP package (600 mW). It is necessary to decrease power consumption by decreasing the number of onchip pull-down resistors. In this example, power consumption can be adjusted to 577.8 mW by incorporating pull-down resistors in only 11 digit outputs and 7 segment outputs and externally mounting pull-down resistors to the 2 remaining segment outputs.

- 2. Except the system clock oscillator, display controller and timer/pulse generator.
- 3. The operating voltage range varies depending on the cycle time. Refer to the AC characteristics.

Parameter		Symbol	Conditions	Min.	Тур.	Max.
Input capacitance		CIN				15
Output conscitones	Except display output		f = 1 MHz 0 V for pins other than pins to be measured			15
Output capacitance	Display output	COUT				35
Input /output capacitance		Сю				15

CAPACITANCE (Ta = $25 \circ C$, V_{DD} = 0 V)

Unit

pF

pF

pF

pF

Resonator	Recommended constants	Parameter	Conditions	Min.	Тур.	Max.	Unit
Ceramic resonator Note 3		Oscillator frequency (fxx) Note 1	VDD = Oscillation voltage range	2.0		6.2	MHz
	C1 C2	Oscillation settling time Note 2	After V _{DD} reaches Min. of the oscilla- tion voltage range			4	ms
Crystal resonator Note 3		Oscillator frequency (fxx) Note 1		2.0	4.19	6.2	MHz
		Oscillation	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$			10	ms
		Note 2				30	ms
External clock	X1 X2	X1 input frequency (f _x) ^{Note} 1		2.0		6.2	MHz
	μPD74HCU04	X1 input high/low level width (txн, txL)		100		250	ns

CHARACTERISTICS OF THE MAIN SYSTEM CLOCK OSCILLATOR (Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V)

- **Notes 1.** The oscillator frequency and input frequency indicate only the oscillator characteristics. See the item of AC characteristics for the instruction execution time.
 - 2. The oscillation settling time means the time required for the oscillation to settle after VDD reaches Min. of the oscillation voltage range or after the STOP mode is released.
 - 3. See "Recommended Parameters for the Oscillation Circuit" for the resonators.
- Caution When the main system clock oscillator is used, conform to the following guidelines when wiring at the portions surrounded by dotted lines in the figures above to eliminate the influence of the wiring capacity.
 - The wiring must be as short as possible.
 - Other signal lines must not run in these areas. Any line carrying a high fluctuating current must be kept away as far as possible.
 - The grounding point of the capacitor of the oscillator must have the same potential as that of VDD. It must not be grounded to ground patterns carrying a large current.
 - No signal must be taken from the oscillator.

Resonator	Recommended constants	Parameter	Conditions	Min.	Тур.	Max.	Unit
Crystal resonator Note 3	XT1 XT2	Oscillator frequency (f _{XT}) Note 1		32	32.768	35	kHz
		Oscillation	V _{DD} = 4.5 to 6.0 V		1.0	2	s
		Note 2				10	S
External clock	XT1 XT2	XT1 input frequency (f _{XT})		32		100	kHz
		XT1 input high/low level width (tхтн, txть)		10		32	μs

CHARACTERISTICS OF THE SUBSYSTEM CLOCK OSCILLATOR (Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V)

- **Notes 1.** The oscillator frequency and input frequency indicate only the oscillator characteristics. See the item of AC characteristics for the instruction execution time.
 - 2. The oscillation settling time means the time required for the oscillation to settle after VDD reaches Min. of the oscillation voltage range.
 - **3.** Recommended resonators are listed on the next page.

Caution When the subsystem clock oscillator is used, conform to the following guidelines when wiring at the portions surrounded by dotted lines in the figures above to eliminate the influence of the wiring capacity.

- The wiring must be as short as possible.
- Other signal lines must not run in these areas. Any line carrying a high fluctuating current must be kept away as far as possible.
- The grounding point of the capacitor of the oscillator must have the same potential as that of VDD. It must not be grounded to ground patterns carrying a large current.
- No signal must be taken from the oscillator.

When the subsystem clock is used, pay special attention to its wiring; the subsystem clock oscillator has low amplification to minimize current consumption and is more likely to malfunction due to noise than the main system clock oscillator.

RECOMMENDED PARAMETERS FOR THE OSCILLATION CIRCUIT

Manu-	Product name	Oscillation frequency	External capacitance (pF)		Oscillation voltage range (V)	
tacturer			C1	C2	Min.	Max.
Murata	CSA×××MG	2.00 to 2.44	30	30	2.7	6.0
Mfg.	CST×××MG		Built-in	Built-in		
	CSA×××MG093	2.45 to 3.50	30	30		
	CST×××MGW093		Built-in	Built-in		
	CSA×××MGU	2.51 to 6.00	30	30		
	CST×××MGWU	-	Built-in	Built-in		
	CSA×××MG	2.45 to 3.50	30	30	3.0	
	CST×××MGW	-	Built-in	Built-in		
	CSA×××MG	2.51 to 6.00	30	30	3.3	
	CST×××MGW		Built-in	Built-in		

When a ceramic resonator is used for the main system clock (Ta = -40 to +70 $^\circ\text{C})$

When a ceramic resonator is used for the main system clock (Ta = -20 to +80 $^\circ\text{C})$

Manu-	Product name	Oscillation frequency	External capacitance (pF)		Oscillation voltage range (V)	
tacturer		(IVIHZ)	C1	C2	Min.	Max.
Kyocera	KBR-2.0MS	2.0	47	47	2.7	6.0
	KBR-4.0MWS	4.0	33	33		
	KBR-4.19MWS	4.19	Built-in	Built-in		
	KBR-4.19MSA		33 Built-in Bu	33		
	KBR-4.19MKS			Built-in		
	PBRC 4.19A		33	33		
	KBR-6.0MWS	6.0	Built-in	Built-in		
	KBR-6.0MSA		33	33		
	KBR-6.0MKS		Built-in	Built-in		
	PBRC 6.00A		33	33		

When a crystal resonator is used for the main system clock (T_a = -20 to +70 $^\circ\text{C})$

Manu-	Product name	Oscillation frequency	External capacitance (pF)		Oscillation voltage range (V)	
tacturer		(IMHZ)		C2	Min.	Max.
Kinseki	HC-49/U-S	3.072 to 6.000	18	18	2.7	6.0

When a crystal resonator is used for the subsystem clock (T_a = -15 to +60 $^\circ\text{C})$

Manu- facturer Product name	Oscillation	External capacitance and resistance			Oscillation voltage range (V)		
		irequency (IVIHZ)	C1 (pF)	C2 (pF)	R (kΩ)	Min.	Max.
Kyocera	KF-38G	32.768	18	18	220	4.0	6.0

Caution When finely adjusting the oscillation frequency of a crystal resonator, adjust external capacitance C1 or C3.

DC CHARACTERISTICS (Ta = -40 to +85 °C, V_{DD} = 2.7 to 6.0 V)

Parameter	Symbol		Condition	s	Min.	Тур.	Max.	Unit
Input high voltage	VIH1	Except below			0.7Vdd		Vdd	V
	VIH2	Ports 0, 1, RESI	ΕT		0.75Vdd		Vdd	V
	Vінз	X1, X2, XT1			VDD-0.4		Vdd	V
	VIH4	Port 6	VDD = 4.5 to	o 6.0 V	0.65Vdd		Vdd	V
					0.7Vdd		Vdd	V
Input low voltage	VIL1	Except below			0		0.3VDD	V
	VIL2	Ports 0, 1, 6, R	SET		0		0.2VDD	V
	Vilis	X1, X2, XT1			0		0.4	V
Output high voltage	Vон	All output pins	VDD = 4.5 t	о 6.0 V, Іон = –1 mA	Vdd-1.0			V
				Іон = –100 µА	Vdd-0.5			V
Output low voltage	Vol	Ports 4, 5	VDD = 4.5 t	o 6.0 V, lo∟ = 15 mA		0.5	2.0	V
		All output pins	$V_{DD} = 4.5 t$	o 6.0 V, lo∟ = 1.6 mA			0.4	V
				$IOL = 400 \ \mu A$			0.5	V
Input high leakage	Іцні	Except X1,X2,XT1	Vin = Vdd				3	μA
current	ILIH2	X1, X2, XT1					20	μA
Input low leakage		Except X1,X2,XT1	VIN = 0 V				-3	μA
current		X1, X2, XT1					-20	μA
Output high leakage current	Ігон	All output pins	Vout = Vdd				3	μA
Output low leakage	ILOL1	Except display output	It VOUT = 0 V				-3	μA
current	ILOL2	Display output	VOUT = VLOA	$v_{D} = V_{DD} - 35 V$			-10	μA
Display output current	lod	S0 to S9	Vdd =	$V_{\text{PRE}} = V_{\text{DD}} - 9 \pm 1 \text{ V}^{\text{Note 1}}$	-3	-5.5		mA
			4.5 to 6.0 V	Vpre = 0 V	-1.5	-3.5		mA
	ſ	T0 to T15	V 0D = V DD - 2 V	$V_{\text{PRE}} = V_{\text{DD}} - 9 \pm 1 \text{ V}^{\text{Note 1}}$	-15	-22		mA
			VPRE = 0 V	VPRE = 0 V	-7	-15		mA
Built-in pull-down	R _{P6}	Port 6	$V_{DD} = 4.5 to$	o 6.0 V	20	80	200	kΩ
resistor (mask option)		VIN = VDD			20		1000	kΩ
	R∟	Display output	VOD - VLOAD	9 = 35 V	25	70	135	kΩ
Supply current ^{Note 2}	IDD1	6.0 MHz crys-	VDD	= 5 V ±10 % ^{Note 3}		4.0	13.5	mA
		C1 = C2 = 15 pF	Vdd	= 3 V ±10 % ^{Note 4}		0.55	1.8	mA
	IDD2		HALT mode	$V_{DD} = 5 V \pm 10 \%$		600	1800	μA
				$V_{DD} = 3 V \pm 10 \%$		200	600	μA
	IDD1	4.19 MHz crys-	Vdd	= 5 V ±10 % ^{Note 3}		3.0	9.0	mA
		C1 = C2 = 15pF	Vdd	= 4 V ±10 % ^{Note 4}		0.45	1.5	mA
	IDD2		HALT mode	e VDD = 5 V ±10 %		550	1800	μΑ
				$V_{DD} = 3 V \pm 10 \%$		180	600	μA
	Idd3	32 kHz crystal		VDD = 3 V ±10 %		40	120	μA
	DD4	oscillation ^{Note 5}	HALT mode	VDD = 3 V ±10 %		5	15	μA
	IDD5	XT1 = 0 V		$V_{DD} = 5 \text{ V} \pm 10 \%$		0.5	20	μA
	STOP mode		V_{DD} = 3 V ±10 %		0.1	10	μA	

Notes 1. The following external circuit is recommended.

- 2. Current to the on-chip pull-down resistor (mask option) is not included.
- 3. When the processor clock control register (PCC) is set to 0011 and is operated in the high-speed mode.
- 4. When the PCC register is set to 0000 and is operated in the low-speed mode.
- **5.** When the system clock control register (SCC) is set to 1001 and is operated with the subsystem clock with main system clock oscillation stopped.

Parameter	Symbol	Condi	tions		Min.	Тур.	Max.	Unit
CPU clock cycle time	tcy	Operation with main VDD		$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$			32	μs
(minimum instruction		system clock			2.6		32	μs
machine cycle) ^{Note 1}		Operation with sub- system clock				122	125	μs
TI0 input frequency	f⊤ı	V _{DD} = 4.5 to 6.0 V	-		0		0.6	MHz
					0		165	kHz
TI0 input high and low-	tтıн,	V _{DD} = 4.5 to 6.0 V			0.83			μs
level widths	t⊤ı∟				3			μs
SCK cycle time	tkcy	V _{DD} = 4.5 to 6.0 V		Input	0.8			μs
				Output	0.95			μs
				Input	3.2			μs
				Output	3.8			μs
SCK high and low-level	tкн,	VDD = 4.5 to 6.0 V		Input	0.4			μs
widths	t KL		Output	tксу/2–50			ns	
				Input	1.6			μs
				Output	tксу/2–150			ns
SI setup time (referred to SCK↑)	tsıк				100			ns
SI hold time (referred to \overline{SCK})	tksi				400			ns
Delay from $\overline{SCK}\downarrow$ to SO	tкso	VDD = 4.5 to 6.0 V					300	ns
output							1000	ns
Interrupt input high and	tinth,			INT0	Note 2			μs
low-level widths	t intl			INT1	2tcy			μs
				INT2,	10			μs
				INT4				
RESET low-level width	trsl				10			μs

AC CHARACTERISTICS (Ta = -40 to +85 °C , V_{DD} = 2.7 to 6.0 V)

- Notes 1. CPU clock (Φ) cycle time is determined by the oscillator frequency of the connected resonator, the system clock control register (SCC) and the processor clock control register (PCC). The cycle time t_{CY} characteristics for power supply voltage V_{DD} when the main system clock is in operation is shown on the right.
 - 2. 2t_{CY} or 128/fxx is set by interrupt mode register (IM0) setting.

AC Timing Measurement Values (Except X1 and XT1 Inputs)

Clock Timing

TI0 Timing

Serial Transfer Timing

Interrupt Input Timing

RESET Input Timing

DATA RETENTION CHARACTERISTICS FOR DATA MEMORY AT LOW SUPPLY VOLTAGE IN STOP MODE

$(Ta = -40 \text{ to } +85 \circ C)$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Data retention supply voltage	Vdddr		2.0		6.0	V
Data retention supply current Note 1	Idddr	VDDDR = 2.0 V		0.1	10	μA
Release signal set time	tsrel		0			μs
Oscillation settling timeNote 2	twait	Release by RESET		2 ¹⁷ /fx		ms
		Release by interrupt request		Note 3		ms

Notes 1. Current to the on-chip pull-down resistor (mask option) is not included.

- 2. Oscillation settling time is time to stop CPU operation to prevent unstable operation upon oscillation start.
- 3. According to the setting of the basic interval timer mode register (BTM) (See below.)

BTM3	BTM2	BTM1	BTM0	Settling time (values at fxx = 6.0 MHz in parentheses)
_	0	0	0	2 ²⁰ /fxx (approx. 175 ms)
_	0	1	1	2 ¹⁷ /fxx (approx. 21.8 ms)
_	1	0	1	2 ¹⁵ /fxx (approx. 5.46 ms)
-	1	1	1	2 ¹³ /fxx (approx. 1.37 ms)

Data Retention Timing (STOP Mode Release by RESET)

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)

★

13. CHARACTERISTIC CURVES (FOR REFERENCE)

IDD vs VDD (Main system clock: 6.0 MHz)

IDD vs VDD (Main system clock: 4.19 MHz)

14. PACKAGE DIMENSIONS

64 PIN PLASTIC SHRINK DIP (750 mil)

NOTE

- 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
А	58.68 MAX.	2.311 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
К	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
М	$0.25^{+0.10}_{-0.05}$	$0.010^{+0.004}_{-0.003}$
N	0.17	0.007
R	0~15°	0~15°
		P64C-70-750A,C-1

64 PIN PLASTIC QFP (14×20)

detail of lead end

NOTE

Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
А	23.6±0.4	0.929±0.016
В	20.0±0.2	$0.795^{+0.008}_{-0.009}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
н	0.40±0.10	$0.016^{+0.004}_{-0.005}$
I	0.20	0.008
J	1.0 (T.P.)	0.039 (T.P)
к	1.8±0.2	$0.071^{+0.008}_{-0.009}$
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
Ν	0.10	0.004
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.
	P64GF-10	0-3B8,3BE,3BR-2

15. RECOMMENDED SOLDERING CONDITIONS

The following conditions (see table below) must be met when soldering this product.

For the details of the recommended soldering conditions refer to our document SMD Surface Mount Technology Manual (IEI-1207).

Please consult with our sales offices in case other soldering process is used, or in case soldering is done under different conditions.

Table 15-1	Soldering	Conditions	for Surface	-Mount Devices
------------	-----------	------------	-------------	----------------

μ PD75218GF-×××-3BE: 64-pin plastic QFP (14 × 20 mm)

Soldering process	Soldering conditions	Symbol
Wave soldering	Temperature in the soldering vessel: 260 °C or less Soldering time: 10 seconds or less Number of soldering processes: 1 Pre-heating temperature: 120 °C max. (package surface temperature) Exposure limit ^{Note} : 2 days (20 hours of pre-baking is required at 125 °C afterward.)	WS60-202-1
Infrared ray reflow	Peak package's surface temperature: 230 °C Reflow time: 30 seconds or less (at 210 °C or more) Number of reflow processes: 1 Exposure limit ^{Note} : 2 days (20 hours of pre-baking is required at 125 °C afterward.)	IR30-202-1
VPS	Peak package's surface temperature: 215 °C Reflow time: 40 seconds or less (at 200 °C or more) Number of reflow processes: 1 Exposure limit ^{Note} : 2 days (20 hours of pre-baking is required at 125 °C afterward.)	VP15-202-1
Partial heating method	Terminal temperature: 300 °C or less Flow time: 3 seconds or less (one side per device)	_

Note Exposure limit before soldering after dry-pack package is opened. Storage conditions: Temperature of 25 °C and maximum relative humidity at 65 % or less

Caution Do not apply more than a single process at once, except for "Partial heating method."

Table 15-2 Soldering Conditions for Inserted Devices

 μ PD75218CW-×××: 64-pin plastic shrink DIP (750 mil)

Soldering process	Soldering conditions
Wave soldering (only for leads)	Temperature in the soldering vessel: 260 °C or less Soldering time: 10 seconds or less
Partial heating method	Terminal temperature: 260 °C or less Flow time: 10 seconds or less

Caution In wave soldering, apply solder only to the lead section. Care must be taken that jet solder does not contact the main body of the package.

— Notice

Other versions of the products are available. For these versions, the recommended reflow soldering conditions have been mitigated as follows:

Higher peak temperature (235 $^\circ\text{C}$), two-stage, and longer exposure limit.

Contact an NEC representative for details.

APPENDIX A FUNCTIONS OF μ PD752×× SERIES PRODUCTS

1.				0075010	DD75D040	
Item		μPD75216A	μPD75217	μΡD75218	μΡD75P218	
ROM		16256 × 8	24448 × 8	32640 × 8		
RAM		512 × 4	768 imes 4	1024 × 4		
Instruction cycle	When main system clock is selected	0.95 μ s/1.91 μ s/15.3 μ s (When the microcomputer operates at 4.19 MHz) 0.67 μ s/1.33 μ s/10.7 μ computer operates at 0.95 μ s/1.91 μ s/15.3 μ computer operates a			μ s (When the micro- at 6.0 MHz) μ s (When the micro- at 4.19 MHz)	
	When sub-system clock is selected	122 μ s (When the microcomputer operates at 32.768 kHz)				
I/O lines including	Total number of I/O lines	33				
FIP dual- function pins and	CMOS input lines	8				
excluding	CMOS I/O lines	20: 8 lines for driving LED				
FIP dedi- cated pins		Port 6: Pull-down resistors contained (mask option) Port 6: No pull-down resistors contained				
	CMOS output lines	1: Timer/pulse generator output				
	P-ch open-drain output with high withstand voltage and high current	4 lines for driving LED: Pull-down resistors contained (mask option) No pull-down resistors contained				
FIP controller/	Output with high withstand voltage	26 lines: 40 V max.				
driver		Whether built-in pull-down resistors are used or the pins are used as open-drain output is selected bit by bit (mask option).S0-S8,T0-T9: Built-in pull-down resistors used S9,T10-T15: Open-drain output				
	Number of segments	9 to 16				
	Number of digits	9 to 16				
Timer		4 channels • Timer/event counter • Basic interval timer : Watchdog timer operation is possible. • Timer/pulse generator: 14-bit PWM output is possible. • Watch timer : Buzzer output is possible.				
Serial interface		MSB or LSB first can be selected. Serial bus can be configured.				
Vectored interr	upt	External: 3, internal: 5				
Test input		External: 1, internal: 1				
System clock oscillator		 When main system clock is selected: 6.0 MHz (the μPD75218 and μPD75P218 only) 4.19 MHz When subsystem clock is selected: 32.768 kHz 				
Power-on reset circuit		Incorporated None (mask option)				
Data retention at low supply voltage		Possible (2 V)				
Operating temperature range		-40 to +85 °C -40 to +70 °C				
Operating supply voltage		2.7 to 6.0 V				
Package		64-pin plastic shrink DIP (750 mil) 64-pin plastic QFP (14 \times 20 mm) 64-pin ceramic WQFN (the μ PD75P218 only)				

APPENDIX B DEVELOPMENT TOOLS

The following development tools are provided for developing systems including the μ PD75218:

	IE-75000 IE-75001)-R ^{Note 1} -R	In-circuit emulator for the 75X series
	IE-75000-R-EM ^{Note 2}		Emulation board for the IE-75000-R and IE-75001-R
	EP-75216ACW-R		Emulation probe for the μ PD75218CW
vare	EP-75216AGF-R		Emulation probe for the μ PD75218GF. A 64-pin conversion socket, the EV-9200G-64, is attached
rdv		EV-9200G-64	to the probe.
На	т РG-1500		PROM programmer
	PA-75P216ACW		PROM programmer adapter for the μ PD75P218CW. Connected to the PG-1500.
	PA-75P218GF		PROM programmer adapter for the μ PD75P218GF. Connected to the PG-1500.
	PA-75P218KB		PROM programmer adapter for the μ PD75P218KB. Connected to the PG-1500.
	IE contro	ol program	Host machine
Software	PG-1500 controller		 PC-9800 series (MS-DOSTM Ver. 3.30 to Ver. 5.00A^{Note 3}) IBM PC/ATTM (PC DOSTM Ver. 3.1)
	RA75X relocatable assembler		

Notes 1. Maintenance service only

- 2. Not contained in the IE-75001-R
- 3. These software cannot use the task swap function, which is available in MS-DOS Ver. 5.00 and Ver. 5.00A.

Remark Refer to "75X Series Selection Guide" (IF-1027) for development tools manufactured by third parties.

APPENDIX C RELATED DOCUMENTS

Documents related to the device

Document name	Document No.
User's manual	IEU-692
75X series selection guide	IF-1027

Documents related to development tools

Document name			Document No.
	IE-75000-R/IE-75001-R User's Manual		EEU-1416
e	و IE-75000-R-EM User's Manual		
rdwa	EP-75216ACW-R User's Manual		EEU-1321
На	EP-75216AGF-R User's Manual		EEU-1309
	PG-1500 User's Manual	EEU-1335	
e	RA75X Assembler Package User's Manual	Operation	EEU-1346
ftwa		Language	EEU-1363
So	PG-1500 Controller User's Manual	EEU-1291	

Other related documents

Document name	Document No.
Package Manual	IEI-1213
SMD Surface Mount Technology Manual	IEI-1207
Quality Grades on NEC Semiconductor Devices	IEI-1209
NEC Semiconductor Device Reliability/Quality Control System	IEI-1203
Electrostatic Discharge (ESD) Test	IEI-1201
Guide to Quality Assurance for Semiconductor Devices	MEI-1202

Caution The above documents may be revised without notice. Use the latest versions when you design an application system.

Cautions on CMOS Devices

① Countermeasures against static electricity for all MOSs

Caution When handling MOS devices, take care so that they are not electrostatically charged. Strong static electricity may cause dielectric breakdown in gates. When transporting or storing MOS devices, use conductive trays, magazine cases, shock absorbers, or metal cases that NEC uses for packaging and shipping. Be sure to ground MOS devices during assembling. Do not allow MOS devices to stand on plastic plates or do not touch pins. Also handle boards on which MOS devices are mounted in the same way.

2 CMOS-specific handling of unused input pins

Caution Hold CMOS devices at a fixed input level.

Unlike bipolar or NMOS devices, if a CMOS device is operated with no input, an intermediate-level input may be caused by noise. This allows current to flow in the CMOS device, resulting in a malfunction. Use a pull-up or pull-down resistor to hold a fixed input level. Since unused pins may function as output pins at unexpected times, each unused pin should be separately connected to the VDD or GND pin through a resistor. If handling of unused pins is documented, follow the instructions in the document.

③ Statuses of all MOS devices at initialization

Caution The initial status of a MOS device is unpredictable when power is turned on.

Since characteristics of a MOS device are determined by the amount of ions implanted in molecules, the initial status cannot be determined in the manufacture process. NEC has no responsibility for the output statuses of pins, input and output settings, and the contents of registers at power on. However, NEC assures operation after reset and items for mode setting if they are defined.

When you turn on a device having a reset function, be sure to reset the device first.

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard : Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special : Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

M4 92.6

EEPROM is a trademark of NEC Corporation. FIP is a trademark of NEC Corporation. MS-DOS is a trademark of Microsoft Corporation. PC DOS and PC/AT are a trademarks of IBM Corporation.