4-BIT SINGLE-CHIP MICROCONTROLLER FOR INFRARED REMOTE CONTROL TRANSMISSION

DESCRIPTION

The μ PD6P9 is a microcontroller for infrared remote control transmitters and is provided with a one-time PROM as the program memory.

Because users can write programs for the $\mu \mathrm{PD} 6 \mathrm{P9}$, it is ideal for program evaluation and small-scale production of application systems that use the $\mu \mathrm{PD} 67,67 \mathrm{~A}, 68,68 \mathrm{~A}, 69$, or 69A.

	μ PD6P9M1	μ PD6P9M3
Corresponding mask ROM version	μ PD67, 67A, 68, 68A, 69, 69A (normal instruction execution version)	μ PD69A (high-speed instruction execution version)
Instruction execution time	$16 \mu \mathrm{~s}$ ($\mathrm{fx}=4 \mathrm{MHz}$)	$8 \mu \mathrm{~s}$ ($\mathrm{fx}=4 \mathrm{MHz}$)

When reading this document, also refer to the following documents.

$$
\begin{array}{ll}
\mu \text { PD67, 67A, 68, 68A, } 69 \text { Data Sheet: U14935E } \\
\mu \text { PD69A Data Sheet: } & \text { U16363E }
\end{array}
$$

FEATURES

- Program memory (one-time PROM):
4074×10 bits
- Data memory (RAM):
128×4 bits
- On-chip carrier generator for infrared remote control:

The high-level and low-level width can be set separately
from 250 ns to $64 \mu \mathrm{~s}$ (@ $\mathrm{fx}=4 \mathrm{MHz}$ operation) via modulo
registers

- 9-bit programmable timer:

1 channel

- Instruction execution time:
- Stack level:
- I/O pins (K//o):
- Input pins (KI):
- Sense input pins $\left(\mathrm{S}_{0}, \mathrm{~S}_{2}\right)$:
- $\mathrm{S}_{1} \overline{\mathrm{LED}} \mathrm{pin}(\mathrm{I} / \mathrm{O})$:
- Power supply voltage:
- Operating ambient temperature:
- Oscillator frequency:
$16 \mu \mathrm{~s}$ (@ $\mathrm{fx}=4 \mathrm{MHz}$) ($\mu \mathrm{PD} 6 \mathrm{P} 9 \mathrm{M} 1$)
$8 \mu \mathrm{~s}$ (@ fx $=4 \mathrm{MHz})(\mu \mathrm{PD} 6 \mathrm{P} 9 \mathrm{M} 3)$
1 level (stack RAM is for data memory RF as well)
8 units
4 units
2 units
1 unit (when in output mode, this is the remote control transmission display pin)
$V_{D D}=2.2$ to 3.6 V
$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$
$\mathrm{fx}=3.5$ to 4.5 MHz
- On-chip POC circuit and RAM retention detector
- Capacitor for oscillator: Not available

APPLICATIONS

Infrared remote control transmitters (for AV and household electric appliances)

[^0]
ORDERING INFORMATION

	Part Number
\star	μ PD6P9M1MC-5A4
μ PD6P9M3MC-5A4	20-pin plastic SSOP $(7.62 \mathrm{~mm} \mathrm{(300)})$
20-pin plastic SSOP $(7.62 \mathrm{~mm} \mathrm{(300))}$	

PIN CONFIGURATION (TOP VIEW)

20-pin plastic SSOP (7.62 mm (300))
$\star \quad$ • μ PD6P9M1MC-5A4, 6P9M3MC-5A4
(1) Normal operation mode

(2) PROM programming mode

Caution The item in parentheses indicates the processing of pins not used in the PROM programming mode.
L: Connect each of these pins to GND via a pull-down resistor.

BLOCK DIAGRAM

LIST OF FUNCTIONS

CONTENTS

1. PIN FUNCTIONS 6
1.1 Normal Operation Mode 6
1.2 PROM Programming Mode 7
1.3 Pins I/O Circuits 8
1.4 Recommended Connection of Unused Pins 9
1.5 Notes on Using Kı Pin After Reset 9
2. DIFFERENCES BETWEEN μ PD67, 67A, 68, 68A, 69, 69A, AND μ PD6P9 10
3. INTERNAL CPU FUNCTIONS 11
3.1 Program Counter (PC): 12 Bits 11
3.2 Stack Pointer (SP): 1 Bit 11
3.3 Address Stack Register (ASR (RF)): 12 Bits 11
3.4 Program Memory (One-Time PROM): 4,074 Steps $\times 10$ Bits 12
3.5 Data Memory (RAM): 128×4 Bits 13
3.6 Data Pointer (DP): 12 Bits 14
3.7 Accumulator (A): 4 Bits 14
3.8 Arithmetic and Logic Unit (ALU): 4 Bits 14
3.9 Flags 15
3.9.1 Status flag (F) 15
3.9.2 Carry flag (CY) 15
4. TIMER 16
4.1 Timer Configuration 16
4.2 Timer Operation 17
4.3 Carrier Output 19
4.3.1 Carrier output generator 19
4.3.2 Carrier output control 20
4.4 Software Control of Timer Output 22
5. WRITING AND VERIFYING ONE-TIME PROM (PROGRAM MEMORY) 23
5.1 Operating Mode When Writing/Verifying Program Memory 23
5.2 Program Memory Writing Procedure 24
5.3 Program Memory Reading Procedure 25
6. ELECTRICAL SPECIFICATIONS 26
7. CHARACTERISTIC CURVES (REFERENCE VALUES) (μ PD6P9M1) 32
8. APPLICATION CIRCUIT EXAMPLE 33
9. PACKAGE DRAWING 36
10. RECOMMENDED SOLDERING CONDITIONS 37
APPENDIX A. DEVELOPMENT TOOLS 38
APPENDIX B. EXAMPLE OF REMOTE CONTROL TRANSMISSION FORMAT (In the caseof NEC transmission format in command one-shot transmission mode)39

1. PIN FUNCTIONS

1.1 Normal Operation Mode

Pin No.	Symbol	Function	Output Format	After Reset
$\begin{aligned} & 1 \\ & 2 \\ & 15 \text { to } 20 \end{aligned}$	$\mathrm{K}_{1 / 00}$ to $\mathrm{K}_{1 / 07}$	8-bit I/O port. I/O mode can be switched in 8-bit units. In input mode, a pull-down resistor is added. In output mode, these pins can be used as a key scan outputs from the key matrix.	CMOS Push-pull ${ }^{\text {Note }} 1$	High-level output
3	So	Input port. This pin can also be used as a key return input from the key matrix. In input mode, the use of a pull-down resistor for the S_{0} and S_{1} ports can be specified by software in 2-bit units. If input mode is released by software, this pin is placed in the OFF mode and enters a high-impedance state.	-	High-impedance (OFF mode)
4	$S_{1} / \overline{\text { LED }}$	I/O port. In input mode (S_{1}), this pin can also be used as a key return input from the key matrix. The use of a pull-down resistor for the S_{0} and S_{1} ports can be specified by software in 2-bit units. In output mode ($\overline{\mathrm{LED}}$), this pin becomes the remote control transmission display output (active low). When the remote control carrier is output from the REM output, this pin outputs a low level from the $\overline{\text { LED }}$ output in synchronization with the REM signal.	CMOS push-pull	High-level output (LED)
5	REM	Infrared remote control transmission output. The output is active high. The carrier high-level and low-level width can each be freely set in a range of 250 ns to $64 \mu \mathrm{~s}$ (@ fx $=4 \mathrm{MHz}$) using software.	CMOS push-pull	Low-level output
6	Vdd	Power supply	-	-
$\begin{aligned} & 7 \\ & 8 \end{aligned}$	Xout Xin	These pins are connected to system clock ceramic resonators.	-	Low level (oscillation stopped)
9	GND	GND pin	-	-
10	S_{2}	Input port. The use of the STOP mode release of the S_{2} port can be specified by software. When using this pin as a key input from the key matrix, enable the use of the STOP mode release (at this time, a pull-down resistor is connected internally.) When the STOP mode release is disabled, this pin can be used as an input port that does not release the STOP mode even if the release condition is established (at this time, a pull-down resistor is not connected internally.)	-	Input (high impedance, STOP mode release cannot be used)
11 to 14	K_{10} to K_{13} Note 2	4-bit input port. These pins can be used as key return inputs to the key matrix. The use of pull-down resistors can be specified by software in 4-bit units.	-	Input (low-level)

Notes 1. Note that the drive capability of the low-level output side is held low.
2. In order to prevent malfunction, do not input a high-level signal to pins K_{10} to K_{13} (leaving these pins open is possible, however, when these pins are left open, do not disconnect any connected pull-down resistors) when POC is released due to supply voltage startup.

1.2 PROM Programming Mode

Pin No.	Symbol	Function	
1,2 15 to 20	Do to D7	8-bit data I/O when writing/verifying program memory	I/O
3	CLK	Clock input for updating address when writing/verifying program memory	Input
6	VDD	Power Supply Supply +6 V to this pin when writing/verifying program memory.	-
7	Xout	Clock necessary for writing program memory. Connect a 4 MHz ceramic	
resonator to these pins.	-		
8	XIN	GND	GND

1.3 Pins I/O Circuits

The I/O circuits of the μ PD6P9 pins are shown in partially simplified forms below.

(1) Kı/oo to Kı/o7

(4) S_{0}

(2) K_{10} to K_{13}

(3) REM

(6) S_{2}

1.4 Recommended Connection of Unused Pins

The following connections are recommended for unused pins in the normal operation mode.

Table 1-1. Connections for Unused Pins

Pin		Connection	
		Inside the Microcontroller	Outside the Microcontroller
KI/o	Input mode	-	Leave open
	Output mode	High-level output	
REM		-	
$\mathrm{S}_{1} / \overline{\mathrm{LED}}$		Output mode ($\overline{\mathrm{LED}}$) setting	
So		OFF mode setting	Directly connect these pins to GND
S_{2}		-	
Kı		-	

Caution The I/O mode and the pin output level are recommended to be fixed by setting them repeatedly in each loop of the program.

1.5 Notes on Using Kı Pin After Reset

In order to prevent malfunction, do not input a high-level signal to pins K_{10} to K_{13} (leaving these pins open is possible, however, when these pins are left open, do not disconnect any connected pull-down resistors) when POC is released due to supply voltage startup.

* 2. DIFFERENCES BETWEEN μ PD67, 67A, 68, 68A, 69, 69A, AND μ PD6P9

Table 2-1 shows the differences between the μ PD67, 67A, 68, 68A, 69, 69A, and μ PD6P9.
The only differences between these models are the program memory, data memory, timer, POC detection voltage, and supply voltage; the other CPU functions and internal peripheral hardware are the same.

The electrical specifications also differ slightly. For the electrical specifications, refer to the data sheet of each model.

Table 2-1. Differences Between μ PD67, 67A, 68, 68A, 69, 69A, and μ PD6P9

Item		$\mu \mathrm{PD} 6 \mathrm{P} 9$	$\mu \mathrm{PD} 67$	$\mu \mathrm{PD} 67 \mathrm{~A}$	μ PD68	μ PD68A	μ PD69	μ PD69A
ROM		One-time PROM	Mask ROM					
		4074×10 bits	1002×10 bits		2026×10 bits		4074×10 bits	
RAM		128×4 bits	32×4 bits				128×4 bits	
Timer	Clock	fx/64						
	Output value	Note 1	Note 2	Note 3	Note 2	Note 3	Note 2	Note 4
POC detection voltage		$\mathrm{V}_{\mathrm{POC}}=1.85 \mathrm{~V}$ (TYP.)						Note 5
Supply voltage		$\mathrm{V}_{\mathrm{DD}}=2.2$ to 3.6 V	V DD $=2.0$ to 3.6 V					Note 6
Electrical specifications		Some electrical specifications, such as data retention voltage and current consumption, differ. Refer to data sheet of each model for details.						

Notes 1. (Set value +1) $\times 64 / \mathrm{fx}(\mu$ PD6P9M1), (set value +0.5$) \times 64 / \mathrm{fx}(\mu$ PD6P9M3 $)$
2. $($ Set value +1$) \times 64 / f x$
3. $($ Set value +1$) \times 64 / \mathrm{fx}-4 / \mathrm{fx}$
4. $($ Set value +1$) \times 64 / \mathrm{fx}-4 / \mathrm{fx}$ or (set value +0.5) $\times 64 / \mathrm{fx}-2 / \mathrm{fx}$
5. $\mathrm{VPOC}=1.85 \mathrm{~V}$ (TYP.) or $\mathrm{VPOC}=1.7 \mathrm{~V}$ (TYP.) (mask option)
6. $\mathrm{V} D \mathrm{D}=2.0$ to 3.6 V or $\mathrm{V} \mathrm{DD}=1.8$ to 3.6 V

^ 3. INTERNAL CPU FUNCTIONS

3.1 Program Counter (PC): 12 Bits

The program counter (PC) is a binary counter that holds the address information of the program memory.

Figure 3-1. Program Counter Configuration

PC | PC11 | PC10 | PC9 | PC8 | PC7 | PC6 | PC5 | PC4 | PC3 | PC2 | PC1 | PC0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The PC contains the address of the instruction that should be executed next. Normally, the counter contents are automatically incremented in accordance with the instruction length (byte count) each time an instruction is executed.

However, when executing jump instructions (JMP, JC, JNC, JF, JNF), the PC contains the jump destination address written in the operand.

When executing the subroutine call instruction (CALL), the call destination address written in the operand is entered in the PC after the PC contents at the time are saved in the address stack register (ASR). If the return instruction (RET) is executed after the CALL instruction is executed, the address saved in the ASR is restored to the PC.

After reset, the value of the PC becomes " 000 H ".

3.2 Stack Pointer (SP): 1 Bit

This is a 1-bit register that holds the status of the address stack register.
The stack pointer contents are incremented when the call instruction (CALL) is executed and decremented when the return instruction (RET) is executed.

When reset, the stack pointer contents are cleared to 0 .
When the stack pointer overflows (stack level 2 or more) or underflows, the CPU is defined as hung up, a system reset signal is generated, and the PC becomes 000 H .

As no instruction is available to set a value directly for the stack pointer, it is not possible to operate the pointer by means of a program.

3.3 Address Stack Register (ASR (RF)): 12 Bits

The address stack register saves the return address of the program after a subroutine call instruction is executed. The lower 8 bits are allocated in RF of the data memory as a alternate-function RAM. The register holds the ASR value even after the RET instruction is executed.

After reset, it holds the previous data (undefined when turning on the power).

Caution If RF is accessed as the data memory, the higher 4 bits become undefined.

Figure 3-2. Address Stack Register Configuration

					RF							
ASR	ASR11	ASR10	ASR9	ASR8	ASR7	ASR6	ASR5	ASR4	ASR3	ASR2	ASR1	ASR0

3.4 Program Memory (One-Time PROM): 4,074 Steps $\times 10$ Bits

The one-time PROM consists of 10 bits per step, and is addressed by the program counter.
The program memory stores programs and table data, etc.
The 22 steps from FEAH to FFFH cannot be used in the test program area.

Figure 3-3. Program Memory Map

Note The unmounted area and test program area are designed so that a program or data placed in either of them by mistake is returned to the 000 H address.

3.5 Data Memory (RAM): 128×4 Bits

The data memory, which is a static RAM consisting of 32×4 bits $\times 4$ pages, is used to retain processed data. The data memory is sometimes processed in 8 -bit units. R0 of page 0 can be used as the ROM data pointer.

RF of page 0 is also used as the ASR.
After reset, R0 of page 0 is cleared to 00 H and R 1 to RF of page 0 and pages 1 to 3 retain the previous data (undefined when turning on the power).

Figure 3-4. Data Memory Configuration

Pages 0 to $3^{\text {Note } 1}$		
$\mathrm{R}_{1 \text { n }}$ (higher 4 bits) Ron (lower 4 bits)		
R0		\rightarrow Note 2
R_{10}	Roo	
R1		
R_{11}	R_{01}	
R2		
R_{12}	R02	
R3		
R_{13}	R03	
R4		
R_{14}	R04	
R5		
R_{15}	R05	
R6		
R_{16}	R06	
R7		
R17	R07	
R8		
R18	R08	
R9		
R_{19}	R09	
RA		
$\mathrm{R}_{1 \mathrm{~A}}$	R ${ }_{\text {OA }}$	
RB		
$\mathrm{R}_{1 \mathrm{~B}}$	Rob	
RC		
$\mathrm{R}_{1 \mathrm{c}}$	Roc	
RD		
$\mathrm{R}_{1 \mathrm{D}}$	Rod	
RE		
R_{11}	R0E	
RF \rightarrow Note 3		
R_{11}	RoF	

Notes 1. Pages 0 to 3 can be switched using bits 0 and 1 of control register 0 .
2. RO of page 0 alternately functions as the ROM data pointer (refer to 3.6 Data Pointer (DP)).
3. RF of page 0 alternately functions as the PC address stack (refer to 3.3 Address Stack Register (ASR (RF)).

3.6 Data Pointer (DP): 12 Bits

The ROM data table can be referenced by setting the ROM address in the data pointer to call the ROM contents.
The lower 8 bits of the ROM address are specified by R0 of the data memory; and the higher 4 bits by bits 4 to 7 of the P3 register (CRO).

After reset, the pointer contents become 000 H .

Figure 3-5. Data Pointer Configuration

3.7 Accumulator (A): 4 Bits

The accumulator, which refers to a register consisting of 4 bits, plays a leading role in performing various operations.

After reset, the accumulator contents are left undefined.

Figure 3-6. Accumulator Configuration

A_{3}	$\mathrm{~A}_{2}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{0}$
A			

3.8 Arithmetic and Logic Unit (ALU): 4 Bits

The arithmetic and logic unit (ALU), which refers to an arithmetic circuit consisting of 4 bits, executes simple (mainly logical) operations.

3.9 Flags

3.9.1 Status flag (F)

Pin and timer statuses can be checked by executing the STTS instruction to check the status flag.
The status flag is set (to 1) in the following cases.

- If the condition specified with the operand is met when the STTS instruction is executed
- When standby mode is released.
- When the release condition is met at the point of executing the HALT instruction. (In this case, the system does not enter the standby mode.)

Conversely, the status flag is cleared (to 0) in the following cases:

- If the condition specified with the operand is not met when the STTS instruction is executed.
- When the status flag has been set (to 1), the HALT instruction executed, but the release condition is not met at the point of executing the HALT instruction. (In this case, the system does not enter the standby mode.)

Table 3-1. Conditions for Status Flag (F) to Be Set by STTS Instruction

Operand Value of STTS Instruction				Condition for Status Flag (F) to Be Set
b_{3}	b_{2}	b_{1}	bo	
0	0	0	0	High level is input to at least one of K p pins.
	0	1	1	High level is input to at least one of K_{1} pins.
	1	1	0	High level is input to at least one of K p pins.
	1	0	1	The down counter of the timer is 0 .
1	Either of the combinations of b_{2}, b_{1}, and b_{0} above.			[The following condition is added in addition to the above.] High level is input to at least one of S_{0} Note ${ }^{\mathbf{1}}, \mathrm{S}_{1}$ Note ${ }^{1}$, or S_{2} Note 2 pins.

Notes 1. The S_{0} and S_{1} pins must be set to input mode (bit 2 and bit 0 of the $P 4$ register are set to 0 and 1, respectively).
2. The use of STOP mode release for the S_{2} pin must be enabled (bit 3 of the $P 4$ register is set to 1).

3.9.2 Carry flag (CY)

The carry flag is set (to 1) in the following cases:

- If the ANL instruction or the XRL instruction is executed when bit 3 of the accumulator is 1 and bit 3 of the operand is 1.
- If the RL instruction or the RLZ instruction is executed when bit 3 of the accumulator is 1 .
- If the INC instruction or the SCAF instruction is executed when the value of the accumulator is 0FH.

The carry flag is cleared (to 0) in the following cases:

- If the ANL instruction or the XRL instruction is executed when at least either bit 3 of the accumulator or bit 3 of the operand is 0 .
- If the RL instruction or the RLZ instruction is executed when bit 3 of the accumulator is 0 .
- If the INC instruction or the SCAF instruction is executed when the value of the accumulator is other than 0FH.
- If the ORL instruction is executed.
- When data is written to the accumulator by the MOV instruction or the IN instruction.

* 4. TIMER

4.1 Timer Configuration

The timer is the block used for creating a remote control transmission pattern. As shown in Figure 4-1, it consists of a 9-bit down counter (t_{8} to to), a flag (t 9) permitting the 1 -bit timer output, and a zero detector.

Figure 4-1. Timer Configuration

4.2 Timer Operation

The timer starts (counting down) when a value other than 0 is set for the down counter with a timer manipulation instruction. The timer manipulation instructions for making the timer start operation are shown below:

```
MOV T0, A
MOV T1, A
MOV T, #data10
MOV T, @R0
```

The down counter is decremented (-1) in the cycle of $64 / \mathrm{fx}$. If the value of the down counter becomes 0 , the zero detector generates the timer operation end signal to stop the timer operation. At this time, if the timer is in HALT mode (HALT \#×101B) waiting for the timer to stop its operation, the HALT mode is released and the instruction following the HALT instruction is executed. The output of the timer operation end signal is continued while the down counter is 0 and the timer is stopped. The following relational expression applies between the timer's output time and the down counter's set value.
(a) μ PD6P9M1

Timer output time $=($ Set value +1$) \times 64 / \mathrm{fx}$
(b) $\mu \mathrm{PD} 6 \mathrm{P} 9 \mathrm{M} 3$

Timer output time $=($ Set value +0.5$) \times 64 / \mathrm{fx}$

An example is shown below.

Example When $\mathrm{fx}_{\mathrm{x}}=4 \mathrm{MHz}$

MOV T, \#3FFH
STTS \#05H
HALT \#05H
MOV T, \#232H
STTS \#05H
HALT \#05H

In the case above, the timer output time is as follows.
(a) μ PD6P9M1
$($ Set value +1$) \times 64 / \mathrm{fx}+($ Set value +1$) \times 64 / \mathrm{fx}$
$=(511+1) \times 64 / 4+(50+1) \times 64 / 4$
$=9.008 \mathrm{~ms}$
(b) μ PD6P9M3
$($ Set value +0.5$) \times 64 / \mathrm{fx}+($ Set value +0.5$) \times 64 / \mathrm{fx}$
$=(511+0.5) \times 64 / 4+(50+0.5) \times 64 / 4$
$=8.992 \mathrm{~ms}$

By setting the flag (t9) that enables the timer output to 1 , the timer can output its operation status from the $\mathrm{S}_{1} /$ LED pin and the REM pin. The REM pin can also output the carrier while the timer is in operation.

Table 4-1. Timer Output (at $\mathrm{t}_{\mathrm{g}}=\mathbf{1}$)

	S $_{1} / \overline{\mathrm{LED}}$ Pin	REM Pin
Timer operating	Low level	High level (or carrier output ${ }^{\text {Note }}$)
Timer halting	High level	Low level

Note The carrier output results if bit 9 (CARY) of the high-level period setting modulo register (MOD1) is cleared (to 0).

Figure 4-2. Timer Output (When Carrier Is Not Output)

Note $($ Set value +1$) \times 64 / \mathrm{fx}(\mu$ PD6P9M1 $)$, (set value +0.5$) \times 64 / \mathrm{fx}(\mu$ PD6P9M3 $)$

4.3 Carrier Output

4.3.1 Carrier output generator

The carrier generator consists of a 9-bit counter and two modulo registers for setting the high- and low-level periods (MOD1 and MODO respectively).

Figure 4-3. Configuration of Remote Controller Carrier Generator

Notes 1. Bit 9 of the modulo register for setting the low-level period (MODO) is fixed to 0.
2. t9: Flag that enables timer output (timer block) (see Figure 4-1 Timer Configuration)

The carrier duty ratio and carrier frequency can be determined by setting the high- and low-level widths using the respective modulo registers. Each of these widths can be set in a range of 250 ns to $64 \mu \mathrm{~s}$ (@ fx = 4 MHz).

The system clock multiplied by 2 is used for the 9 -bit counter input (8 MHz when $\mathrm{fx}=4 \mathrm{MHz}$). MOD0 and MOD1 are read and written using timer manipulation instructions.

MOV A, M00	MOV M00, A	MOV M0, \#data10
MOV A, M01	MOV M01, A	MOV M1, \#data10
MOV A, M10	MOV M10, A	MOV M0, @R0
MOV A, M11	MOV M11, A	MOV M1, @R0

The values of MODO and MOD1 can be calculated from the following expressions.

$$
\begin{aligned}
\text { MOD0 } & =(2 \times f \times \times(1-D) \times T)-1 \\
\text { MOD1 } & =(2 \times \mathrm{f} \times \times \mathrm{D} \times \mathrm{T})-1
\end{aligned}
$$

Caution Be sure to input values in range of 001 H to 1 FFH to MOD0 and MOD1.

Remark D: Carrier duty ratio ($0<\mathrm{D}<1$)
fx: Input clock (MHz)
T: Carrier cycle ($\mu \mathrm{s}$)

4.3.2 Carrier output control

Remote controller carrier can be output from the REM pin by clearing (0) bit 9 (CARY) of the modulo register for setting the high-level period (MOD1).

When performing carrier output, be sure to set the timer operation after setting the MOD0 and MOD1 values. Note that a malfunction may occur if the values of MODO and MOD1 are changed while carrier is being output from the REM pin.

Executing the timer manipulation instruction starts the carrier output from the low level.
If the timer's down counter reaches 0 during carrier output, carrier output is stopped and the REM pin becomes low level. If the down counter reaches 0 while the carrier output is high level, carrier output will stop after first becoming low level following the set period of high level.

Figure 4-4. Timer Output (When Carrier Is Output)

Notes 1. (Set value +1) $\times 64 / \mathrm{fx}(\mu$ PD6P9M1), (set value +0.5) $\times 64 / \mathrm{fx}(\mu$ PD6P9M3)
2. If the down counter reaches 0 while the carrier output is high level, carrier output will stop after becoming low level.

Output from the REM pin is as follows, in accordance with the values set to bit 9 (CARY) of MOD1 and the timer output enable flag (t) , and the value of the timer block's 9-bit down counter (to to t_{8}).

Table 4-2. REM Pin Output

MOD1 Bit 9 (CARY)	Timer Output Enable Flag (Timer Block t9)	$9-$-Bit Down Counter (Timer Block to to t 8)	REM Pin
-	-	0	Low-level output
-	0	Other than 0	
0	1		Carrier outputNote
1			High-level output

Note Input values in the range of 001 H to 1 FFH to MOD0 and MOD1.

Caution MODO and MOD1 must be set while the REM pin is low level ($\mathrm{t}_{\mathrm{g}}=0$ or to to $\mathrm{t}_{8}=0$).

Table 4-3. Example of Carrier Frequency Settings ($\mathrm{fx}=\mathbf{4} \mathrm{MHz}$)

Setting Value		t ($\mu \mathrm{s}$)	t ($\mu \mathrm{s}$)	$\mathrm{T}(\mu \mathrm{s})$	fc (kHz)	Duty
MOD1	MOD0					
01H	01H	0.25	0.25	0.5	2,000	1/2
07H	OBH	1.0	1.5	2.5	400	2/5
13H	13H	2.5	2.5	5.0	200	1/2
27H	27H	5.0	5.0	10	100	1/2
41H	41H	8.25	8.25	16.5	60.6	1/2
41H	85H	8.25	16.75	25	40	1/3
45H	89H	8.75	17.25	26.0	38.5	1/3
45H	8BH	8.75	17.5	26.25	38.10	1/3
45H	8 CH	8.75	17.625	26.375	37.9	1/3
47H	91H	9.0	18.25	27.25	36.7	1/3
48H	94H	9.125	18.625	27.75	36.0	1/3
69H	D5H	13.25	26.75	40.0	25	1/3
77H	77H	15.0	15.0	30.0	33.3	1/2
C7H	C7H	25.0	25.0	50.0	20	1/2
FFH	FFH	32.0	32.0	64.0	15.6	1/2

4.4 Software Control of Timer Output

The timer output can be controlled by software. As shown in Figure 4-5, a pulse with a minimum width of one instruction cycle 64/fx can be output.

Figure 4-5. Output of Pulse of 1-Instruction Cycle Width

5. WRITING AND VERIFYING ONE-TIME PROM (PROGRAM MEMORY)

The program memory of the μ PD6P9 is a one-time PROM of 4074×10 bits.
To write or verify this one-time PROM, the pins shown in Table 5-1 are used. Note that no address input pin is used. Instead, the address is updated by using the clock input from the CLK pin.

Table 5-1. Pins Used to Write/Verify Program Memory

Pin Name	
VPP	Supplies voltage when writing/verifying program memory. Apply +12.5 V to this pin.
VDD	Power supply. Supply +6 V to this pin when writing/verifying program memory.
CLK	Inputs clock to update address when writing/verifying program memory. By inputting a pulse four times to the CLK pin, the address of the program memory is updated.
MD $_{0}$ to MD_{3}	Input to select the operation mode when writing/verifying program memory.
D_{0} to D_{7}	Inputs/outputs 8-bit data when writing/verifying program memory.
$\mathrm{X}_{\text {IN }}, \mathrm{X}_{\text {out }}$	Clock necessary for writing program memory. Connect a 4 MHz ceramic resonator to this pin.

5.1 Operating Mode When Writing/Verifying Program Memory

The $\mu \mathrm{PD} 6 \mathrm{P} 9$ is set in the program memory write/verify mode when +6 V is applied to the Vod pin and +12.5 V is applied to the VPP pin after the $\mu \mathrm{PD} 6 \mathrm{P} 9$ has been in the reset status ($\mathrm{V} D=5 \mathrm{~V}$, VPP $=0 \mathrm{~V}$) for a specific time. In this mode, the operating modes shown in Table 5-2 can be set by setting the MDo through MD3 pins. Connect all the pins other than those shown in Table 5-1 to GND via pull-down resistors.

Table 5-2. Setting Operating Mode

Setting of Operating Mode						Operating Mode								
V_{PP}								V_{DD}	MD_{0}	MD_{1}	MD_{2}	MD_{3}		
$+12.5 \mathrm{~V}$	+6 V	H	L	H	L		Clear program memory address to 0							
		L	H	H	H	Write mode								
		L	L	H	H	Verify mode								
		H	\times	H	H	Program inhibit mode								

\times : don't care (L or H)

5.2 Program Memory Writing Procedure

The program memory is written at high speed by the following procedure.
(1) Pull down the pins not used to GND via a resistor. Keep the CLK pin low.
(2) Supply 5 V to the V_{DD} pin. Keep the V_{PP} pin low.
(3) Supply 5 V to the VPp pin after waiting for $10 \mu \mathrm{~s}$.
(4) Wait for 2 ms until oscillation of the ceramic resonator connected across the Xin and Xout pins stabilizes.
(5) Set the program memory address 0 clear mode by using the mode setting pins.
(6) Supply 6 V to V_{DD} and 12.5 V to VPP.
(7) Set the program inhibit mode.
(8) Write data to the program memory in the 1 ms write mode.
(9) Set the program inhibit mode.
(10) Set the verify mode. If the data have been written to the program memory, proceed to (11). If not, repeat steps (8) through (10).
(11) Additional writing of (number of times of writing in (8) through (10): X) $\times 1 \mathrm{~ms}$.
(12) Set the program inhibit mode.
(13) Input a pulse to the CLK pin four times to update the program memory address (+1).
(14) Repeat steps (8) through (13) up to the last address.
(15) Set the 0 clear mode of the program memory address.
(16) Change the voltages on the Vdo and Vpp pins to 5 V .
(17) Turn off the power.

The following figure illustrates steps (2) through (13) above.

5.3 Program Memory Reading Procedure

(1) Pull down the pins not used to GND via a resistor. Keep the CLK pin low.
(2) Supply 5 V to the Vdd pin. Keep the Vpp pin low.
(3) Supply 5 V to the VPP pin after waiting for $10 \mu \mathrm{~s}$.
(4) Wait for 2 ms until oscillation of the ceramic resonator connected across the Xin and Xout pins stabilizes.
(5) Set the program memory address 0 clear mode by using the mode setting pins.
(6) Supply 6 V to Vdd and 12.5 V to Vpp.
(7) Set the program inhibit mode.
(8) Set the verify mode. Data of each address is output sequentially each time the clock pulse is input to the CLK pin four times.
(9) Set the program inhibit mode.
(10) Set the program memory address 0 clear mode.
(11) Change the voltage on the Vdd and Vpp pins to 5 V .
(12) Turn off the power.

The following figure illustrates steps (2) through (10) above.

6. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=+\mathbf{+ 2 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions		Rating	Unit
Power supply voltage	VDD			-0.3 to +7.0	V
	VPP			-0.3 to +13.5	V
Input voltage	VI	$\mathrm{K}_{11}, \mathrm{~K}_{1}, \mathrm{~S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output voltage	Vo			-0.3 to $V_{D D}+0.3$	V
Output current, high	IoHNote	REM	Peak value	-30	mA
			rms	-20	mA
		$\overline{\text { LED }}$	Peak value	-7.5	mA
			rms	-5	mA
		Per Kııo pin	Peak value	-13.5	mA
			rms	-9	mA
		Total for $\overline{\mathrm{LED}}$ and K//o pins	Peak value	-18	mA
			rms	-12	mA
Output current, low	IoLNote	REM	Peak value	7.5	mA
			rms	5	mA
		$\overline{\text { LED }}$	Peak value	7.5	mA
			rms	5	mA
Operating ambient temperature	TA			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

Note Calculate the rms with: $[\mathrm{rms}]=[$ Peak value $] \times \sqrt{\text { Duty }}$.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Power Supply Voltage Range ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage	V_{DD}	$\mathrm{fx}=3.5$ to 4.5 MHz	2.2	3.0	3.6	V

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V} D=2.2$ to 3.6 V)

Item	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	V^{+1+}	KıIo		0.7VDD		VDD	V
	$\mathrm{V}_{\mathrm{H} 2}$	$\mathrm{K} 1, \mathrm{~S} 0, \mathrm{~S}_{1}, \mathrm{~S}_{2}$		0.65 VDD		VDD	V
Input voltage, low	VIL1	K/o		0		0.3 VDD	V
	VIL2	$\mathrm{K} 1, \mathrm{~S} 0, \mathrm{~S}_{1}, \mathrm{~S}_{2}$		0		0.15 VDD	V
Input leakage current, high	ILIH1	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$, pull-down resistor not incorporated				3	$\mu \mathrm{A}$
	ILIH2	$\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$ $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$, pull-down resistor not incorporated				3	$\mu \mathrm{A}$
Input leakage current, Iow	ILIL1	$\mathrm{K}_{1} \quad \mathrm{~V}_{1}=0 \mathrm{~V}$				-3	$\mu \mathrm{A}$
	ILLL2	$\mathrm{K}_{1 /} \mathrm{O} \quad \mathrm{V}_{1}=0 \mathrm{~V}$				-3	$\mu \mathrm{A}$
	ILı3	$\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2} \mathrm{~V}_{1}=0 \mathrm{~V}$				-3	$\mu \mathrm{A}$
Output voltage, high	Voh1	REM, $\overline{\text { LED, }}$ K//	$\mathrm{IOH}=-0.3 \mathrm{~mA}$	0.8VDD			V
Output voltage, low	VoL1	REM, $\overline{\text { LED }}$	$\mathrm{loL}=0.3 \mathrm{~mA}$			0.3	V
	Vol2	K/10	$\mathrm{loL}=15 \mu \mathrm{~A}$			0.4	V
Output current, high	Іон1	REM	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, $\mathrm{V}_{\text {OH }}=1.0 \mathrm{~V}$	-5	-9		mA
	Іон2	K/1o	$\mathrm{V}_{\mathrm{dD}}=3.0 \mathrm{~V}$, V OH $=2.2 \mathrm{~V}$	-2.5	-5		mA
Output current, low	IoL1	Kıo	V dD $=3.0 \mathrm{~V}$, Vol $=0.4 \mathrm{~V}$	30	70		$\mu \mathrm{A}$
			V DD $=3.0 \mathrm{~V}$, V ol $=2.2 \mathrm{~V}$	100	220		$\mu \mathrm{A}$
On-chip pull-down resistor	R1	$\mathrm{K}_{1}, \mathrm{~S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$		75	150	300	$\mathrm{k} \Omega$
	R2	Kıo		130	250	500	$\mathrm{k} \Omega$
Data retention power supply voltage	Vidor	In STOP mode		1.2		3.6	V
RAM retention detection voltage	VID				1.7	1.8	V
Supply current	IDD1	Operation mode	$\mathrm{fx}_{\mathrm{x}}=4.0 \mathrm{MHz}, \mathrm{VDD}=3 \mathrm{~V} \pm 10 \%$		1.1	2.2	mA
	IdD2	HALT mode	$\mathrm{fx}_{\mathrm{x}}=4.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%$		1.0	2.0	mA
	IdD3	STOP mode	$V_{\text {DD }}=3 \mathrm{~V} \pm 10 \%$		2.2	9.5	$\mu \mathrm{A}$
			$\mathrm{V} D \mathrm{DD}=3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.2	3.5	$\mu \mathrm{A}$

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.2$ to 3.6 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Instruction execution time	tcy	μ PD6P9M1		14	16	18.5	$\mu \mathrm{s}$
		μ PD6P9M3		7	8	9.25	$\mu \mathrm{s}$
$\mathrm{K}_{\mathrm{I}}, \mathrm{S}_{0}, \mathrm{~S}_{1}$ high-level width	th			10			$\mu \mathrm{s}$
		When releasing standby mode	In HALT mode	10			$\mu \mathrm{s}$
			In STOP mode	Note			$\mu \mathrm{s}$
$\overline{\text { RESET }}$ low-level width	trsL			10			$\mu \mathrm{s}$

$\star \quad$ Note $10+284 / \mathrm{fx}+$ oscillation growth time (μ PD6P9M1), $10+270 / \mathrm{fx}+$ oscillation growth time ($\mu \mathrm{PD} 6 \mathrm{P} 9 \mathrm{M} 3$)
$\star \quad$ Remark tcy $=64 / \mathrm{fx}(\mu \mathrm{PD} 6 \mathrm{P} 9 \mathrm{M} 1)$, tcy $=32 / \mathrm{fx}(\mu \mathrm{PD} 6 \mathrm{P} 9 \mathrm{M} 3)$ (fx: System clock oscillation frequency)

POC Circuit ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
POC detection voltage ${ }^{\text {Note }}$	V	POC			2.0	2.2

Note Refers to the voltage with which the POC circuit releases an internal reset. If Vpoc < Vdd, the internal reset is released.
From the time of $V_{P O C} \geq V_{D D}$ until the internal reset takes effect, lag of up to 1 ms occurs. When the period of $V_{P O C} \geq V_{D D}$ lasts less than 1 ms , the internal reset may not take effect.

System Clock Oscillator Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=2.2$ to 3.6 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Oscillation frequency (ceramic resonator)	fx		3.5	4.0	4.5	MHz

* External circuit example

Remark For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

PROM Programming Mode

$D C$ programming characteristics $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VDD}=6.0 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.5 \pm 0.3 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	$\mathrm{V}_{\mathrm{H} 1}$	Other than CLK	$0.7 \mathrm{~V}_{\mathrm{dD}}$		VDD	V
	$\mathrm{VIH2}$	CLK	VDD - 0.5		VDD	V
Input voltage, low	VIL1	Other than CLK	0		0.3 VDD	V
	VIL2	CLK	0		0.4	V
Input leakage current	ILI	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$			10	$\mu \mathrm{A}$
Output voltage, high	Voн	Іон $=-1 \mathrm{~mA}$	VDD - 1.0			V
Output voltage, low	Vol	$\mathrm{loL}=1.6 \mathrm{~mA}$			0.4	V
VDD supply current	Ido				30	mA
VPP supply current	Ipp	$\mathrm{MD}_{0}=\mathrm{V}_{\mathrm{IL}}, \mathrm{MD}_{1}=\mathrm{V}_{\text {IH }}$			30	mA

Cautions 1. Keep Vpp to within +13.5 V including overshoot.
2. Apply Vdd before Vpp and turns it off after Vpp.
$A C$ programming characteristics $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=6.0 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.5 \pm 0.3 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Address setup time ${ }^{\text {Note } 1}$ (to MDo ${ }^{\text {d }}$)	$\mathrm{t}_{\text {As }}$		2			$\mu \mathrm{s}$
MD ${ }_{1}$ setup time (to MDo \downarrow)	tm1s		2			$\mu \mathrm{s}$
Data setup time (to MDo \downarrow)	tos		2			$\mu \mathrm{s}$
Address hold time ${ }^{\text {Note } 1}$ (from MD ${ }_{0} \uparrow$)	taH		2			$\mu \mathrm{s}$
Data hold time (from MDo ${ }^{\text {) }}$	toh		2			$\mu \mathrm{s}$
Delay time from MDo \uparrow to data output float	tbF		0		130	ns
VPP setup time (to $\mathrm{MD}_{3} \uparrow$)	tvps		2			$\mu \mathrm{s}$
V DD setup time (to $\mathrm{MD}_{3} \uparrow$)	tvos		2			$\mu \mathrm{s}$
Initial program pulse width	tpw		0.95	1.0	1.05	ms
Additional program pulse width	topw		0.95		21.0	ms
MDo setup time (to MD ${ }_{1} \uparrow$)	tmos		2			$\mu \mathrm{s}$
Delay time from MD ${ }_{0} \downarrow$ to data output	tov	$\mathrm{MD0}=\mathrm{MD1}=\mathrm{V}$ IL			1	$\mu \mathrm{s}$
MD_{1} hold time (from MDo \uparrow)	tмін	$\mathrm{tmin}^{\text {+ }}$ (m1R $\geq 50 \mu \mathrm{~s}$	2			$\mu \mathrm{s}$
MD ${ }_{1}$ recovery time (to MDo ${ }^{\text {d }}$)	tmiR		2			$\mu \mathrm{s}$
Program counter reset time	tPCR		10			$\mu \mathrm{s}$
CLK input high-/low-level width	txh, txL		0.125			$\mu \mathrm{s}$
CLK input frequency	$\mathrm{fx}^{\text {d }}$				4.19	MHz
Initial mode set time	t		2			$\mu \mathrm{s}$
MD_{3} setup time (to MD1 \uparrow)	tm3s		2			$\mu \mathrm{s}$
MD_{3} hold time (from MD $\downarrow \downarrow$)	tмзн		2			$\mu \mathrm{s}$
MD_{3} setup time (to MDo \downarrow)	tm3sr	When program memory is read	2			$\mu \mathrm{s}$
Delay time from address ${ }^{\text {Note }} 1$ to data output	toad	When program memory is read			2	$\mu \mathrm{s}$
Hold time from address ${ }^{\text {Note } 1}$ to data output	thad	When program memory is read	0		130	ns
MD_{3} hold time (from MD0 \uparrow)	Імзнв	When program memory is read	2			$\mu \mathrm{s}$
Delay time from MD3 \downarrow to data output float	tdFr	When program memory is read			2	$\mu \mathrm{s}$
Reset setup time	tres		10			$\mu \mathrm{s}$
Oscillation stabilization wait time ${ }^{\text {Note } 2}$	twalt		2			ms

Notes 1. The internal address signal is incremented at the falling edge of the third clock of CLK.
2. Connect a 4 MHz ceramic resonator between the Xin and Xout pins.

Program Memory Write Timing

Program Memory Read Timing

7. CHARACTERISTIC CURVES (REFERENCE VALUES) (μ PD6P9M1)

8. APPLICATION CIRCUIT EXAMPLE

Example of Application to System

- Remote-control transmitter (48 keys accommodated, mode selection switch accommodated)

Note S_{2} : Set to STOP mode release disabled

- Remote-control transmitter (56 keys accommodated)

Note S_{2} : Set to STOP mode release enabled

- Remote-control transmitter (56 keys accommodated, mode selection switch accommodated)

Data can be read from the $\mathrm{K}_{\mathrm{I} / 00}$ to $\mathrm{K}_{\mathrm{l} / 07}$ pins by connecting a pull-up resistor of approx. $50 \mathrm{k} \Omega$ and a switch to these pins (which then become high level when the switch is on and low level when off). Set the Kı/oo to $\mathrm{K}_{\text {I/O7 }}$ pins to input mode at this time. Reading data from these pins enables multiple output data to be obtained for the same key input.
A pull-up resistor can be connected to any of pins $\mathrm{K}_{1 / 00}$ to $\mathrm{K}_{1 / 07}$ (the figure below shows an example of when a pull-up resistor is connected to the K//05 pin).

Note S_{2} : Set to STOP mode release enabled

9. PACKAGE DRAWING

20-PIN PLASTIC SSOP (7.62 mm (300))

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	6.65 ± 0.15
B	0.475 MAX.
C	0.65 (T.P.)
D	$0.24_{-0.07}^{+0.08}$
E	0.1 ± 0.05
F	1.3 ± 0.1
G	1.2
H	8.1 ± 0.2
I	6.1 ± 0.2
J	1.0 ± 0.2
K	0.17 ± 0.03
L	0.5
M	0.13
N	0.10
P	$3^{\circ}{ }_{-3^{\circ}}{ }^{\circ}$
T	0.25
U	0.6 ± 0.15
	S20MC-65-5A4-2

10. RECOMMENDED SOLDERING CONDITIONS

The μ PD6P9 must be soldered and mounted under the following recommended conditions.
For details of the recommended soldering conditions, refer to the document Semiconductor Device Mounting

Technology Manual (C10535E).

For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales representative.

Table 10-1. Surface Mounting Soldering Conditions
μ PD6P9M1MC-5A4: 20-pin plastic SSOP (7.62 mm (300))
μ PD6P9M3MC-5A4: 20-pin plastic SSOP (7.62 mm (300))

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrated reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds max. (at $210^{\circ} \mathrm{C}$ or higher), Count: Two times or less, Exposure limit: 3 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 hours)	IR35-103-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 seconds max. (at $200^{\circ} \mathrm{C}$ or higher), Count: Two times or less, Exposure limit: 3 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 hours)	VP15-103-2
Wave soldering	Solder bath temperature: $260^{\circ} \mathrm{C}$ max, Time: 10 seconds max., Count: once, preheating temperature: $120^{\circ} \mathrm{C}$ max. (package surface temperature) Exposure limit: 3 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 hours)	WS60-103-1
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and $65 \% \mathrm{RH}$ or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

APPENDIX A. DEVELOPMENT TOOLS

A PROM programmer, program adapter, and an emulator are provided for the $\mu \mathrm{PD} 6 \mathrm{P} 9$.

Hardware

- PROM programmer (AF-9706 ${ }^{\text {Note }}$, AF-9708 ${ }^{\text {Note }}$, AF-9709 ${ }^{\text {Note }}$)

These PROM programmers support the μ PD6P9.
By connecting a program adapter to this PROM programmer, the $\mu \mathrm{PD} 6 \mathrm{P} 9$ can be programmed.

Note These are products of Ando Electric Co., Ltd. For details, consult Ando Electric Co., Ltd. (TEL: +81-3-3733-1163).

- Program adapter (PA-61P34BMC)

This is used to program the $\mu \mathrm{PD} 6 \mathrm{P} 9$ in combination with the AF-9706, AF-9708, or AF-9709.
$\star \quad \bullet$ Emulator (EB-69 ${ }^{\text {Note 1 }}$, EB-69A ${ }^{\left.\text {Note 1, }{ }^{2} \text {) }\right) ~(1) ~}$
This is used to emulate the μ PD6P9.
Use the EB-69 for the μ PD6P9M1, and the EB-69A for the μ PD6P9M3.

Notes 1. These are products of Naito Densei Machida Mfg. Co., Ltd. For details, contact Naito Densei Machida Mfg. Co., Ltd. (+81-45-475-4191).
2. Under development

Software

- Assembler (AS6133 Ver. 2.22 or later)

This is a development tool for remote control transmitter software.

Part Number List of AS6133

Host Machine	OS	Supply Medium	Part Number
PC-9800 series (CPU: 80386 or later)	MS-DOS $^{\text {TM }}$ (Ver. 5.0 to Ver. 6.2)	3.5 -inch 2HD	μ S5A13AS6133
IBM PC/AT ${ }^{\text {TM }}$ compatible	MS-DOS (Ver. 6.0 to Ver. 6.22)	3.5 -inch 2HC	μ S7B13AS6133
	PC DOS ${ }^{\text {TM }}$ (Ver. 6.1 to Ver. 6.3)		

Caution Although Ver.5.0 or later has a task swap function, this function cannot be used with this software.

APPENDIX B. EXAMPLE OF REMOTE CONTROL TRANSMISSION FORMAT
 (In the case of NEC transmission format in command one-shot transmission mode)

Caution When using the NEC transmission format, please apply for a custom code at NEC Electronics.
(1) REM output waveform (from <2> on, the output is made only when the key is kept pressed)

Remark If the key is repeatedly pressed, the power consumption of the infrared light-emitting diode (LED) can be reduced by sending the reader code and the stop bit from the second time.
(2) Enlarged waveform of <1>

(3) Enlarged waveform of <3>

(4) Enlarged waveform of <2>

(5) Carrier waveform (enlarged waveform of each code's high period)

(6) Bit array of each code

Caution To prevent malfunction with other systems when receiving data in the NEC transmission format, not only fully decode (make sure to check Data Code as well) the total 32 bits of the 16-bit custom codes (Custom Code, Custom Code') and the 16-bit data codes (Data Code, $\overline{\text { Data Code) }}$ but also check to make sure that no signals are present.
[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics America, Inc. (U.S.) • Filiale Italiana
Santa Clara, California
Tel: 408-588-6000
800-366-9782
Fax: 408-588-6130
800-729-9288
NEC Electronics (Europe) GmbH
Duesseldorf, Germany
Tel: 0211-65 0301
Fax: 0211-65 03327

- Sucursal en España

Madrid, Spain
Tel: 091-504 2787
Fax: 091-504 2860

- Succursale Française

Vélizy-Villacoublay, France
Tel: 01-30-6758 00
Fax: 01-30-67 5899

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Shanghai, Ltd.
Shanghai, P.R. China
Tel: 021-6841-1138
Fax: 021-6841-1137
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951
NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 6253-8311
Fax: 6250-3583

MS-DOS is either a registered trademark or a trademark of Microsoft Corporation in the United States and/ or other countries.

PC/AT and PC DOS are trademarks of International Business Machines Corporation.

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of September, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such NEC Electronics products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact NEC Electronics sales representative in advance to determine NEC Electronics's willingness to support a given application.
(Note)
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

[^0]: The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
 Not all products and/or types are available in every country. Please check with NEC Electronics sales representative for availability and additional information.

