4-BIT SINGLE-CHIP MICROCONTROLLER

FOR INFRARED REMOTE CONTROL TRANSMISSION

DESCRIPTION

With their 2.0 V low-voltage operation, carrier generator for infrared remote control transmission, standby release function through key input, and programmable timer, the $\mu \mathrm{PD} 67,67 \mathrm{~A}, 68,68 \mathrm{~A}$, and 69 are ideal for infrared remote control transmitters.

A one-time PROM product, the $\mu \mathrm{PD} 6 \mathrm{P} 9$, has also been provided for the $\mu \mathrm{PD} 67,67 \mathrm{~A}, 68,68 \mathrm{~A}$, and 69 for program evaluation or small-quantity production.

FEATURES

- Program memory (ROM)
- μ PD67, 67A: $1,002 \times 10$ bits
- μ PD68, 68A: $2,026 \times 10$ bits
- μ PD69: $4,074 \times 10$ bits
- Data memory (RAM)
- μ PD67, 67A, 68, 68A: 32×4 bits
- μ PD69: 128×4 bits
- On-chip carrier generator for infrared remote control: Each high-/low-level width can be set from 250 ns to 64 $\mu \mathrm{s}$ (@ $\mathrm{fx}=4 \mathrm{MHz}$ operation) via modulo registers
- 9-bit programmable timer: 1 channel
- Instruction execution time: $16 \mu \mathrm{~s}$ (@ fx $=4 \mathrm{MHz}$ operation: ceramic oscillation)
- Stack level: $\quad 1$ level (Stack RAM is multiplexed with data memory RF.)
- I/O pins (K//o): 8
- Input pins (KI): 4
- Sense input pins ($\mathrm{S}_{0}, \mathrm{~S}_{2}$): 2
- $\mathrm{S}_{1} / \overline{\mathrm{LED}}$ pin (I/O): $\quad 1$ (when in output mode, this is the remote control transmission display pin)
- Power supply voltage:

Vdd $=2.0$ to 3.6 V

- Operating ambient temperature: $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$
- Oscillator frequency:
$\mathrm{fx}=3.5$ to 4.5 MHz
- On-chip POC circuit and RAM retention detector
- Capacitor for oscillator: 15 pF (mask option)

APPLICATIONS

Infrared remote control transmitters (for AV and household electric appliances)

[^0]
ORDERING INFORMATION

Part Number	Package
μ PD67MC $-\times \times \times-5$ A4	20-pin plastic SSOP $(7.62 \mathrm{~mm} \mathrm{(300))}$
μ PD67AMC- $\times \times \times-5$ A4	20-pin plastic SSOP $(7.62 \mathrm{~mm}(300))$
μ PD68MC $-\times \times \times-5$ A4	20-pin plastic SSOP $(7.62 \mathrm{~mm} \mathrm{(300))}$
μ PD68AMC- $\times \times \times-5$ A4	20-pin plastic SSOP $(7.62 \mathrm{~mm}(300))$
μ PD69MC $-\times \times \times-5$ A4	20-pin plastic SSOP $(7.62 \mathrm{~mm} \mathrm{(300))}$

Remark $\times X \times$ indicates $R O M$ code suffix.

PIN CONFIGURATION (TOP VIEW)

20-pin Plastic SSOP (7.62 mm (300))

- μ PD67MC-×××-5A4
- μ PD67AMC- $\times \times \times-5 A 4$
- μ PD68MC-×××-5A4
- $\quad \mu$ PD68AMC-×××-5A4
- μ PD69MC-×xx-5A4

Caution The pin numbers of K_{I} and $K_{I / o}$ are in the reverse order of those in the μ PD6600A, and 6124A.

BLOCK DIAGRAM

LIST OF FUNCTIONS

Item	$\mu \mathrm{PD} 67,67 \mathrm{~A}$	μ PD68, 68A	μ PD69	$\mu \mathrm{PD} 6 \mathrm{P} 9$
ROM capacity	1,002 $\times 10$ bits	$2,026 \times 10$ bits	$4,074 \times 10$ bi	
	Mask ROM			One-time PROM
RAM capacity	32×4 bits		128×4 bits	
Stack	1 level (multiplexed with RF of RAM)			
I/O pins	- Key input (KI): - Key I/O (K/o): 8 - Key extended input ($\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$): 3 - Remote control transmission display output ($\overline{\mathrm{LED}}): 1$ (multiplexed with $\mathrm{S}_{1} \mathrm{pin}$)			
Number of keys	- 32 - 56 (when extended by key extension input)			
Clock frequency	Ceramic oscillation - $\mathrm{fx}=3.5$ to 4.5 MHz			
Instruction execution time	$16 \mu \mathrm{~s}$ (@ fx $=4 \mathrm{MHz}$)			
Carrier frequency	Each high-/low-level width can be set from 250 ns to $64 \mu \mathrm{~s}$ (@ fx $=4 \mathrm{MHz}$ operation) via modulo registers			
Timer ${ }^{\text {Note }}$	9-bit programmable timer: 1 channel, timer clock: fx/64			
POC circuit	On-chip			
RAM retention detector	On-chip			
Capacitor for oscillation (15 pF)	Mask option			Set to be used/ not used in device
Supply voltage	$V_{\text {DD }}=2.0$ to 3.6 V			$V_{\text {DD }}=2.2$ to 3.6 V
Operating ambient temperature	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			
Package	20-pin plastic SSOP (7.62 mm (300))			

Note The timer output time differs between the μ PD67, 68, and 69 and the μ PD67A and 68A. For details, refer to 4 TIMER.

CONTENTS

1. PIN FUNCTIONS 6
1.1 List of Pin Functions 6
1.2 Pin I/O Circuits 7
1.3 Connection of Unused Pins 8
2. INTERNAL CPU FUNCTIONS 9
2.1 Program Counter (PC) 9
2.2 Stack Pointer (SP) 9
2.3 Address Stack Register (ASR (RF)) 9
2.4 Program Memory (ROM) 10
2.5 Data Memory (RAM) 11
2.6 Data Pointer (DP) 12
2.7 Accumulator (A) 12
2.8 Arithmetic and Logic Unit (ALU) 12
2.9 Flags 13
2.9.1 Status flag (F) 13
2.9.2 Carry flag (CY) 13
3. PORT REGISTERS (PX) 14
3.1 Kı/o Port (PO) 15
3.2 Kı Port/Special Ports (P1) 15
3.2.1 Kı port (P_{11} : bits 4 to 7 of P_{1}) 15
3.2.2 So port (bit 2 of P1) 16
3.2.3 S1/LED (bit 3 of P1) 16
3.2.4 \quad S2 port (bit 1 of P1) 16
3.3 Control Register 0 (P3) 17
3.3.1 RAM retention flag (bit 3 of P3) 18
3.4 Control Register 1 (P4) 19
4. TIMER 20
4.1 Timer Configuration 20
4.2 Timer Operation 21
4.3 Carrier Output 23
4.3.1 Carrier output generator 23
4.3.2 Carrier output control 24
4.4 Software Control of Timer Output 26
5. STANDBY FUNCTION 27
5.1 Outline of Standby Function 27
5.2 Standby Mode Setting and Release 28
5.3 Standby Mode Release Timing 30
6. RESET 31
7. POC CIRCUIT 32
7.1 Functions of POC Circuit 33
7.2 Oscillation Check at Low Supply Voltage 33
8. SYSTEM CLOCK OSCILLATOR 34
9. INSTRUCTION SET 35
9.1 Machine Language Output by Assembler 35
9.2 Circuit Symbol Description 36
9.3 Mnemonic to/from Machine Language (Assembler Output) Contrast Table 37
9.4 Accumulator Manipulation Instructions 41
9.5 I/O Instructions 44
9.6 Data Transfer Instructions 45
9.7 Branch Instructions 47
9.8 Subroutine Instructions 48
9.9 Timer Operation Instructions 49
9.10 Others 52
10. ASSEMBLER RESERVED WORDS 54
10.1 Mask Option Directives 54
10.1.1 OPTION and ENDOP quasi-directives 54
10.1.2 Mask option definition quasi-directives 54
11. ELECTRICAL SPECIFICATIONS 55
12. CHARACTERISTIC CURVES (REFERENCE VALUES) 59
13. APPLICATION CIRCUIT EXAMPLE 60
14. PACKAGE DRAWINGS 63
15. RECOMMENDED SOLDERING CONDITIONS 64
APPENDIX A. DEVELOPMENT TOOLS 65
APPENDIX B. FUNCTIONAL COMPARISON BETWEEN μ PD67A, 68A, 69, AND OTHER PRODUCTS 66
APPENDIX C. EXAMPLE OF REMOTE-CONTROL TRANSMISSION FORMAT (in the case of NEC transmission format in command one-shot transmission mode) 67

1. PIN FUNCTIONS

1.1 List of Pin Functions

Pin No.	Symbol	Function	Output Format	After Reset
$\begin{aligned} & 1 \\ & 2 \\ & 15 \text { to } 20 \end{aligned}$	$\mathrm{K}_{1 / 00}$ to $\mathrm{K}_{1 / 07}$	8-bit I/O port. Input/output can be specified in 8-bit units. In input mode, the use of a pull-down resistor can be specified. In output mode, these pins can be used as key scan outputs from a key matrix.	CMOS push-pull ${ }^{\text {Note }} 1$	High-level output
3	So	Input port. Can also be used as a key return input from a key matrix. In input mode, the use of a pull-down resistor for the S_{0} and S_{1} ports can be specified by software in 2-bit units. If input mode is canceled by software, this pin is placed in OFF mode and enters a high-impedance state.	-	High-impedance (OFF mode)
4	S $1 / \overline{\text { LED }}$	I/O port. In input mode $\left(\mathrm{S}_{1}\right)$, this pin can also be used as a key return input from a key matrix. The use of a pull-down resistor for the S_{0} and S_{1} ports can be specified by software in 2-bit units. In output mode ($\overline{\mathrm{LED}}$), this pin becomes the remote control transmission display output (active low). When the remote control carrier is output from the REM output, this pin outputs a low level from the $\overline{\mathrm{LED}}$ output in synchronization with the REM signal.	CMOS push-pull	High-level output ($\overline{\mathrm{LED}}$)
5	REM	Infrared remote control transmission output. This output is active high. Each carrier high-/low-level width can be freely set in a range of 250 ns to $64 \mu \mathrm{~s}$ (@ $\mathrm{fx}=4 \mathrm{MHz}$) by software.	CMOS push-pull	Low-level output
6	Vdd	Power supply	-	-
$\begin{aligned} & 7 \\ & 8 \end{aligned}$	Xout $X_{I N}$	Pins for connecting ceramic resonators for the system clock. A capacitor (15 pF) for the oscillator can be specified by a mask option.	-	Low level (oscillation stopped)
9	GND	GND	-	-
10	S_{2}	Input port. The use of STOP mode release for the S_{2} port can be specified by software. When used as a key input from a key matrix, enable the use of STOP mode release (at this time, a pull-down resistor is connected internally.) When STOP mode release is disabled, this pin can be used as an input port that does not release the STOP mode even if the release condition is established (at this time, a pull-down resistor is not connected internally.)	-	Input (high-impedance, STOP mode release cannot be used)
11 to 14	K_{10} to $\mathrm{K}_{13}{ }^{\text {Note } 2}$	4-bit input port. These pins can also be used as a key return inputs from a key matrix. The use of a pull-down resistor can be specified by software in 4-bit units.	-	Input (low-level)

Notes 1. Be careful about this because the drive capacity of the low-level output side is held low.
2. In order to prevent malfunction, be sure to input a low level to one or more of pins Kı to Kı when POC is released by supply voltage rising (Can be left open. When open, leave the pull-down resistor connected).

1.2 Pin I/O Circuits

The I/O circuits of pins of the $\mu \mathrm{PD} 67,67 \mathrm{~A}, 68,68 \mathrm{~A}$, and 69 are shown in partially simplified forms below.

(4) S_{0}

(5) $S_{1} / \overline{\mathrm{LED}}$

Note The drive capacity is held low.
(2) K_{10} to K_{13}

(3) REM

(6) S_{2}

1.3 Connection of Unused Pins

The following connections are recommended for unused pins.

Table 1-1. Connection of Unused Pins

Pin		Connection	
		Inside the Microcontroller	Outside the Microcontroller
Kı/o	Input mode	-	Leave open.
	Output mode	High-level output	
REM		-	
$S_{1} / \overline{L E D}$		Output mode ($\overline{\text { LED }}$) setting	
So		OFF mode setting	Directly connect to GND.
S_{2}		-	
K1		-	

Caution The I/O mode and the pin output level are recommended to be fixed by setting them repeatedly in each loop of the program.

2. INTERNAL CPU FUNCTIONS

2.1 Program Counter (PC): 11 Bits ($\mu \mathrm{PD} 67,67 \mathrm{~A}, 68,68 \mathrm{~A}$)
 12 Bits (μ PD69)

The program counter (PC) is a binary counter that holds the address information of the program memory.

Figure 2-1. Program Counter Configuration

The PC contains the address of the instruction that should be executed next. Normally, the counter contents are automatically incremented in accordance with the instruction length (byte count) each time an instruction is executed.

However, when executing jump instructions (JMP, JC, JNC, JF, JNF), the PC contains the jump destination address written in the operand.

When executing the subroutine call instruction (CALL), the call destination address written in the operand is entered in the PC after the PC contents at the time are saved in the address stack register (ASR). If the return instruction (RET) is executed after the CALL instruction is executed, the address saved in the ASR is restored to the PC.

After reset, the value of the PC becomes " 000 H ".

2.2 Stack Pointer (SP): 1 Bit

This is a 1-bit register that holds the status of the address stack register.
The stack pointer contents are incremented when the call instruction (CALL) is executed and decremented when the return instruction (RET) is executed.

When reset, the stack pointer contents are cleared to 0 .
When the stack pointer overflows (stack level 2 or more) or underflows, the CPU is defined as hung up, a system reset signal is generated, and the PC becomes 000 H .

As no instruction is available to set a value directly for the stack pointer, it is not possible to operate the pointer by means of a program.

2.3 Address Stack Register (ASR (RF)): 11 Bits (μ PD67, 67A, 68, 68A) 12 Bits (μ PD69)

The address stack register saves the return address of the program after a subroutine call instruction is executed.
The lower 8 bits are allocated in RF of the data memory as a alternate-function RAM. The register holds the ASR value even after the RET instruction is executed.

After reset, it holds the previous data (undefined when turning on the power).

Caution If RF is accessed as the data memory, the higher 3 bits of the μ PD67, 67A, 68, and 68A, and higher 4 bits of the μ PD69 become undefined.

Figure 2-2. Address Stack Register Configuration

2.4 Program Memory (ROM): 1,002 Steps $\times 10$ Bits (μ PD67, 67A)
 2,026 Steps $\times 10$ Bits (μ PD68, 68A)
 4,074 Steps $\times 10$ Bits (μ PD69)

The ROM consists of 10 bits per step, and is addressed by the program counter.
The program memory stores programs and table data, etc.
The 22 steps from 7EAH to 7FFH of the μ PD67, 67A, 68, and 68A, and FEAH to FFFH of the μ PD69 cannot be used in the test program area.

Figure 2-3. Program Memory Map

2.5 Data Memory (RAM): 32×4 Bits (μ PD67, 67A, 68, 68A)
 128×4 Bits (μ PD69)

The data memory, which is a static RAM consisting of 32×4 bits, is used to retain processed data. The data memory is sometimes processed in 8-bit units. R0 can be used as the ROM data pointer.

RF is also used as the ASR.
After reset, R0 is cleared to 00 H and R 1 to RF retain the previous data (undefined when turning on the power).

Figure 2-4. Data Memory Configuration

2.6 Data Pointer (DP): 12 Bits

The ROM data table can be referenced by setting the ROM address in the data pointer to call the ROM contents.
The lower 8 bits of the ROM address are specified by R0 of the data memory; and the higher 4 bits by bits 4 to 7 of the P3 register (CRO).

After reset, the pointer contents become 000 H .

Figure 2-5. Data Pointer Configuration

Note Set DP 10 and DP_{11} to 0 in the case of the $\mu \mathrm{PD} 67$ and 67 A , and set DP_{10} to 0 in the case of the μ PD68 and 68A.

2.7 Accumulator (A): 4 Bits

The accumulator, which refers to a register consisting of 4 bits, plays a leading role in performing various operations.

After reset, the accumulator contents are left undefined.

Figure 2-6. Accumulator Configuration

A_{3}	A_{2}	A_{1}	A_{0}
A			

2.8 Arithmetic and Logic Unit (ALU): 4 Bits

The arithmetic and logic unit (ALU), which refers to an arithmetic circuit consisting of 4 bits, executes simple (mainly logical) operations.

2.9 Flags

2.9.1 Status flag (F)

Pin and timer statuses can be checked by executing the STTS instruction to check the status flag.
The status flag is set (to 1) in the following cases.

- If the condition specified with the operand is met when the STTS instruction is executed
- When standby mode is released.
- When the release condition is met at the point of executing the HALT instruction. (In this case, the system does not enter the standby mode.)

Conversely, the status flag is cleared (to 0) in the following cases:

- If the condition specified with the operand is not met when the STTS instruction is executed.
- When the status flag has been set (to 1), the HALT instruction executed, but the release condition is not met at the point of executing the HALT instruction. (In this case, the system does not enter the standby mode.)

Table 2-1. Conditions for Status Flag (F) to Be Set by STTS Instruction

Operand Value of STTS Instruction				Condition for Status Flag (F) to Be Set
b_{3}	b_{2}	b_{1}	bo	
0	0	0	0	High level is input to at least one of K_{1} pins.
	0	1	1	High level is input to at least one of K_{l} pins.
	1	1	0	High level is input to at least one of Kı pins.
	1	0	1	The down counter of the timer is 0 .
1	Either of the combinations of b_{2}, b_{1}, and b_{0} above.			[The following condition is added in addition to the above.] High level is input to at least one of S_{0} Note $\mathbf{1}^{1}, \mathrm{~S}_{1}$ Note ${ }^{1}$, or S_{2} Note 2 pins.

Notes 1. The S_{0} and S_{1} pins must be set to input mode (bit 2 and bit 0 of the P 4 register are set to 0 and 1, respectively).
2. The use of STOP mode release for the S_{2} pin must be enabled (bit 3 of the P 4 register is set to 1).

2.9.2 Carry flag (CY)

The carry flag is set (to 1) in the following cases:

- If the ANL instruction or the XRL instruction is executed when bit 3 of the accumulator is 1 and bit 3 of the operand is 1.
- If the RL instruction or the RLZ instruction is executed when bit 3 of the accumulator is 1 .
- If the INC instruction or the SCAF instruction is executed when the value of the accumulator is 0FH.

The carry flag is cleared (to 0) in the following cases:

- If the ANL instruction or the XRL instruction is executed when at least either bit 3 of the accumulator or bit 3 of the operand is 0 .
- If the RL instruction or the RLZ instruction is executed when bit 3 of the accumulator is 0 .
- If the INC instruction or the SCAF instruction is executed when the value of the accumulator is other than 0FH.
- If the ORL instruction is executed.
- When data is written to the accumulator by the MOV instruction or the IN instruction.

3. PORT REGISTERS (PX)

The $K_{1 / o}$ port, the $K_{ı}$ port, the special ports ($\mathrm{S}_{0}, \mathrm{~S}_{1} / \overline{\mathrm{LED}}, \mathrm{S}_{2}$), and the control registers are treated as port registers. After reset, the port register values are as shown below.

Figure 3-1. Port Register Configuration

Port register								After reset
P0								FFH
P_{10}				Poo				
Kl/07	$\mathrm{K}_{1 / 06}$	$\mathrm{K}_{1 / 05}$	Kl/O4	KI/O3	K//02	Kl/O1	K//O0	
P1								$X X X \times 11 \times 1 B^{\text {Note } 1}$
P_{11}				P01				
Kı3	K 12	Kı1	Kı0	$S_{1} / \overline{L E D}$	So	S 2	1	
P3 (control register 0)								$0000 \times 000 B^{\text {Note } 2}$
P_{13}				P03				
DP 1_{11}	DP10	DP9	DP8	RAM retention flag	$-$	ID1	ID0	
P4 (control register 1)								26 H
P14				P04				
0	0	K_{1} Pull-down	$\mathrm{S}_{0} / \mathrm{S}_{1}$ Pull-down	S2 STOP release	$\mathrm{S}_{1} / \overline{\mathrm{LED}}$ mode	Kı/o mode	So mode	

Notes 1. \times : Refers to the value based on the K_{1} and S_{2} pin state.
2. x : Refers to the value based on decrease of power supply voltage (0 when $V_{D D} \leq V_{\text {ID }}$)

Remark VID: RAM retention detection voltage

Table 3-1. Relationship Between Ports and Reading/Writing

Port Name	Input Mode		Output Mode	
	Read	Write	Read	Write
$\mathrm{K}_{1 /}$	Pin state	Output latch	Output latch	Output latch
K_{1}	Pin state	-	-	-
S_{0}	Pin state	-	Note	-
$\mathrm{S}_{1} / \overline{\text { LED }}$	Pin state	-	Pin state	-
S_{2}	Pin state	-	-	-

Note When in OFF mode, "1" is always read.

3.1 Kı/o Port (PO)

The Kı/o port is an 8-bit I/O port for key scan output.
I / O mode is set by bit 1 of the P 4 register.
If a read instruction is executed, the pin state can be read in input mode, whereas the output latch contents can be read in output mode.

If a write instruction is executed, data can be written to the output latch regardless of input or output mode. After reset, the port is placed in output mode and the value of the output latch (P0) becomes 1111 1111B.
The KI/o port incorporates a pull-down resistor, allowing pull-down in input mode only.

Caution When a key is double-pressed, a high-level output and a low-level output may conflict at the KI/o port. To avoid this, the low-level output current of the K//o port is held low. Therefore, be careful when using the Kl/o port for purposes other than key scan output.
The KI/o port is designed so that even when connected directly to Vdo within the normal supply voltage range ($\mathrm{V}_{\mathrm{DD}}=2.0$ to 3.6 V), no problem occurs.

Table 3-2. Kı/o Port (P0)

Bit	b_{7}	$\mathrm{~b}_{6}$	$\mathrm{~b}_{5}$	$\mathrm{~b}_{4}$	$\mathrm{~b}_{3}$	$\mathrm{~b}_{2}$	$\mathrm{~b}_{1}$	$\mathrm{~b}_{0}$
Name	$\mathrm{K}_{\mathrm{l} / 07}$	$\mathrm{~K}_{\mathrm{l} / 06}$	$\mathrm{~K}_{\mathrm{I} / 05}$	$\mathrm{~K}_{\mathrm{I} / 04}$	$\mathrm{~K}_{\mathrm{I} / 03}$	$\mathrm{~K}_{\mathrm{I} / 02}$	$\mathrm{~K}_{\mathrm{l} / 01}$	$\mathrm{~K}_{\mathrm{I} / 00}$

bo to b7: When reading:

When writing: Data is written to the Kı/o pin's output latch regardless of input or output mode.

3.2 Kı Port/Special Ports (P1)

3.2.1 Kı port (P_{11} : bits 4 to 7 of P_{1})

The Kı port is a 4-bit input port for key input. The pin state can be read.
The use of a pull-down resistor for the Kı port can be specified in 4-bit units by software using bit 5 of the P4 register. After reset, a pull-down resistor is connected.

Table 3-3. Kı/Special Port Register (P1)

Bit	b_{7}	$\mathrm{~b}_{6}$	$\mathrm{~b}_{5}$	$\mathrm{~b}_{4}$	$\mathrm{~b}_{3}$	$\mathrm{~b}_{2}$	$\mathrm{~b}_{1}$	$\mathrm{~b}_{0}$
Name	K_{13}	$\mathrm{~K}_{12}$	$\mathrm{~K}_{11}$	$\mathrm{~K}_{10}$	$\mathrm{~S}_{1} / / \overline{\text { LED }}$	S_{0}	$\mathrm{~S}_{2}$	Fixed to " $^{4 \prime}$ "

$b_{1}: \quad$ The state of the S_{2} pin is read (read only).
b2: \quad In input mode, state of the So pin is read (read only).
In OFF mode, this bit is fixed to 1.
$b_{3}: \quad$ The state of the $S_{1} / \overline{L E D}$ pin is read regardless of input/output mode (read only).
b4 to b7: The state of the Kı pin is read (read only).

Caution In order to prevent malfunction, be sure to input a low level to one or more of pins Kıo to Kı when POC is released by supply voltage rising (Can be left open. When open, leave the pulldown resistor connected).

3.2.2 So port (bit 2 of P1)

The So port is an input/OFF mode port.
The pin state can be read by setting this port to input mode using bit 0 of the P 4 register.
In input mode, the use of a pull-down resistor for the S_{0} and $\mathrm{S}_{1} / \overline{\mathrm{LED}}$ port can be specified in 2-bit units by software using bit 4 of the P4 register.

If input mode is released (thus set to OFF mode), the pin becomes high-impedance but is configured so that through current does not flow internally. In OFF mode, 1 can be read regardless of the pin state.

After reset, So is set to OFF mode, thus becoming high-impedance.

3.2.3 $\mathrm{S}_{1} / \overline{\mathrm{LED}}$ port (bit 3 of P 1)

The $\mathrm{S}_{1} / \overline{\mathrm{LED}}$ port is an I/O port.
Input or output mode can be set using bit 2 of the P 4 resister. The pin state can be read in both input mode and output mode.

When in input mode, the use of a pull-down resistor for the S_{0} and $S_{1} / \overline{L E D}$ ports can be specified in 2-bit units by software using bit 4 of the P4 register.

When in output mode, the pull-down resistor is automatically disconnected and this pin becomes the remote control transmission display pin (refer to 4 TIMER).

After reset, $\mathrm{S}_{1} / \overline{\mathrm{LED}}$ is placed in output mode, and a high level is output.

3.2.4 S2 port (bit 1 of P1)

The S_{2} port is an input port.
Use of STOP mode release for the S_{2} port can be specified by bit 3 of the P 4 register.
When using the pin as a key input from a key matrix, enable (bit 3 of the P4 register is set to 1) the use of STOP mode release (at this time, a pull-down resistor is connected internally.) When STOP mode release is disabled (bit 3 of the P4 register is set to 0), it can be used as an input port that does not release the STOP mode even if the release condition is met (at this time, a pull-down resistor is not connected internally.)

The state of the pin can be read in both cases.
After reset, S_{2} is set to input mode where the STOP mode release is disabled, and enters a high-impedance state.

3.3 Control Register 0 (P3)

Control register 0 consists of 8 bits. The contents that can be controlled are as shown below.
After reset, the register becomes $0000 \times 000 B^{\text {Note }}$.
Note \times : Refers to the value based on a decrease of power supply voltage (0 when $V_{D D} \leq V_{I D}$)

Remark VID: RAM retention detection voltage
Table 3-4. Control Register 0 (P3)
(1) μ PD67, 67A, 68, 68A

Bit		b_{7} Note	b_{6} Note	b_{5}	b_{4}	b_{3}	b_{2}	b_{1}	bo
Name		DP (Data Pointer)				RAM			ID0
		DP ${ }_{11}$	DP10	DP9	DP8	flag			
Setting	0	0	0	0	0	Not retainable	Fixed to 0		
	1	1	1	1	1	Retainable			
After reset		0	0	0	0	\times	0	0	0

(2) μ PD69

Bit		b_{7}	b_{6}	b_{5}	b_{4}	b_{3}	b_{2}	b_{1}	bo	
Name		DP (Data Pointer)				RAM retention flag	-	ID1	IDO	
		DP 11	DP10	DP9	DP8					
Setting	0	0	0	0	0	Not retainable	Fixed to 0	Specification of PAGE0 to PAGE3		
	1	1	1	1	1	Retainable				
After reset		0	0	0	0	\times	0	0	0	

bo, b1: \quad Specify RAM pages 0 to 3 (μ PD69 only). Fixed to 0 in the μ PD67, 67A, 68, and 68A.

ID1	ID0	RAM
0	0	Page 0
0	1	Page 1
1	0	Page 2
1	1	Page 3

bs: \quad RAM retention flag. For function details, refer to 3.3.1 RAM retention flag (bit 3 of P3).
b_{4} to b_{7} : Specify the higher bits of the ROM data pointer (DP_{8} to DP_{11}).

Note Set b_{7} and b_{6} to 0 in the case of the $\mu \mathrm{PD} 67$ and 67 A , and set b_{7} to 0 in the case of the $\mu \mathrm{PD} 68$ and 68 A .

3.3.1 RAM retention flag (bit 3 of P 3)

The RAM retention flag indicates whether the supply voltage has fallen below the level at which the contents of the RAM are lost while the battery is being exchanged or when the battery voltage has dropped.

This flag is at bit 3 of control register 0 (P3).
It is cleared to 0 if the supply voltage drops below the RAM retention detection voltage (approx. 1.4 V TYP.). If this flag is 0 , it can be judged that the RAM contents have been lost or that power has just been applied. This flag can be used to initialize the RAM via software. After initializing the RAM and writing the necessary data to it, set this RAM retention flag to 1 by software. At this time, 1 means that data has been set to the RAM.

Figure 3-2. Supply Voltage Transition and Detection Voltage

(1) If the supply voltage rises after the battery has been set, and exceeds Vpoc (POC detection voltage), reset is cleared. Because the supply voltage rises from 0 V , which is lower than VID (RAM retention detection voltage), the RAM retention flag remains in the initial status 0.
(2) The supply voltage has now risen to the level at which the device can operate. Write the necessary data to the RAM and set the RAM retention flag to 1.
(3) The device is reset if the supply voltage drops below Vpoc. At point (A) in the above figure, the RAM retention flag remains 1 because the supply voltage is higher than V_{ID} at this point.
(4) If the RAM retention flag is checked by software after reset has been cleared, it is 1 . This means that the contents of the RAM have not been lost. It is therefore not necessary to initialize the RAM by software.
(5) The device is reset if the supply voltage drops below Vpoc. At point (B) in the figure, the voltage is lower than Vid. Consequently, the RAM retention flag is cleared to 0 .
(6) If the RAM retention flag is checked by software after reset has been cleared, it is 0 . This means that the contents of the RAM may have been lost. If this case, initialize the RAM by software.

3.4 Control Register 1 (P4)

Control register 1 consists of 8 bits. The contents that can be controlled are as shown below.
After reset, the register becomes 0010 0110B.

Table 3-5. Control Register 1 (P4)

Bit		b_{7}	b6	b_{5}	b_{4}	b_{3}	b_{2}	b_{1}	bo
Name		-	-	KI Pull-down	So/S 1 Pull-down	S2 STOP release	$\mathrm{S}_{1} / \overline{\mathrm{LED}}$ mode	KI/O mode	So mode
Setting	0	Fixed to 0	Fixed to 0	OFF	OFF	Disable	S_{1}	IN	OFF
	1			ON	ON	Enable	$\overline{\text { LED }}$	OUT	IN
After reset		0	0	1	0	0	1	1	0

bo: Specifies the input mode of the So port. $0=$ OFF mode (high impedance); $1=I N$ (input mode).
b_{1} : Specifies the I/O mode of the KI/o port.
$0=I N$ (input mode); 1 = OUT (output mode).
b_{2} : Specifies the I/O mode of the $\mathrm{S}_{1} / \overline{\mathrm{LED}}$ port. $0=\mathrm{S}_{1}$ (input mode); $1=\overline{\mathrm{LED}}$ (output mode).
bs: Specified the use of STOP mode release by S_{2} port (with/without pull-down resistor). $0=$ disable (without pull-down); 1 = enable (with pull-down).
b4: Specifies the use of a pull-down resistor in $\mathrm{S}_{0} / \mathrm{S}_{1}$ port input mode. $0=\mathrm{OFF}$ (not used);
1 = ON (used)
b5: Specifies the use of a pull-down resistor for the Kı port. $0=$ OFF (not used);
1 = ON (used).

Remark In output mode or in OFF mode, all the pull-down resistors are automatically disconnected.

4. TIMER

4.1 Timer Configuration

The timer is the block used for creating a remote control transmission pattern. As shown in Figure 4-1, it consists of a 9-bit down counter (t 8 to to), a flag (t) permitting the 1-bit timer output, and a zero detector.

Figure 4-1. Timer Configuration

4.2 Timer Operation

The timer starts (counting down) when a value other than 0 is set for the down counter with a timer manipulation instruction. The timer manipulation instructions for making the timer start operation are shown below:

```
MOV T0, A
MOV T1, A
MOV T, #data10
MOV T, @R0
```

The down counter is decremented (-1) in the cycle of $64 / \mathrm{fx}$. If the value of the down counter becomes 0 , the zero detector generates the timer operation end signal to stop the timer operation. At this time, if the timer is in HALT mode (HALT \#×101B) waiting for the timer to stop its operation, the HALT mode is released and the instruction following the HALT instruction is executed. The output of the timer operation end signal is continued while the down counter is 0 and the timer is stopped. The following relational expression applies between the timer's output time and the down counter's set value.
(a) μ PD67, 68, and 69

Timer output time $=($ Set value +1$) \times 64 / \mathrm{fx}$
(b) μ PD67A and 68A

Timer output time $=($ Set value +1$) \times 64 / \mathrm{fx}-4 / \mathrm{fx}$

In addition, when the timer is set successively, in the $\mu \mathrm{PD} 67 \mathrm{~A}$ and 68 A , the timer output time is also $4 / \mathrm{fx}$ shorter than the total time. An example is shown below.

Example When $\mathrm{fx}_{\mathrm{x}}=4 \mathrm{MHz}$

MOV T, \#3FFH
STTS \#05H
HALT \#05H
MOV T, \#232H
STTS \#05H
HALT \#05H

In the case above, the timer output time is as follows.
(a) μ PD67, 68, and 69
$($ Set value +1$) \times 64 / \mathrm{fx}+($ Set value +1$) \times 64 / \mathrm{fx}$
$=(511+1) \times 64 / 4+(50+1) \times 64 / 4$
$=9.008 \mathrm{~ms}$
(b) μ PD67A and 68 A
$($ Set value +1$) \times 64 / \mathrm{fx}+($ Set value +1$) \times 64 / \mathrm{fx}-4 / \mathrm{fx}$
$=(511+1) \times 64 / 4+(50+1) \times 64 / 4-4 / 4$
$=9.007 \mathrm{~ms}$

By setting the flag (t9) that enables the timer output to 1 , the timer can output its operation status from the $\mathrm{S}_{1} /$ $\overline{\mathrm{LED}}$ pin and the REM pin. The REM pin can also output the carrier while the timer is in operation.

Table 4-1. Timer Output (at $\mathrm{t}_{9}=1$)

	S $1 / \overline{\text { LED Pin }}$	REM Pin
Timer operating	Low level	${\text { High level (or carrier output }{ }^{\text {Note }} \text {) }}^{\text {Timer halting }}$

Note The carrier output results if bit 9 (CARY) of the high-level period setting modulo register (MOD1) is cleared (to 0).

Figure 4-2. Timer Output (When Carrier Is Not Output)

(b) μ PD67A and 68A

Timer output time:

4.3 Carrier Output

4.3.1 Carrier output generator

The carrier generator consists of a 9-bit counter and two modulo registers for setting the high- and low-level periods (MOD1 and MODO respectively).

Figure 4-3. Configuration of Remote Controller Carrier Generator

Notes 1. Bit 9 of the modulo register for setting the low-level period (MODO) is fixed to 0.
2. t9: Flag that enables timer output (timer block) (see Figure 4-1 Timer Configuration)

The carrier duty ratio and carrier frequency can be determined by setting the high- and low-level widths using the respective modulo registers. Each of these widths can be set in a range of 250 ns to $64 \mu \mathrm{~s}$ (@fx=4 MHz).

The system clock multiplied by 2 is used for the 9 -bit counter input (8 MHz when $\mathrm{fx}=4 \mathrm{MHz}$). MOD0 and MOD1 are read and written using timer manipulation instructions.

MOV A, M00	MOV M00, A	MOV M0, \#data10
MOV A, M01	MOV M01, A	MOV M1, \#data10
MOV A, M10	MOV M10, A	MOV M0, @R0
MOV A, M11	MOV M11, A	MOV M1, @R0

The values of MODO and MOD1 can be calculated from the following expressions.

```
MODO \(=(2 \times f \times \times(1-D) \times T)-1\)
MOD1 \(=(2 \times f x \times D \times T)-1\)
```

Caution Be sure to input values in range of 001 H to 1 FFH to MOD0 and MOD1.

Remark D: Carrier duty ratio ($0<\mathrm{D}<1$)
fx: Input clock (MHz)
T: Carrier cycle ($\mu \mathrm{s}$)

4.3.2 Carrier output control

Remote controller carrier can be output from the REM pin by clearing (0) bit 9 (CARY) of the modulo register for setting the high-level period (MOD1).

When performing carrier output, be sure to set the timer operation after setting the MOD0 and MOD1 values. Note that a malfunction may occur if the values of MODO and MOD1 are changed while carrier is being output from the REM pin.

Executing the timer manipulation instruction starts the carrier output from the low level.
If the timer's down counter reaches 0 during carrier output, carrier output is stopped and the REM pin becomes low level. If the down counter reaches 0 while the carrier output is high level, carrier output will stop after first becoming low level following the set period of high level.

Figure 4-4. Timer Output (When Carrier Is Output)
(a) μ PD67, 68, and 69

Timer manipulation instruction

(b) μ PD67A and 68A

Notes 1. If the down counter reaches 0 while the carrier output is high level, carrier output will stop after becoming low level.
2. As shown in figure (b) above, in the $\mu \mathrm{PD} 67 \mathrm{~A}$ and 68 A , because the timer output time is $4 / \mathrm{fx}$ shorter ($1 \mu \mathrm{~s}$: $\mathrm{fx}=4 \mathrm{MHz}$) than in the $\mu \mathrm{PD} 67,68$, and 69 , the down counter reaches 0 while the carrier output is low level, so the carrier may be one clock shorter than in the $\mu \mathrm{PD} 67,68$, and 69.

Output from the REM pin is as follows, in accordance with the values set to bit 9 (CARY) of MOD1 and the timer output enable flag (t 9), and the value of the timer block's 9-bit down counter (to to ts).

Table 4-2. REM Pin Output

MOD1 Bit 9 (CARY)	Timer Output Enable Flag (Timer Block t9)	9-Bit Down Counter (Timer Block to to t8)	REM Pin
-	-	0	Low-level output
-	0	Other than 0	
0	1		Carrier output
1			High-levele output

Note Input values in the range of 001 H to 1 FFH to MOD0 and MOD1.

Caution MODO and MOD1 must be set while the REM pin is low level ($\mathrm{t}_{\mathrm{g}}=0$ or t_{0} to $\mathrm{t}_{8}=0$).

Table 4-3. Example of Carrier Frequency Settings ($\mathrm{fx}=4 \mathrm{MHz}$)

Setting Value		th ($\mu \mathrm{s}$)	t. $(\mu \mathrm{s})$	$\mathrm{T}(\mu \mathrm{s})$	fc (kHz)	Duty
MOD1	MOD0					
01H	01H	0.25	0.25	0.5	2,000	1/2
07H	OBH	1.0	1.5	2.5	400	2/5
13 H	13 H	2.5	2.5	5.0	200	1/2
27H	27H	5.0	5.0	10	100	1/2
41H	41H	8.25	8.25	16.5	60.6	1/2
41H	85H	8.25	16.75	25	40	1/3
45 H	89H	8.75	17.25	26.0	38.5	1/3
45H	8BH	8.75	17.5	26.25	38.10	1/3
45 H	8 CH	8.75	17.625	26.375	37.9	1/3
47H	91H	9.0	18.25	27.25	36.7	1/3
48 H	94H	9.125	18.625	27.75	36.0	1/3
69 H	D5H	13.25	26.75	40.0	25	1/3
77H	77H	15.0	15.0	30.0	33.3	1/2
C7H	C7H	25.0	25.0	50.0	20	1/2
FFH	FFH	32.0	32.0	64.0	15.6	1/2

* 4.4 Software Control of Timer Output

The timer output can be controlled by software. As shown in Figure 4-5, a pulse with a minimum width of 1 instruction cycle (64/fx) can be output in the $\mu \mathrm{PD} 67,68$, and 69 , and a pulse with a minimum width of $64 / \mathrm{fx}-$ 4/fx can be output in the μ PD67A and 68A.

Figure 4-5. Output of Pulse of 1-Instruction Cycle Width
\vdots
MOV T, \#0000000000B; low-level output from the REM pin \vdots

MOV T, \#1000000000B; high-level output from the REM pin MOV T, \#0000000000B; low-level output from the REM pin \vdots

(b) μ PD67A and 68A

5. STANDBY FUNCTION

5.1 Outline of Standby Function

To save current consumption, two types of standby modes, i.e., HALT mode and STOP mode, have been provided available.

In STOP mode, the system clock stops oscillation. At this time, the XIn and Xout pins are fixed to a low level.
In HALT mode, CPU operation halts, while the system clock continues oscillation. When in HALT mode, the timer (including REM output and $\overline{\mathrm{LED}}$ output) operates.

In either STOP mode or HALT mode, the statuses of the data memory, accumulator, and port registers, etc. immediately before the standby mode is set are retained. Therefore, make sure to set the port status for the system so that the current consumption of the whole system is suppressed before the standby mode is set.

Table 5-1. Statuses During Standby Mode

			STOP Mode	HALT Mode
Setting instruction			HALT instruction	
Clock oscillator			Oscillation stopped	Oscillation continued
Operation statuses	CPU		- Operation halted	
	Data		- Immediately preceding status ret	
	Accum		- Immediately preceding status ret	
	Flag	F	- 0 (When 1, the flag is not placed	standby mode.)
		CY	- Immediately preceding status ret	
	Port r		- Immediately preceding status ret	
	Timer		- Operation halted (The count value is reset to " 0 ")	- Operable

Cautions 1. Write the NOP instruction as the first instruction after STOP mode is released.
2. When standby mode is released, the status flag (F) is set (to 1).
3. If, at the point the standby mode has been set, its release condition is met, then the system does not enter the standby mode. However, the status flag (F) is set (1).

5.2 Standby Mode Setting and Release

The standby mode is set with the HALT \#b3b2b $b_{1} b_{0} B$ instruction for both STOP mode and HALT mode. For the standby mode to be set, the status flag (F) is required to have been cleared (to 0).

The standby mode is released by the release condition specified with the reset (POC) or the operand of HALT instruction. If the standby mode is released, the status flag (F) is set (to 1).

Even when the HALT instruction is executed in the state that the status flag (F) has been set (to 1), the standby mode is not set. If the release condition is not met at this time, the status flag is cleared (to 0). If the release condition is met, the status flag remains set (to 1).

Even in the case when the release condition has been already met at the point that the HALT instruction is executed, the standby mode is not set. Here, also, the status flag (F) is set (to 1).

Caution Depending on the status of the status flag (F), the HALT instruction may not be executed. Be careful about this. For example, when setting HALT mode after checking the key status with the STTS instruction, the system does not enter HALT mode as long as the status flag (F) remains set (to 1) and thus sometimes performs an unintended operation. In this case, the intended operation can be realized by executing the STTS instruction immediately after setting the timer to clear (to 0) the status flag.

Example STTS \#03H ;To check the Kı pin status.
\vdots
MOV T, \#0xxH ;To set the timer
STTS \#05H ;To clear the status flag
\vdots (During this time, be sure not to execute an instruction that may set the status flag.)
HALT \#05H ;To set HALT mode

Table 5-2. Addresses Executed After Standby Mode Release

Release Condition	Address Executed After Release
Reset	Address 0
Release condition shown in Table 5-3	The address following the HALT instruction

Table 5-3. Standby Mode Setup (HALT \#b3b2b1boB) and Release Conditions

Operand Value of HALT Instruction				Setting Mode	Precondition for Setup	Release Condition
b_{3}	b_{2}	b_{1}	bo			
0	0	0	0	STOP	All K/o pins are high-level output.	High level is input to at least one of KI pins.
	0	1	1	STOP	All K/o pins are high-level output.	High level is input to at least one of KI pins.
	1	1	0	STOPNote 1	The K//oo pin is high-level output.	High level is input to at least one of KI pins.
1	Any of the combinations of b2b1bo above			STOP	[The following condition is added in addition to the above.]	
					--- --	High level is input to at least one of S_{0}, S_{1} and S_{2} pins ${ }^{\text {Note }} 2$.
0/1	1	0	1	HALT	-	When the timer's down counter is 0

Notes 1. When setting HALT \#×110B, configure a key matrix by using the Kı/oo pin and the Kı pin so that the standby mode can be released.
2. At least one of the S_{0}, S_{1} and S_{2} pins (the pin used for releasing the standby mode) must be specified as follows:

So, S_{1} pins: Input mode (specified by bits 0 and 2 of the P 4 register)
S2 pin: Use of STOP mode release enabled (specified by bit 3 of the P 4 register)

Cautions 1. The internal reset takes effect when the HALT instruction is executed with an operand value other than that above or when the precondition has not been satisfied when executing the HALT instruction.
2. If STOP mode is set when the timer's down counter is not 0 (timer operating), the system is placed in STOP mode only after all the 10 bits of the timer's down counter and the timer output permit flag are cleared to 0 .
3. Write the NOP instruction as the first instruction after STOP mode is released.

5.3 Standby Mode Release Timing

(1) STOP mode release timing

Figure 5-1. STOP Mode Release by Release Condition

Caution When a release condition is met in the STOP mode, the device is released from the STOP mode, and goes into a wait state. At this time, if the release condition is not held, the device goes into STOP mode again after the wait time has elapsed. Therefore, when releasing the STOP mode, it is necessary to hold the release condition longer than the wait time.
(2) HALT mode release timing

Figure 5-2. HALT Mode Release by Release Condition

6. RESET

A system reset is effected by the following causes:

- When the POC circuit has detected low power-supply voltage
- When the operand value is illegal or does not satisfy the precondition when the HALT instruction is executed
- When the accumulator is OH when the RLZ instruction is executed
- When stack pointer overflows or underflows

Table 6-1. Hardware Statuses After Reset

Hardware			- Reset by On-Chip POC Circuit During Operation - Reset by Other Factors ${ }^{\text {Note } 1}$	- Reset by the On-Chip POC Circuit During Standby Mode
$\left.\begin{array}{c} \mathrm{PC}(11 \text { bits: } \mu \mathrm{PD} 67,67 \mathrm{~A}, \\ 68,68 \mathrm{~A} \\ 12 \text { bits: } \mu \mathrm{PD} 69 \end{array}\right)$			000H	
SP (1 bit)			OB	
Data memory	$\mathrm{RO}=$	DP	000H	
	R1 to	RF	Undefined	
Accumulator (A)			Undefined	
Status flag (F)			OB	
Carry flag (CY)			OB	
Timer (10 bits)			000H	
Port register		P0	FFH	
		P1	$\times x \times \times 11 \times 1 B^{\text {Note } 2}$	
Control register		P3	$0000 \times 000 B^{\text {Note } 3}$	
		P4	26H	

Notes 1. The following resets are available.

- Reset when executing the HALT instruction (when the operand value is illegal or does not satisfy the precondition)
- Reset when executing the RLZ instruction (when $A=0$)
- Reset by stack pointer's overflow or underflow

2. x : Refers to the value by the K_{1} or S_{2} pin status.

In order to prevent malfunction, be sure to input a low level to one or more of pins Kıo to Kı3 when POC is released by supply voltage rising (Can be left open. When open, leave the pull-down resistor connected).
3. \times : Refers to the value based on a decrease of power supply voltage (0 when $V_{D D} \leq V_{I D}$).

Remark VID: RAM retention detection voltage

7. POC CIRCUIT

The POC circuit monitors the power supply voltage and applies an internal reset to the microcontroller when the battery is replaced.

Cautions 1. There are cases in which the POC circuit cannot detect a low power supply voltage of less than 1 ms . Therefore, if the power supply voltage has become low for a period of less than 1 ms , the POC circuit may malfunction because it does not generate an internal reset signal.
2. Clock oscillation is stopped by the resonator due to low power supply voltage before the POC circuit generates the internal reset signal. In this case, malfunction may result when the power supply voltage is recovered after the oscillation is stopped. This type of phenomenon takes place because the POC circuit does not generate an internal reset signal (because the power supply voltage recovers before the low power supply voltage is detected) even though the clock has stopped. If, by any chance, a malfunction has taken place, remove the battery for a short time and put it back. In most cases, normal operation will be resumed.
3. In order to prevent malfunction, be sure to input a low level to one or more of pins Kıo to K_{13} when POC is released due to supply voltage rising (Can be left open. When open, leave the pull-down resistor connected).

7.1 Functions of POC Circuit

The POC circuit has the following functions:

- Generates an internal reset signal when $V_{d D} \leq V_{p o c}$.
- Cancels an internal reset signal when Vdd > Vpoc.

Here, VdD: power supply voltage, VPoc: POC detection voltage.

Notes 1. Actually, oscillation stabilization wait time must elapse before the circuit is switched to operation mode. The oscillation stabilization wait time is about 534/fx to $918 / \mathrm{fx}$ (when about 134 to $230 \mu \mathrm{~s}$; @ $\mathrm{fx}=4 \mathrm{MHz}$).
2. For the POC circuit to generate an internal reset signal when the power supply voltage has fallen, it is necessary for the power supply voltage to be kept less than the Vpoc for the period of 1 ms or more. Therefore, in reality, there is the time lag of up to 1 ms until the reset takes effect.
3. The POC detection voltage (Vpoc) varies between approximately 1.7 to 2.0 V ; thus, the reset may be canceled at a power supply voltage smaller than the guaranteed range ($\mathrm{V} D \mathrm{~d}=2.0$ to 3.6 V). However, as long as the conditions for operating the POC circuit are met, the actual lowest operating power supply voltage becomes lower than the POC detection voltage. Therefore, there is no malfunction occurring due to a shortage of power supply voltage. However, malfunction for such reasons as the clock not oscillating due to low power supply voltage may occur (refer to Cautions 3 in 7 POC CIRCUIT).

7.2 Oscillation Check at Low Supply Voltage

A reliable reset operation can be expected of the POC circuit if it satisfies the condition that the clock can oscillate even at low power supply voltage (the oscillation start voltage of the resonator being even lower than the POC detection voltage). Whether this condition is met or not can be checked by measuring the oscillation status in a product that actually includes a POC circuit, as follows.
$<1>$ Connect a storage oscilloscope to the Xout pin so that the oscillation status can be measured.
$<2>$ Connect a power supply whose output voltage can be varied and then gradually raise the power supply voltage Vdd from 0 V (making sure to avoid Vdd > 3.6V).

At first (during Vdd < approx. 1.7 V), the Xout pin is 0 V regardless of the Vdd. However, at the point that Vdd reaches the POC detection voltage (Vpoc $=1.85 \mathrm{~V}$ (TYP.)), the voltage of the Xout pin jumps to about 0.5Vdd. Maintain this power supply voltage for a while to measure the waveform of the Xout pin. If by any chance the oscillation start voltage of the resonator is lower than the POC detection voltage, the growing oscillation of the Xout pin can be confirmed within several ms after the Vdd has reached the Vpoc.

8. SYSTEM CLOCK OSCILLATOR

The system clock oscillator consists of oscillators for ceramic resonators ($f x=3.5$ to 4.5 MHz).

Figure 8-1. System Clock

The system clock oscillator stops oscillating when a reset is applied or in STOP mode.

Caution When using the system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines. Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as GND. Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

A capacitor (15 pF) for the oscillator can be incorporated via a mask option.

9. INSTRUCTION SET

9.1 Machine Language Output by Assembler

The bit length of the machine language of this product is 10 bits per word. However, the machine language that is output by the assembler is extended to 16 bits per word. As shown in the example below, the extension is made by inserting 3 -bit extended bits (111) in two locations.

Figure 9-1. Example of Assembler Output (10 Bits Extended to 16 Bits)
$<1>$ In the case of "ANL A, @ROH"

<2> In the case of "OUT P0, \#data8"

9.2 Circuit Symbol Description

A: Accumulator
ASR: Address stack register
addr: Program memory address
CY: Carry flag
data4: 4-bit immediate data
data8: 8 -bit immediate data
data10: 10-bit immediate data
F: \quad Status flag
M0: Modulo register for setting the low-level period
M00: Modulo register for setting the low-level period (lower 4 bits)
M01: Modulo register for setting the low-level period (higher 4 bits)
M1: Modulo register for setting the high-level period
M10: Modulo register for setting the high-level period (lower 4 bits)
M11: Modulo register for setting the high-level period (higher 4 bits)
PC: Program Counter
Pn: \quad Port register pair $(\mathrm{n}=0,1,3,4)$
POn: Port register (lower 4 bits)
P1n: Port register (higher 4 bits)
ROMn: Bit n of the program memory's ($\mathrm{n}=0$ to 9)
Rn: Register pair
ROn: Data memory (General-purpose register; $\mathrm{n}=0$ to F)
R1n: Data memory (General-purpose register; $\mathrm{n}=0$ to F)
SP: Stack Pointer
T: Timer register
T0: \quad Timer register (lower 4 bits)
T1: \quad Timer register (higher 4 bits)
$(\times): \quad$ Content addressed with \times

9.3 Mnemonic to/from Machine Language (Assembler Output) Contrast Table

Accumulator Operation Instructions

Mnemonic	Operand	Instruction Code			Operation	Instruction Length	Instruction Cycle
		1st Word	2nd Word	3rd Word			
ANL	A, ROn	FBEn			$(\mathrm{A}) \leftarrow(\mathrm{A}) \wedge(\mathrm{Rmn}) \mathrm{m}=0,1 \mathrm{n}=0$ to F	1	1
	A, R1n	FAEn			$\mathrm{CY} \leftarrow \mathrm{A}_{3} \bullet \mathrm{Rmnn}_{3}$		
	A, @ ROH	FAF0			$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{A}) \wedge((\mathrm{P} 13),(\mathrm{RO}))_{7-4} \\ & C Y \leftarrow A_{3} \cdot R O M_{7} \end{aligned}$		
	A, @ROL	FBF0			$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{A}) \wedge((\mathrm{P} 13),(\mathrm{R} 0))_{3-0} \\ & C Y \leftarrow A_{3} \cdot R O M_{3} \end{aligned}$		
	A, \#data4	FBF1	data4		$\begin{aligned} & (A) \leftarrow(A) \wedge \text { data } 4 \\ & C Y \leftarrow A_{3} \cdot \operatorname{data} 43 \end{aligned}$	2	
ORL	A, ROn	FDEn			$(A) \leftarrow(A) \vee(R m n) m=0,1 n=0$ to F $C Y \leftarrow 0$	1	
	A, R1n	FCEn					
	A, @ ROH	FCF0			$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{A}) \vee((\mathrm{P} 13),(\mathrm{R} 0)))_{7-4} \\ & \mathrm{CY} \leftarrow 0 \end{aligned}$		
	A, @ ROL	FDF0			$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{A}) \vee((\mathrm{P} 13),(\mathrm{R} 0))_{3-0} \\ & \mathrm{CY} \leftarrow 0 \end{aligned}$		
	A, \#data4	FDF1	data4		$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{A}) \vee \text { data } 4 \\ & C Y \leftarrow 0 \end{aligned}$	2	
XRL	A, R0n	F5En			$(A) \leftarrow(A) \forall(R m n) \quad m=0,1 n=0$ to F $C Y \leftarrow A_{3} \cdot R_{n n}$	1	
	A, R1n	F4En					
	A, @ ROH	F4F0			$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{A}) \forall((\mathrm{P} 13),(\mathrm{RO}))_{7-4} \\ & C Y \leftarrow \mathrm{~A}_{3} \cdot \mathrm{ROM}_{7} \end{aligned}$		
	A, @ ROL	F5F0			$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{A}) \forall((\mathrm{P} 13),(\mathrm{RO}))_{3-0} \\ & C Y \leftarrow A_{3} \cdot \mathrm{ROM}_{3} \end{aligned}$		
	A, \#data4	F5F1	data4		$\begin{aligned} & (A) \leftarrow(A) \forall \text { data } 4 \\ & C Y \leftarrow \text { A }_{3} \cdot \operatorname{data} 4 \text { з } \end{aligned}$	2	
INC	A	F4F3			$(A) \leftarrow(A)+1$ if $(A)=0 \quad C Y \leftarrow 1$ else $C Y \leftarrow 1$	1	
RL	A	FCF3			$\begin{aligned} & \left(A_{n+1}\right) \leftarrow\left(A_{n}\right),\left(A_{0}\right) \leftarrow\left(A_{3}\right) \\ & C Y \leftarrow A_{3} \end{aligned}$		
RLZ	A	FEF3			if $A=0 \quad$ reset else $\left(A_{n+1}\right) \leftarrow\left(A_{n}\right),\left(A_{0}\right) \leftarrow\left(A_{3}\right)$ $C Y \leftarrow A_{3}$		

I/O Instructions

Mnemonic	Operand	Instruction Code			Operation	Instruction Length	Instruction Cycle
		1st Word	2nd Word	3rd Word			
IN	A, POn	FFF8 + n	-	-	$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{Pmn}) \quad \mathrm{m}=0,1 \quad \mathrm{n}=0,1,3,4 \\ & \mathrm{CY} \leftarrow 0 \end{aligned}$	1	1
	A, P1n	FEF8 + n	-	-			
OUT	POn, A	E5F8 + n	-	-	$(\mathrm{Pmn}) \leftarrow(\mathrm{A}) \quad \mathrm{m}=0,1 \quad \mathrm{n}=0,1,3,4$		
	P1n, A	$E 4 F 8$ + n	-	-			
ANL	A, POn	FBF8 + n	-	-	$(A) \leftarrow(A) \wedge(P m n) \quad m=0,1 \quad n=0,1,3,4$ $\mathrm{CY} \leftarrow \mathrm{A}_{3} \bullet \mathrm{Pmn}_{3}$		
	A, P1n	FAF8 + n	-	-			
ORL	A, P0n	FDF8 + n	-	-	$\begin{aligned} & (A) \leftarrow(A) \vee(P m n) \quad m=0,1 \quad n=0,1,3,4 \\ & C Y \leftarrow 0 \end{aligned}$		
	A, P1n	FCF8 + n	-	-			
XRL	A, P0n	F5F8 + n	-	-	$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{Pmn}) \quad \mathrm{m}=0,1 \quad \mathrm{n}=0,1,3,4 \\ & \mathrm{CY} \leftarrow \mathrm{~A}_{3} \bullet \mathrm{Pmn}_{3} \end{aligned}$		
	A, P1n	F4F8 + n	-	-			

Mnemonic	Operand	Instruction Code			Operation		Instruction Length	Instruction Cycle
Mnemonic		1st Word	2nd Word	3rd Word				
OUT	Pn, \#data8	E6F8 + n	data8		$(\mathrm{Pn}) \leftarrow$ data8	$\mathrm{n}=0,1,3,4$	2	1

Remark Pn: P1n to P0n are dealt with in pairs.

Data Transfer Instruction

Mnemonic	Operand	Instruction Code			Operation	Instruction Length	Instruction Cycle
		1st Word	2nd Word	3rd Word			
MOV	A, ROn	FFEn			$(\mathrm{A}) \leftarrow(\mathrm{Rmn}) \quad \mathrm{m}=0,1 \mathrm{n}=0$ to F	1	1
	A, R1n	FEEn			$C Y \leftarrow 0$		
	A, @ROH	FEFO			$\begin{aligned} & (\mathrm{A}) \leftarrow((\mathrm{P} 13),(\mathrm{R} 0))_{7-4} \\ & \mathrm{CY} \leftarrow 0 \end{aligned}$		
	A, @ROL	FFFO			$\begin{aligned} & (\mathrm{A}) \leftarrow((\mathrm{P} 13),(\mathrm{R} 0))_{3-0} \\ & \mathrm{CY} \leftarrow 0 \end{aligned}$		
	A, \#data 4	FFF1	data4		$\begin{aligned} & (\mathrm{A}) \leftarrow \text { data } 4 \\ & \mathrm{CY} \leftarrow 0 \end{aligned}$	2	
	ROn, A	E5En			$(\mathrm{Rmn}) \leftarrow(\mathrm{A}) \quad \mathrm{m}=0,1 \mathrm{n}=0$ to F	1	
	R1n, A	E4En					

Mnemonic	Operand	Instruction Code			Operation		Instruction Length	Instruction Cycle
		1st Word	2nd Word	3rd Word				
MOV	Rn, \#data8	E6En	data8	-	$($ R1n to R0n) \leftarrow data8	$\mathrm{n}=0$ to F	2	1
	Rn, @R0	E7En	-	-	$($ R1n to R0n) $\leftarrow($ (P13) $) \mathrm{n}=1$ to F	1	

Remark Rn: R1n to R0n are handled in pairs.

Branch Instructions

Mnemonic	Operand	Instruction Code			Operation	Instruction Length	Instruction Cycle
		1st Word	2nd Word	3rd Word			
JMP	addr (Page 0)	E8F1	addr		$\mathrm{PC} \leftarrow$ addr	2	1
	addr (Page 1)	E9F1	addr				
	addr (Page 2)	E8F4	addr				
	addr (Page 3)	E9F4	addr				
JC	addr (Page 0)	ECF1	addr		if $C Y=1 \quad P C \leftarrow$ addr else $P C \leftarrow P C+2$		
	addr (Page 1)	EAF1	addr				
	addr (Page 2)	ECF4	addr				
	addr (Page 3)	EAF4	addr				
JNC	addr (Page 0)	EDF1	addr		$\begin{aligned} & \text { if } C Y=0 \quad P C \leftarrow \text { addr } \\ & \text { else } P C \leftarrow P C+2 \end{aligned}$		
	addr (Page 1)	EBF1	addr				
	addr (Page 2)	EDF4	addr				
	addr (Page 3)	EBF4	addr				
JF	addr (Page 0)	EEF1	addr		if $F=1 \quad P C \leftarrow$ addr else $\mathrm{PC} \leftarrow \mathrm{PC}+2$		
	addr (Page 1)	F0F1	addr				
	addr (Page 2)	EEF4	addr				
	addr (Page 3)	F0F4	addr				
JNF	addr (Page 0)	EFF1	addr		if $F=0 \quad P C \leftarrow$ addr else $\mathrm{PC} \leftarrow \mathrm{PC}+2$		
	addr (Page 1)	F1F1	addr				
	addr (Page 2)	EFF4	addr				
	addr (Page 3)	F1F4	addr				

Caution 0 and 4, which refer to PAGEO and 4, are not written when describing mnemonics.

Subroutine Instructions

Mnemonic	Operand	Instruction Code			Operation	Instruction Length	Instruction Cycle
		1st Word	2nd Word	3rd Word			
CALL	addr (Page 0)	E6F2	E8F1	addr	$\mathrm{SP} \leftarrow \mathrm{SP}+1, \mathrm{ASR} \leftarrow \mathrm{PC}, \mathrm{PC} \leftarrow$ addr	3	2
	addr (Page 1)	E6F2	E9F1	addr			
	addr (Page 2)	E6F2	E8F4	addr			
	addr (Page 3)	E6F2	E9F4	addr			
RET		E8F2			$\mathrm{PC} \leftarrow \mathrm{ASR}, \mathrm{SP} \leftarrow \mathrm{SP}-1$	1	1

Caution 0 and 4, which refer to PAGEO and 4, are not written when describing mnemonics.

Timer Operation Instructions

Mnemonic	Operand	Instruction Code			Operation		Instruction Length	Instruction Cycle
		1st Word	2nd Word	3rd Word				
MOV	A, T0	FFFF			$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{Tn}) \\ & \mathrm{CY} \leftarrow 0 \end{aligned}$	$\mathrm{n}=0,1$	1	1
	A, T1	FEFF						
	A, M00	FFF6			$\begin{aligned} & (A) \leftarrow(M 0 n) \\ & C Y \leftarrow 0 \end{aligned}$	$\mathrm{n}=0,1$		
	A, M01	FEF6						
	A, M10	FFF7			$\begin{aligned} & \text { (A) } \rightarrow \text { (M1n) } \\ & C Y \rightarrow 0 \end{aligned}$	$\mathrm{n}=0,1$		
	A, M11	FEF7						
	TO, A	E5FF			$\begin{aligned} & (T n) \leftarrow(A) \\ & (T) n \leftarrow 0 \end{aligned}$	$\mathrm{n}=0,1$		
	T1, A	F4FF						
	M00, A	E5F6			$\begin{aligned} & (\mathrm{MOn}) \leftarrow(\mathrm{A}) \\ & \mathrm{CY} \leftarrow 0 \end{aligned}$	$\mathrm{n}=0,1$		
	M01, A	E4F6						
	M10, A	E5F7			$\begin{aligned} & (\mathrm{M} 1 \mathrm{n}) \leftarrow(\mathrm{A}) \\ & \mathrm{CY} \leftarrow 0 \end{aligned}$	$\mathrm{n}=0,1$		
	M11, A	E4F7						

Mnemonic	Operand	Instruction Code			Operation	Instruction Length	Instruction Cycle
		1st Word	2nd Word	3rd Word			
MOV	T, \#data10	E6FF	data10		(T) \leftarrow data 10	2	1
	M0, \#data10	E6F6	data10		$(\mathrm{MO}) \leftarrow$ data10		
	M1, \#data10	E6F7	data10		(M1) \leftarrow data10		
	T, @R0	F4FF			$(\mathrm{T}) \leftarrow((\mathrm{P} 13),(\mathrm{RO}))$	1	
	M0, @R0	E7F6			$(\mathrm{MO}) \leftarrow((\mathrm{P} 13),(\mathrm{R} 0))$		
	M1, @R0	E7F7			$(\mathrm{M} 1) \leftarrow((\mathrm{P} 13),(\mathrm{RO}))$		

Others

Mnemonic	Operand	Instruction Code			Operation	Instruction Length	Instruction Cycle
		1st Word	2nd Word	3rd Word			
HALT	\#data4	E2F1	data4		Standby mode	2	1
STTS	\#data4	E3F1	data4		if statuses match $\mathrm{F} \leftarrow 1$ else $F \leftarrow 0$		
	ROn	E3En			if statuses match $\mathrm{F} \leftarrow 1$ else $F \leftarrow 0 \quad n=0$ to F	1	
SCAF		FAF3			$\begin{aligned} & \text { if } \mathrm{A}=0 \mathrm{FH} \quad \mathrm{CY} \leftarrow 1 \\ & \text { else } \mathrm{CY} \leftarrow 0 \end{aligned}$		
NOP		E0E0			$\mathrm{PC} \leftarrow \mathrm{PC}+1$		

9.4 Accumulator Manipulation Instructions

ANL A, ROn

ANL A, R1n

<1> Instruction code: | 1 | 1 | 0 | 1 | R_{4} | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | $\mathrm{R}_{3} \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$

<2> Cycle count: 1
<3> Function: $\quad(A) \leftarrow(A) \wedge(R m n) \quad m=0,1 \quad n=0$ to F $C Y \leftarrow A_{3} \cdot R_{m}$
The accumulator contents and the register Rmn contents are ANDed and the results are entered in the accumulator.

ANL A, @ROH
ANL A, @ROL

<1> Instruction code: | 1 | 1 | 0 | 1 | $0 / 1$ | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $0 \quad 0$

<2> Cycle count: 1
<3> Function:
$(\mathrm{A}) \leftarrow(\mathrm{A}) \wedge((\mathrm{P} 13),(\mathrm{RO}))_{7-4}$ (in the case of ANL A, @ R0H)
$C Y \leftarrow A_{3} \cdot R_{1} M_{7}$
$(\mathrm{A}) \leftarrow(\mathrm{A}) \wedge((\mathrm{P} 13),(\mathrm{RO}))_{3-0}$ (in the case of ANL A, @ROL)
$C Y \leftarrow \mathrm{~A}_{3} \cdot \mathrm{ROM}_{3}$
The accumulator contents and the program memory contents specified by the control register P13 and register pair R10 to Roo are ANDed and the results are entered in the accumulator.
If H is specified, b_{7}, b_{6}, b_{5} and b_{4} take effect. If L is specified, b_{3}, b_{2}, b_{1} and b_{0} take effect.

- Program memory (ROM) organization

Valid bits at the time of accumulator manipulation

ANL A, \#data4

<1> Instruction code: | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$

<2> Cycle count: 1
<3> Function: $\quad(A) \leftarrow(A) \wedge$ data4
$C Y \leftarrow \mathrm{~A}_{3} \cdot$ data4 $_{3}$
The accumulator contents and the immediate data are ANDed and the results are entered in the accumulator.

ORL A, ROn
ORL A, R1n

<2> Cycle count:
1
$<3>$ Function:

$$
\begin{aligned}
& (\mathrm{A}) \leftarrow(\mathrm{A}) \vee(\mathrm{Rmn}) \quad \mathrm{m}=0,1 \quad \mathrm{n}=0 \text { to } \mathrm{F} \\
& \mathrm{CY} \leftarrow 0
\end{aligned}
$$

The accumulator contents and the register Rmn contents are ORed and the results are entered in the accumulator.

ORL A, @ROH
ORL A, @ROL

<1> Instruction code: | 1 | 1 | 1 | 0 | $0 / 1$ | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

<2> Cycle count: 1
$<3>$ Function:
$(A) \leftarrow(A) \vee(P 13),(R 0)) 7-4$ (in the case of ORL A, @ ROH)
$(A) \leftarrow(A) \vee(P 13),(R 0))_{3-0}$ (in the case of ORL A, @ROL)
$C Y \leftarrow 0$
The accumulator contents and the program memory contents specified by the control register P13 and register pair $R_{10}-R_{00}$ are ORed and the results are entered in the accumulator.
If H is specified, b_{7}, b_{6}, b_{5} and b_{4} take effect. If L is specified, b_{3}, b_{2}, b_{1} and b_{0} take effect.

ORL A, \#data4

<2> Cycle count:
$<3>$ Function:

$$
\begin{aligned}
& (\mathrm{A}) \leftarrow(\mathrm{A}) \vee \text { data } 4 \\
& \mathrm{CY} \leftarrow 0
\end{aligned}
$$

The accumulator contents and the immediate data are exclusive-ORed and the results are entered in the accumulator.

XRL A, ROn

XRL A, R1n

<1> Instruction code: | 1 | 0 | 1 | 0 | R_{4} | 0 | R_{3} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| R_{2} | R_{1} | R_{0} | | | | |
| 1 | | | | | | |

<2> Cycle count: 1
$<3>$ Function: $\quad(A) \leftarrow(A) \forall(R m n) \quad m=0,1 \quad n=0$ to F
$C Y \leftarrow A_{3} \bullet R_{m}$
The accumulator contents and the register Rmn contents are ORed and the results are entered in the accumulator.

XRL A, @ROH

XRL A, @ROL

<1> Instruction code: | 1 | 0 | 1 | 0 | $0 / 1$ | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

<2> Cycle count: 1
<3> Function:
$(A) \leftarrow(A) \forall(P 13),(R 0)) 7-4$ (in the case of XRL A, @R0H)
$C Y \leftarrow A_{3} \cdot R_{1} M_{7}$
$(\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{P} 13),(\mathrm{RO}))_{3-0}$ (in the case of XRL A, @ROL)
$C Y \leftarrow \mathrm{~A}_{3} \cdot \mathrm{ROM}_{3}$
The accumulator contents and the program memory contents specified by the control register P13 and register pair R_{10}-Roo are exclusive-ORed and the results are entered in the accumulator.
If H is specified, b_{7}, b_{6}, b_{5}, and b_{4} take effect. If L is specified, b_{3}, b_{2}, b_{1}, and b_{0} take effect.

XRL A, \#data4

<1> Instruction code: | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | | | d_{3} | d_{2} | d_{1} |

<2> Cycle count:
1
<3> Function:
$(\mathrm{A}) \leftarrow(\mathrm{A}) \forall$ data 4
$\mathrm{CY} \leftarrow \mathrm{A}_{3} \cdot$ data 43
The accumulator contents and the immediate data are exclusive-ORed and the results are entered in the accumulator.

INC A

<1> Instruction code: | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

<2> Cycle count: 1
$<3>$ Function:
$(A) \leftarrow(A)+1$
if $\quad A=0 \quad C Y \leftarrow 1$
else $\mathrm{CY} \leftarrow 0$
The accumulator contents are incremented (+1).

RL A

<1> Instruction code: | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

<2> Cycle count: 1
$<3>$ Function: $\quad\left(A_{n}+1\right) \leftarrow(A n),\left(A_{0}\right) \leftarrow\left(A_{3}\right)$
$C Y \leftarrow A_{3}$
The accumulator contents are rotated anticlockwise bit by bit.

RLZ A

<1> Instruction code: | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

<2> Cycle count: 1
$<3>$ Function: if $A=0$ reset
else $\left(A_{n}+1\right) \leftarrow(A n),\left(A_{0}\right) \leftarrow\left(A_{3}\right)$
$C Y \leftarrow A_{3}$
The accumulator contents are rotated anticlockwise bit by bit.
If $\mathbf{A}=\mathbf{O H}$ at the time of command execution, an internal reset takes effect.

9.5 I/O Instructions

IN A, POn
IN A, P1n

<2> Cycle count: 1
<3> Function: $\quad(A) \leftarrow(P m n) \quad m=0,1 \quad n=0,1,3,4$
$C Y \leftarrow 0$
The port Pmn data is loaded (read) onto the accumulator.

OUT POn, A

OUT P1n, A

<2> Cycle count: 1
<3> Function: $\quad(\mathrm{Pmn}) \leftarrow(\mathrm{A}) \quad \mathrm{m}=0,1 \quad \mathrm{n}=0,1,3,4$
The accumulator contents are transferred to port Pmn to be latched.

ANL A, POn

ANL A, P1n

<2> Cycle count: 1
$<3>$ Function: $\quad(A) \leftarrow(A) \wedge(P m n) \quad m=0,1 \quad n=0,1,3,4$
$C Y \leftarrow A_{3} \cdot P m n$
The accumulator contents and the port Pmn contents are ANDed and the results are entered in the accumulator.

ORL A, POn

ORL A, P1n

<1> Instruction code: | 1 | 1 | 1 | 0 | P_{4} | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

<2> Cycle count: 1
<3> Function: $\quad(A) \leftarrow(A) \vee(P m n) \quad m=0,1 \quad n=0,1,3,4$
$C Y \leftarrow 0$
The accumulator contents and the port Pmn contents are ORed and the results are entered in the accumulator.

XRL A, POn

XRL A, P1n

<2> Cycle count: 1
<3> Function: $\quad(A) \leftarrow(A) \forall(P m n) \quad m=0,1 \quad n=0,1,3,4$
$C Y \leftarrow A_{3} \cdot P m n$
The accumulator contents and the port Pmn contents are exclusive-ORed and the results are entered in the accumulator.

```
OUT Pn, #data8
```



```
    :(00
<2> Cycle count: 1
<3> Function: }\quad(Pn)\leftarrow\mathrm{ data8 }n=0,1,3,
```

The immediate data is transferred to port Pn. In this case, port Pn refers to $P_{1 n}$ to $P_{0 n}$ operating in pairs.

9.6 Data Transfer Instructions

```
MOV A, ROn
MOV A, R1n
```



```
    <2> Cycle count: 1
    <3> Function: }\quad(A)\leftarrow(Rmn) m=0,1 n=0 to 
        CY}\leftarrow
```

The register Rmn contents are transferred to the accumulator.

MOV A, @ROH

<1> Instruction code: | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

<2> Cycle count: 1
$<3>$ Function: $\quad(\mathrm{A}) \leftarrow((\mathrm{P} 13),(\mathrm{RO})) 7-4$
$C Y \leftarrow 0$
The higher 4 bits ($\mathrm{b}_{7} \mathrm{~b}_{6} \mathrm{~b}_{5} \mathrm{~b}_{4}$) of the program memory specified by control register P 13 and register pair $\mathrm{R}_{10}-\mathrm{R}_{00}$ are transferred to the accumulator. bs is ignored.

MOV A, @ROL

<1> Instruction code: \quad| 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

<2> Cycle count: 1
<3> Function: $\quad(\mathrm{A}) \leftarrow((\mathrm{P} 13),(\mathrm{RO}))_{3-0}$
$C Y \leftarrow 0$
The lower 4 bits ($b_{3} b_{2} b_{1} b_{0}$) of the program memory specified by control register P13 and register pair R_{10} to Roo are transferred to the accumulator. bs is ignored.

- Program memory (ROM) contents

MOV A, \#data4

<1> Instruction code: | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 0 | | | | | | | | |

<2> Cycle count: 1
<3> Function: $\quad(\mathrm{A}) \leftarrow$ data4
$C Y \leftarrow 0$
The immediate data is transferred to the accumulator.

MOV ROn, A
MOV R1n, A

<2> Cycle count: 1
<3> Function: $\quad(\mathrm{Rmn}) \leftarrow(\mathrm{A}) \quad \mathrm{m}=0,1 \mathrm{n}=0$ to F
The accumulator contents are transferred to register Rmn.

MOV Rn, \#data8

<1> Instruction code: | 0 | 0 | 1 | 1 | 0 | 0 | R_{3} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| R_{2} | $R_{1} R_{0}$ | | | | | |

<2> Cycle count: 1
<3> Function: $\quad($ R1n-R0n $) \leftarrow$ data8 $n=0$ to F
The immediate data is transferred to the register. Using this instruction, registers operate as register
pairs.
The pair combinations are as follows:
R_{0} : R_{10} - Ro0
$R_{1}: R_{11}-R_{01}$
:
Re: R1e-Roe
$R_{F}: R_{1 F}^{R_{1 F}}-R_{0}^{R_{0 F}}$ Lower column

MOV Rn, @R0

<1> Instruction code: | 0 | 0 | 1 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | $\mathrm{R}_{3} \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$

<2> Cycle count: 1
$<3>$ Function: $\quad($ R1n-R0n $) \leftarrow((P 13), R 0)) \quad n=1$ to F
The program memory contents specified by control register P13 and register pair R10 to Roo are transferred to register pair R1n to R0n. The program memory consists of 10 bits and has the following state after the transfer to the register.

Program memory

The higher 2 to 4 bits of the program memory address are specified by the control register (P13).

9.7 Branch Instructions

The program memory consists of pages in steps of $1 \mathrm{~K}(000 \mathrm{H}$ to $3 F F H)$. However, as the assembler automatically performs page optimization, it is unnecessary to designate pages. The pages allowed for each product are as follows.

```
\muPD67, 67A (ROM: 1K steps): Page 0
\muPD68, 68A (ROM: 2K steps): Pages 0,1
\muPD69 (ROM: 4K steps): Pages 0 to 3
\muPD6P9 (PROM: 4K steps): Pages 0 to 3
```


JMP addr

 Page 2 \begin{tabular}{|l|llll|llll}
0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0

\hline

$\quad ;$ page 3

\hline 0 \& 1 \& 0 \& 0 \& 1 \& 1 \& 0 \& 1 \& 0
\end{tabular}

<2> Cycle count:
1
$<3>$ Function: $\quad \mathrm{PC} \leftarrow$ addr
The 10 bits (PC9-0) of the program counter are replaced directly by the specified address addr (a9 to ao).

JC addr

<2> Cycle count:
1
<3>Function: if $\mathrm{CY}=1 \quad \mathrm{PC} \leftarrow$ addr
else $P C \leftarrow P C+2$
If the carry flag CY is set (to 1), a jump is made to the address specified by addr (a9 to ao).

JNC addr

If the carry flag CY is cleared (to 0), a jump is made to the address specified by addr (a9 to a0).

JF addr

JNF addr


```
<2> Cycle count:
<3> Function:
1
```



```
if \(\quad \mathrm{F}=0 \quad \mathrm{PC} \leftarrow \mathrm{addr}\)
else \(P C \leftarrow P C+2\)
If the status flag F is cleared (to 0 ), a jump is made to the address specified by addr (a9 to a0).
```


9.8 Subroutine Instructions

The program memory consists of pages in steps of $1 \mathrm{~K}(000 \mathrm{H}$ to 3 FFH$)$. However, as the assembler automatically performs page optimization, it is unnecessary to designate pages. The pages allowed for each product are as follows.

```
\muPD67, 67A (ROM: 1K steps): Page 0
\muPD68, 68A (ROM: 2K steps): Pages 0, 1
\muPD69 (ROM: 4K steps): Pages 0 to 3
\muPD6P9 (PROM: 4K steps): Pages 0 to 3
```


CALL addr

<2> Cycle count:
2
$S P \leftarrow S P+1$
ASR $\leftarrow \mathrm{PC}$
$\mathrm{PC} \leftarrow$ addr

Increments (+1) the stack pointer value and saves the program counter value in the address stack register. Then, enters the address specified by the operand addr (a9 to ao) into the program counter. If a carry is generated when the stack pointer value is incremented (+1), an internal reset takes effect.

RET

<1> Instruction code:	0	1	0	0	0	0	0	1
<2> Cycle count:	1							
$<3>$ Function:	$\mathrm{PC} \leftarrow \mathrm{ASR}$							
	$\mathrm{SP} \leftarrow \mathrm{SP}-1$							

Restores the value saved in the address stack register to the program counter. Then, decrements (-1) the stack pointer.
If a borrow is generated when the stack pointer value is decremented (-1), an internal reset takes effect.

9.9 Timer Operation Instructions

MOV A, TO
MOV A, T1

<2> Cycle count: 1
$<3>$ Function: $\quad(\mathrm{A}) \leftarrow(\mathrm{Tn}) \quad \mathrm{n}=0,1$
$C Y \leftarrow 0$
The timer register Tn contents are transferred to the accumulator. T1 corresponds to ($\mathrm{t}_{9}, \mathrm{t}_{8}, \mathrm{t}_{7}, \mathrm{t}_{6}$); T0 corresponds to ($\mathrm{t} 5, \mathrm{t}_{4}, \mathrm{t}_{3}, \mathrm{t}_{2}$).

MOV A, MOO
MOV A, M01

<1> Instruction code: | 1 | 1 | 1 | 1 | $0 / 1$ | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

<2> Cycle count: 1
<3> Function: $\quad(A) \leftarrow(M O n) \quad n=0,1$
$C Y \leftarrow 0$
 t_{6}); M00 corresponds to ($\mathrm{t}_{5}, \mathrm{t}_{4}, \mathrm{t}_{3}, \mathrm{t}_{2}$).

MOV A, M10
MOV A, M11

<2> Cycle count: 1
$<3>$ Function: $\quad(A) \leftarrow(M 1 n) \quad n=0,1$
$C Y \leftarrow 0$
The modulo register M 1 n contents are transferred to the accumulator. M11 corresponds to ($\mathrm{t}_{\mathrm{t}}, \mathrm{t}_{8}, \mathrm{t}_{7}$, t6); M10 corresponds to ($\mathrm{t} 5, \mathrm{t}_{4}, \mathrm{t}_{3}, \mathrm{t}_{2}$).

MOV T0, A
MOV T1, A

<1> Instruction code: | 0 | 0 | 1 | 0 | $0 / 1$ | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 11110

<2> Cycle count: 1
$<3>$ Function: $\quad(T n) \leftarrow(A) \quad n=0,1$
The accumulator contents are transferred to the timer register Tn. T1 corresponds to ($\mathrm{t}_{9}, \mathrm{t}_{8}, \mathrm{t}_{7}, \mathrm{t}_{6}$); T0 corresponds to ($\mathrm{t}_{5}, \mathrm{t}_{4}, \mathrm{t}_{3}, \mathrm{t}_{2}$). After executing this instruction, if data is transferred to $\mathrm{T} 1, \mathrm{t}_{1}$ becomes 0 ; if data is transferred to TO , to becomes 0 .

MOV MOO, A
MOV M01, A

<2> Cycle count: 1
$<3>$ Function: $\quad(\mathrm{MOn}) \leftarrow(\mathrm{A}) \quad \mathrm{n}=0,1$
$C Y \leftarrow 0$
The accumulator contents are transferred to the modulo register M0n. M01 corresponds to (t9, t8, t7, t_{6}); M00 corresponds to ($\mathrm{t}_{5}, \mathrm{t}_{4}, \mathrm{t}_{3}, \mathrm{t}_{2}$). After executing this instruction, if data is transferred to M01, t_{1} becomes 0 ; if data is transferred to M00, to becomes 0 .

MOV M10, A
MOV M11, A

<1> Instruction code: | 0 | 0 | 1 | 0 | $0 / 1$ | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 110

<2> Cycle count: 1
$<3>$ Function: $\quad(M 1 n) \leftarrow(A) \quad n=0,1$
$C Y \leftarrow 0$
The accumulator contents are transferred to the modulo register M1n. M11 corresponds to (t, t8, t7, t_{6}); M10 corresponds to ($\mathrm{t}_{5}, \mathrm{t}_{4}, \mathrm{t}_{3}, \mathrm{t}_{2}$). After executing this instruction, if data is transferred to M11, t_{1} becomes 0 ; if data is transferred to M10, to becomes 0 .

MOV T, \#data10

<2> Cycle count: 1
$<3>$ Function: $\quad(T) \leftarrow$ data10
The immediate data is transferred to the timer register T (to to to).

Remark The timer time is set as follows.
(a) μ PD67, 68, and 69
$($ Set value +1$) \times 64 / f x$
(b) μ PD67A and 68 A
$($ Set value +1$) \times 64 / f x-4 / f x$

MOV M0, \#data10

<1> Instruction code: | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

<2> Cycle count: 1
$<3>$ Function: $\quad(\mathrm{MO}) \leftarrow$ data10
The immediate data is transferred to the modulo register M0 (tg to to).

MOV M1, \#data10

The immediate data is transferred to the modulo register M1 (t9 to to).

MOV T, @R0

<1> Instruction code: \quad| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

<2> Cycle count: 1
$<3>$ Function: $\quad(\mathrm{T}) \leftarrow((\mathrm{P} 13),(\mathrm{RO}))$
Transfers the program memory contents to the timer register T (t9 to to) specified by the control register P13 and the register pair R10 to Roo.
The program memory, which consists of 10 bits, is placed in the following state after the transfer to the register.

The higher 2 to 4 bits of the program memory address are specified by the control register (P13).

Caution When setting a timer value in the program memory, be sure to use the DT quasi-directive.

MOV MO, @RO

<1> Instruction code: | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

<2> Cycle count: 1
$<3>$ Function: $\quad(\mathrm{M} 0) \leftarrow((\mathrm{P} 13),(\mathrm{RO}))$
Transfers the program memory contents to the modulo register M0 (to to to) specified by the control register P13 and the register pair R10 to Roo.
The program memory, which consists of 10 bits, is placed in the following state after the transfer to the register.

The higher 2 to 4 bits of the program memory address are specified by the control register (P13).

Caution When setting a timer value in the program memory, be sure to use the DT quasi-directive.

MOV M1, @R0

<1> Instruction code: | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

<2> Cycle count: 1
$<3>$ Function: $\quad(\mathrm{M} 1) \leftarrow((\mathrm{P} 13),(\mathrm{R} 0))$
Transfers the program memory contents to the modulo register M1 (to to to) specified by the control register P13 and the register pair R10 to Roo.
The program memory, which consists of 10 bits, is placed in the following state after the transfer to the register.

The higher 2 to 4 bits of the program memory address are specified by the control register (P13).

Caution When setting a timer value in the program memory, be sure to use the DT

 quasi-directive.
9.10 Others

HALT \#data4

0	0	0	1	0	1	0	0	0	1
	0	0	0	0	0	0	d_{3}	d_{2}	d_{1}
d_{0}									

<2> Cycle count: 1
$<3>$ Function: Standby mode
Places the CPU in standby mode.
The condition for having the standby mode (HALT/STOP mode) canceled is specified by the immediate data.

STTS ROn

<1> Instruction code: | 0 | 0 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | $\mathrm{R}_{3} \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$

<2> Cycle count: 1
$<3>$ Function: if statuses match $\mathrm{F} \leftarrow 1$
else $F \leftarrow 0 \quad n=0$ to F
Compares the $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~K}_{1 / 0}, \mathrm{~K}_{1}$, and TIMER statuses with the register Ron contents. If at least one of the statuses matches the bits that have been set, the status flag F is set (to 1).
If none of them match, the status flag F is cleared (to 0).

STTS \#data4

<1> Instruction code: | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $:$ | 0 | 0 | 0 | 0 | 0 | | | d_{3} | d_{2} |
| d_{1} | d_{0} | | | | | | | | |

<2> Cycle count: 1
$<3>$ Function: if statuses match $\mathrm{F} \leftarrow 1$
else $F \leftarrow 0$
Compares the $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \mathrm{~K}_{1 / 0}, \mathrm{~K} 1$, and TIMER statuses with the immediate data contents. If at least one of the statuses matches the bits that have been set, the status flag F is set (to 1).
If none of them match, the status flag F is cleared (to 0).

SCAF (Set Carry If Acc = Fн)

<1> Instruction code: | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

<2> Cycle count: 1
$<3>$ Function: if $\mathrm{A}=0 \mathrm{FH} \quad \mathrm{CY} \leftarrow 1$
else $C Y \leftarrow 0$
Sets the carry flag CY (to 1) if the accumulator contents are FH.
The accumulator values after executing the SCAF instruction are as follows:

Accumulator Value		Carry Flag
Before Execution	After Execution	
$x \times \times 0$	0000	0 (clear)
$x \times 01$	0001	0 (clear)
$\times 011$	0011	0 (clear)
0111	0111	0 (clear)
1111	1111	1 (set)

Remark \times : don't care

NOP

<1> Instruction code: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

<2> Cycle count: 1
<3> Function: $\quad \mathrm{PC} \leftarrow \mathrm{PC}+1$
No operation

10. ASSEMBLER RESERVED WORDS

10.1 Mask Option Directives

When creating a program in the μ PD67, 67A, 68, 68A, and 69, it is necessary to use a mask option quasi-directive in the assembler's source program.

10.1.1 OPTION and ENDOP quasi-directives

The quasi-directives from the OPTION quasi-directive down to the ENDOP quasi-directive are called the mask option definition block. The format of the mask option definition block is as follows:

Format

$\frac{\text { Symbol field }}{[\text { Label: }]}$	Mnemonic field OPTION		
\vdots			
$:$	Operand field		
ENDOP Comment $]$			

10.1.2 Mask option definition quasi-directives

The quasi-directives that can be used in the mask option definition block are listed in Table 10-1.
The mask option definition can only be specified as follows. Be sure to specify the following quasi-directives.

Example

Symbol field	Mnemonic field	Operand field	Comment field
	OPTION		
	USECAP		Capacitor for oscillation
	ENDOP		incorporated

Table 10-1. Mask Option Definition Directives

Name	Mask Option Definition Quasi-Directive	PRO File	
		Address Value	Data Value
CAP	USECAP (Capacitor for oscillation incorporated)	2043 H	01
	NOUSECAP (Capacitor for oscillation not incorporated)		00

11. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}^{\circ} \mathrm{C}$)

Item	Symbol	Conditions		Ratings	Unit
Power supply voltage	VDD			-0.3 to +3.8	V
Input voltage	V	$\mathrm{K}_{1 /}, \mathrm{K}_{1}, \mathrm{~S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$		-0.3 to $V_{D D}+0.3$	V
Output voltage	Vo			-0.3 to $\mathrm{V} D \mathrm{D}+0.3$	V
Output current, high	Ioh ${ }^{\text {Note }}$	REM	Peak value	-30	mA
			rms value	-20	mA
		$\overline{\text { LED }}$	Peak value	-7.5	mA
			rms value	-5	mA
		One Kıo pin	Peak value	-13.5	mA
			rms value	-9	mA
		Total for $\overline{\text { LED }}$ and K/o pins	Peak value	-18	mA
			rms value	-12	mA
Output current, low	IoL ${ }^{\text {Note }}$	REM	Peak value	7.5	mA
			rms value	5	mA
		$\overline{\text { LED }}$	Peak value	7.5	mA
			rms value	5	mA
Operating ambient temperature	TA			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg			-65 to +150	${ }^{\circ} \mathrm{C}$

Note The rms value should be calculated as follows: $[\mathrm{rms}$ value $]=[$ Peak value $] \times \sqrt{\text { Duty }}$.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Power Supply Voltage Range ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage	$\mathrm{VDD}_{\mathrm{DD}}$	$\mathrm{fx}=3.5$ to 4.5 MHz	2.0	3.0	3.6	V

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.0$ to 3.6 V)

Item	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	V_{1+1}	Kı/		$0.7 \mathrm{~V}_{\mathrm{DD}}$		VDD	V
	V_{1+2}	$\mathrm{K}_{1}, \mathrm{~S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$		0.65 VDD		VDD	V
Input voltage, low	VIL1	Kı/o		0		0.3 V dD	V
	VIL2	Kı, So, S ${ }_{1}$, S ${ }_{2}$		0		0.15 VDD	V
Input leakage current, high	ІLH1	Kı $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$, pull-down resistor not incorporated				3	$\mu \mathrm{A}$
	ILH2	S_{0}, S_{1}, S_{2} $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$, pull-down resistor not incorporated				3	$\mu \mathrm{A}$
Input leakage current, Iow	IUL1	$\mathrm{K}_{1} \quad \mathrm{~V}_{1}=0 \mathrm{~V}$				-3	$\mu \mathrm{A}$
	lut2	K/o $\quad \mathrm{V}_{1}=0 \mathrm{~V}$				-3	$\mu \mathrm{A}$
	IUL3	So, $\mathrm{S}_{1}, \mathrm{~S}_{2} \mathrm{~V}_{1}=0 \mathrm{~V}$				-3	$\mu \mathrm{A}$
Output voltage, high	Vor1	REM, $\overline{\text { LED, }}$ K/o	$\mathrm{IOH}=-0.3 \mathrm{~mA}$	0.8 VdD			V
Output voltage, low	Vol1	REM, LED	$\mathrm{loL}=0.3 \mathrm{~mA}$			0.3	V
	Vol2	K/o	$\mathrm{loL}=15 \mu \mathrm{~A}$			0.4	V
Output current, high	Іон1	REM	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, $\mathrm{VOH}_{\text {O }}=1.0 \mathrm{~V}$	-5	-12		mA
	Іон2	Kıo	$\mathrm{V}_{\text {dD }}=3.0 \mathrm{~V}$, $\mathrm{VoH}=2.2 \mathrm{~V}$	-2.5	-7		mA
Output current, low	IoL1	Kı/	V DD $=3.0 \mathrm{~V}$, Vol $=0.4 \mathrm{~V}$	47	70		$\mu \mathrm{A}$
			V DD $=3.0 \mathrm{~V}, \mathrm{VoL}=2.2 \mathrm{~V}$	260	390		$\mu \mathrm{A}$
On-chip pull-down resistor	R_{1}	Kı, So, S ${ }_{1}$, S ${ }_{2}$		75	150	300	$\mathrm{k} \Omega$
	R_{2}	Kı/o		130	250	500	$\mathrm{k} \Omega$
Data retention power supply voltage	Vdoor	In STOP mode		0.9		3.6	V
RAM retention detection voltage	VID				1.4	1.5	V
Supply current	IDD1	Operation mode	$\mathrm{fx}_{\mathrm{x}}=4.0 \mathrm{MHz}, \mathrm{VDD}=3 \mathrm{~V} \pm 10 \%$		0.7	1.4	mA
	IdD2	HALT mode	$\mathrm{fx}_{\mathrm{X}}=4.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%$		0.65	1.3	mA
	IdD3	STOP mode	$\mathrm{V}_{\text {DD }}=3 \mathrm{~V} \pm 10 \%$		2.0	9.0	$\mu \mathrm{A}$
			V $\mathrm{DD}=3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.8	3.0	$\mu \mathrm{A}$

AC Characteristics $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.0$ to 3.6 V)

Item	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Command execution time	tcy			14	16	18.5	$\mu \mathrm{s}$
$\mathrm{K}_{1}, \mathrm{~S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$ high-level width	th			10			$\mu \mathrm{s}$
		When releasing standby mode	In HALT mode	10			$\mu \mathrm{s}$
			In STOP mode	Note			$\mu \mathrm{s}$

Note $10+278 / \mathrm{fx}+$ oscillation growth time

Remark tcy $=64 / \mathrm{fx}$ (fx: System clock oscillator frequency)

POC Circuit ($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
POC detection voltage ${ }^{\text {Note }}$	V Poc			1.85	2.0	V

Note Refers to the voltage with which the POC circuit releases an internal reset. If Vpoc < Vdd, the internal reset is released.

From the time of Vpoc \geq Vdd until the internal reset takes effect, a delay of up to 1 ms occurs. When the period of $V_{\text {poc }} \geq$ Vdo lasts less than 1 ms , the internal reset may not take effect.

System Clock Oscillator Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{VdD}=2.0$ to 3.6 V)

Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Oscillator frequency (ceramic resonator)	fx_{x}		3.5	4.0	4.5	MHz

RECOMMENDED OSCILLATOR CONSTANT

\star Ceramic Resonator ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$) (Without On-Chip Capacitor for Oscillator Specified by Mask Option)

Manufacturer	Part Number	Frequency	Recommended Constant (pF)		Oscillation Voltage Range (VDD)		Remark
		(MHz)	C1	C2	MIN.	MAX.	
Murata Mfg. Co., Ltd.	CSTLS3M50G53-B0	3.5	Unnecessary (on-chip C type)		2.0	3.6	-
	CSTLS3M50G56-B0						
	CSALA4M00G55-B0	4.0	30	30			
	CSTLS4M00G53-B0		Unnecessary (on-chip C type)				
	CSTLS4M00G56-B0						
	CSTLS4M50G53-B0	4.5					
	CSTLS4M50G56-B0						
TDK	FCR3.52MC5	3.52	Unnecessary (on-chip C type)				
	FCR4.0MC5	4.0					
Kyocera	KBR-3.64MKE	3.64	Unnecessary (on-chip C type)				
	KBR-3.64MSE		33	33			
	KBR-4.0MKE	4.0	Unnecessary (on-chip C type)				
	KBR-4.0MSE		33	33			

External circuit example

Caution These oscillator constants are reference values based on evaluation by the manufacturer of the resonator under a specific environment .
If optimization of the oscillator characteristics is required for the actual application, apply to the resonator manufacturer for evaluation on the mounting circuit.
The oscillation voltage and oscillation frequency only indicate the oscillator characteristics; the oscillator must be used within the ratings of the DC and AC characteristics specified under the internal operation conditions of the $\mu \mathrm{PD} 67,67 \mathrm{~A}, 68,68 \mathrm{~A}$, and 69.

Remark The incorporation of the oscillation capacitor by a mask option is under evaluation.
12. CHARACTERISTIC CURVES (REFERENCE VALUES)

High-level output voltage Vон [V]

13. APPLICATION CIRCUIT EXAMPLE

Example of Application in System

- Remote-control transmitter (48 keys; mode selection switch supported)

Notes 1. When incorporation of a capacitor for oscillation has not been specified by a mask option.
2. S_{2} : Set to disable for STOP mode release.
3. Set pins K_{10} to K_{13} to "with pull-down resistors".

- Remote-control transmitter (56 keys accommodated)

Notes 1. When incorporation of a capacitor for oscillation has not been specified by a mask option.
2. S_{2} : Set to enable for STOP mode release.
3. Set pins K_{10} to K_{13} to "with pull-down resistors".

- Remote-control transmitter (56 keys supported, mode selection switch supported)

Data can be read from the $\mathrm{K}_{1 / 00}$ to $\mathrm{K}_{1 / 07}$ pins by connecting a pull-up resistor of $50 \mathrm{k} \Omega$ and a switch to these pins (which then become high level when the switch is on and low level when off). Set the Kı/oo to Kı/o7 pins to input mode at this time. Reading data from these pins enables multiple output data to be obtained for the same key input.
A pull-up resistor can be connected to any of pins $\mathrm{K}_{1 / 00}$ to $\mathrm{K}_{1 / 07}$ (the figure below shows an example of when a pull-up resistor is connected to the KI/o5 pin).
The mode may not be correctly read while a key is being pressed.

Notes 1. When incorporation of a capacitor for oscillation has not been specified by a mask option.
2. S_{2} : Set to enable for STOP mode release.
3. Set pins K_{10} to K_{13} to "with pull-down resistors".
14. PACKAGE DRAWINGS

20-PIN PLASTIC SSOP (7.62 mm (300))

NOTE
Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	6.65 ± 0.15
B	0.475 MAX.
C	0.65 (T.P.)
D	$0.24_{-0.07}^{+0.08}$
E	0.1 ± 0.05
F	1.3 ± 0.1
G	1.2
H	8.1 ± 0.2
I	6.1 ± 0.2
J	1.0 ± 0.2
K	0.17 ± 0.03
L	0.5
M	0.13
N	0.10
P	$3^{\circ}{ }_{-3}{ }^{\circ}{ }^{\circ}$
T	0.25
U	0.6 ± 0.15
	S20MC-65-5A4-2

Remark The external dimensions and material of the ES version are the same as those of the mass produced version.

15. RECOMMENDED SOLDERING CONDITIONS

The $\mu \mathrm{PD} 67,67 \mathrm{~A}, 68,68 \mathrm{~A}$, and 69 should be soldered and mounted under the following recommended conditions. For details of the recommended soldering conditions, refer to the document Semiconductor Device Mounting Technology Manual (C10535E).

For soldering methods and conditions other than those recommended below, contact an NEC sales representatives.

Table 15-1. Surface Mounting Type Soldering Conditions

```
\muPD67MC- }\times\times\times-5A4: 20-pin plastic SSOP (7.62 mm (300)
\muPD67AMC- }\times\times\times-5A4: 20-pin plastic SSOP (7.62 mm (300))
\muPD68MC- }\times\times\times-5A4: 20-pin plastic SSOP (7.62 mm (300))
\muPD68AMC- }\times\times\times-5A4: 20-pin plastic SSOP (7.62 mm (300))
\muPD69MC-× }\times\times-5A4: 20-pin plastic SSOP (7.62 mm (300)
```

Soldering Method		Recommended Condition Symbol	
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds max. (at $210^{\circ} \mathrm{C}$ or higher), Count: Three times or less	IR35-00-3	
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 seconds max. (at $200^{\circ} \mathrm{C}$ or higher), Count: Three times or less	VP15-00-3	
Wave soldering	Solder bath temperature: $260^{\circ} \mathrm{C}$ max., Time: 10 seconds max., Count: once, Preliminary heat temperature: $120^{\circ} \mathrm{C}$ max. (package surface temperature)	WS60-00-1	-
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., Time: 3 sec. max. (per pin row)	-	

Caution Do not use different soldering methods together (except for partial heating).

APPENDIX A. DEVELOPMENT TOOLS

An emulator is provided as an emulation tool and a PROM programmer and program adapter are provided as writing tools for the PROM product, the μ PD6P9.

Hardware

- Emulator (EB-69 Note ${ }^{1}$)

Tool to emulate the $\mu \mathrm{PD} 67,67 \mathrm{~A}, 68,68 \mathrm{~A}, 69$, and 6P9.

- Emulation probe (NP-20GS ${ }^{\text {Note }}{ }^{1}$)

Probe for 20-pin SOP/SSOP to connect the emulator to the target system.

- Flexible board (EV-9500GS-20)

20-pin flexible board to facilitate the connection between the emulation probe and the target system.

- PROM programmer (AF-9706 Note 2,$~ A F-9708^{\text {Note } 2}$, AF-9709 Note ${ }^{2}$)

PROM programmer supporting the $\mu \mathrm{PD} 6 \mathrm{P} 9$.
The $\mu \mathrm{PD} 6 \mathrm{P} 9$ can be programmed by connecting the program adapter.

- Program adapter (PA-61P34BMC)

Adapter to program the μ PD6P9. Use in combination with the AF-9706, AF-9708, and AF-9709.

Notes 1. This is a product of Naito Densei Machida Mfg. Co., Ltd.
For details, contact Naito Densei Machida Mfg. Co., Ltd. (TEL: +81-45-475-4191).
2. This is a product of Ando Electric Co., Ltd.

For details, contact Ando Electric Co., Ltd. (TEL: +81-3-3733-1151).

Software

- Assembler (AS6133 Ver. 2.22 or later)

Development tool for remote control transmitter software.

Ordering Number List of AS6133

Host Machine	OS	Supply Medium	Ordering Number
PC-9800 series (CPU: 80,386 or more)	MS-DOS $^{\text {TM }}$ (Ver. 5.0 to Ver. 6.2)	3.5-inch 2HD	μ S5A13AS6133
IBM PC/AT ${ }^{\text {TM }}$ compatible	MS-DOS (Ver. 6.0 to Ver. 6.22)	3.5-inch 2HC	μ S7B13AS6133
	PC DOSTM (Ver. 6.1 to Ver. 6.3)		

Caution Although Ver.5.0 or later has a task swap function, this function cannot be used with this

 software.* APPENDIX B. FUNCTIONAL COMPARISON BETWEEN μ PD67A, 68A, 69, AND OTHER PRODUCTS

Item		μ PD64	μ PD65	$\mu \mathrm{PD} 67 \mathrm{~A}$	$\mu \mathrm{PD} 68 \mathrm{~A}$	μ PD69
ROM capacity		1,002 $\times 10$ bits	$2,026 \times 10$ bits	1,002 $\times 10$ bits	$2,026 \times 10$ bits	$4,074 \times 10$ bits
RAM capacity		32×4 bits				128×4 bits (32×4 bits $\times 4$ pages)
Stack		1 level (multiplexed with RF of RAM)				
Key matrix		$8 \times 6=48$ keys	$8 \times 7=56$ keys			
Key extended input		So, S_{1}	So to S_{2}			
Clock frequency		Ceramic oscillation - $\mathrm{fx}=2.4$ to 8 MHz - $\mathrm{fx}=2.4$ to 4 MHz (with POC circuit)	Ceramic oscillation - $f x=2.4$ to 8 MHz	Ceramic oscillation - $\mathrm{fx}=3.5$ to 4.5 MHz		
Timer	Clock	fx/64, fx/128		fx/64		
	Count start	Writing count value				
	Output value	$($ Set value +1) $\times 64 / \mathrm{fx}$ (or 128/fx)		$($ Set value +1$) \times 64 / \mathrm{fx}-4 / \mathrm{fx}$		$($ Set value +1$) \times 64 / f x$
Carrier	Frequency	- $\mathrm{fx}_{\mathrm{x}} / 8, \mathrm{fx}_{\mathrm{x}} / 64, \mathrm{fx}_{\mathrm{x}} / 96$ (timer clock: $\mathrm{fx} / 64$) - fx/16, fx/128, fx/192 (timer clock: fx/128) - No carrier		Each high-/low-level width can be set from 250 ns to $64 \mu \mathrm{~s}$ (@ $\mathrm{fx}=4 \mathrm{MHz}$ operation) via modulo registers (2 channels).		
	Output start	Synchronized with timer				
Instruction execution time		$16 \mu \mathrm{~s}$ ($\mathrm{fx}=4 \mathrm{MHz}$)				
"MOV Rn, @ R0" instruction		$\mathrm{n}=1$ to F				
Standby mode	Reset	$\overline{\text { RESET }}$ input, POC ${ }^{\text {POC }}$				
	Release condition (HALT instruction)	- HALT mode for timer only. - STOP mode for only releasing KI (K/o high-level output or K//oo high-level output)				
Relation between HALT instruction execution and status flag (F)		HALT instruction not executed when $\mathrm{F}=1$				
POC circuit		- Mask option - Low level output to $\overline{\operatorname{RESET}}$ pin on detection - $\mathrm{V}_{\mathrm{poc}}=1.6 \mathrm{~V}$ (TYP.)	- Provided - Generates internal reset signal on detection - V poc $=1.85 \mathrm{~V}$ (TYP.)			
RAM retention detector		None		- Provided - $\mathrm{VID}=1.4 \mathrm{~V}$ (TYP.)		
Mask option		POC circuit	None	Capacitor for oscillator (15 pF)		
Supply voltage		- VDD=1.8 to 3.6 V - V DD=2.2 to 3.6 V (with POC circuit)	$\mathrm{V}_{\mathrm{DD}}=2.0$ to 3.6 V			
Operating temperature		- $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ - $\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C}$ (with POC circuit)	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			
Package		- 20-pin plastic SOP - 20-pin plastic SSOP	20-pin plastic SSOP			
One-time PROM model		$\mu \mathrm{PD} 6 \mathrm{P} 4 \mathrm{~B}$	μ PD6P5	μ PD6P9		

APPENDIX C. EXAMPLE OF REMOTE-CONTROL TRANSMISSION FORMAT

 (in the case of NEC transmission format in command one-shot transmission mode)Caution When using the NEC transmission format, please apply to NEC for a custom code.
(1) REM output waveform (From <2> on, the output is made only when the key is held down)

Remark If the key is repeatedly pressed, the power consumption of the infrared light-emitting diode (LED) can be reduced by sending the reader code and the stop bit from the second time.
(2) Enlarged waveform of <1>

(3) Enlarged waveform of <3>

(4) Enlarged waveform of <2>

REM output

(5) Carrier waveform (enlarged waveform of each code's high period)

(6) Bit array of each code

Caution To prevent malfunction with other systems when receiving data in the NEC transmission format, not only fully decode (make sure to check $\overline{\text { Data code }}$ as well) the total 32 bits of the 16-bit custom codes (Custom code, Custom code') and the 16-bit data codes (Data code, $\overline{\text { Data code }), ~ b u t ~ a l s o ~ c h e c k ~ t o ~ m a k e ~ s u r e ~ t h a t ~ n o ~ s i g n a l s ~ a r e ~ p r e s e n t . ~}$
[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
800-366-9782
Fax: 408-588-6130
800-729-9288
NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP, Brasil
Tel: 11-6462-6810
Fax: 11-6462-6829
NEC Electronics (Europe) GmbH
Duesseldorf, Germany
Tel: 0211-65 0301
Fax: 0211-65 03327

- Sucursal en España

Madrid, Spain
Tel: 091-504 2787
Fax: 091-504 2860

- Succursale Française

Vélizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-67 5899

- Filiale Italiana

Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

- Branch The Netherlands

Eindhoven, The Netherlands
Tel: 040-244 5845
Fax: 040-244 4580

- Branch Sweden

Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

- United Kingdom Branch

Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

MS-DOS is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT and PC DOS are trademarks of International Business Machines Corporation.

Abstract

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is current as of May, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

[^0]: The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
 Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

