4-BIT SINGLE-CHIP MICROCOMPUTER

The μ PD75028 is a 75X series 4-bit single-chip microcomputer.
The minimum instruction execution time of the μ PD75028's CPU is $0.95 \mu \mathrm{~s}$. In addition to this high-speed capability, the chip contains an A/D converter and furnishes high-performance functions such as the serial bus interface (SBI) function that follows the NEC standard format, providing powerful features and high cost performance.

A PROM version, μ PD75P036, is also available. The μ PD75P036 is suitable for small-scale production or experimental production in system development.

Detailed functional description for the μ PD75028 is shown in the following user's manual. Be sure to read it when starting design.
μ PD75028 User's Manual: IEU-

FEATURES

- Fast execution time (@4.19 MHz)
- High speed cycle: $0.95 \mu \mathrm{~s}$
- Low-voltage cycles: 1.91μ s and $15.3 \mu \mathrm{~s}$
- Power-reducing operation
- With system clock operating at 32.768 kHz (execution time: $122 \mu \mathrm{~s}$)
- A/D converter
- 8-channel, 8-bit
- Low-voltage operation possible (VDD $=2.7$ to 6.0 V)
- Four timers
- One of them can be used as PWM output, 16-bit counter for an integrating A/D converter, etc.
- NEC standard serial bus interface
- SBI mode
- Very low-power clock operation: $5 \mu \mathrm{~A}$ TYP. (at 3 V in HALT mode)

APPLICATIONS

Electric home appliances, air conditioners, cameras, and electronic measuring instruments

ORDERING INFORMATION

Part number	Package	Quality grade
μ PD75028CW- $\times \times \times$	$64-$ pin plastic shrink DIP $(750 \mathrm{mil})$	Standard
μ PD75028GC $-\times \times \times-$ AB8	64 -pin plastic QFP $(\square 14 \mathrm{~mm})$	Standard

Remark $x \times x$ is a mask ROM code number.

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

FUNCTION TABLE

Item		Function				
Instruction execution time		- $0.95,1.91,15.3 \mu \mathrm{~s}$ (at main system clock of 4.19 MHz) - 122μ (at subsystem clock of 32.768 kHz)				
Internal memory	ROM	8064×8 bits				
	RAM	512×4 bits				
General registers		- 8: in 4-bit mode - 4: in 8-bit mode				
I/O ports		48	12	CMOS input pins	Selectable by software Of these, 27 can have pull-up resistors, and 4 can have pulldown resistors.	
		24	CMOS I/O pins (Of these, four can directly drive LEDs.)			
		12	N-ch open-drain I/O pins (Of these, eight can directly drive LEDs.)	Break-down voltage: 10 V Mask-option pull-up resistors are available.		
Timer			4 channels	- Timer/event counter - Basic interval timer : applicable to Watchdog timer - Clock timer : Capable of buzzer output - Multi-function timer		
Serial interface			- 3-wire serial I/O mode - 2-wire serial I/O mode - SBI mode			
A/D converter		8 bits (resolution) $\times 8$ channels (successive approximation) Operable at low voltage: $\mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V				
Bit sequential buffer		16 bits				
Clock output function		$\Phi, \mathrm{fx} / 2^{3}, \mathrm{fx} / 2^{4}, \mathrm{fx}_{\mathrm{x}} / 2^{6}$				
Vectored interrupts		External: 3, Internal: 4				
Test input		External: 1, Internal: 1				
System clock oscillator		- Ceramic/crystal oscillator for main system clock - Crystal oscillator for subsystem clock				
Standby function		STOP/HALT mode				
Operating ambient temperature		$-40{ }^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$				
Operating power supply voltage		2.7 to 6.0 V				
Package		- 64-pin plastic shrink DIP (750 mil) -64-pin plastic QFP ($\square 14 \mathrm{~mm}$)				

CONTENTS

1. PIN CONFIGURATION (TOP VIEW) ... 4
2. BLOCK DIAGRAM ... 6
3. PIN FUNCTIONS ... 7
3.1 PORT PINS ... 7
3.2 NON-PORT PINS ... 9
3.3 PIN INPUT/OUTPUT CIRCUITS ... 11
3.4 MASK OPTION SELECTION ... 13
3.5 HANDLING UNUSED PINS ... 14
4. MEMORY MAPPING ... 15
5. PERIPHERAL HARDWARE FUNCTIONS ... 18
5.1 PORTS ... 18
5.2 CLOCK GENERATOR CIRCUIT ... 19
5.3 CLOCK OUTPUT CIRCUIT ... 20
5.4 BASIC INTERVAL TIMER ... 21
5.5 CLOCK TIMER ... 22
5.6 TIMER/EVENT COUNTER ... 23
5.7 SERIAL INTERFACE ... 25
5.8 A/D CONVERTER ... 27
5.9 MULTI-FUNCTION TIMER (MFT) ... 28
5.10 BIT SEQUENTIAL BUFFER: 16 BITS ... 30
6. INTERRUPT FUNCTIONS ... 31
7. STANDBY FUNCTION ... 33
8. RESET OPERATION ... 34
9. INSTRUCTION SET ... 36
10. ELECTRICAL SPECIFICATIONS ... 43
11. CHARACTERISTIC CURVES (FOR REFERENCE ONLY) ... 57
12. PACKAGE DRAWINGS ... 63
13. RECOMMENDED SOLDERING CONDITIONS . 65

APPENDIX A. DEVELOPMENT TOOLS ... 66

APPENDIX B. RELATED DOCUMENTS ... 67

1. PIN CONFIGURATION (TOP VIEW)

- 64-pin plastic shrink DIP (750 mil)

SB1/SI/P03 \quad ¢	\checkmark	64	\bigcirc Vss
SB0/SO/P02 O	2	63	\rightarrow P30
$\overline{\text { SCK/P01 }}$	3	62	\longrightarrow P31
INT4/P00 $-\longrightarrow$	4	61	\rightarrow P32
BUZ/P23 $\bigcirc \longleftrightarrow$	5	60	\longleftrightarrow P P33
PCL/P22 $\quad \longleftrightarrow$	6	59	\longleftrightarrow P 40
$\mathrm{PPO} / \mathrm{P} 21 \quad \mathrm{O} \longleftrightarrow$	7	58	\longleftrightarrow P P41
PTO0/P20 $\quad \longleftrightarrow$	8	57	\leftrightarrow P42
$\overline{\text { MAT/P103 }} \mathrm{O} \longleftrightarrow$	9	56	\longleftrightarrow P P43
$\overline{\text { MAZ/P102 }} \mathrm{O} \longleftrightarrow 1$	10	55	\longleftrightarrow P P50
$\overline{\mathrm{MAI}} / \mathrm{P} 101 \quad \longleftrightarrow 1$	11	54	\longleftrightarrow P P51
$\overline{\mathrm{MAR}} / \mathrm{P} 100 \mathrm{O} \longleftrightarrow 1$	12	53	\longleftrightarrow P P52
$\overline{\mathrm{RESET}} \bigcirc \longrightarrow 1$	13 \%	52	\longleftrightarrow P P53
$\mathrm{X} 1 \bigcirc \longrightarrow 1$	14 -	51	\longleftrightarrow P P60/KR0
$\mathrm{X} 2 \bigcirc \longrightarrow 1$	15 O	50	\longleftrightarrow P P61/KR1
IC $0-16$	16 -	49	\longleftrightarrow P P62/KR2
XT1 $\bigcirc \longrightarrow 1$	17 -	48	\longleftrightarrow P P63/KR3
$\mathrm{XT} 2 \bigcirc \longrightarrow 1$	18 ?	47	\longleftrightarrow P70/KR4
$\mathrm{V}_{\text {dD }} \mathrm{O}-1$	19 <	46	\longleftrightarrow P71/KR5
$\mathrm{AV}_{\text {DD }} \mathrm{O}-20$	$20 \times$	45	\longleftrightarrow P72/KR6
$\mathrm{AV}_{\text {ReF+ }} \mathrm{O} \longrightarrow 2$	$21 \times$	44	\longleftrightarrow P73/KR7
$\mathrm{AV}_{\text {ReF- }} \mathrm{O} \longrightarrow 2$	22	43	\longleftrightarrow P P80
AN7 \longrightarrow	23	42	\longleftrightarrow P 81
AN6 $\bigcirc \longrightarrow 2$	24	41	\longleftrightarrow P 82
AN5 $\bigcirc \longrightarrow 2$	25	40	\longleftrightarrow P P83
AN4 \bigcirc	26	39	$\longleftrightarrow \mathrm{OP90}$
AN3/P113 $\longrightarrow 2$	27	38	\longleftrightarrow P P91
AN2/P112 $\longrightarrow 2$	28	37	$\longleftrightarrow \mathrm{OP92}$
AN1/P111 $\longrightarrow 2$	29	36	\longleftrightarrow P P93
ANO/P110 $\longrightarrow 3$	30	35	- P10/INT0
$A V \mathrm{ss} 0-3$	31	34	\longleftarrow P11/INT1
TI0/P13 $\longrightarrow 3$	32	33	\longleftarrow P12/INT2

- 64-pin plastic OFP ($\square 14 \mathrm{~mm}$)

IC: Internally Connected (should be connected directly to VdD)

PIN NAMES

P00-03	Port 0
P10-13	Port 1
P20-23	Port 2
P30-33	Port 3
P40-43	Port 4
P50-53	Port 5
P60-63	Port 6
P70-73	Port 7
P80-83	Port 8
P90-93	Port 9
P100-103	Port 10
P110-113	Port 11
KRO-7	Key Return
$\overline{\text { SCK }}$	Serial Clock
SI	Serial Input
So	Serial Output
SB0, 1	Serial Bus 0, 1
$\overline{\text { RESET }}$	Reset Input
TIO	Timer Input 0
PTOO	Programmable Timer Output 0
BUZ	Buzzer Clock
PCL	Programmable Clock
INTO, 1, 4	External Vectored Interrupt 0, 1, 4
INT2	External Test Input 2
X1, 2	Main System Clock Oscillation 1, 2
XT1, 2	Subsystem Clock Oscillation 1, 2
$\overline{\mathrm{MAR}}$	Reference Integration Control
$\overline{\text { MAI }}$	Integration Control $\}$ MFT A/D mode
$\overline{\text { MAZ }}$	Autozero Control $\}$ MFTD mode
$\overline{\text { MAT }}$	External Comparate Timing Input
PPO	Programmable Pulse Output ... MFT timer mode
ANO-7	Analog Input 0-7
$\mathrm{AV}_{\text {ref }+}$	Analog Reference (+)
AVref-	Analog Reference (-)
AVDD	Analog Vdo
AVss	Analog Vss
Vod	Positive Power Supply
Vss	Ground

Remark MFT: Multi-Function Timer

3. PIN FUNCTIONS

3.1 PORT PINS (1/2)

Pin name	Input/ output	Shared pin	Function	$\begin{aligned} & \text { 8-bit } \\ & \text { I/O } \end{aligned}$	When reset	I/O circuit type Note 1
P00	Input	INT4	4-bit input port (PORTO). For P01-P03, pull-up resistors can be provided by software in units of 3 bits.	\times	Input	(B)
P01	I/O	$\overline{\text { SCK }}$				(F) -A
P02	I/O	SO/SB0				(F)-B
P03	I/O	SI/SB1				(1) -C
P10	Input	INTO	With noise elimination function 4-bit input port (PORT1). Pull-up resistors can be provided by software in units of 4 bits.	\times	Input	(B) -C
P11		INT1				
P12		INT2				
P13		TIO				
P20	I/O	PTO0	4-bit I/O port (PORT2). Pull-up resistors can be provided by software in units of 4 bits.	\times	Input	E-B
P21		PPO				
P22		PCL				
P23		BUZ				
P30 Note 2	I/O	-	Programmable 4-bit I/O port (PORT3). I/O can be specified bit by bit. Pull-up resistors can be provided by software in units of 4 bits.	\times	Input	E-B
P31 Note 2		-				
P32 Note 2		-				
P33 Note 2		-				
P40-P43 Note 2	I/O	-	N-ch open-drain 4-bit I/O port (PORT4). A pull-up resistor can be provided for each bit (mask option). Withstand voltage is 10 V in open-drain mode.	\bigcirc	High level (when pullup resistors are provided) or high impedance	M
P50-P53 Note 2	I/O	-	N-ch open-drain 4-bit I/O port (PORT5). A pull-up resistor can be provided for each bit (mask option). Withstand voltage is 10 V in open-drain mode.		High level (when pullup resistors are provided) or high impedance	M

Note 1. The circle (\bigcirc) indicates the Schmitt trigger input.
2. Can directly drive LEDs.

3.1 PORT PINS (2/2)

Pin name	Input/ output	Shared pin	Function	$\begin{aligned} & \text { 8-bit } \\ & \text { I/O } \end{aligned}$	When reset	I/O circuit type Note
P60	I/O	KRO	Programmable 4-bit I/O port (PORT6). I/O can be specified bit by bit. Pull-up resistors can be provided by software in units of 4 bits.	\bigcirc	Input	(F)-A
P61		KR1				
P62		KR2				
P63		KR3				
P70	1/0	KR4	4-bit I/O port (PORT 7). A pull-up resistor can be provided by software in units of 4 bits		Input	(F)-A
P71		KR5				
P72		KR6				
P73		KR7				
P80-P83	I/O	-	4-bit I/O port (PORT 8). A pull-up resistor can be provided by software in units of 4 bits.	\times	Input	E-B
P90-P93	I/O	-	4-bit I/O port (PORT 9). A pull-up resistor can be provided by software in units of 4 bits.		Input	E-D
P100	I/O	$\overline{\text { MAR }}$	N-ch open drain 4-bit I/O port (PORT 10). A pull-up resistor can be provided for each bit (mask option). Withstand voltage is 10 V in open-drain mode.	\times	High level (when pull-up resistors are provided) or high impedance	M
P101		$\overline{\mathrm{MAI}}$				
P102		MAZ				
P103		MAT				
P110	Input	ANO	4-bit input port (PORT11).		Input	Y-A
P111		AN1				
P112		AN2				
P113		AN3				

Note The circle (\bigcirc) indicates the Schmitt trigger input.

3.2 NON-PORT PINS (1/2)

Pin name	Input/ output	Shared pin	Function			When reset	1/O circuit type Note 1	
TIO	Input	P13	Input for receiving external event pulse signal for timer/event counter			-	(B)-C	
PTOO	I/O	P20	Timer/event counter output			Input	E-B	
PCL	I/O	P22	Clock output			Input	E-B	
BUZ	I/O	P23	Output for arbitrary frequency output (for buzzer output or system clock trimming)			Input	E-B	
$\overline{\text { SCK }}$	I/O	P01	Serial clock I/O			Input	(F)-A	
SO/SB0	I/O	P02	Serial data output Serial bus I/O			Input	(F)-B	
SI/SB1	I/O	P03	Serial data input Serial bus I/O			Input	(17)-C	
INT4	Input	P00	Edge detection vectored interrupt input (either rising edge or falling edge detection)			-	(B)	
INT0	Input	P10	Edge detection vectored interrupt input (detection edge selectable)		Clock synchronous	-	(B)-C	
INT1		P11			Asynchronous			
INT2	Input	P12	Edge detection testable input (rising edge detection)		Asynchronous	-	(B)-C	
KR0-KR3	I/O	P60-P63	Parallel falling edge detection testable input			Input	(F)-A	
KR4-KR7	I/O	P70-P73	Parallel falling edge detection testable input			Input	(F)-A	
$\overline{\text { MAR }}$	I/O	P100	In MFT integrating A/D converter mode	Reverse integration signal output		Note 2	M	
$\overline{\mathrm{MAI}}$	1/0	P101		Integration signal output		Note 2	M	
$\overline{\text { MAZ }}$	1/0	P102		Auto-zero signal output		Note 2	M	
$\overline{\text { MAT }}$	1/0	P103		Comparator input		Note 2	M	
PPO	I/O	P21	In MFT timer mode	Timer pulse output		Input	E-B	
AN0 - AN3	Input	P110-P113	For A/D converter only	8-bit analog input		Input	Y-A	
AN4 - AN7		-				Y		
$\mathrm{AV}_{\text {REF }+}$	Input	-		Reference voltage input ($\mathrm{A} \mathrm{V}_{\mathrm{DD}}$ side)			-	Z-A
$A V_{\text {REF }}$	Input	-		Reference voltage input (AVss side)		-	Z-A	
AVDD	-	-		Positive power supply		-	-	
AVss	-	-		Ground		-	-	

Note 1. The circle (\bigcirc) indicates the Schmitt trigger input.
2. High level (in use of on-chip pull-up resistor) or high impedance

Remark MFT: Multi-Function Timer
3.2 NON-PORT PINS (2/2)

Pin name	Input/ output	Shared pin	Function	When reset	I/O circuit type ${ }^{\text {Note }}$
X1, X2	Input	-	Crystal/ceramic connection for main system clock generation. When external clock signal is used, it is applied to X 1 , and its reverse phase signal is applied to X 2 .	-	-
XT1, XT2	Input	-	Crystal connection for subsystem clock generation. When external clock signal is used, it is applied to XT1, and its reverse phase signal is applied to XT2, XT1 can be used as a 1-bit input (test).	-	-
RESET	Input	-	System reset input	-	(B)
IC	-	-	Internally connected. (To be connected to Vdo)	-	-
VDD	-	-	Positive power supply	-	-
Vss	-	-	GND potential	-	-

Note The circle (\bigcirc) indicates the Schmitt trigger input.

3.3 PIN INPUT/OUTPUT CIRCUITS

The input/output circuit of each μ PD75028 pin is shown below in a simplified manner.
(1/3)
Type A (For type E-B)

3.4 MASK OPTION SELECTION

The following mask options are available for selection for each pin.

Pin name	Mask option	
$\begin{aligned} & \text { P40-P43, } \\ & \text { P50-P53, } \\ & \text { P100-P103 } \end{aligned}$	(1) Pull-up resistor provided (specificable bit by bit)	(2) Pull-up resistor not provided (specifiable bit by bit)
XT1, XT2	(1) Feedback resistor provided (if a subsystem clock is used)	(2) Feedback resistor not provided (if a subsysem clock is not used)

Table 3-1 Handling Unused Pins

Pin name	Recommended connection
P00/INT4	Connected to Vss
P01/SCK	Connected to Vss or Vdd
P02/SO/SB0	
P03/SI/SB1	
P10/INT0-P12/INT2	Connected to Vss
P13/TI0	
P20/PTO0	$\begin{array}{ll} \text { Input mode } & : \text { Connected to } V_{S S} \text { or } V_{D D} \\ \text { Output mode } & \text { : Left unconnected } \end{array}$
P21	
P22/PCL	
P23/BUZ	
P30-P33	
P40-P43	
P50-P53	
P60-P63	
P70-P73	
P80-P83	
P90-P93	
P100-P103	
P110/AN0-P113/AN3	Connected to Vss or VdD
AN4-AN7	
A $\mathrm{VREF}+$	Connected to Vss
AVref-	
AVss	
AVDD	Connected to VDd
XT1	Connected to Vss or Vdd
XT2	Left unconnected
IC	Directly connected to VDD

4. MEMORY MAPPING

- Program memory (ROM) : 8064×8 bits ($0000 \mathrm{H}-1$ F7FH)
- $0000 \mathrm{H}-0001 \mathrm{H}:$ A vector table where a program start address is written upon resetting.
- 0002H-000DH : A vector table where a program start address is written upon interrup-
tion.
- 0020H-007FH : A table area referenced by GETI instruction.
- Data memory
- Data area : 512×4 bits ($000 \mathrm{H}-1 \mathrm{FFH}$)
- Peripheral hardware area : 128×4 bits (F80H-FFFH)

Fig. 4-1 Program Memory Map

Fig. 4-2 Data Memory Map

5. PERIPHERAL HARDWARE FUNCTIONS

5.1 PORTS

There are the following three types of ports:

- CMOS input ports (port 0, 1, 11) : 12
- CMOS I/O ports (port 2, 3, 6, 7, 8, 9) : 24
- N-ch open-drain I/O ports (port 4, 5, 10) : 12

Table 5-1 Port Functions

Port name	Function	Operation/features	Remarks
PORTO PORT1	4-bit Input	Can be read or tested regardless of the operation mode of the shared pin.	Shared with the SO/SB0, SI/SB1, $\overline{\mathrm{SCK}}$, INTO-2, 4, and TIO pins.
PORT2 PORT7	4-bit I/O	Can be specified for input/ output in 4 -bit units. Port 6 and 7 can be paired to input/output data in 8-bit units.	Port 2 pins are also used as PTO0, PPO, PCL, and BUZ.
			Port 7 pins are also used as KR4-7.
PORT3 Note PORT6		Can be specified for input/ output in bit units.	Port 6 pins are also used as KRO-3.
PORT4 Note PORT5 Note PORT10	4-bit I/O (N -ch open drain, can sustain 10 V)	Can be specified for input/ output in 4 -bit units. Port 4 and 5 can be paired to input/output data in 8 -bit units.	Pull-up resistor mask-option is available for each bit.
			Port 10 pins are also used as $\overline{\mathrm{MAR}}, \overline{\mathrm{MAI}}$, $\overline{M A Z}$, and $\overline{M A T}$.
PORT8 PORT9	4-bit I/O	Can be specified for input/ output in 4-bit units.	-
PORT11	4-bit Input	4-bit port dedicated to input	Port 11 is shared with pins AN0 to AN3.

Note Can directly drive LEDs.

5.2 CLOCK GENERATOR CIRCUIT

The operation of the clock generator is determined by the processor clock control register (PCC) and the system clock control register (SCC).

Two types of clock frequencies are available: main system clock and subsystem clock frequencies.
It is possible to vary the instruction execution time.

- $0.95 \mu \mathrm{~s}, 1.91 \mu \mathrm{~s}, 15.3 \mu \mathrm{~s}$ (at main system clock of 4.19 MHz)
- $122 \mu \mathrm{~s}$ (at subsystem clock of 32.768 kHz)

Fig. 5-1 Clock Generator Block Diagram

Remarks 1. $f x=$ Main system clock frequency
2. $\mathrm{fxt}_{\mathrm{x}}=$ Subsystem clock frequency
3. PCC: Processor clock control register
4. SCC: System clock control register
5. One clock cycle of $\Phi(\mathrm{tcy})$ is equal to 1 machine cycle of an instruction. For the tcy, refer to 10. ELECTRICAL SPECIFICATIONS AC characteristics.

5.3 CLOCK OUTPUT CIRCUIT

The clock output circuit outputs clock pulses through the P22/PCL pin. It is used to output clock pulses to a remote control output or peripheral LSI.

- Clock output (PCL): $\Phi, 524 \mathrm{kHz}, 262 \mathrm{kHz}, 65.5 \mathrm{kHz}$ (at fx $=4.19 \mathrm{MHz}$)

The configuration of the clock output circuit is shown below.

Fig. 5-2 Clock Output Circuit Configuration

Remark Measures are taken to prevent outputting a narrow pulse when selecting clock output enable/disable.

5.4 BASIC INTERVAL TIMER

The basic interval timer has these functions:

- Interval timer operation which generates a reference timer interrupt
- Watchdog timer application which detects a program runaway
- Selection of wait time for releasing the standby mode and counting the wait time
- Reading out the count value

Fig. 5-3 Basic Interval Timer Configuration

Note Instruction execution

5.5 CLOCK TIMER

The μ PD75028 has a built-in 1 -ch clock timer. The clock timer has the following functions:

- Sets the test flag (IRQW) with a $0.5-\mathrm{sec}$ interval. The standby mode can be released by IROW.
- The 0.5 -second interval can be generated from either the main system clock or subsystem clock.
- The time interval can be made 128 times faster (3.91 ms) by selecting the fast mode. This is convenient for program debugging, testing, etc.
- Any of the frequencies $2.048 \mathrm{kHz}, 4.096 \mathrm{kHz}$, and 32.768 kHz can be output to the P23/BUZ pin. This can be used for beep and system clock frequency trimming.
- The frequency divider circuit can be cleared so that a zero-second start of the clock can be made.

Fig. 5-4 Clock Timer Block Diagram

() is for $\mathrm{fx}=4.194304 \mathrm{MHz}, \mathrm{fxt}^{2}=32.768 \mathrm{kHz}$.

5.6 TIMER/EVENT COUNTER

The μ PD75028 has a built-in 1-ch timer/event counter. The timer/event counter has the following functions:

- Programmable interval timer operation
- Outputs square-wave signal of an arbitrary frequency to the PTOO pin
- Event counter operation
- Divides the TIO pin input by N and outputs to the PTOO pin (frequency divider operation)
- Supplies serial shift clock to the serial interface circuit
- Count condition read out function

Fig. 5-5 Timer/Event Counter Block Diagram

Note 1. Instruction execution
2. For details, see Fig. 5-1.

5.7 SERIAL INTERFACE

The serial interface has the following modes:

- 3-wire serial I/O mode (Start bit (MSB or LSB) switchable)
- 2-wire serial I/O mode (MSB-first)
- SBI mode (MSB-first)

In 3-wire serial I/O mode, the serial interface allows connection to 75X series, 78 K series, and various I/O devices.

In 2-wire serial I/O mode and SBI mode, it allows connection to two or more devices.

5.8 A/D CONVERTER

The μ PD75028 contains an 8-bit analog/digital (A/D) converter that has eight analog input channels (ANO - AN7).

The A/D converter employs the successive-approximation method.

Fig. 5-7 Configuration of the A/D Converter

5.9 MULTI-FUNCTION TIMER (MFT)

The μ PD75028 contains one channel of the multi-function timer (MFT). MFT has the following functions:
(1) 8-bit timer mode

- Programmable interval timer operation
- Square wave output of any frequency to PPO pin
(2) PWM output mode
- Output of 6-, 7-, or 8-bit precision PWM signal to PPO pin
(3) 16-bit free-running timer mode
- Interval timer operation to cause an interrupt to occur at given time intervals
- Applicable as a one-shot timer
(4) Integration A/D converter mode
- Output of 16 -bit integration A / D converter control signal
- 13-, 14-, 15-, or 16 -bit resolution can be selected

Fig. 5-8 Multi-function Timer Block Diagram

5.10 BIT SEQUENTIAL BUFFER: 16 BITS

The bit sequential buffer is a data memory specifically provided for bit manipulation. With this buffer, addresses and bit specifications can be sequentially updated by bit manipulation operation. Therefore, this buffer is very useful for processing long data in bit units.

Fig. 5-9 Bit Sequential Buffer Format

Remark For pmem.@L addressing, the specification bit is shifted according to the L register.

6. INTERRUPT FUNCTIONS

The μ PD75028 has 7 different interrupt sources. In addition, multiple interrupts are possible by software control. Two types of test source are also provided. Of these, INT2 has two edge detection testable inputs.

The interrupt control circuit of the μ PD75028 has the following functions:

- Hardware controlled vector interrupt function which can control whether or not to accept an interrupt using the interrupt flag (IE $\times \times \times$) and interrupt master enable flag (IME).
- The interrupt start address can be set arbitrarily.
- Interrupt request flag (IRQ $\times \times \times$) test function (an interrupt generation can be confirmed by software).
- Standby mode release (interrupts to be released can be selected by the interrupt enable flag).

Fig. 6-1 Interrupt Control Circuit Block Diagram

7. STANDBY FUNCTION

The μ PD75028 has two different standby modes (STOP mode and HALT mode) to reduce power dissipation while waiting for program execution.

Table 7-1 Standby Mode Statuses

Note Operation is possible only when the main system clock operates.

8. RESET OPERATION

When the RESET signal is input, the μ PD75028 is reset and all hardware is initialized as indicated in Table 8-1. Fig. 8-1 shows the reset operation timing.

Fig. 8-1 Reset Operation by RESET Input

Table 8-1 Status of All Hardware after Reset (1/2)

Hardware			$\overline{\mathrm{RESET}}$ input in standby mode	$\overline{\mathrm{RESET}}$ input during operation
Program counter (PC)			The contents of the lower 5 bits of address 0000 H of the program memory are set to PC12-8, and the contents of address 0001 H are set to PC7-0.	
PSW	Carry flag (CY)		Retained	Undefined
	Skip flag (SKO-2)		0	0
	Interrupt status flag (ISTO)		0	0
	Bank enable flag (MBE)		The contents of bit 7 of address 0000 H of the program memory is set to MBE.	
Stack pointer (SP)			Undefined	Undefined
Data memory (RAM)			Retained Note	Undefined
General purpose register(X, A, H, L, D, E, B, C)			Retained	Undefined
Bank selection register (MBS)			0	0
Basic interval timer		Counter (BT)	Undefined	Undefined
		Mode register (BTM)	0	0
Timer/event counter		Counter (TO)	0	0
		Modulo register (TMODO)	FFH	FFH
		Mode register (TM0)	0	0
		TOEO, TOUT F/F	0, 0	0, 0
Clock timer		Mode register (WM)	0	0

Note Data of address 0F8H to OFDH of the data memory becomes undefined when the RESET signal is input.

Table 8-1 Status of All Hardware after Reset (2/2)

Hardware		$\overline{\text { RESET }}$ input in standby mode	$\overline{\text { RESET }}$ input during operation
Serial interface	Shift register (SIO)	Retained	Undefined
	Operation mode register (CSIM)	0	0
	SBI control register (SBIC)	0	0
	Slave address register (SVA)	Retained	Undefined
Clock generator, Clock output circuit	Processor clock control register (PCC)	0	0
	System clock control register (SCC)	0	0
	Clock output mode register (CLOM)	0	0
Interrupt function	Interrupt enable flag (IExxx)	0	0
	Interrupt master enable flag (IME)	0	0
	INTO, 1, 2, mode register (IMO, 1, 2)	0, 0, 0	0, 0, 0
Digital port	Output buffer	Off	Off
	Output latch	Clear (0)	Clear (0)
	Input/output mode register (PMGA, B, C)	0	0
	Pull-up resistor specification register (POGA, POGB)	0	0
	Pull-down resistor specification register (PDGB)	0	0
Multi-function timer	Counter (MFTL)	FFH	FFH
	Counter (MFTH)	0	0
	Mode register (MFTM)	0	0
	Control register (MFTC)	0	0
A/D converter	Mode register (ADM)	04H	04H
	SA register (SA)	Undefined	Undefined
Bit sequential buffer (BSB0-3)		Retained	Undefined

9. INSTRUCTION SET

(1) Operand identifier and its descriptive method

The operands are described in the operand column of each instruction according to the descriptive method for the operand format of the appropriate instructions. (For details, refer to the "RA75X Assembler Package User's Manual, Language" (EEU-xxx).) For descriptions in which alternatives exist, one element should be selected. Uppercase alphabetic characters and plus and minus signs are keywords; therefore, they should be described as they are.
For immediate data, the appropriate numerical values or labels should be described.
Symbols of various registers and flags can be described as labels instead of mem, fmem, pmem, and bit (For details, see " μ PD75028 User's Manual (IEU-xxxx).").
There are restrictions to labels that can be described instead of fmem and pmem.

Identifier	Description
reg reg1	$\begin{aligned} & \text { X, A, B, C, D, E, H, L } \\ & \text { X, B, C, D, E, H, L } \end{aligned}$
$\begin{aligned} & \text { rp } \\ & \text { rp1 } \\ & \text { rp2 } \end{aligned}$	$\begin{aligned} & \mathrm{XA}, \mathrm{BC}, \mathrm{DE}, \mathrm{HL} \\ & \mathrm{BC}, \mathrm{DE}, \mathrm{HL} \\ & B C, D E \end{aligned}$
rpa rpa1	$\begin{aligned} & \text { HL, DE, DL } \\ & \text { DE, DL } \end{aligned}$
$\begin{aligned} & \text { n4 } \\ & \text { n8 } \end{aligned}$	4-bit immediate data or label 8-bit immediate data or label
mem ${ }^{\text {Note }}$ bit	8-bit immediate data or label 2-bit immediate data or label
fmem pmem	FBOH - FBFH, FFOH - FFFH immediate data or label FCOH - FFFH immediate data or label
addr caddr faddr	0000 H - 1F7FH immediate data or label 12-bit immediate data or label 11-bit immediate data or label
taddr	20H-7FH immediate data (however, bit $0=0$) or label
PORTn IE××x MBn	PORTO - PORT11 IEBT, IECSI, IET0, IE0, IE1, IE2, IE4, IEW, IEMFT MB0, MB1, MB15

Note Only even address can be specified for mem when processing 8-bit data.
(2) Symbol definitions in operation description

A : A register; 4-bit accumulator
B : B register
C : C register
D : D register
E : E register
H : H register
$\mathrm{L} \quad$: L register
X : X register
XA : Pair register (XA); 8-bit accumulator
$B C \quad$: Pair register (BC)

DE	: Pair register (DE)
HL	: Pair register (HL)
PC	: Program counter
SP	: Stack pointer
CY	: Carry flag; Bit accumulator
PSW	: Program status word
MBE	: Memory bank enable flag
PORTn	: Port n (n = 0 to 11)
IME	: Interrupt master enable flag
IE $\times \times \times$: Interrupt enable flag
MBS	: Memory bank selection register
PCC	: Processor clock control register
	: Address, bit delimiter
$(\times \times)$: Contents addressed by $\times \times$
$\times \times \mathrm{H}$: Hexadecimal data

(3) Symbols used for the addressing area column

*1	$\begin{aligned} & \mathrm{MB}=\mathrm{MBE} \cdot \mathrm{MBS} \\ & (\mathrm{MBS}=0,1,15) \end{aligned}$	4
*2	$\mathrm{MB}=0$	
*3	$\begin{aligned} & \hline \mathrm{MBE}=0: \mathrm{MB}=0(00 \mathrm{H}-7 \mathrm{FH}) \\ & M B=15(80 \mathrm{H}-\mathrm{FFH}) \\ & \mathrm{MBE}=1: \mathrm{MB}=\mathrm{MBS}(\mathrm{MBS}=0,1,15) \end{aligned}$	Data memory addressing
* 4	$\begin{aligned} \mathrm{MB}=15, \text { fmem }= & \mathrm{FBOH}-\mathrm{FBFH}, \\ & \text { FFOH }-\mathrm{FFFH} \end{aligned}$	
*5	$\mathrm{MB}=15, \mathrm{pmem}=\mathrm{FCOH}-\mathrm{FFFH}$	
*6	addr $=0000 \mathrm{H}-1 \mathrm{~F} 7 \mathrm{FH}$	4
*7	$\begin{aligned} \text { addr }= & (\text { Current PC) }-15 \text { to (Current PC) }-1 \\ & (\text { Current PC) }+2 \text { to (Current PC) }+16 \end{aligned}$	\mid
*8	$\begin{aligned} \text { caddr }= & 0000 \mathrm{H}-0 \text { FFFH }\left(\mathrm{PC}_{12}=0\right) \text { or } \\ & 1000 \mathrm{H}-1 \mathrm{~F} 7 \mathrm{FH}\left(\mathrm{PC}_{12}=1\right) \end{aligned}$	Program memory addressing
*9	faddr $=0000 \mathrm{H}-07 \mathrm{FFH}$	
*10	taddr $=0020 \mathrm{H}-007 \mathrm{FH}$	

Remarks 1. MB indicates the memory bank that can be accessed.
2. For ${ }^{*} 2, M B=0$ regardless of MBE and MBS settings.
3. For ${ }^{*} 4$ and ${ }^{*} 5, M B=15$ regardless of MBE and MBS.
4. For ${ }^{*} 6$ to ${ }^{*} 10$, each addressable area is indicated.
(4) Description of machine cycle column

S indicates the number of machine cycles necessary for skipping any skip instruction. The value of S changes as follows:

- When no skip is performed ... \quad S = 0
- When a 1-byte or 2-byte instruction is skipped ... S = 1
- When a 3-byte instruction (BR !addr, CALL !addr instruction) is skipped $S=2$

Caution The GETI instruction is skipped in one machine cycle.

One machine cycle (= tcy) is equivalent to one CPU clock Φ cycle. Therefore, the length of the machine cycle can be selected from three different lengths by the PCC setting.

Group	Mnemonic	Operand	Bytes	Machining cycle	Operation	Addressing area	Skip condition
Transfer	MOV	A, \#n4	1	1	$\mathrm{A} \leftarrow \mathrm{n} 4$		String A
		reg1, \#n4	2	2	$\mathrm{reg} 1 \leftarrow \mathrm{n} 4$		
		XA, \#n8	2	2	$\mathrm{XA} \leftarrow \mathrm{n} 8$		String A
		HL, \#n8	2	2	$\mathrm{HL} \leftarrow \mathrm{n} 8$		String B
		rp2, \#n8	2	2	$\mathrm{rp} 2 \leftarrow \mathrm{n} 8$		
		A, @HL	1	1	$\mathrm{A} \leftarrow(\mathrm{HL})$	*1	
		A, @rpa1	1	1	$\mathrm{A} \leftarrow(\mathrm{rpa} 1)$	*2	
		XA, @HL	2	2	$\mathrm{XA} \leftarrow(\mathrm{HL})$	*1	
		@HL, A	1	1	$(\mathrm{HL}) \leftarrow \mathrm{A}$	*1	
		@HL, XA	2	2	$(\mathrm{HL}) \leftarrow \mathrm{XA}$	*1	
		A, mem	2	2	$A \leftarrow($ mem $)$	* 3	
		XA, mem	2	2	$\mathrm{XA} \leftarrow(\mathrm{mem})$	*3	
		mem, A	2	2	$($ mem $) \leftarrow A$	*3	
		mem, XA	2	2	$($ mem $) \leftarrow \mathrm{XA}$	*3	
		A, reg	2	2	$A \leftarrow r e g$		
		XA, rp	2	2	$\mathrm{XA} \leftarrow \mathrm{rp}$		
		reg1, A	2	2	$\operatorname{reg} 1 \leftarrow A$		
		rp1, XA	2	2	$\mathrm{rp} 1 \leftarrow \mathrm{XA}$		
	XCH	A, @HL	1	1	$A \leftrightarrow(H L)$	*1	
		A, @rpa1	1	1	$A \leftrightarrow(r p a 1)$	*2	
		XA, @HL	2	2	XA $\leftrightarrow(\mathrm{HL})$	* 1	
		A, mem	2	2	$\mathrm{A} \leftrightarrow(\mathrm{mem})$	*3	
		XA, mem	2	2	$\mathrm{XA} \leftrightarrow(\mathrm{mem})$	*3	
		A, reg 1	1	1	$\mathrm{A} \leftrightarrow \mathrm{reg} 1$		
		XA, rp	2	2	$\mathrm{XA} \leftrightarrow \mathrm{rp}$		
	MOVT	XA, @PCDE	1	3	$\mathrm{XA} \leftarrow\left(\mathrm{PC}_{12-8}+\mathrm{DE}\right)_{\text {вом }}$		
		XA, @PCXA	1	3	XA $\leftarrow\left(\mathrm{PC}_{12-8}+\mathrm{XA}\right)_{\text {Rом }}$		
Arithmetic	ADDS	A, \#n4	1	$1+S$	$\mathrm{A} \leftarrow \mathrm{A}+\mathrm{n} 4$		carry
		A, @HL	1	$1+S$	$A \leftarrow A+(H L)$	* 1	carry
	ADDC	A, @HL	1	1	$A, C Y \leftarrow A+(H L)+C Y$	*1	
	SUBS	A, @HL	1	$1+S$	$A \leftarrow A-(H L)$	*1	borrow
	SUBC	A, @HL	1	1	$A, C Y \leftarrow A-(H L)-C Y$	*1	
	AND	A, \#n4	2	2	$\mathrm{A} \leftarrow \mathrm{A} \wedge \mathrm{n} 4$		
		A, @HL	1	1	$A \leftarrow A \wedge(H L)$	*1	
	OR	A, \#n4	2	2	$\mathrm{A} \leftarrow \mathrm{A} \vee \mathrm{n} 4$		
		A, @HL	1	1	$A \leftarrow A \vee(H L)$	*1	
	XOR	A, \#n4	2	2	$A \leftarrow A \forall \mathrm{n} 4$		
		A, @HL	1	1	$A \leftarrow A \forall(H L)$	* 1	

Group	Mnemonic	Operand	Bytes	Machining cycle	Operation	Addressing area	Skip condition
Accumulator manipulation	RORC	A	1	1	$\mathrm{CY} \leftarrow \mathrm{A} 0, \mathrm{~A}_{3} \leftarrow \mathrm{CY}, \mathrm{A}_{\mathrm{n}-1} \leftarrow \mathrm{~A}_{\mathrm{n}}$		
	NOT	A	2	2	$\mathrm{A} \leftarrow \overline{\mathrm{A}}$		
Increment/ decrement	INCS	reg	1	$1+\mathrm{S}$	$\mathrm{reg} \leftarrow \mathrm{reg}+1$		$\mathrm{reg}=0$
		@HL	2	$2+S$	$(\mathrm{HL}) \leftarrow(\mathrm{HL})+1$	*1	$(\mathrm{HL})=0$
		mem	2	$2+S$	$($ mem $) \leftarrow($ mem $)+1$	*3	$(\mathrm{mem})=0$
	DECS	reg	1	$1+\mathrm{S}$	$\mathrm{reg} \leftarrow \mathrm{reg}-1$		$\mathrm{reg}=\mathrm{FH}$
Comparison	SKE	reg, \#n4	2	$2+S$	Skip if reg = n 4		$\mathrm{reg}=\mathrm{n} 4$
		@HL, \#n4	2	$2+S$	Skip if (HL) $=\mathrm{n} 4$	*1	$(\mathrm{HL})=\mathrm{n} 4$
		A, @HL	1	$1+S$	Skip if $A=(H L)$	*1	$A=(H L)$
		A, reg	2	$2+S$	Skip if $A=r e g$		$A=r e g$
Carry flag manipu- lation	SET1	CY	1	1	$\mathrm{CY} \leftarrow 1$		
	CLR1	CY	1	1	$\mathrm{CY} \leftarrow 0$		
	SKT	CY	1	$1+S$	Skip if $C Y=1$		$C Y=1$
	NOT1	CY	1	1	$\mathrm{CY} \leftarrow \overline{\mathrm{CY}}$		
Memory bit manipu- lation	SET1	mem.bit	2	2	(mem.bit) $\leftarrow 1$	*3	
		fmem.bit	2	2	(fmem. bit) $\leftarrow 1$	* 4	
		pmem.@L	2	2	$\left(\right.$ pmem7-2 $\left.+\mathrm{L}_{3-2} . \operatorname{bit}\left(\mathrm{L}_{1-0}\right)\right) \leftarrow 1$	* 5	
		@H+mem.bit	2	2	$\left(\mathrm{H}+\right.$ mem $\left._{3-0 . \mathrm{bit}}\right) \leftarrow 1$	*1	
	CLR1	mem.bit	2	2	(mem. bit) $\leftarrow 0$	*3	
		fmem.bit	2	2	(fmem. bit) $\leftarrow 0$	* 4	
		pmem.@L	2	2	$\left(\right.$ pmem7-2 $\left.+\mathrm{L}_{3-2} . \operatorname{bit}\left(\mathrm{L}_{1-0}\right)\right) \leftarrow 0$	*5	
		@ $\mathrm{H}+$ mem.bit	2	2	$\left(\mathrm{H}+\right.$ mem $_{3 \text {-0. }}$ bit $) \leftarrow 0$	* 1	
	SKT	mem.bit	2	$2+S$	Skip if (mem.bit) $=1$	*3	(mem.bit) = 1
		fmem.bit	2	$2+S$	Skip if (fmem.bit) $=1$	* 4	(fmem.bit) = 1
		pmem.@L	2	$2+S$	Skip if (pmem7-2 $\left.+L_{3-2 . \operatorname{bit}}\left(L_{1-0}\right)\right)=1$	*5	(pmem.@L) = 1
		@ $\mathrm{H}+$ mem.bit	2	$2+S$	Skip if ($\mathrm{H}+$ mem $_{3-\mathrm{o} \text {. bit })=1}$	*1	$(@ H+$ mem.bit $)=1$
	SKF	mem.bit	2	$2+S$	Skip if (mem.bit) $=0$	*3	(mem.bit) $=0$
		fmem.bit	2	$2+S$	Skip if (fmem.bit) $=0$	* 4	(fmem.bit) $=0$
		pmem.@L	2	$2+S$	Skip if (pmem7-2 $+L_{3-2 .}$ bit $\left.\left(L_{1-0}\right)\right)=0$	*5	(pmem.@L) = 0
		@ $\mathrm{H}+$ mem.bit	2	$2+S$	Skip if ($\mathrm{H}+$ mem $_{3-0 . \mathrm{bit})}=0$	* 1	$(@ H+$ mem.bit $)=0$
	SKTCLR	fmem.bit	2	$2+S$	Skip if (fmem.bit) = 1 and clear	* 4	(fmem. ${ }^{\text {bit }}$) $=1$
		pmem.@L	2	$2+S$	Skip if $\left(\right.$ pmem $_{7-2}+\mathrm{L}_{3-2 .}$ bit $\left.\left(\mathrm{L}_{1-0}\right)\right)=1$ and clear	*5	(pmem.@L) = 1
		@ $\mathrm{H}+$ mem.bit	2	$2+S$	Skip if ($\mathrm{H}+$ mem3-0.bit) $=1$ and clear	*1	$(@ H+$ mem.bit $)=1$
	AND1	CY, fmem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ (fmem.bit)	* 4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge\left(\right.$ pmem $\left.\left._{7-2}+\mathrm{L}_{3-2.2} \mathrm{bit}^{\text {(}} \mathrm{L}_{1-0}\right)\right)$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge(\mathrm{H}+$ mem3-0.bit)	*1	
	OR1	CY, fmem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ (fmem.bit)	* 4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \vee\left(\right.$ pmem7-2 $\left.\left.+\mathrm{L}_{3-2.2} \mathrm{bit}^{\text {(}} \mathrm{L}_{1-0}\right)\right)$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ ($\mathrm{H}+$ mem $_{3 \text {-0. }}$ bit $)$	*1	

Group	Mnemonic	Operand	Bytes	Machining cycle	Operation	Addressing area	Skip condition
Memory bit manipulation	XOR1	CY, fmem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ (fmem.bit)	* 4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \forall\left(\right.$ pmem7-2 $\left.+\mathrm{L}_{3-2} \cdot \mathrm{bit}\left(\mathrm{L}_{1-0}\right)\right)$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \forall\left(\mathrm{H}+\mathrm{mem}_{3 \text {-0. }} \mathrm{bit}\right)$	* 1	
Branch	BR	addr	-	-	$\mathrm{PC}_{12-0} \leftarrow$ addr (Appropriate instructions are selected from BR !addr, BRCB !caddr, and BR \$addr by the assembler.)	* 6	
		!addr	3	3	$\mathrm{PC}_{12-0} \leftarrow$ addr	* 6	
		\$addr	1	2	$\mathrm{PC}_{12-0} \leftarrow \mathrm{addr}$	* 7	
	BRCB	!caddr	2	2	$\mathrm{PC}_{12-0} \leftarrow \mathrm{PC}_{12}+$ caddr $_{11-0}$	*8	
Subrou- tine stack control	CALL	!addr	3	3	$\begin{aligned} & (S P-4)(S P-1)(S P-2) \leftarrow P_{11-0} \\ & (S P-3) \leftarrow M B E, 0,0, P_{12} \\ & P_{12-0} \leftarrow a d d r, S P \leftarrow S P-4 \end{aligned}$	* 6	
	CALLF	!faddr	2	2	$\begin{aligned} & (S P-4)(S P-1)(S P-2) \leftarrow \mathrm{PC}_{11-0} \\ & (\mathrm{SP}-3) \leftarrow \mathrm{MBE}, 0,0, \mathrm{PC}_{12} \\ & \mathrm{PC}_{12-0} \leftarrow 00, \text { faddr, } \mathrm{SP} \leftarrow \mathrm{SP}-4 \end{aligned}$	*9	
	RET		1	3	$\begin{aligned} & \mathrm{MBE}, \times, \times, \mathrm{PC}_{12} \leftarrow(\mathrm{SP}+1) \\ & \mathrm{PC}_{11-0}^{\leftarrow} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \\ & \mathrm{SP} \leftarrow \mathrm{SP}+4 \end{aligned}$		
	RETS		1	$3+S$	$\begin{aligned} & \mathrm{MBE}, \times, \times, \mathrm{PC}_{12} \leftarrow(\mathrm{SP}+1) \\ & \mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \\ & \mathrm{SP} \leftarrow \mathrm{SP}+4 \text {, then skip unconditionally } \end{aligned}$		Unconditional
	RETI		1	3	$\begin{aligned} & \mathrm{MBE}, \times, \times, \mathrm{PC}_{12} \leftarrow(\mathrm{SP}+1) \\ & \mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \\ & \mathrm{PSW} \leftarrow(\mathrm{SP}+4)(\mathrm{SP}+5), \mathrm{SP} \leftarrow \mathrm{SP}+6 \end{aligned}$		
	PUSH	rp	1	1	$(S P-1)(S P-2) \leftarrow r p, S P \leftarrow S P-2$		
		BS	2	2	$(S P-1) \leftarrow$ MBS, $(S P-2) \leftarrow 0, S P \leftarrow S P-2$		
	POP	rp	1	1	$\mathrm{rp} \leftarrow(\mathrm{SP}+1)(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+2$		
		BS	2	2	$\mathrm{MBS} \leftarrow(\mathrm{SP}+1), \mathrm{SP} \leftarrow \mathrm{SP}+2$		
Interrupt control	El		2	2	$\mathrm{IME} \leftarrow 1$		
		IE $\times \times \times$	2	2	$\mathrm{IE} \times \times \times \leftarrow 1$		
	DI		2	2	$\mathrm{IME} \leftarrow 0$		
		IE $\times \times \times$	2	2	IExxx $\leftarrow 0$		
Input/ output	IN	A, PORTn	2	2	$\mathrm{A} \leftarrow$ PORTn $\quad(\mathrm{n}=0-11)$		
		XA, PORTn	2	2	$\mathrm{XA} \leftarrow \mathrm{PORTn}+1, \mathrm{PORTn}(\mathrm{n}=4,6)$		
	OUT	PORTn, A	2	2	PORTn $\leftarrow \mathrm{A} \quad(\mathrm{n}=2-10)$		
		PORTn, XA	2	2	PORTn+1,PORTn \leftarrow XA $(\mathrm{n}=4,6)$		
CPU control	HALT		2	2	Set HALT Mode $\quad($ PCC. $2 \leftarrow 1)$		
	STOP		2	2	Set STOP Mode $\quad($ PCC. $3 \leftarrow 1)$		
	NOP		1	1	No Operation		

Caution When executing the IN/OUT instruction, MBE must be set to 0 or MBE and MBS must be set to 1 and 15 , respectively.

Group	Mnemonic	Operand	Bytes	Machining cycle	Operation	Addressing area	Skip condition
Special	SEL	MBn	2	2	$\mathrm{MBS} \leftarrow \mathrm{n}(\mathrm{n}=0,1,15)$		
	GETI	taddr	1	3	- For the TBR instruction $\mathrm{PC}_{12-0} \leftarrow(\operatorname{taddr})_{4-0}+(\operatorname{taddr}+1)$	*10	
					- For the TCALL instruction $\begin{aligned} & (\mathrm{SP}-4)(\mathrm{SP}-1)(\mathrm{SP}-2) \leftarrow \mathrm{PC}_{11-0} \\ & (\mathrm{SP}-3) \leftarrow \mathrm{MBE}, 0,0, \mathrm{PC}_{12} \\ & \mathrm{PC}_{12-0} \leftarrow(\operatorname{taddr}) 4-0+(\text { taddr }+1) \\ & \mathrm{SP} \leftarrow \mathrm{SP}-4 \end{aligned}$		
					- For other than the TBR and TCALL instruction (taddr) (taddr +1) is executed.		Depends on the reference instruction

10. ELECTRICAL SPECIFICATIONS

Absolute maximum ratings ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Test conditions			Ratings	Unit
Power supply voltage	VDD				-0.3 to +7.0	V
Input voltage	V_{11}	Except for port 4, 5, 10			-0.3 to $V_{D D}+0.3$	V
	V_{12}	Port 4, 5, 10	Pull-up resistor is contained		-0.3 to $V_{\text {dD }}+0.3$	V
			Open drain		-0.3 to +11	V
Output voltage	Vo				-0.3 to $V_{D D}+0.3$	V
Output high current	Іон	Each output pin			-10	mA
		Total			-30	mA
Output low current	IoL Note	Port 0, 3, 4, 5 Each output pin		Peak value	30	mA
				rms value	15	mA
		Except for port 0, 3, 4, 5 Each output pin		Peak value	20	mA
				rms value	5	mA
		Port 0, 3 to 9, 11 total		Peak value	170	mA
				rms value	120	mA
		Port 0, 2, 10		Peak value	30	mA
				rms value	20	mA
Operation temperature	Topt				-40 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$				-65 to +150	${ }^{\circ} \mathrm{C}$

Note To obtain the rms value, calculate
[rms value] $=$ [peak value] $\times \sqrt{\text { duty }}$

Caution If any of the ratings described above should exceed the specified absolute maximum rating even for a moment, the quality of the product would be impaired. An absolute maximum rating is a critical value that can physically damage the product. Be sure to use the product under conditions within the absolute maximum ratings.

Capacitance ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$, V DD $=0 \mathrm{~V}$)

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cl_{1}	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V			15	pF
Output capacitance	Co				15	pF
Input/Output capacitance	Cıo				15	pF

Main system clock oscillator characteristics ($\mathrm{T}_{\mathrm{a}}=-40$ to $+70^{\circ} \mathrm{C}, \mathrm{V} \mathrm{DD}=2.7$ to 6.0 V)

Note 1. Indicates only the characteristics of the oscillator. For instruction execution time, see "AC Characteristics."
2. Time required for stabilization of oscillation after application of Vdo or after cancellation of STOP mode.
3. If the oscillation frequency is $4.19 \mathrm{MHz}<\mathrm{fx} \leq 5.0 \mathrm{MHz}$, do not select $\mathrm{PCC}=0011$ as instruction execution time. If it is selected, one machine cycle would become shorter than $0.95 \mu \mathrm{~s}$, and the minimum limit of $0.95 \mu \mathrm{~s}$ could not be secured.
$\star \quad$ Caution In use of the main system clock oscillator, follow the following guidlines for wiring on the portion indicated by "-- " in the figure to avoid influence due to line capacitance:

- Route as short as possible.
- Do not let the wiring cross another signal line.
- Do not place the wiring near a line in which a variable high current flows.
- Be sure that the potential on the connection point for the oscillator capacitor is always equal to Vdd. Do not connect the wire in question to a power supply pattern in which a high current flows.
- Do not take off signal from the oscillator.

Subsystem clock oscillator characteristics ($\mathrm{Ta}=-40$ to $+70^{\circ} \mathrm{C}, \mathrm{V} D \mathrm{D}=2.7$ to 6.0 V)

Resonator	Recommended constants	Parameter	Test conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator		Oscillation Note 1 frequency ($\mathrm{fxT}^{\mathrm{x}}$)		32	32.768	35	kHz
		Oscillation Note 2	$V_{D D}=4.5$ to 6.0 V		1.0	2	s
						10	s
External clock		XT1 input frequency (f_{XT})		32		100	kHz
		XT1 input high- and low-level width (tхтн, txtı)		5		15	$\mu \mathrm{s}$

Note 1. Indicates only the characteristics of the oscillator. For instruction execution time, see "AC Characteristics."
2. Time required for stabilization of oscillation after application of VDD.

Caution In use of the subsystem clock oscillator, follow the following guidlines for wiring on the portion indicated by "-...." in the figure to avoid influence due to line capacitance:

- Route as short as possible wire.
- Do not let the wiring cross another signal line.
- Do not place the wiring near a line in which a variable high current flows.
- Be sure that the potential on the connection point for the oscillator capacitor is always equal to Vdd. Do not connect the wire in question to a power supply pattern in which a high current flows.
- Do not take off signal from the oscillator.

For reduction of current consumption, the subsystem clock oscillator has a low amplification factor. It is more likely to have a malfunction due to noise than the main system clock oscillator. When the subsystem clock is to be used, pay special attention in selecting the method of wiring.

\star Recommended oscillator constants

Main system clock: Ceramic ($\mathrm{T}_{\mathrm{a}}=\mathbf{- 4 0}$ to $+85{ }^{\circ} \mathrm{C}$)

Manufacturer	Product	Frequency (MHz)	Recommended circuit constant		Oscillation voltage range	
			C1 (pF)	C2 (PF)	MIN. (V)	MAX. (V)
Murata	CSA $\times . \times \times$ MG Note	2.00 to 2.44	30	30	3.0	6.0
	CST $\times . \times \times$ MG ${ }^{\text {Note }}$		-	-		
	CSA $\times . \times \times$ MG ${ }^{\text {Note }}$	2.45 to 4.49	30	30	3.5	
	CST $\times . \times \times$ MGW ${ }^{\text {Note }}$		-	-		
	CSA $\times . \times \times$ MG ${ }^{\text {Note }}$	4.50 to 5.00	30	30	4.0	
	CST $\times . \times \times$ MGW ${ }^{\text {Note }}$		-	-		
Kyocera	KBR-1000H	1.00	100	100	2.7	6.0
	KBR-2.0MS	2.00	47	47		
	KBR-4.0MSA	4.00	33	33		
	KBR-5.0MSA	5.00	33	33		

Note $\times . \times \times$ indicates a frequency.

Subsystem clock: Crystal (T a $=\mathbf{- 1 5}$ to $\mathbf{+ 6 0}{ }^{\circ} \mathrm{C}$)

Manufacturer	Product	Frequency (kHz)	Recommended circuit constant			Oscillation voltage range	
			$\mathrm{C} 3(\mathrm{pF})$	$\mathrm{C} 4(\mathrm{pF})$	$\mathrm{R}(\mathrm{k} \Omega)$	MIN. (V)	MAX. (V)
Kyocera	KF-38G	32.768	18	33	150	2.7	6.0

DC characteristics ($\mathrm{T}_{\mathrm{a}}=-40$ to $+70^{\circ} \mathrm{C}, \mathrm{V} \mathrm{DD}=2.7$ to 6.0 V)

Parameter	Symbol	Test conditions		MIN.	TYP.	MAX.	Unit
Input high voltage	$\mathrm{V}_{\mathrm{H} 1}$	Port 2, 3, 8, 9, 11		0.7 VdD		VDD	V
	$\mathrm{V}_{\text {H2 }}$	Port 0, 1, 6, 7, $\overline{\mathrm{RESET}}$		0.8 VDD		VDD	V
	Vінз	Port 4, 5, 10	Pull-up resistor is contained	0.7 VDD		VDD	V
			Open drain	0.7 Vdo		10	V
	VIH4	X1, X2, XT1, XT2		VdD - 0.5		VDD	V
Input low voltage	VIL1	Port 2 to 5, 8 to 11		0		0.3 VDD	V
	VIL2	Port 0, 1, 6, 7, $\overline{\text { RESET }}$		0		0.2 VDD	V
	Vıı3	X1, X2, XT1, XT2		0		0.4	V
Output high voltage	Vон	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V , $\mathrm{Ioh}=-1 \mathrm{~mA}$		VdD - 1.0			V
		$\mathrm{I}_{\text {OH }}=-100 \mu \mathrm{~A}$		VDD - 0.5			V
Output low voltage	Voı	Port 3, 4, 5	$\begin{aligned} & \mathrm{VDD}=4.5 \text { to } 6.0 \mathrm{~V}, \\ & \mathrm{loL}=15 \mathrm{~mA} \end{aligned}$		0.4	2.0	V
		$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V , lol $=1.6 \mathrm{~mA}$				0.4	V
		lol $=400 \mu \mathrm{~A}$				0.5	V
		SB0, 1	Open drain Pull-up resistor $\geq 1 \mathrm{k} \Omega$			0.2 VDD	V
Input high leakage current	Lılı1	$V_{1}=V_{D D}$	Except for below			3	$\mu \mathrm{A}$
	Іıн2		X1, X2, XT1			20	$\mu \mathrm{A}$
	Іاнн	$\mathrm{V}_{\mathrm{I}}=9 \mathrm{~V}$	Port 4, 5, 10 (when open drain is selected)			20	$\mu \mathrm{A}$
Input low leakage current	ILL1	$\mathrm{V}_{1}=0 \mathrm{~V}$	Except for below			-3	$\mu \mathrm{A}$
	ILLL2		X1, X2, XT1			-20	$\mu \mathrm{A}$
Output high leakage current	ILoh1	$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{DD}}$	Except for below			3	$\mu \mathrm{A}$
	ILOH2	V o $=9 \mathrm{~V}$	Port 4, 5, 10 (when open drain is selected)			20	$\mu \mathrm{A}$
Output low leakage current	ILOL	V o $=0 \mathrm{~V}$				-3	$\mu \mathrm{A}$
Internal pull-up resistor	Ru1	Port 0, 1, 2, 3, 6, 7, 8 (except P00) $V_{1}=0 \mathrm{~V}$	$V_{\text {DD }}=5.0 \mathrm{~V} \pm 10 \%$	15	40	80	$\mathrm{k} \Omega$
			V DD $=3.0 \mathrm{~V} \pm 10 \%$	30		300	k Ω
	Ru2	Port 4, 5, 10$V_{0}=V_{D D}-2.0 \mathrm{~V}$	$V_{\text {DD }}=5.0 \mathrm{~V} \pm 10 \%$	15	40	70	k Ω
			$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$	10		60	$\mathrm{k} \Omega$
Internal pull-down resistor	RD	Port 9$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$	$\mathrm{V} D \mathrm{LD}=5.0 \mathrm{~V} \pm 10 \%$	10	40	70	$\mathrm{k} \Omega$
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$	10		60	$\mathrm{k} \Omega$

Parameter		Symbol	Test conditions			MIN.	TYP.	MAX.	Unit
Power supply current	Note 1	IDD1	Note 2 4.19 MHz crystal oscillation $\mathrm{C} 1=\mathrm{C} 2=$ 22 pF	$V_{\text {dD }}=5.0 \mathrm{~V} \pm 10$ \% Note 3			2.5	8	mA
				$V_{\text {dD }}=3 \mathrm{~V} \pm 10 \%$ Note 4			0.35	1.2	mA
		IdD2		HALT mode	$V_{D D}=5 \mathrm{~V} \pm 10 \%$		500	1500	$\mu \mathrm{A}$
					$V_{D D}=3 \mathrm{~V} \pm 10$ \%		150	450	$\mu \mathrm{A}$
		IdD3	$\begin{aligned} & 32.768 \\ & \text { kHz crystal } \\ & \text { oscillation } \end{aligned}$	$V \mathrm{DD}=3 \mathrm{~V} \pm 10$ \%			30	90	$\mu \mathrm{A}$
		IdD4		HALT mode	$V_{D D}=3 \mathrm{~V} \pm 10 \%$		5	15	$\mu \mathrm{A}$
		IDD5	$\mathrm{XT} 1=0 \mathrm{~V}$		$V_{D D}=5 \mathrm{~V} \pm 10 \%$		0.5	20	$\mu \mathrm{A}$
			STOP mode	$V_{D D}=3 \mathrm{~V}$			0.1	10	$\mu \mathrm{A}$
				± 10 \%	Ta $=25^{\circ} \mathrm{C}$		0.1	5	$\mu \mathrm{A}$

Note 1. Current flowing into internal pull-up resistor is not contained.
2. Case where subsystem clock is oscillated is also contained.
3. When the processor clock control register (PCC) is set to 0011 and the $\mu \mathrm{PD} 75028$ is operated in high speed mode.
4. When PCC is set to 0000 and the μ PD75028 is operated in low speed mode.
5. When the system clock control register (SCC) is set to 1001, main system clock oscillation is stopped and the μ PD75028 is operated with subsystem clock.

AC characteristics ($\mathrm{T}_{\mathrm{a}}=-40$ to $+70^{\circ} \mathrm{C}, \mathrm{V} \mathrm{DD}=2.7$ to 6.0 V)

Parameter	Symbol	Test conditions		MIN.	TYP.	MAX.	Unit
CPU clock cycle time (minimum instruction execution time $=1$ machine cycle)	tcy	Operation with main system clock	VDD $=4.5$ to 6.0 V	0.95		32	$\mu \mathrm{s}$
				3.8		32	$\mu \mathrm{s}$
		Operation with subsystem clock		114	122	125	$\mu \mathrm{s}$
TIO input frequency	fti	$V_{D D}=4.5$ to 6.0 V		0		1	MHz
				0		275	kHz
TIO input high, low level width	tтin, tTTL	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V		0.48			$\mu \mathrm{s}$
				1.8			$\mu \mathrm{s}$
Interrupt input high, low level width	tinth, tintL	INT0		Note 2			$\mu \mathrm{s}$
		INT1, 2, 4		10			$\mu \mathrm{s}$
		KRO to 7		10			$\mu \mathrm{s}$
$\overline{\text { RESET }}$ low level width	trsL			10			$\mu \mathrm{s}$

Note 1. The CPU clock (Φ) cycle time (minimum instruction execution time) is determined by the oscillation frequency of the connected resonator, the system clock control register (SCC), and the processor clock control register (PCC).
The right chart shows the cycle time tcy characteristics for power supply voltage Vod during main system clock operation.
2. 2 tcy or $128 / \mathrm{fx}$ depending on how the interrupt mode register (IMO) is set.

Serial transfer operation

2-wire, 3-wire serial I/O mode ($\overline{\text { SCK }}$ - internal clock output)

2-wire, 3-wire serial I/O mode (SCK - external clock input)

Parameter	Symbol	Test conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK }}$ cycle time	tkcy2	$V_{\text {DD }}=4.5$ to 6.0 V		800			ns
				3200			ns
$\overline{\mathrm{SCK}}$ high, low level width	tKL2tкн2	$V_{D D}=4.5$ to 6.0 V		400			ns
				1600			ns
SI setup time (to $\overline{\text { SCK }} \uparrow$)	tsiк2			100			ns
SI hold time (from $\overline{\text { SCK } \uparrow \text {) }}$	tks 12			400			ns
$\overline{\text { SCK }} \downarrow \rightarrow$ SO output	tksoz	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, Note	$\mathrm{VDD}=4.5$ to 6.0 V	0		300	ns
		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		0		1000	ns

Note RL and CL are output line load resistance and load capacitance, respectively.

SBI mode ($\overline{\text { SCK }}$ - internal clock output (master))

Parameter	Symbol	Test conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK }}$ cycle time	tксү3	$V_{D D}=4.5$ to 6.0 V		1600			ns
				3800			ns
$\overline{\text { SCK }}$ high, low level width	$\begin{gathered} \text { tкL3 } \\ \text { tКН3 } \end{gathered}$	$V_{\text {DD }}=4.5$ to 6.0 V		tкcry3/2-50			ns
				tkcry/2-150			ns
$\begin{aligned} & \text { SB0, SB1 setup time (to } \\ & \frac{S C K}{\uparrow} \text {) } \end{aligned}$	tsı3			150			ns
SB0, SB1 hold time (from SCK \uparrow)	tksi3			tк¢үз/2			ns
$\overline{\mathrm{SCK}} \downarrow \rightarrow \mathrm{SB0}, \mathrm{SB} 1$	tks03	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \quad \text { Note }$	$\mathrm{VDD}=4.5$ to 6.0 V	0		250	ns
output delay time		$\mathrm{CLL}^{\text {}}$ = 100 pF		0		1000	ns
	tksb			tксуз			ns
SBO, $1 \downarrow \rightarrow \overline{\text { SCK }}$	tsbk			tксуз			ns
SB0, SB1 low level width	tsbl			tксуз			ns
SB0, SB1 high level width	tsв			tксуз			ns

SBI mode (SCK - external clock input (slave))

Parameter	Symbol	Test conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK }}$ cycle time	tkcy 4	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V		800			ns
				3200			ns
$\overline{\text { SCK }}$ high, low level width	$\begin{aligned} & \text { tKL4 } \\ & \text { tKH4 } \end{aligned}$	$\mathrm{V} D \mathrm{D}=4.5$ to 6.0 V		400			ns
				1600			ns
SB0, SB1 setup time (to $\overline{S C K} \uparrow)$	tsik4			100			ns
SB0, SB1 hold time (from $\overline{\text { SCK }} \uparrow$)	tksı4			tксү4/2			ns
$\overline{\mathrm{SCK}} \downarrow \rightarrow \mathrm{SB0}, \mathrm{SB} 1$ output delay time	tkso4	$\begin{array}{ll} \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, & \text { Note } \\ \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} & \end{array}$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V	0		300	ns
				0		1000	ns
$\overline{\text { SCK }} \uparrow \rightarrow$ SB0, $1 \downarrow$	tкsb			tkcy 4			ns
SB0, $1 \downarrow \rightarrow \overline{\text { SCK }} \downarrow$	tsbk			tkcy 4			ns
SB0, SB1 low level width	tsbL			tkcy 4			ns
SB0, SB1 high level width	tsbu			tкč4			ns

Note RL and CL are SB0, SB1 output line load resistance and load capacitance, respectively.

A/D converter ($\mathrm{T}_{\mathrm{a}}=-40$ to $+70^{\circ} \mathrm{C}, \mathrm{V} \mathrm{DD}=2.7$ to $\left.6.0 \mathrm{~V}, \mathrm{AV} s=\mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Test conditions		MIN.	TYP.	MAX.	Unit
Resolution				8	8	8	bit
Absolute accuracy Note 1		$2.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq \mathrm{AV}_{\mathrm{DD}}$	$-10 \leq \mathrm{Ta}^{5} \leq+70{ }^{\circ} \mathrm{C}$			± 1.5	LSB
			$-40 \leq \mathrm{Ta}_{\mathrm{a}}<-10^{\circ} \mathrm{C}$			± 2.0	
Conversion time ${ }^{\text {Note } 2}$	tconv					168/fx	$\mu \mathrm{s}$
Sampling time ${ }^{\text {Note } 3}$	tsamp					44/fx	$\mu \mathrm{s}$
Analog input voltage	Vian			A $\mathrm{V}_{\text {ref- }}$		AV REFF_{+}	V
Analog supply voltage	AVDD			2.5		VDD	V
Reference input voltage ${ }^{\text {Note } 4}$	AVref+	$2.5 \mathrm{~V} \leq\left(\mathrm{AV}_{\text {REF+ }}\right)-\left(\mathrm{A} \mathrm{V}_{\mathrm{f}}\right.$		2.5		AVDD	V
Reference input voltage ${ }^{\text {Note } 4}$	AVref-	$2.5 \mathrm{~V} \leq\left(\mathrm{AV}_{\text {REF+ }}\right)-\left(\mathrm{AV}_{\text {f }}\right.$		0		1.0	V
Analog input impedance	Ran				1000		$\mathrm{M} \Omega$
AV V ef $^{\text {current }}$	Inef				0.25	2.0	mA

Note 1. Absolute accuracy from which quantization error ($\pm 1 / 2$ LSB) is removed.
2. Time until conversion end $(E O C=1)$ after conversion start instruction execution ($40.1 \mu \mathrm{~s}$: During fx $=4.19 \mathrm{MHz}$ operation).
3. Time until sampling end after conversion start instruction execution ($10.5 \mu \mathrm{~s}$: During $\mathrm{f}_{\mathrm{x}}=4.19 \mathrm{MHz}$ operation).
4. $\left(\mathrm{AV}_{\mathrm{REF}+}\right)-\left(\mathrm{A} \mathrm{V}_{\mathrm{ref}}-\right)$ must be more than 2.5 V .

AC timing test points (Except X1, XT1)

Clock timing

TIO timing

Serial transfer timing

Serial I/O made (3-wire)

Serial I/O mode (2-wire)

Serial transfer timing

SBI mode bus release signal transfer timing

SBI mode command signal transfer timing

Interrupt input timing

$\overline{\text { RESET }}$ input timing

Data memory STOP mode low voltage data retention characteristics ($\mathrm{T}_{\mathrm{a}}=-40$ to $+70^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention voltage	Vddor		2.0		6.0	V
Data retention Note 1 current	Iddor	$V_{\text {dDD }}=2.0 \mathrm{~V}$		0.1	10	$\mu \mathrm{A}$
Release signal SET time	tsrel		0			$\mu \mathrm{s}$
Oscillation Note 2 stabilization time	twalt	Release by $\overline{\text { RESET input }}$		$2^{17} / \mathrm{fx}$		ms
		Release by interrupt request		Note 3		ms

Note 1. On-chip pull-up resistor current is not included in this table.
2. The oscillation stabilization WAIT time is the time during which the CPU operation is stopped to prevent unstable operation when oscillation is started.
3. The WAIT time depends on the setting of the basic interval timer mode register (BTM) according to the following table.

BTM3	BTM2	BTM1	BTM0	WAIT time (fx $=4.19 \mathrm{MHz}$)
-	0	0	0	$2^{20} / \mathrm{fx}$ (approx. 250 ms)
-	0	1	1	$2^{17} / \mathrm{fx}$ (approx. 31.3 ms)
-	1	0	1	$2^{15} / \mathrm{fx}$ (approx. 7.82 ms)
-	1	1	1	$2^{13} / \mathrm{fx}$ (approx. 1.95 ms)

Data retention timing (STOP mode is released by $\overline{\text { RESET input) }}$

Data retention timing (Standby release signal: STOP mode is released by interrupt signal)

11. CHARACTERISTIC CURVES (FOR REFERENCE ONLY)

Idd vs. Vdd (Main system clock: 4.19 MHz , crystal resonator)

Idd vs. Vdd (Main system clock: 2.0 MHz , crystal resonator)

Idd vs. VDD (Main system clock: 4.19 MHz , ceramic resonator)

Idd vs. VDD (Main system clock: 2.0 MHz , ceramic resonator)

IdD vs. $\mathbf{f x}$

lol vs. Vol (Port 0)

IdD vs. $\mathbf{f x}$

lol vs. Vol (Port 2, 6 through 10)

Iol vs. Vol (Port 3)

lol vs. Vol (Port 4, 5)

Іон vs. Vон

12. PACKAGE DRAWINGS

64 PIN PLASTIC SHRINK DIP (750 mil)

NOTE

1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
A	58.68 MAX.	2.311 MAX.
B	1.78 MAX.	0.070 MAX.
C	1.778 (T.P.)	0.070 (T.P.)
D	0.50 ± 0.10	$0.020_{-0.005}^{+0.004}$
F	0.9 MIN.	0.035 MIN.
G	3.2 ± 0.3	0.126 ± 0.012
H	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
M	$0.25_{-0}^{+0.10}$	$0.010_{-0}^{+0.004}$
N	0.17	0.007
R	$0 \sim 15^{\circ}$	$0 \sim 15^{\circ}$
		P64C-70-750A,C-1

64 PIN PLASTIC OFP ($\square 14$)

P64GC-80-AB8-2

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	P64GC-80-AB8-2
ANCHES		
B	17.6 ± 0.4	0.693 ± 0.016
C	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
D	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
F	1.0	0.693 ± 0.016
G	1.0	0.039
H	0.35 ± 0.10	0.039
I	0.15	$0.014_{-0.005}^{+0.004}$
J	$0.8($ T.P. $)$	0.006
K	1.8 ± 0.2	0.031 (T.P.)
L	0.8 ± 0.2	0.071 ± 0.008
M	$0.15_{-0.05}^{+0.10}$	$0.031_{-0.008}^{+0.009}$
N	0.15	$0.006_{-0.003}^{+0.004}$
P	2.55	0.006
Q	0.1 ± 0.1	0.100
S	2.85 MAX	0.004 ± 0.004

13. RECOMMENDED SOLDERING CONDITIONS

The following conditions (See table below) must be met when soldering this product.
Please consult with our sales offices in case other soldering process is used, or in case soldering is done under different conditions.

For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (IEI-1207).

Table 13-1 Type of Surface Mount Device
μ PD75028GC- $\times \times \times-$ AB8: 64-pin plastic QFP ($\square 14 \mathrm{~mm}$)

Soldering Process	Soldering Conditions	Symbol
Wave Soldering	Solder temperature: $260^{\circ} \mathrm{C}$ or lower, Flow time: 10 seconds or less, Exposure limit Note: 7 days (10 hours pre-baking is required at $125{ }^{\circ} \mathrm{C}$ afterwards) Temperature of pre-heat: $120^{\circ} \mathrm{C}$ or lower (Package surface temperature) Number of flow process: 1	WS60-107-1
Infrared Ray Reflow	Peak temperature of package surface: $230^{\circ} \mathrm{C}$ or lower Reflow time: 30 seconds or less ($210^{\circ} \mathrm{C}$ or higher), Number or reflow process: 1 Exposure limit Note: 7 days (10 hours pre-baking is required at $125^{\circ} \mathrm{C}$ afterwards)	IR30-107-1
VPS	Peak temperature of package surface: $215^{\circ} \mathrm{C}$ or lower Reflow time: 40 seconds or less ($200{ }^{\circ} \mathrm{C}$ or higher), Number of reflow process: 1 Exposure limit Note: 7 days (10 hours pre-baking is required at $125^{\circ} \mathrm{C}$ afterwards)	VP15-107-1
Partial Heating Method	Pin temperature: $300^{\circ} \mathrm{C}$ or lower, Time: 3 seconds or less (Per side of the package)	-

Note Exposure limit before soldering after dry-pack package is opened. Storage conditions: $25^{\circ} \mathrm{C}$ and relative humidity at 65% or less.

Caution Do not apply more than one soldering method at any one time, except for "Partial heating method".

Table 13-2 Type of Through Hole Device
μ PD75028CW- $\times x \times$: 64-pin plastic shrink DIP (750 mil)

Soldering Process	Soldering Conditions
Wave Soldering	Solder temperature: $260{ }^{\circ} \mathrm{C}$ or lower, Flow time: 10 seconds or less
Partial Heating Method	Pin temperature: $260{ }^{\circ} \mathrm{C}$ or lower, Time: 10 seconds or less

Caution Do not jet molten solder on the surface of package.

PRODUCT NEWS

A product whose recommended soldering conditions have been improved is available.
(Improvements: Expansion of infrared ray reflow soldering peak temperature ($235{ }^{\circ} \mathrm{C}$), two sessions of soldering, extended term of storage, etc.)
For details, contact our sales staff.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are provided for the development of a system which employs the μ PD75028.

Hardware	IE-75000-R Note 1 IE-75001-R	In-circuit emulator for 75X series
	IE-75000-R-EM ${ }^{\text {Note } 2}$	Emulation board for IE-75000-R and IE-75001-R
	EP-75028CW-R	Emulation probe for μ PD75028CW
	$\begin{aligned} & \text { EP-75028GC-R } \\ & \qquad \text { EV-9200GC-64 } \end{aligned}$	Emulation probe for μ PD75028GC with the 64-pin conversion socket EV-9200GC-64
	PG-1500	PROM programmer
	PA-75P036CW	PROM programmer adapter for μ PD75P036CW. Connected to PG-1500.
	PA-75P036GC	PROM programmer adapter for μ PD75P036GC. Connected to PG-1500.
Software	IE control program	Host machine - PC-9800 series (MS-DOS ${ }^{\text {TM }}$ Ver. 3.30 to Ver. 5.00A Note ${ }^{3}$) - IBM PC/AT ${ }^{\text {TM }}$ (PC DOS ${ }^{\text {TM }}$ Ver. 3.1)
	PG-1500 controller	
	RA75X relocatable assembler	

Note 1. Available for maintenance purpose only.
2. Not included with IE-75001-R.
3. Ver. $5.00 / 5.00 \mathrm{~A}$ has a task swap function. However, it cannot be used for these software programs.

Remark For development tools available from third parties, please refer to "75X Series Selection Guide (IFxxx)."

APPENDIX B. RELATED DOCUMENTS

List of documents related to devices

Document	Document No.
User's Manual	IEU-694
Instruction Table	IEM-5511
Application Note	IEA-689
75X Series Selection Guide	IF-151

List of documents related to development tools

Document		Document No.
Hardware	IE-75000-R/IE-75001-R User's Manual	EEU-846
	IE-75000-R-EM User's Manual	EEU-673
	EP-75028CW-R User's Manual	EEU-697
	EP-75028GC-R User's Manual	EEU-692
	PG-1500 User's Manual	EEU-651
Software	RA75X Assembler Package User's Manual	Language

Other documents

Document	Document No.
Package Manual	IEI-635
Semiconductor Device Mounting Technology Manual	IEI-616
NEC Semiconductor Device Quality Grades	IEI-620
NEC Semiconductor Device Reliability and Quality Control	IEM-5068
About Electrostatic Discharge (ESD) Test	MEM-539
Semiconductor Device Quality Assurance Guide	MEI-603
Microcomputer-Related Product Guide: Third Parties' Products	MEI-604

Remark The document numbers are those of Japanese-version documents.

Caution The above documents are subject to change without notice. Be sure to use the latest documents for design or for any other similar purpose.

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to Vod or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.
Application examples recommended by NEC Corporation
Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.
Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

