NEC μ PD70F3003A, 70F3025A, 70F3003A(A)

V853 ${ }^{\text {TM }}$
32-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The μ PD70F3003A, μ PD70F3025A, and μ PD70F3003A(A) have a flash memory instead of the internal mask ROM of the μ PD703003A/703004A, μ PD703025A, and μ PD703003A(A), respectively. This model is useful for small-scale production of a variety of application sets or early start of production since the program can be written and erased by the user even with the μ PD70F3003 mounted on the board.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

$$
\begin{array}{ll}
\text { V853 Hardware User's Manual: } & \text { U10913E } \\
\text { V850 Series }{ }^{\text {TM }} \text { Architecture User's Manual: } & \text { U10243E }
\end{array}
$$

FEATURES

- Compatible with μ PD703003A, 703004A, 703025A, and 703003A(A)
- Can be replaced with mask ROM model for mass production of application set
μ PD70F3003A $\rightarrow \mu$ PD703003A, 703004A
μ PD70F3025A $\rightarrow \mu$ PD703025A
μ PD70F3003A(A) $\rightarrow \mu$ PD703003A(A)
- Internal memory Flash memory: 128KB (μ PD70F3003A, 70F3003A(A))

256KB (μ PD70F3025A)

Remark For differences among the products, refer to 1. DIFFERENCES BETWEEN PRODUCT.

ORDERING INFORMATION

Part Number	Package	Quality Grade
μ PD70F3003AGC-33-8EU	100-pin plastic LQFP (fine pitch) (14×14)	Standard
μ PD70F3025AGC-33-8EU	100-pin plastic LQFP (fine pitch) (14×14)	Standard
μ PD70F3003AGC(A)-33-8EU	100-pin plastic LQFP (fine pitch) (14×14)	Special

The μ PD70F3003A and μ PD70F3003A(A) differ in the quality grade only.
Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

APPLICATIONS

μ PD70F3003A, 70F3025A: Camcorders, VCRs, PPCs, LBPs, printers, motor controllers, NC machine tools, mobile telephones, etc.
μ PD70F3003A(A): Medical equipment, automotive appliances, etc.

- PIN CONFIGURATION (Top View)

- 100-Pin Plastic LQFP (fine pitch) (14×14)
μ PD70F3003AGC-33-8EU μ PD70F3025AGC-33-8EU
μ PD70F3003AGC(A)-33-8EU

Caution Connect Vpp pin to Vss pin except the case that μ PD70F3003A, 70F3003A(A) or 70F3025A is used in flash memory programming mode.

PIN NAMES

A16 to A19:	Address bus	P40 to P47:	Port 4
AD0 to AD15:	Address/data bus	P50 to P57:	Port 5
ADTRG:	A/D Trigger input	P60 to P63:	Port 6
ANIO to ANI7:	Analog input	P70 to P77:	Port 7
ANO0, ANO1:	Analog output	P90 to P96:	Port 9
ASTB:	Address strobe	P110 to P117:	Port 11
AVdD:	Analog Vdd	PWM0, PWM1:	Pulse width modulation
$A V_{\text {ref1 }}$ to $A V_{\text {ref3: }}$	Analog reference voltage	RESET:	Reset
AVss:	Analog Vss	$\mathrm{R} / \overline{\mathrm{W}}$:	Read/write status
CVdD:	Power supply for clock generator	RXD0, PXD1:	Receive data
CVss:	Ground for clock generator	$\overline{\text { SCKO }}$ to $\overline{\mathrm{SCK}}$:	Serial clock
CKSEL:	Clock select	SIO to SI3:	Serial input
CLKOUT	Clock output	SO0 to SO3:	Serial output
DSTB:	Data strobe	TO110, TO111,	
HLDAK:	Hold acknowledge	TO120, TO121,	
HLDRQ:	Hold request	TO130, TO131,	
INTP110 to INTP113,		TO140, TO141:	Timer output
INTP120 to INTP123,		TCLR11 to TCLR14:	Timer clear
INTP130 to INTP133,		Tl11 to TI14:	Timer input
INTP140 to INTP143:	Interrupt request from peripherals	TXD0, TXD1:	Transmit data
LBEN:	Lower byte enable	UBEN:	Upper byte enable
MODE:	Mode	WAIT:	Wait
NMI:	Non-maskable interrupt request	X1, X2:	Crystal
P00 to P07:	Port 0	Vdd:	Power supply
P10 to P17:	Port 1	VPP:	Programming power supply
P20 to P27:	Port 2	Vss:	Ground
P30 to P37:	Port 3		

INTERNAL BLOCK DIAGRAM

CONTENTS

1. DIFFERENCES BETWEEN PRODUCTS 6
2. PIN FUNCTIONS 7
2.1 Port Pins 7
2.2 Non-Port Pins 9
2.3 Pin I/O Circuits and Recommended Connection of Unused Pins 11
3. ELECTRICAL SPECIFICATIONS 14
3.1 Normal Operation Mode 14
3.2 Flash Memory Programming Mode 37
4. PACKAGE DRAWING 40
5. RECOMMENDED SOLDERING CONDITIONS 41
APPENDIX NOTES ON TARGET SYSTEM DESIGN 42

1. DIFFERENCES BETWEEN PRODUCTS

Item	μ PD703003A	μ PD703	μ PD70302	$\mu \mathrm{PD} 703003$	$\mu \mathrm{PD} 703025 \mathrm{~A}(\mathrm{~A})$	μ PD70F3003	μ PD70F302	$\mu \mathrm{PD} 70 \mathrm{~F} 3003 \mathrm{~A}$ (A)
Internal ROM	Mask ROM					Flash memory		
	128 KB	96 KB	256 KB	128 KB	256 KB	128 KB	256 KB	128 KB
Internal RAM	4 KB		8 KB	4 KB	8 KB	4 KB	8 KB	4 KB
Flash memory programming mode	None					Provided		
Vpp pin	None					Provided		
Quality grade	Standard			Special		Standard		Special
Electrical specifications	Current consumption, etc. differs. (Refer to each product data sheets).							
Others	Noise immunity and noise radiation differ because circuit scale and mask layout differ.							

Caution There are differences in noise immunity and noise radiation between the flash memory version and mask ROM version. When pre-producing an application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluation for commercial samples (not engineering samples) of the mask ROM version.

2. PIN FUNCTIONS

2.1 Port Pins

(1/2)

Pin Name	I/O	Function	Alternate Function
P00	I/O	Port 0 8-bit I/O port. Input/output can be specified in 1-bit units.	TO110
P01			TO111
P02			TCLR11
P03			TI11
P04			INTP110
P05			INTP111
P06			INTP112
P07			INTP113/ADTRG
P10	I/O	Port 1 8-bit I/O port. Input/output can be specified in 1-bit units.	TO120
P11			TO121
P12			TCLR12
P13			TI12
P14			INTP120
P15			INTP121/SO2
P16			INTP122/SI2
P17			INTP123/SCK2
P20	I/O	Port 2 8-bit I/O port. Input/output can be specified in 1-bit units.	PWMO
P21			PWM1
P22			TXD0/SO0
P23			RXD0/SIO
P24			$\overline{\text { SCKO }}$
P25			TXD1/SO1
P26			RXD1/SI1
P27			$\overline{\text { SCK1 }}$
P30	I/O	Port 3 8-bit I/O port. Input/output can be specified in 1-bit units.	TO130
P31			TO131
P32			TCLR13
P33			T113
P34			INTP130
P35			INTP131/SO3
P36			INTP132/SI3
P37			INTP133/ $\overline{\text { SCK3 }}$
P40 to P47	I/O	Port 4 8-bit I/O port. Input/output can be specified in 1-bit units.	AD0 to AD7
P50 to P57	I/O	Port 5 8-bit I/O port. Input/output can be specified in 1-bit units.	AD8 to AD15

Pin Name	I/O	Function	Alternate Function
P60 to P63	I/O	Port 6 4-bit I/O port. Input/output can be specified in 1-bit units.	A16 to A19
P70 to P77	Input	Port 7 8 -bit input port.	ANIO to ANI7
P90	I/O	Port 9	LBEN
P91		7-bit I/O port.	$\overline{\text { UBEN }}$
P92		Input/output can be specified in 1-bit units.	R/W
P93			$\overline{\text { DSTB }}$
P94			ASTB
P95			HLDAK
P96			HLDRQ
P110	1/O	Port 11	TO140
P111		8-bit I/O port.	TO141
P112		Input/output can be specified in 1-bit units.	TCLR14
P113			TI14
P114			INTP140
P115			INTP141
P116			INTP142
P117			INTP143

2.2 Non-Port Pins

Pin Name	I/O	Function	Alternate Function
TO110	Output	Pulse signal output from timers 11 to 14	P00
TO111			P01
TO120			P10
TO121			P11
TO130			P30
TO131			P31
TO140			P110
TO141			P111
TCLR11	Input	External clear signal input for timers 11 to 14	P02
TCLR12			P12
TCLR13			P32
TCLR14			P112
TI11	Input	External count clock input for timers 11 to 14	P03
TI12			P13
TI13			P33
TI14			P113
INTP110	Input	External maskable interrupt request input and external capture trigger input for timer 11	P04
INTP111			P05
INTP112			P06
INTP113			P07/ADTRG
INTP120	Input	External maskable interrupt request input and external capture trigger input for timer 12	P14
INTP121			P15/SO2
INTP122			P16/S12
INTP123			P17//SCK2
INTP130	Input	External maskable interrupt request input and external capture trigger input for timer 13	P34
INTP131			P35/SO3
INTP132			P36/SI3
INTP133			P37/̄SK3
INTP140	Input	External maskable interrupt request input and external capture trigger input for timer 14	P114
INTP141			P115
INTP142			P116
INTP143			P117
SOO	Output	Serial transmit data output for CSIO to CSI3 (3-wire)	P22/TXD0
SO1			P25/TXD1
SO2			P15/INTP121
SO3			P35/INTP131
SIO	Input	Serial receive data output for CSIO to CSI3 (3-wire)	P23/RXD0
SI1			P26/RXD1
SI2			P16/INTP122
SI3			P36/INTP132

Pin Name	I/O	Function	Alternate Function
$\overline{\text { SCKO }}$	I/O	Serial clock I/O for CSIO to CSI3 (3-wire)	P24
$\overline{\text { SCK1 }}$			P27
$\overline{\text { SCK2 }}$			P17/INTP123
$\overline{\text { SCK3 }}$			P37/INTP133
TXD0	Output	Serial transmit data output of UART0 to UART1	P22/SO0
TXD1			P25/SO1
RXD0	Input	Serial receive data input of UART0 to UART1	P23/SIO
RXD1			P26/SI1
PWM0	Output	Pulse signal output of PWM	P20
PWM1			P21
AD0 to AD7	I/O	16-bit multiplexed address/data bus when external memory is connected	P40 to P47
AD8 to AD15			P50 to P57
A16 to A19	Output	Higher address bus when external memory is connected	P60 to P63
$\overline{\text { LBEN }}$	Output	Lower byte enable signal output of external data bus	P90
UBEN		Higher byte enable signal output of external data bus	P91
R/W	Output	External read/write status output	P92
$\overline{\text { DSTB }}$		External data strobe signal output	P93
ASTB		External address strobe signal output	P94
HLDAK	Output	Bus hold acknowledge output	P95
HLDRQ	Input	Bus hold request input	P96
ANIO to ANI7	Input	Analog input to A/D converter	P70 to P77
ANOO, ANO1	Output	Analog output of D/A converter	-
NMI	Input	Non-maskable interrupt request input	-
CLKOUT	Output	System clock output	-
CKSEL	Input	Input specifying operation mode of clock generator	CV ${ }_{\text {do }}$
WAIT	Input	Control signal input inserting wait state in bus cycle	-
MODE	Input	Operation mode specification	-
RESET	Input	System reset input	-
X1	Input	System clock resonator connection. Input external clock to X1 to supply external clock.	-
X2	-		-
ADTRG	Input	A/D converter external trigger input	P07/INTP113
AV REF^{1}	Input	Reference voltage input for A/D converter	-
$\mathrm{AV}_{\text {REF2 }}$	Input	Reference voltage input for D/A converter	-
$\mathrm{AV}_{\text {Ref }}$			-
AVDD	-	Positive power supply for A/D converter	-
AVss	-	Ground potential for A/D converter	-
CVDD	-	Positive power supply for internal clock generator	$\overline{\text { CKSEL }}$
CVss	-	Ground potential for internal clock generator	-
Vdo	-	Positive power supply	-
Vss	-	Ground potential	-
VPP	-	High voltage application pin when program is written/verified	-

2.3 Pin I/O Circuits and Recommended Connection of Unused Pins

Table 2-1 shows the I/O circuit type of each pin, and the recommended connections of the unused pins. Figure 2-1 shows a partially simplified diagram of each circuit.

It is recommended that 1 to $10 \mathrm{k} \Omega$ resistors be used when connecting to VDD or Vss via a resistor.

Table 2-1. Types of Pin I/O Circuits and Recommended Connections of Unused Pins (1/2)

Pin Name	I/O Circuit Type	Recommended Connection of Unused Pins
P00/TO110, P01/TO111	5	Independently connect to Vdd or Vss via a resistor. Leave open.
P02/TCLR11, P03/TI11, P04/INTP110 to P07/INTP113/ADTRG	8	
P10 to TO120, P11/TO121	5	
$\begin{aligned} & \text { P12/TCLR12, P13/TI12 } \\ & \text { P14/INTP120 } \\ & \text { P15/INTP121/SO2 } \\ & \text { P16/INTP122/SI2 } \\ & \text { P17/INTP123/SCK2 } \end{aligned}$	8	
P20/PWM0, P21/PWM1 P22/TXD0/SO0	5	
P23/RXD0/SI0, P24/ड-SK0	8	
P25/TXD1/SO1	5	
P26/RXD1/SI1, P27/SCK1	8	
P30/TO130, P31/TO131	5	
P32/TCLR13, P33/TI13 P34/INTP130	8	
P35/INTP131/SO3 P36/INTP132/SI3 P37/INTP133/도을	10-A	
P40/AD0 to P47/AD7	5	
P50/AD8 to P57/AD15		
P60/A16 to P63/A19		
P70/ANI0 to P77/ANI7	9	Directly connect to Vss.
P90/LBEN	5	Input: Independently connect to Vdo or Vss via a resistor. Output: Leave open.
P91/UBEN		
P92/R/W		
P93/DSTB		
P94/ASTB		
P95/ $\overline{\text { HLDAK }}$		
P96/HLDRQ		
P110/TO140, P111/TO141		
P112/TCLR14, P113/TI14 P114/INTP140 to P117/INTP143	8	

Table 2-1. Types of Pin I/O Circuits and Recommended Connection of Unused Pins (2/2)

Pin Name	I/O Circuit Type	Recommended Connection of Unused Pins
ANOO, ANO1	12	Leave open.
NMI	2	Directly connect to Vss.
CLKOUT	3	Leave open.
$\overline{\text { WAIT }}$	1	Directly connect to Vod.
MODE	2	
RESET		
CVDD/CKSEL		-
AVref ${ }^{\text {to }}$ AVrefa, $A V_{\text {ss }}$	-	Directly connect to Vss.
AV ${ }_{\text {dD }}$	-	Directly connect to VDD.
$V_{\text {PP }}$	-	Connect to Vss.

Figure 2-1. Pins I/O Circuits

Type 1	Type 8
Type 2 Schmitt trigger input with hysteresis characteristics	Type 9
Type 3	Type 10-A
Type 5	Type 12

3. ELECTRICAL SPECIFICATIONS

3.1 Normal Operation Mode

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions		Ratings	Unit
Supply voltage	Vdd	Vod pin		-0.5 to +7.0	V
	CVdd	CVdo pin		-0.5 to $V_{\text {DD }}+0.3^{\text {Note } 1}$	V
	CVss	CVss pin		-0.5 to +0.5	V
	AV ${ }_{\text {dD }}$	AVdo pin		-0.5 to $V_{\text {dD }}+0.3^{\text {Note } 1}$	V
	AVss	$A V$ ss pin		-0.5 to +0.5	V
Input voltage	V_{11}	Note 2, VDD $=5.0 \mathrm{~V} \pm 10 \%$		-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.3^{\text {Note } 1}$	V
	V 12	Vpp pin in flash memory programming mode,$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$		-0.5 to +11.0	V
Clock input voltage	Vk	$\mathrm{X} 1 \mathrm{pin}, \mathrm{V}_{\mathrm{dd}}=5.0 \mathrm{~V} \pm 10 \%$		-0.5 to $\mathrm{V}_{\mathrm{DD}}+1.0^{\text {Note } 1}$	V
Output current, low	ICL	1 pin		4.0	mA
		Total of all pins		100	mA
Output current, high	Іс	1 pin		-4.0	mA
		Total of all pins		-100	mA
Output voltage	Vo	V ${ }_{\text {dD }}=5.0 \mathrm{~V} \pm 10 \%$		-0.5 to $V_{\text {DD }}+0.3^{\text {Note } 1}$	V
Analog input voltage	VIAN	P70/ANI0 to P77/ANI7	AV ${ }_{\text {dD }}>\mathrm{V}_{\text {dD }}$	-0.5 to $\mathrm{V}_{\text {dD }}+0.3^{\text {Note } 1}$	V
			$V_{\text {DD }} \geq$ AV ${ }_{\text {DD }}$	-0.5 to $A V_{\text {dd }}+0.3^{\text {Note }} 1$	V
Analog reference input voltage	$A V_{\text {ref }}$	$\mathrm{AV}_{\text {ref1 }}$ to $\mathrm{AV}_{\text {ReF3 }}$	$A V_{\text {dD }}>\mathrm{V}_{\text {dD }}$	-0.5 to $V_{\text {dD }}+0.3^{\text {Note } 1}$	V
			$V_{\text {DD }} \geq$ AV ${ }_{\text {dD }}$	-0.5 to $A V_{\text {dd }}+0.3^{\text {Note } 1}$	V
Operating ambient temperature	T_{A}			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +125	${ }^{\circ} \mathrm{C}$

Notes 1. Be sure not to exceed the absolute maximum ratings (MAX. value) of each supply voltage.
2. $\mathrm{X} 1, \mathrm{P} 70$ to P 77 , $A V_{\text {ref1 }}$ to $A V_{\text {ref3, }}$ and their alternate-function pins are excluded.

Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between Vdd or Vcc and GND. However, direct connections among open-drain and open-collector pins are possible, as are direct connections to external circuits that have timing designed to prevent output conflict with pins that become high-impedance.
2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The normal operating ranges of ratings and conditions in which the quality of the product is guaranteed are specified in the following DC Characteristics and AC Characteristics.

```
Capacitance ( }\mp@subsup{\textrm{T}}{\textrm{A}}{}=2\mp@subsup{5}{}{\circ}\textrm{C},\mp@subsup{\textrm{V}}{\textrm{DD}}{}=\mp@subsup{\textrm{V}}{SS}{}=0\textrm{V}
```

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	CI	$\mathrm{fc}=1 \mathrm{MHz}$ Pins other than tested pin: 0 V			15	pF
I/O capacitance	Cıo				15	pF
Output capacitance	Co				15	pF

Operating Conditions

Operation Mode	Internal System Clock Frequency (ϕ)	Operating Temperature (TA)	Supply Voltage (VDD)
Direct mode, PLL mode	2 to $33 \mathrm{MHz}^{\text {Note } 1}$	-40 to $+85^{\circ} \mathrm{C}$	$5.0 \mathrm{~V} \pm 10 \%$
	5 to $33 \mathrm{MHz}^{\text {Note } 2}$	-40 to $+85^{\circ} \mathrm{C}$	$5.0 \mathrm{~V} \pm 10 \%$

Notes 1. When A/D converter not used.
2. When A / D converter used.

Recommended Oscillator

Caution For the resonator selection and oscillator constant of the μ PD70F3003A(A), customers are requested to apply to the resonator manufacturer for evaluation.
(1) Ceramic resonator connection ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)
(a) μ PD70F3003A

Cautions 1. Connect the oscillator as closely to the X1 and X2 pins as possible.
2. Do not wire any other signal lines in the area indicated by the broken lines.
3. Thoroughly evaluate the matching between the μ PD70F3003A and the resonator.
(b) μ PD70F3025A

Cautions 1. Connect the oscillator as closely to the X1 and X2 pins as possible.
2. Do not wire any other signal lines in the area indicated by the broken lines.
3. Thoroughly evaluate the matching between the μ PD70F3025A and the resonator.

(2) External clock input

Cautions 1. Put the high-speed CMOS inverter as close to the X 1 pins as possible.
2. Sufficiently evaluate the matching between the μ PD70F3003A, 70F3025A, or 70F3003A(A), and the high-speed CMOS inverter.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	$\mathrm{VIH}^{\text {I }}$	Except X1 and Note	2.2		VDD +0.3	V
		Note	0.8 VDD		$V_{D D}+0.3$	V
Input voltage, low	VIL	Except X1 and Note	-0.5		+0.8	V
		Note	-0.5		0.2 VdD	V
Clock input voltage, high	VxH	X1	0.8 VDD		$\mathrm{V} D \mathrm{D}+0.5$	V
Clock input voltage, low	VxL	X1	-0.5		0.6	V
Schmitt trigger input threshold voltage	$V_{T}{ }^{+}$	Note, rising		3.0		V
	$V_{T}{ }^{-}$	Note, falling		2.0		V
Schmitt trigger input hysteresis width	$\mathrm{V}_{T}^{+}-\mathrm{V}_{T}^{-}$	Note	0.5			V
Output voltage, high	Vон	Іон $=-2.5 \mathrm{~mA}$	0.7 VdD			V
		Іон $=-100 \mu \mathrm{~A}$	VDD - 0.4			V
Output voltage, low	Vol	$\mathrm{loc}=2.5 \mathrm{~mA}$			0.45	V
Input leakage current, high	ІІІн	$V_{1}=V_{D D}$			10	$\mu \mathrm{A}$
Input leakage current, low	ILIL	$\mathrm{V}_{1}=0 \mathrm{~V}$			-10	$\mu \mathrm{A}$
Output leakage current, high	ІІон	$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{DD}}$			10	$\mu \mathrm{A}$
Output leakage current, low	ILoL	V o $=0 \mathrm{~V}$			-10	$\mu \mathrm{A}$
Software pull-up resistor	R	P35/INTP131/SO3, P36/INTP132/SI3, P37/INTP133/ $\overline{\text { CKK }}$	15	40	90	k ,

Note P02 to P07, P12 to P17, P23, P24, P26, P27, P32 to P37, P112 to P117, $\overline{R E S E T}$, NMI, MODE, and their alternate-function pins.

Remark TYP. values are reference values for when $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$.
(2/2)

Parameter			Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply current	$\begin{array}{l\|} \mu \mathrm{PD} 70 \mathrm{~F} 3003 \mathrm{~A}, \\ 70 \mathrm{~F} 3003 \mathrm{~A}(\mathrm{~A}) \end{array}$	Operating	IDD1	Direct mode		$2.2 \times \phi+7.5$	$2.5 \times \phi+22$	mA
				PLL mode		$2.3 \times \phi+9.5$	$2.6 \times \phi+25$	mA
		In HALT mode	Ido2	Direct mode		$1.2 \times \phi+7.5$	$1.3 \times \phi+15$	mA
				PLL mode		$1.3 \times \phi+9.5$	$1.4 \times \phi+17$	mA
		In IDLE mode	IdD3	Direct mode		$8 \times \phi+300$	$10 \times \phi+500$	$\mu \mathrm{A}$
				PLL mode		$0.1 \times \phi+2$	$0.2 \times \phi+3$	mA
		In STOP mode	IdD4	CESEL $=0$, Note 1		2	50	$\mu \mathrm{A}$
				CESEL $=0$, Note 2		2	200	$\mu \mathrm{A}$
				CESEL = 1, Note 1		30	200	$\mu \mathrm{A}$
				CESEL = 1, Note 2		30	500	$\mu \mathrm{A}$
	μ PD70F3025A	Operating	Ido1	Direct mode		$2.5 \times \phi+8$	$2.8 \times \phi+22.5$	mA
				PLL mode		$2.6 \times \phi+10$	$2.9 \times \phi+25.5$	mA
		In HALT mode	Ido2	Direct mode		$1.3 \times \phi+7.5$	$1.4 \times \phi+15$	mA
				PLL mode		$1.3 \times \phi+12.5$	$1.4 \times \phi+20$	mA
		In IDLE mode	IdD3	Direct mode		$8 \times \phi+300$	$10 \times \phi+500$	$\mu \mathrm{A}$
				PLL mode		$0.1 \times \phi+2$	$0.2 \times \phi+3$	mA
		In STOP mode	IoD4	CESEL $=0$, Note 1		2	50	$\mu \mathrm{A}$
				CESEL $=0$, Note 2		2	200	$\mu \mathrm{A}$
				CESEL = 1, Note 1		60	300	$\mu \mathrm{A}$
				CESEL = 1, Note 2		60	500	$\mu \mathrm{A}$

Notes 1. $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+50^{\circ} \mathrm{C}$
2. $50^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$

Remarks 1. TYP. values are reference values for when $T_{A}=25^{\circ} \mathrm{C}$ (except for the conditions in Note 2) and VDD $=5.0 \mathrm{~V}$. The power supply current does not include $A V_{\text {REF } 1}$ to $A V_{\text {REF3 }}$ or the current that flows through software pull-up resistors.
2. ϕ : Internal system clock frequency

Data Retention Characteristics $\left(\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}\right.$ to $\left.+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDDR}}\right)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Data hold voltage	Vdodr	STOP mode		1.5		5.5	V
Data hold current	Iddor	μ PD70F3003A, 70F3003A(A)	CESEL = 0, Note 1		0.4V $\mathrm{V}_{\text {dod }}$	50	$\mu \mathrm{A}$
			CESEL = 0, Note 2		$0.4 \mathrm{~V}_{\text {ddor }}$	200	$\mu \mathrm{A}$
			CESEL = 1, Note 1		6Vdddr	200	$\mu \mathrm{A}$
			CESEL = 1, Note 2		6Viddr	500	$\mu \mathrm{A}$
		μ PD70F3025A	CESEL = 0, Note 1		0.4V VdDDR	50	$\mu \mathrm{A}$
			CESEL = 0, Note 2		$0.4 \mathrm{~V}_{\text {ddor }}$	200	$\mu \mathrm{A}$
			CESEL = 1, Note 1		12V ${ }_{\text {dode }}$	300	$\mu \mathrm{A}$
			CESEL = 1, Note 2		12V ${ }_{\text {ddor }}$	500	$\mu \mathrm{A}$
Supply voltage rise time	trvo			200			$\mu \mathrm{s}$
Supply voltage fall time	tfvo			200			$\mu \mathrm{s}$
Supply voltage hold time (vs. STOP mode setting)	thvo			0			ms
STOP mode release signal input time	torel			0			ns
Data hold input voltage, high	VIHDR	Note 3		0.9 V DDDR		Vdodr	V
Data hold input voltage, low	VILDR	Note 3		0		0.1Vddor	V

Notes 1. $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+50^{\circ} \mathrm{C}$
2. $50^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$
3. P02 to P07, P12 to P17, P23, P24, P26, P27, P32 to P37, P112 to P117, $\bar{R} E S E T, N M I, M O D E, X 1$, and their alternate-function pins.

Remark TYP. values are reference values for when $T_{A}=25^{\circ} \mathrm{C}$ (except for the conditions in Note 2) and VdD $=$ 5.0 V.

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$, $\mathrm{Vss}=0 \mathrm{~V}$)

AC test input test points
(a) P02 to P07, P12 to P17, P23, P24, P26, P27, P32 to P37, P112 to P117, $\overline{R E S E T}$, NMI, MODE, X1, and their alternate-function pins

(b) Other than (a)

AC test output test points

Load condition

Caution If the load capacitance exceeds 50 pF due to the circuit configuration, decrease the load capacitance of this device to less then 50 pF by using a buffer.

(1) Clock timing

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
X1 input cycle	<1>	tcyx	Direct mode	15	Note 1	ns
			PLL mode (PLL lock status)	$151^{\text {Note } 2}$	Note 3	ns
X1 input width, high	<2>	twxh	Direct mode	6		ns
			PLL mode	60		ns
X1 input width, low	<3>	twxL	Direct mode	6		ns
			PLL mode	60		ns
X1 input rise time	<4>	txR	Direct mode		7	ns
			PLL mode		10	ns
X1 input fall time	<5>	txF	Direct mode		7	ns
			PLL mode		10	ns
CPU operating frequency	-	ϕ		Note 4	33	MHz
CLKOUT output cycle	<6>	tcyk		30	Note 5	ns
CLKOUT width, high	<7>	twKH		0.5 T-5		ns
CLKOUT width, low	<8>	twKL		0.5 T-5		ns
CLKOUT rise time	<9>	tXR			5	ns
CLKOUT fall time	<10>	txF			5	ns
X1 $\downarrow \rightarrow$ CLKOUT delay time	<11>	toxk	Direct mode	3	17	ns

Notes 1. When A/D converter used: 100 ns
When A/D converter not used: 250 ns
2. When using A/D converter: The value when $\phi=5 \times \mathrm{fxx}$ and $\phi=\mathrm{fxx}$ are set. Setting $\phi=1 / 2 \times \mathrm{fxx}$ is prohibited.
When not using A/D converter: The value when $\phi=5 \times \mathrm{fxx}, \phi=\mathrm{fxx}$, and $\phi=1 / 2 \times \mathrm{fxx}^{\text {are }}$ set.
3. When using A/D converter: 250 ns (when $\phi=5 \times \mathrm{fxx}$ is set) and 200 ns (when $\phi=\mathrm{fxx}$ is set). Setting $\phi=1 / 2 \times f \times x$ is prohibited.
When not using A/D converter: 250 ns (when $\phi=5 \times \mathrm{fxx}, \phi=\mathrm{fxx}$, and $\phi=1 / 2 \times \mathrm{fxx}$ are set).
4. When A/D converter used: 5 MHz

When A/D converter not used: 2 MHz
5. When A/D converter used: 200 ns

When A/D converter not used: 500 ns

Remark $\mathrm{T}=$ tсүк

(2) Input wave
(a) P02 to P07, P12 to P17, P23, P24, P26, P27, P32 to P37, P112 to P117, RESET, NMI, MODE, and their alternate-function pins

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Input rise time	<12>	tiR2			20	ns
Input fall time	<13>	tiF2			20	ns

(b) Other than (a)

Parameter	Symbol		Conditions	MIN.	MAX.
Input rise time	$<14>$	$\mathrm{t}_{\mathrm{IR} 1}$			10
Input fall time	$<15>$	$\mathrm{t}_{\mathrm{IF} 1}$			ns

(3) Output wave (other than CLKOUT)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Output rise time	$<16>$	tor			10	ns
Output fall time	$<17>$	tof			10	ns

(4) Reset timing

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
RESET width, high	<18>	twrsh		500		ns
RESET width, low	<19>	twist	On power application, or on releasing STOP mode	$500+$ Tost		ns
			Except on power application, or except on releasing STOP mode	500		ns

Remark Tost: Oscillation stabilization time

(5) Read timing (1/2)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Delay time from CLKOUT \uparrow to address	<20>	toka		3	20	ns
Delay time from CLKOUT \uparrow to R/W, $\overline{\text { UBEN }}$, $\overline{\text { LBEN }}$	<78>	tokaz		-2	+13	ns
Delay time from CLKOUT \uparrow to address float	<21>	tFKA		3	15	ns
Delay time from CLKOUT \downarrow to ASTB	<22>	tokst		3	15	ns
Delay time from CLKOUT \downarrow to $\overline{\text { DSTB }}$	<23>	tokd		3	15	ns
Data input setup time (to CLKOUT \uparrow)	<24>	tsidk		5		ns
Data input hold time (from CLKOUT \uparrow)	<25>	tHKID		5		ns
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<26>	tswTk		5		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<27>	thkwt		5		ns
Address hold time (from CLKOUT \uparrow)	<28>	tHKA		0		ns
Address setup time (to ASTB \downarrow)	<29>	tsast	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	0.5 T-10		ns
			$70^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	0.5 T-12		ns
Address hold time (from ASTB \downarrow)	<30>	thsta		0.5 T - 10		ns
Delay time from $\overline{\text { DSTB }} \downarrow$ to address float	<31>	tFDA			0	ns
Data input setup time (to address)	<32>	tsaid	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		$(2+n) T-22$	ns
			$70^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$(2+n) T-25$	ns
Data input setup time (to $\overline{\overline{D S T B}} \downarrow$)	<33>	tsdid	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		$(1+n) T-20$	ns
			$70^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$(1+n) T-24$	ns
Delay time from ASTB \downarrow to $\overline{\text { DSTB }} \downarrow$	<34>	tosto		0.5 T-10		ns
Data input hold time (from $\overline{\mathrm{DSTB}} \uparrow$)	<35>	thdid		0		ns
Delay time from $\overline{\mathrm{DSTB}} \uparrow$ to address output	<36>	toda		$(1+\mathrm{i}) \mathrm{T}$		ns
	<37>	todsth		0.5 T-10		ns
	<38>	todstl		$(1.5+$ i) T - 10		ns
$\overline{\text { DSTB }}$ low-level width	<39>	twDL	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	$(1+n) T-10$		ns
			$70^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	$(1+n) T-13$		ns
ASTB high-level width	<40>	twsth		T-10		ns
$\overline{\text { WAIT setup time (to address) }}$	<41>	tsawt1	$n \geq 1,-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		$1.5 \mathrm{~T}-20$	ns
			$n \geq 1,70^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$1.5 \mathrm{~T}-24$	ns
	<42>	tsawt2	$n \geq 1,-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 770^{\circ} \mathrm{C}$		$(1.5+n) T-20$	ns
			$n \geq 1,70^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$(1.5+n) T-24$	ns
$\overline{\text { WAIT }}$ hold time (from address)	<43>	thawt1	$\mathrm{n} \geq 1$	$(0.5+n)$ T		ns
	<44>	thawt2	$\mathrm{n} \geq 1$	$(1.5+n) T$		ns
$\overline{\text { WAIT }}$ setup time (to ASTB \downarrow)	<45>	tsstwt1	$n \geq 1,-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 770^{\circ} \mathrm{C}$		T-18	ns
			$n \geq 1,70^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		T-20	ns
	<46>	tsstwt2	$n \geq 1$		$(1+n) T-15$	ns
$\overline{\text { WAIT }}$ hold time (from ASTB \downarrow)	<47>	thstwt1	$n \geq 1$	nT		ns
	<48>	thstwt2	$n \geq 1$	$(1+n) T$		ns

Remarks 1. $\mathrm{T}=\mathrm{tc} \mathrm{Yk}$
2. n indicates the number of wait clocks inserted in the bus cycle. The sampling timing differs when the programmable wait state is inserted.
3. i indicates the number of idle states (0 or 1) t be inserted in the read cycle.
4. Be sure to observe at least one of data input hold times thкid (<25>) and thDid (<35>).
(5) Read Timing (2/2): 1 wait

(6) Write timing (1/2)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Delay time from CLKOUT \uparrow to address	<20>	toka		3	20	ns
Delay time from CLKOUT^ to R/W, $\overline{\text { UBEN, }}$, $\overline{\text { LBEN }}$	<78>	tokaz		-2	+13	ns
Delay time from CLKOUT \downarrow to ASTB	<22>	tokst		3	15	ns
Delay time from CLKOUT \uparrow to $\overline{\text { DSTB }}$	<23>	tokd		3	15	ns
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<26>	tswтк		5		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<27>	thkwt		5		ns
Address hold time (from CLKOUT \uparrow)	<28>	tнка		0		ns
Address setup time (to ASTB \downarrow)	<29>	tsast	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	0.5 T - 10		ns
			$70^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	0.5 T - 12		ns
Address hold time (from ASTB \downarrow)	<30>	thsta		0.5 T-10		ns
Delay time from ASTB \downarrow to $\overline{\text { DSTB }} \downarrow$	<34>	tDsto		$0.5 \mathrm{~T}-10$		ns
Delay time from DSTB \uparrow to $\overline{\text { ASTB } \uparrow}$	<37>	todsth		$0.5 \mathrm{~T}-10$		ns
$\overline{\text { DSTB }}$ low-level width	<39>	twol	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	$(1+n) T-10$		ns
			$70^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	$(1+n) T-13$		ns
$\overline{\text { ASTB }}$ high-level width	<40>	twsth		T-10		ns
$\overline{\text { WAIT }}$ setup time (to address)	<41>	tsawt1	$n \geq 1,-40^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$		$1.5 \mathrm{~T}-20$	ns
			$n \geq 1,70^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$1.5 \mathrm{~T}-24$	ns
	<42>	tsawt2	$n \geq 1,-40^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$		$(1.5+n) T-20$	ns
			$n \geq 1,70^{\circ} \mathrm{C}<\mathrm{TA} \leq 85^{\circ} \mathrm{C}$		$(1.5+n) T-24$	ns
$\overline{\text { WAIT }}$ hold time (from address)	<43>	thawt1	$n \geq 1$	$(0.5+n) \mathrm{T}$		ns
	<44>	thawt2	$\mathrm{n} \geq 1$	$(1.5+n) \mathrm{T}$		ns
	<45>	tsstwt1	$n \geq 1,-40^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$		T-18	ns
			$n \geq 1,70^{\circ} \mathrm{C}<\mathrm{TA} \leq 85^{\circ} \mathrm{C}$		T-20	ns
	<46>	tsstwi2	$n \geq 1$		$(1+n) T-15$	ns
$\overline{\text { WAIT }}$ hold time (from ASTB \downarrow)	<47>	thstwt1	$n \geq 1$	nT		ns
	<48>	thstwt2	$n \geq 1$	$(1+n) T$		ns
Address hold time (from CLKOUT \uparrow)	<49>	tokod	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		20	ns
			$70^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		23	ns
Delay time from $\overline{\text { DSTB }} \downarrow$ to data output	<50>	todod			10	ns
Data output hold time (from CLKOUT¢)	<51>	tнкод		0		ns
Data output setup time (to $\overline{\overline{\text { STSB}} \uparrow \text {) }}$	<52>	tsodo		$(1+n) T-15$		ns
Data output hold time (from $\overline{\overline{\text { STB }} \uparrow \text {) }}$	<53>	thdod		T-10		ns

Remarks 1. $T=t_{c y k}$
2. n indicates the number of wait clocks inserted in the bus cycle. The sampling timing differs when the programmable wait state is inserted.
(6) Write timing (2/2): 1 wait

(7) Bus hold timing (1/2)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\text { HLDRQ }}$ setup time (to CLKOUT \downarrow)	<54>	tshok		5		ns
$\overline{\text { HLDRQ }}$ hold time (from CLKOUT \downarrow)	<55>	tнкня		5		ns
Delay time from $\overline{\text { HLDAK }}$ to CLKOUT \uparrow	<56>	tDKHA			20	ns
$\overline{\text { HLDRQ }}$ high-level width	<57>	tWHQH		T + 10		ns
$\overline{\text { HLDAK }}$ low-level width	<58>	twhal	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	T-10		ns
			$70^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	T-12		ns
Delay time from CLKOUT \uparrow to bus float	<59>	tDKF			20	ns
Delay time from $\overline{\operatorname{HLDAK}} \uparrow$ to bus output	<60>	tDHAC		-3		ns
Delay time from $\overline{H L D R Q} \downarrow$ to $\overline{\text { HLDAK }} \downarrow$	<61>	tDhQhal			$(2 \mathrm{n}+7.5) \mathrm{T}+20$	ns
Delay time from $\overline{H L D R Q} \uparrow$ to $\overline{H L D A K} \uparrow$	<62>	tDHQHAZ		0.5 T	$1.5 \mathrm{~T}+20$	ns

Remarks 1. $\mathrm{T}=\mathrm{t}_{\mathrm{c} Y \mathrm{k}}$
2. n indicates the number of wait clocks inserted in the bus cycle. The sampling timing differs when the programmable wait state is inserted.
(7) Bus hold timing (2/2)

(8) Interrupt timing

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
NMI width, high	<63>	twnit		500		ns
NMI width, low	<64>	twnil		500		ns
INTPn width, high	<65>	twith	$\begin{aligned} & \mathrm{n}=110 \text { to } 113 \\ & 120 \text { to } 123,130 \\ & \text { to } 133,140 \text { to } 143 \end{aligned}$	$3 T+10$		ns
INTPn width, low	<66>	twitL	$\begin{aligned} & \mathrm{n}=110 \text { to } 113, \\ & 120 \text { to } 123,130 \\ & \text { to } 133,140 \text { to } 143 \end{aligned}$	$3 T+10$		ns

Remark $\mathrm{T}=\mathrm{tcyk}$

(9) CSI timing (1/2)
(a) Master mode
(i) CSIO to CSI2 timing

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\text { SCKn }}$ cycle	<67>	tcysk1	Output	120		ns
$\overline{\text { SCKn }}$ high-level width	<68>	twSKH1	Output	0.5 tcysk $1-20$		ns
$\overline{\text { SCKn }}$ low-level width	<69>	twskL1	Output	0.5 tcysk $1-20$		ns
SIn setup time (to $\overline{\mathrm{SCKn}} \uparrow$)	<70>	tssısk1		30		ns
SIn hold time (from $\overline{\text { SCKn } \uparrow \text {) }}$	<71>	thSKsI1		0		ns
SOn output delay time (from $\overline{\text { SCKn }} \downarrow$)	<72>	toskso1			18	ns
SOn output hold time (from $\overline{\mathrm{SCKn}} \uparrow$)	<73>	thsksO1		0.5 tcysk 1 - 5		ns

Remark $\mathrm{n}=0$ to 2

(ii) CSI3 timing

Parameter	Symbol		Conditions		MIN.	MAX.	Unit
SCK3 cycle	<67>	tcySK3	Output	$\begin{aligned} & \mathrm{RL}=1.5 \\ & \mathrm{k} \Omega \\ & \mathrm{CL}_{\mathrm{L}}=50 \\ & \mathrm{pF} \end{aligned}$	500		ns
$\overline{\text { SCK3 }}$ high-level width	<68>	twSkH3	Output		0.5 tсуякз - 70		ns
$\overline{\text { SCK3 }}$ low-level width	<69>	twskL3	Output		0.5 tcyskз - 70		ns
SI3 setup time (to $\overline{\mathrm{SCK3}} \uparrow$)	<70>	tssisk3			100		ns
SI3 hold time (from $\overline{\mathrm{SCK}} \uparrow$)	<71>	thsksi3			50		ns
SO3 output delay time (from $\overline{\text { SCK3 }} \downarrow$)	<72>	toskso3	$\begin{aligned} & \mathrm{RL}=1.5 \mathrm{~K} \Omega \\ & \mathrm{CL}=50 \mathrm{pF} \end{aligned}$			150	ns
SO3 output hold time (from $\overline{\text { SCK3 }} \uparrow$)	<73>	thskso3			0.5 tсуsкз - 5		ns

Remark RL and CL are the load resistance and load capacitance respectively of the SCK3 and SO3 output lines.

(b) Slave mode

(i) CSIO to CSI2 timing

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\text { SCKn }}$ cycle	<67>	tcysk2	Input	120		ns
$\overline{\text { SCKn }}$ high-level width	<68>	twSKH2	Input	30		$n s$
$\overline{\text { SCKn }}$ low-level width	<69>	twSKL2	Input	30		ns
SIn setup time (to $\overline{\mathrm{SCKn}} \uparrow$)	<70>	tssisk2		10		ns
SIn hold time (from $\overline{\mathrm{SCKn}} \uparrow$)	<71>	tHSksi2		10		ns
SOn output delay time (from $\overline{\text { SCKn }} \downarrow$)	<72>	toskso2			30	ns
SOn output hold time (from $\overline{\text { SCKn }} \uparrow$)	<73>	thskso2		twSKH2		ns

Remark $\mathrm{n}=0$ to 2
(9) CSI timing (2/2)
(ii) CSI3 timing

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\text { SCK3 }}$ cycle	<67>	tcysk 4	Input	500		ns
$\overline{\text { SCK3 }}$ high-level width	<68>	twSKH4	Input	180		ns
$\overline{\text { SCK3 }}$ low-level width	<69>	twSKL4	Input	180		ns
SI3 setup time (to $\overline{\text { SCK3 }} \uparrow$)	<70>	tssISK4		100		ns
SI3 hold time (from $\overline{\text { SCK3 }} \uparrow$)	<71>	tHSKSI4		50		ns
SO3 output delay time (from $\overline{\text { SCK3 }} \downarrow$)	<72>	tosksO4	$\mathrm{RL}=1.5 \mathrm{k} \Omega$		150	ns
SO3 output hold time (from $\overline{\mathrm{SCK} 3} \uparrow$)	< 73 >	thskso4	$\mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$	twskH4		ns

Remark RL and CL are the load resistance and load capacitance respectively of the $\overline{\mathrm{SCK3}}$ and SO3 output lines.

Remark 1. The broken line indicates the high-impedance state.
2. $n=0$ to 3
(10) RPU timing

Parameter	Symbol		Conditions	MIN.	MAX.	
TI1n high-level width	$<74>$	twTIH		$3 T+10$		
TI1n low-level width	$<75>$	twTIL		$3 T+10$	n	
TCLR1n high-level width	$<76>$	twTCH		$3 T+10$	$n s$	
TCLR1n low-level width	$<77>$	twTCL		$3 T+10$	$n s$	

Remark $\mathrm{T}=\mathrm{t}$ сүк

A / D Converter Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{AVDD}=5 \mathrm{~V} \pm 10 \%$, $\mathrm{V}_{\mathrm{ss}}=\mathrm{AV}$ ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	-		10	10	10	bit
Overall error ${ }^{\text {Note }} 1$	-	$4.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF } 1} \leq \mathrm{AV} \mathrm{VD}$			± 0.4	\%FSR
	-	$3.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF } 1} \leq \mathrm{AV} \mathrm{VD}$			± 0.7	\%FSR
Quantization error	-				$\pm 1 / 2$	LSB
Conversion time	tconv	$4.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF } 1} \leq \mathrm{AV} \mathrm{DD}$	60			tcyk
		$3.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF } 1} \leq \mathrm{AV} \mathrm{VD}$	60			tcyk
Sampling time	tsamp	$4.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF } 1} \leq \mathrm{AV} \mathrm{DD}$	10			tcyk
		$3.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF } 1} \leq \mathrm{AV} \mathrm{DD}$	10			tcyk
Zero-scale errorNote 1	-	$4.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF } 1} \leq \mathrm{AV} \mathrm{VD}$		± 1.5	± 3.5	LSB
	-	$3.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF } 1} \leq \mathrm{AV} \mathrm{DD}$		± 1.5	± 4.5	LSB
Full-scale error ${ }^{\text {Note }} 1$	-	$4.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF } 1} \leq \mathrm{AV} \mathrm{DD}$		± 1.5	± 2.5	LSB
	-	$3.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF } 1} \leq \mathrm{AV} \mathrm{VD}$		± 1.5	± 4.5	LSB
Non-linearity error ${ }^{\text {Note } 1}$	-	$4.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF } 1} \leq \mathrm{AV} \mathrm{VDD}$		± 1.5	± 2.5	LSB
	-	$3.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF } 1} \leq \mathrm{AV} \mathrm{VD}$		± 1.5	± 4.5	LSB
Analog input voltage ${ }^{\text {Note } 2}$	VIAN		-0.3		$A V D D+0.3$	V
Reference voltage	AVref1		3.5		AVdd	V
AVref1 current	Alref1			1.2	3.0	mA
AVod supply current	Aldd			2.3	6.0	mA

Notes 1. Except quantization error.
2. The conversion result is 000 H when VIAN $=0$.

Converted with 10-bit resolution when $0<V_{\text {Ian }}<\mathrm{AV}_{\text {ref1 }}$.
The conversion result is 3FFH when $A V_{\text {ref1 }} \leq \mathrm{V}_{\mathrm{I} A N} \leq \mathrm{AV}$ do.

D/A Converter Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AVDD}=5 \mathrm{~V} \pm 10 \%$, $\mathrm{V}_{\mathrm{ss}}=\mathrm{AV}$ ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	-		8	8	8	bit
Overall error	-	Load conditions: $2 \mathrm{M} \Omega, 30 \mathrm{pF}$ $\begin{aligned} & A V_{\text {REF2 }}=\mathrm{V}_{\mathrm{DD}} \\ & A \mathrm{~V}_{\text {REF3 }}=0 \end{aligned}$			0.8	\%
	-	Load conditions: $2 \mathrm{M} \Omega, 30 \mathrm{pF}$ $\mathrm{A} \mathrm{V}_{\text {refl }}=0.75 \mathrm{~V} \mathrm{DD}$ $A V_{\text {ref3 }}=0.25 \mathrm{~V}$ dD			1.0	\%
	-	Load conditions: $4 \mathrm{M} \Omega, 30 \mathrm{pF}$ $A V_{\text {ReF2 }}=V_{D D}$ $A V_{\text {ref } 3}=0$			0.6	\%
	-	Load conditions: $4 \mathrm{M} \Omega, 30 \mathrm{pF}$ $\mathrm{A} \mathrm{V}_{\text {ref2 }}=0.75 \mathrm{~V} \mathrm{DD}$ $A V_{\text {ref3 }}=0.25 \mathrm{~V}$ dD			0.8	\%
Settling time	-	Load conditions: $2 \mathrm{M} \Omega, 30 \mathrm{pF}$			10	$\mu \mathrm{s}$
Output resistance	RO			8		$\mathrm{k} \Omega$
$A V_{\text {ref2 }}$ input voltage	AVref2		0.75Vdd		Vdd	V
AV ${ }_{\text {ref3 }}$ input voltage	A $V_{\text {ref3 }}$		0		0.25VDD	V
Resistance between $A V_{\text {ref }}$ and $A V_{\text {ref3 }}$	Rairef	DACS0, DACS1 $=55 \mathrm{H}$	2	4		$\mathrm{k} \Omega$

3.2 Flash Memory Programming Mode

Basic Characteristics ($T_{A}=10$ to $40^{\circ} \mathrm{C}$ (when rewriting), $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ (when not rewriting), $\mathrm{V}_{\mathrm{DD}}=\mathrm{AVDD}$ $=5 \mathrm{~V} \pm 10 \%$, V ss = $\mathrm{AVss}=0 \mathrm{~V})$)
(1) μ PD70F3003A (all ranks), 70F3025A (except K, E, P, X rank)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	ϕ		10		33	MHz
Vpp supply voltage	VPP1	During flash memory programming	9.7	10.3	10.6	V
	VPPL	Vpp low-level detection	-0.5		0.2Vdd	V
	VPpm	Vpp, Vdo level detection	0.8VdD		1.2 VdD	V
	VPPH	Vpp high-voltage level detection	9.7	10.3	10.6	V
Vod supply current	IDo	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{PP} 1}$			$3.0 \times \phi+25$	mA
Vpp supply current	Ipp	$V_{P P}=10.3 \mathrm{~V}$			200	mA
Step erase time	ter	Note 1		0.2		S
Overall erase time per area	tera	When the step erase time $=0.2 \mathrm{~s}$, Note 2			40	s/area
Write-back time	twb	Note 3		5		ms
Number of write-backs per write-back command	Cwb	When the write-back time $=5 \mathrm{~ms}$, Note 4			50	Count/write- back command
Number of erase/write-backs	Cerwb				16	Count
Step writing time	twT	Note 5		50		$\mu \mathrm{s}$
Overall writing time per word	twew	When the step writing time $=50$ μ (1 word = 4 bytes), Note 6	50		500	$\mu \mathrm{s} / \mathrm{word}$
Number of rewrites per area	Cermb	$\begin{aligned} & 1 \text { erase }+1 \text { write after erase } \\ & =1 \text { rewrite, Note } 7 \end{aligned}$		20		Count/area

Notes 1. The recommended setting value of the step erase time is 0.2 s .
2. The prewrite time prior to erasure and the erase verify time (write-back time) are not included.
3. The recommended setting value of the step erase time is 5 ms .
4. Write-back is executed once by the issuance of the write-back command. Therefore, the retry count must be the maximum value minus the number of commands issued.
5. The recommended setting value of the step writing time is $50 \mu \mathrm{~s}$.
6. $100 \mu \mathrm{~s}$ is added to the actual writing time per word. The internal verify time during and after the writing is not included.
7. When writing initially to shipped products, it is counted as one rewrite for both "erase to write" and "write only".

Example (P: Write, E: Erase)
Shipped product $\longrightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{P}: 3$ rewrites
Shipped product $\rightarrow \mathrm{E} \rightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{P}: 3$ rewrites

Cautions 1. VPP pull-down resistance value ($\mathrm{RV} \mathrm{VPP}^{\prime}$) is recommended to be in the range $5 \mathrm{k} \Omega$ to $15 \mathrm{k} \Omega$.
2. Set the transfer rate between programmer and device as follows.

CSIO: $\quad 0.2$ to 1 MHz
UARTO: 4,800 to 76,800 bps

Remarks 1. When the PG-FP3 is used, a time parameter required for writing/erasing by downloading parameter files is automatically set. Do not change the settings unless otherwise specified.
2. Area $0=00000 \mathrm{H}$ to 1 FFFFH, area $1=20000 \mathrm{H}$ to $3 F F F F H$ (area 1 is provided in the μ PD70F3025A only)
3. The rank is indicated by the 5th character from the left in the lot number.
4. The I rank applies to engineering samples (ES) only. The operation of an ES is not guaranteed.
5. ϕ : Internal system clock frequency

(2) μ PD70F3025A (X rank)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	ϕ	Note 1	10		33	MHz
VPP supply voltage	VPP1	During flash memory programming	9.7	10.3	10.6	V
	VPpL	Vpp low-level detection	-0.5		0.2 VdD	V
	VPPM	VPP, VDD level detection	0.8 VdD		1.2 VDD	V
	VPPH	VPp high-voltage level detection	9.7	10.3	10.6	V
VDD supply current	Ido	$\mathrm{V}_{\text {PP }}=\mathrm{V}_{\text {PP } 1}$			$3.0 \times \phi+25$	mA
VPP supply current	IPP	VPP= 10.3 V			200	mA
Step erase time	ter	Note 1		2		s
Overall erase time per area	tera	When the step erase time $=2 \mathrm{~s}$, Note 2			40	s/area
Step writing time	twt	Note 3		200		$\mu \mathrm{s}$
Overall writing time per word	twew	When the step writing time $=200$ $\mu \mathrm{s}$ (1 word $=4$ bytes), Note 4	200		2000	$\mu \mathrm{s} / \mathrm{word}$
Number of rewrites per area	Cerwr	$\begin{aligned} & 1 \text { erase }+1 \text { write after erase } \\ & =1 \text { rewrite, Note } 5 \end{aligned}$		20		Count/area

Notes 1. The recommended setting value of the step erase time is 2 s .
2. The prewrite time prior to erasure and the erase verify time (write-back time) are not included.
3. The recommended setting value of the step writing time is $200 \mu \mathrm{~s}$.
4. $100 \mu \mathrm{~s}$ is added to the actual writing time per word. The internal verify time during and after the writing is not included.
5. When writing initially to shipped products, it is counted as one rewrite for both "erase to write" and "write only".

Example (P: Write, E: Erase)
Shipped product $\longrightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{P}: 3$ rewrites
Shipped product $\rightarrow \mathrm{E} \rightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{P}: 3$ rewrites

Cautions 1. Vpp pull-down resistance value (RVpp) is recommended to be in the range $5 \mathrm{k} \Omega$ to $15 \mathrm{k} \Omega$.
2. Set the transfer rate between programmer and device as follows.

CSIO: 0.2 to 1 MHz
UARTO: 4,800 to 76,800 bps

Remarks 1. When the PG-FP3 is used, a time parameter required for writing/erasing by downloading parameter files is automatically set. Do not change the settings unless otherwise specified.
2. Area $0=00000 \mathrm{H}$ to 1 FFFFFH, area $1=20000 \mathrm{H}$ to $3 F F F F H$
3. The rank is indicated by the 5th character from the left in the lot number.
4. The K, E, P, and X rank products do not support handshake mode. The I rank applies to engineering samples (ES) only. The operation of an ES is not guaranteed.
5. ϕ : Internal system clock frequency

* 4. PACKAGE DRAWING

100-PIN PLASTIC LQFP (FINE PITCH) (14x14)

detail of lead end

NOTE
Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	16.00 ± 0.20
B	14.00 ± 0.20
C	14.00 ± 0.20
D	16.00 ± 0.20
F	1.00
G	1.00
H	$0.22_{-0}^{+0.05}$
I	0.08
J	0.50 (T.P.)
K	1.00 ± 0.20
L	0.50 ± 0.20
M	$0.17_{-0.07}^{+0.03}$
N	0.08
P	1.40 ± 0.05
Q	0.10 ± 0.05
R	$3^{\circ}{ }_{-3}{ }^{\circ}$
S	1.60 MAX.
S100GC-50-8EU, 8EA-2	

5. RECOMMENDED SOLDERING CONDITIONS

The μ PD70F3003A, 70F3025A, and 70F3003A(A) should be soldered and mounted under the following recommended conditions.

For details of the recommended soldering conditions, refer to the document Semiconductor Device Mounting Technology Manual (C10535E).

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 5-1. Soldering Mounting Type Soldering Conditions
(1) μ PD70F3003AGC-33-8EU: 100 -pin plastic LQFP (fine pitch) (14×14)
μ PD70F3025AGC-33-8EU: $\quad 100-$ pin plastic LQFP (fine pitch) (14×14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds max. (at $210^{\circ} \mathrm{C}$ or higher), Count: Three times or less, Exposure limit: 3 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 to 72 hours)	IR35-103-3
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 25 to 40 seconds (at $200^{\circ} \mathrm{C}$ or higher), Count: Three times or less, Exposure limit: 3 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 to 72 hours)	VP15-103-3
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., Time 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).
(2) μ PD70F3003AGC(A)-33-8EU: 100-pin plastic LQFP (fine pitch) (14×14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds max. (at $210^{\circ} \mathrm{C}$ or higher), Count: Two times or less, Exposure limit: 3 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 to 72 hours)	IR35-103-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 25 to 40 seconds (at $200^{\circ} \mathrm{C}$ or higher), Count: Two times or less, Exposure limit: 3 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 to 72 hours)	VP15-103-2
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., Time 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and $65 \% \mathrm{RH}$ or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

* APPENDIX NOTES ON TARGET SYSTEM DESIGN

The following shows a diagram of the connection conditions between the in-circuit emulator option board and conversion connector. Design your system making allowances for conditions such as the form of parts mounted on the target system as shown below.

[MEMO]
[MEMO]
[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I / O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Related document: $\quad \mu$ PD703003A, 703004A, 703025A, 703003A(A), 703025A(A) Data Sheet (U13188E)

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

V850 Series and V853 are trademarks of NEC Corporation.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
800-366-9782
Fax: 408-588-6130
800-729-9288
NEC Electronics (Europe) GmbH
Duesseldorf, Germany
Tel: 0211-65 0301
Fax: 0211-65 03327

- Branch The Netherlands

Eindhoven, The Netherlands
Tel: 040-244 5845
Fax: 040-244 4580

- Branch Sweden

Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

NEC Electronics (France) S.A.
Vélizy-Villacoublay, France
Tel: 01-3067-58-00
Fax: 01-3067-58-99
NEC Electronics (France) S.A.
Representación en España
Madrid, Spain
Tel: 091-504-27-87
Fax: 091-504-28-60
NEC Electronics Italiana S.R.L.
Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 253-8311
Fax: 250-3583
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951
NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP, Brasil
Tel: 11-6462-6810
Fax: 11-6462-6829

- The information in this document is current as of November, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

