

MOS INTEGRATED CIRCUIT

μ PD17P005

4-BIT SINGLE-CHIP MICROCONTROLLER WITH ONE-TIME PROM AND HARDWARE FOR DIGITAL TUNING SYSTEM

DESCRIPTION

 μ PD17P005 is a model of μ PD17005 equipped with one-time PROM instead of a mask ROM.

Since the user program can be written to the PROM of the μ PD17P005, this 4-bit microcontroller is ideal for experimental or small-scale production of application systems using μ PD17005 or μ PD17003A (a model of μ PD17005 with reduced ROM and RAM).

Also refer to the Data Sheets of the μ PD17005 and μ PD17003A.

The electrical characteristics (such as the supply current) of the μ PD17P005 and the analog characteristics of the PLL are different from those of the μ PD17005. Therefore, take these differences into consideration when designing and producing the application systems.

FEATURES

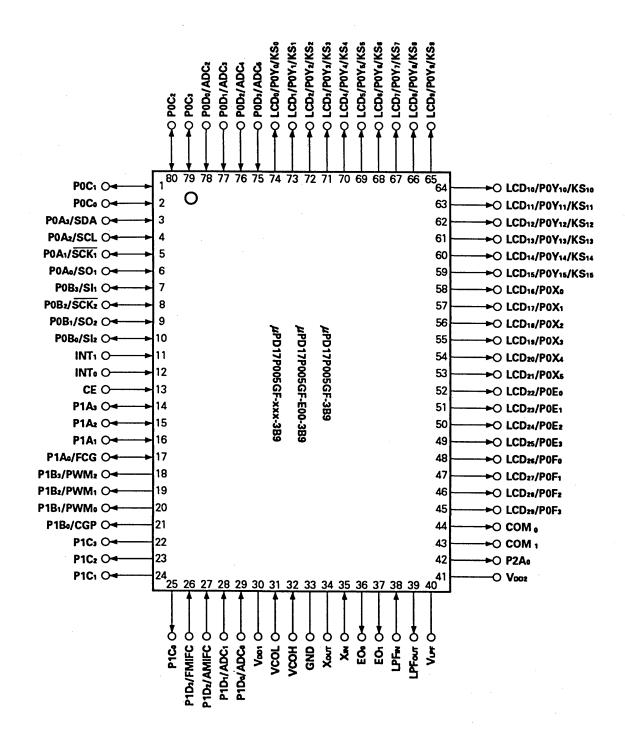
- Compatible with μPD17005 and 17003A
- Internal one-time PROM: 7932 x 16 bits
- Operating voltage range: 5 V±10%
- I²C bus (μPD17P005GF-E00-3B9)
- QTOPTM microcontroller model available (μPD17P005GF-xxx-3B9)

ORDERING INFORMATION

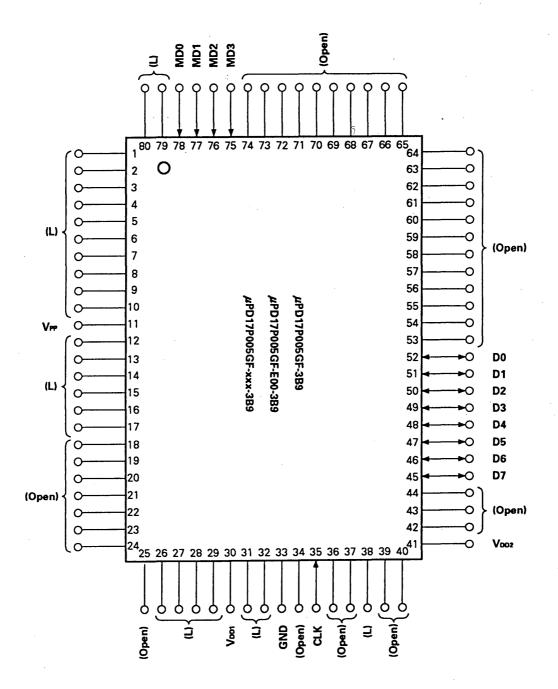
PART NUMBER	PACKAGE	QUALITY GRADE
μPD17P005GF-3B9	80-pin plastic QFP (14 x	20 mm) Standard
μPD17P005GF-E00-3B9*1	80-pin plastic QFP (14 x	20 mm) Standard
μPD17P005GF-xxx-3B9*2	80-pin plastic QFP (14 x	20 mm) Standard

- * 1: I²C bus model
- * 2: QTOP microcontroller model

Remarks: QTOP microcontroller is the generic name of a single-chip microcontroller with a one-time PROM that is programmed, stamped, screened, and verified by NEC.


Please refer to "Quality Grades on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grades on the devices and their recommended applications.

The information in this document is subject to change without notice.

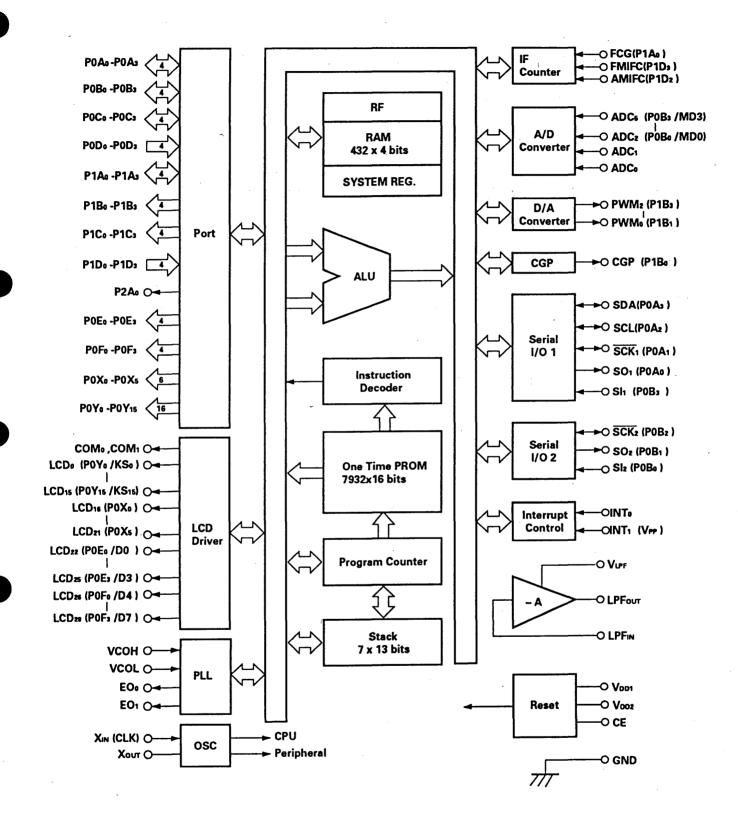

Document No. IC-2703A (0.D.No. IC-8081A) Date Published August 1992 P Printed in Japan

PIN CONFIGURATION (Top View)

(1) In normal operation mode

(2) In PROM programming mode

Note: () indicates the processing of the pins not used in the PROM programming mode.


L :Ground these pins through an individual resistor (470 Ω)

Open :Do not connect anything to these pins.

PIN NAME

ADCo-ADCs : A/D converter input	P0E ₀ -P0E ₃ : Port 0E
AMIFC : Frequency counter input	P0Fo-P0F3 : Port 0F
CE : Chip enable input	P0X ₀ -P0X ₃ : Port 0X
CGP : Clock generator port	P0Yo-P0Y3 : Port 0Y
COMo, COM1: LCD common signal output	P1A ₀ -P1A ₃ : Port 1A
CLK : PROM address updating clock input	P1Bo-P1B3 : Port 1B
D0-D7 : PROM data I/O	P1C ₀ -P1C ₃ : Port 1C
EO ₀ , EO ₁ : Error out output	P1D ₀ -P1D ₃ : Port 1D
FCG : External gate counter input	P2Ao : Port 2A
FMIFC : Frequency counter input	PWMo-PWM2: D/A converter output
GND : Ground	SCK ₁ , SCK ₂ : Serial clock I/O
INTo, INTo : External interrupt input	SCL : Serial clock I/O
KS ₀ -KS ₁₅ : Key source signal output	SDA : Serial data I/O
LCD ₀ -LCD ₂₉ : LCD segment signal output	Sl ₁ , Sl ₂ : Serial data input
LPF _{IN} : LPF amplifier input	SO ₁ , SO ₂ : Serial data output
LPFουτ : LPF amplifier output	VCOH : Local oscillator input, high
MD0-MD3 : Operation mode select	VCOL : Local oscillator input, low
P0A ₀ -P0A ₃ : Port 0A	VDD1, VDD2 : Positive power supply
P0Bo-P0B3 : Port 0B	VLPF : LPF amplifier power source
P0C ₀ -P0C ₃ : Port 0C	VPP : PROM write power source
P0Do-P0D3 : Port 0D	XIN, XOUT: Main clock oscillator

BLOCK DIAGRAM

Table of Contents

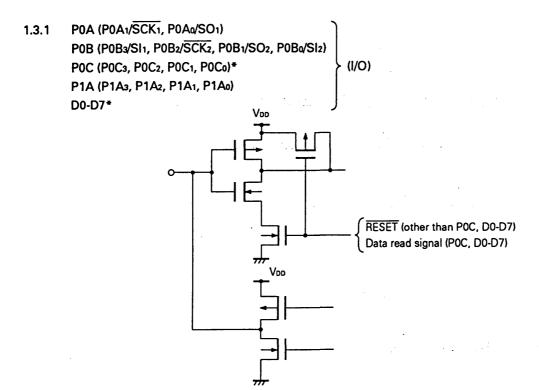
1.	PINF	UNCTIONS	7
	1.1	NORMAL OPERATION MODE	_
	1.2	PROM PROGRAMMING MODE	
	1.3	EQUIVALENT CIRCUIT OF PIN	11
2.	FUN	CTION LIST	15
3.		TING, READING, AND VERIFYING ONE-TIME PROM (PROGRAM MEMORY)	
	3.1	OPERATION MODE FOR WRITING, READING, AND VERIFYING PROGRAM MEMORY	18
	3.2	WRITING PROGRAM MEMORY	40
	3.3	READING PROGRAM MEMORY	20
4.	ELE(CTRICAL SPECIFICATIONS	21
5.	PAC	KAGE DRAWINGS	~~
6.	REC	OMMENDED SOLDERING CONDITIONS	27
ΑP	PEND	IX DEVELOPMENT TOOLS	20
			40

1. PIN FUNCTIONS

1.1 NORMAL OPERATION MODE

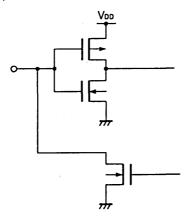
PIN NO.	SYMBOL FUNCTION		OUTPUTFORM	WHENPOWER-ON RESET	
79	P0C ₃	4-bit I/O port.			
80	P0C ₂	Can be set in input or output mode in 4-bit units	CMOS push-pull	Input	
1	P0C ₁			input	
2	P0C₀			·	
		I/O lines of port 0A, port 0B, and serial interface.	N-ch open-drain		
3	P0A ₃ /SDA	• P0A ₃ -P0A ₀	5 V		
		· 4-bit I/O port	POA3/SDA,		
4 ,	P0A ₂ /SCL	Can be set in input or output mode in 1-bit units.	P0A2/SCL		
		• P0B ₃ -P0B ₀			
5	POA1/SCK1	4-bit CMOS I/O port			
		Can be set in input or output mode in 1-bit units.			
6	P0A ₀ /SO ₁	• SDA, SCL			
		· SDA: Serial data I/O	CMOS push-pull	Input	
7	P0B ₃ /Sl ₁	SCL: Serial clock I/O	POA1, SCK1,	P0A ₃ -P0A ₀ ,	
		• SCK1, SO1, SI1	P0Ao/SO1,	P0B ₃ -P0B ₀	
8	P0B ₂ /SCK ₂	SCK1: Serial clock I/O	POB ₃ ,		
		- SO ₁ : Serial data output	P0B2/SCK2,		
9	P0B1/SO2	Sh: Serial data input	P0B1/SO2,		
		• SCK2, SO2, SI2	POB ₀		
10	P0Bo/SI2	· SCK ₂ : Serial clock I/O			
		- SO₂: Serial data output]		
		· Sl ₂ : Serial data input			
11	INT ₁	Edge-detectable vector interrupt input.	_	Input	
12	INT ₀	Both rising and falling edges can be selected			
13	CE	Selects operation of µPD17P005 and inputs reset signal	_	Input	
		I/O lines of port 1A and external gate counter input line			
14	P1A ₃	• P1A ₃ -P1A ₀			
1 1		· 4-bit CMOS I/O port	CMOS push-pull	Input	
16	P1A ₁	Can be set in input or output mode in 1-bit units	(P1A ₃ -P1A ₀)	(P1A ₃ -P1A ₀)	
17	P1A ₄ /FCG	• FCG			
		External gate counter input			
18	P1B ₃ /PWM ₂	Output lines of port 1B, D/A converter, and clock genera-	N-ch open-drain		
		tor port	16 V _		
19	P1B ₂ /PWM ₁	• P1B ₃ -P1B ₀	P1B ₃ /PWM ₂	0	
	1 1021 11111	- 4-bit output port		Outputs undefined data	
20	P1B ₁ /PWM ₀	• PWM2-PWMo	P1B1/PWMo	(P1B ₃ -P1B ₀)	
		Output of D/A converter with 8-bit resolution			
21	P1B ₄ /CGP	• CGP	CMOS push-pull		
		Clock generator port output	(P1B ₀ /CGP)		
22	P1C ₃			0.4	
	1	4-bit CMOS output port	CMOS push-pull	Outputs undefined data	
25	P1C₀				

PIN NO.	SYMBOL	FUNCTION	OUTPUTFORM	WHENPOWER-ON RESET
26	P1D ₃ /FMIFC	Analog input to port 1D, frequency counter, and A/D converter		
27	P1D2/AMIFC	• P1D ₃ -P1D ₀		
	·	4-bit input port		
28	P1D1/ADC1	• FMIFC, AMIFC		Input
	·	Input of frequency counter		(P1D3-P1Do)
29	P1Do/ADCo	• ADC ₁ , ADC ₀		·
		· Analog input to A/D converter with 6-bit resolution		
30	Voot	Positive power supply. Apply 5 V±10% to this pin in normal operation mode. Apply 6 V to write, read, or verify program memory.	_	_
31	VCOL			
32	vсон	Inputs local oscillation frequency of PLL	_	Input
33	GND	Ground		
34	Хоит	Connect crystal oscillator for system clock oscillation	CMOS push-pull	
35	Xin	across these pins.		
36	EO ₀	Output from charge pump of PLL frequency synthesizer. Compares divided value of local oscillation frequency	CMOS	HighImpedance
37	EO ₁	with phase of reference frequency, and outputs result of comparison	3-state	riigiriinpedance
38	LPFin	Input of amplifier for low-pass filter	_	
39	LPFout	Output of amplifier for low-pass filter	N-ch open-drain 16 V	
40	VLPF	Power to amplifier for low-pass filter	_	
41	VDO2	Positive power supply. Apply 5 V±10% to this pin in normal operation mode. Apply 6 V to write, read, or verify program memory.	· -	_
42	P2A₀	1-bit CMOS output port	CMOS push-pull	Outputs undefined data
43 44	COM ₁ COM ₀	Outputs common signal of LCD controller/driver	CMOS 3-value output	Low-level output
45	LCD29/P0F3	Output lines of ports 0F, 0E, 0X, 0Y, and segment signals of LCD controller/driver, and key source signals of key matrix		
48	LCD26/P0Fo	• P0F ₃ -P0F ₀		
49	LCD25/P0E3	4-bit CMOS output port		
		• P0E ₃ -P0E ₀		
52	LCD22/P0Eo	· 4-bit CMOS output port		
53	LCD21/P0X5	• P0X₅-P0X₀	CMOS push-pull	Low-level output
1		· 6-bit CMOS output port		(LCDze-LCDo)
58	LCD1e/P0Xe	• P0Y15-P0Y0		,
59	LCD15/P0Y15/KS15	16-bit CMOS output port		
		• LCD ₂₈ -LCD ₀		
74	LCDv/P0Yv/KSo	 Segment signal output of LCD controller/driver KS₁₅-KS₀ 		
		Key source signal output of key matrix		l
		,g easper or noy much		•

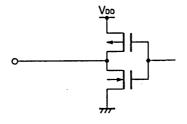

PIN NO.	SYMBOL	FUNCTION	OUTPUTFORM	WHEN POWER-ON RESET
75 	P0Da/ADCs	Port 0D, analog input line to A/D converter, and key source signal return input line of LCD segment • P0D3-P0D0 • 4-bit input port • Connected to pull-down resistor • ADC5-ADC2 • Analog input to A/D converter with 6-bit resolution • Key source signal return input	_	Input with pull- down resistor (P0D3-P0Do)

1.2 PROMPROGRAMMING MODE

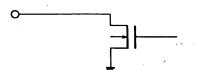
PIN NO.	SYMBOL	FUNCTION	OUTPUT FORM
11	VPP	Positive power supply for PROM programming. Apply 12.5 V to this pin to write, read, or verify program memory.	_
30	V _D D1	Positive power supply. Apply 6 V to this pin to write, read, or verify program memory.	_
33	GND	Ground	_
35	CLK	Clock input for PROM programming	_
41	VDD2	Positive power supply. Apply 6 V to this pin to write, read, or verify program memory.	_
45 52	D7 D0	8-bit data I/O for PROM programming	CMOS push-pull
75 78	MD3 MD0	Input to select operation mode when PROM is programmed	_

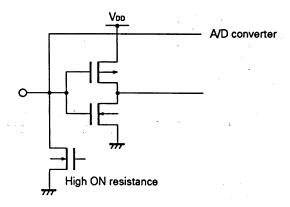

Remarks: Pins other than the above are not used in the PROM programming mode. For the processing of the unused pins, refer to (2) PROM programming mode in Pin Connections.

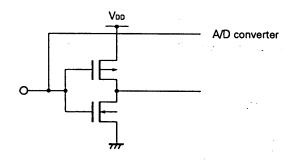
1.3 EQUIVALENT CIRCUIT OF PIN

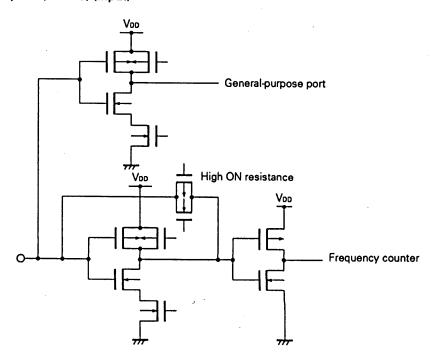


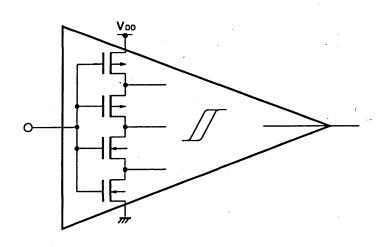
* :The RESET signal is not supplied to P0C and D0-D7.


1.3.2 POA (POA3/SDA, POA2/SCL) (I/O)

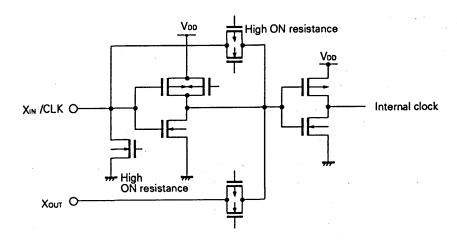

1.3.3 P1B (P1Bo/CGP)
P1C (P1C₃, P1C₂, P1C₁, P1C₀)
P2A (P2A₀)
LCD₀/P0Y₀/KS₀-LCD₂₉/P0F₃
(Output)


1.3.4 P1B (P1B₃/PWM₂, P1B₂/PWM₁, P1B₁/PWM₀) (Output)

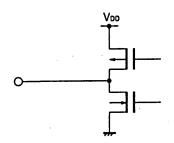

1.3.5 P0D (P0D₃/ADC₅/MD3, P0D₂/ADC₄/MD2, P0D₁/ADC₃/MD1, P0D₀/ADC₂/MD0) (Input)

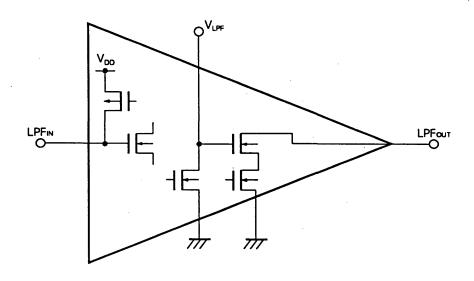


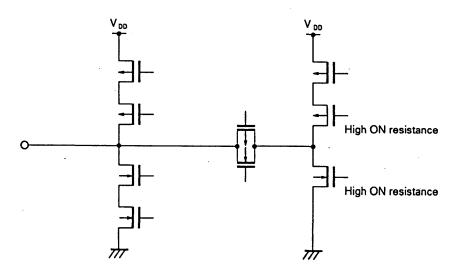
1.3.6 P1D (P1D₁/ADC₁, P1D₀/ADC₀) (Input)

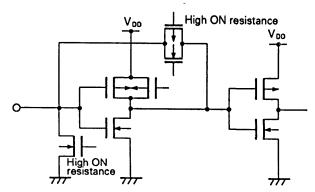


1.3.7 P1D (P1D₃/FMIFC, P1D₂/AMIFC) (Input)




1.3.9 Хоит (output), XIN/CLK (input)


$$\begin{array}{cc}
1.3.10 & EO_1 \\
EO_0
\end{array} \right\} (Output)$$



1.3.11 LPFIN (input), LPFout (output), VLPF

$$\begin{array}{cc} 1.3.12 & COM_1 \\ & COM_0 \end{array} \right\} \mbox{ (Output)}$$

2. FUNCTION LIST

ITEM	PRODUCT NAME	μPD17003A	μPD17005	μPD17P005			
ROM (×16 bits)		3836 (mask ROM)	7932 (mask ROM)	7932 (PROM)			
Table reference area RAM (x4 bits)		256 7932					
		320 432					
Data b	uffer		4				
Genera	al register		16				
System regi	ster		12×4 bits				
Register file			33 × 4 bits (control register)				
General-pur register	pose port		24 × 4 bits				
Instruction e	execution time	4.	44 μs (at 4.5 MHz, crystal oscillat	tor)			
Stack level			7 (stack can be manipulated)	·			
General-	I/O port		16 lines				
purpose	Input port		8 lines				
port	Output port	9 lines (+30: LCD segment pin)					
Clock gener	ator port	1 line					
LCD controller/driver Serial interface		Segment pins multiplexed All 30 lines can be used as					
		2 systems (3 channels) Serial interface 1: 2-line I ² C bus mode*, serial I/O mode 3-line Serial I/O mode Serial interface 2: 3-line Serial I/O mode					
D/A converte	er	· 8 bits × 3 lines (PWM output, output voltage: 16 V max.)					
A/D converte	r	6 bits × 6 lines (successive approximation method by software)					
Interrupt		• 5 channels (maskable interrupt) External interrupt : 2 channels (INTo pin, INTo pin) Internal interrupt : 3 channels (timer, serial interface 1, frequency counter)					
Timer		· 2 systems Timer carry (1, 5, 100, 250 ms) Timer interrupt (1, 5, 100, 250 ms)					
Reset function	on	 Power-ON reset (on power application) Reset by CE pin (CE pin: low level→high level) Power failure detection function 					

^{*:} Among the PROM models, only μ PD17P005GF-E00-3B9 can use the l²C bus mode. For the mask ROM model, it is confirmed when an order for the custom code is received.

(con't)

ITEM	RODUCT NAME	μPD17003A	μPD17005	μPD17P005				
	Division modes	Pulse swallow method	(VCOL pin 30 MHz max.) (VCOL pin 40 MHz max.) (VCOH pin 150 MHz max.)					
PLL frequency synthesizer	Reference frequency	• •	12 types selected by program 1, 1.25, 2.5, 3, 5, 6.25, 9, 10, 12.5, 25, 50, 100 kHz					
Synthesizer	Charge pump	· Two independent error outputs						
	Phase comparator	 Unlock can be detected Delay time of unlock FF 						
	LPF amp	· CMOS operational amp.	Output withstand voltage: 16 V	max.				
Frequency co	unter	Frequency measurement P1D₂/FMIFC pin 5 to 15 I P1D₂/AMIFC pin 0.1 to 1 External gate width mea P1A₂/FCG pin	MHz MHz					
Supply voltage		 VDD = 4.5 to 5.5 V (PLL ar VDD = 3.5 to 5.5 V (PLL st VDD = 2.2 to 5.5 V (crysta 	ops, CPU operates)					
Package		80-pin plastic QFP (14 × 20	0 mm)					

3. WRITING, READING, AND VERIFYING ONE-TIME PROM (PROGRAM MEMORY)

The internal program memory of the μ PD17P005 is a 15864 \times 8 bit one-time PROM to which data can be electrically written. This PROM is accessed in 1-word or 16-bit units in a normal operation mode. When the program memory is written, read, or verified, the PROM is accessed in 1-word or 8-bit units. The higher 8 bits of 1 word or 16 bits are assigned to an even address, while the lower 8 bits are assigned to an odd address.

When the PROM is to be written, read, or verified, set the PROM mode and use the pins shown in Table 3-1 below.

Note that there is no address input pin. Instead, the clock signal input from the CLK pin is used to update the address.

Table 3-1 Pins Used to Write, Read, or Verify Program Memory

PIN NAME	FUNCTION
VPP	Applies program voltage (12.5 V)
CLK	Inputs address updating clock
MD0-MD3	Select operation mode
D0-D7	Input/output 8-bit data
VDD1, VDD2	Apply supply voltage (6 V)

Write the internal PROM by using the following PROM programmer and program adapter:

PROM programmer

AF-9703 (Ando Electric.)

AF-9704 (ditto)

Program adapter

AF-9803 (ditto)

3.1 OPERATION MODE FOR WRITING, READING, AND VERIFYING PROGRAM MEMORY

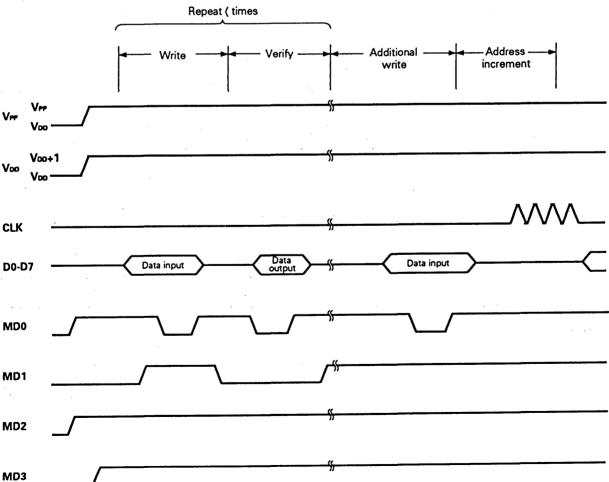
The μ PD17P005 is set in a mode to write, read, or verify the program memory when +6 V is applied to the Vpp pin and +12.5 V is applied to the VPP pin.

To set the program memory write, read, and verify modes, use the MD0 through MD3 pins as shown in Table 3-2.

The pins not used to write, read, or verify the program memory should be either opened, or connected to GND through a pull-down resistor (470 Ω). (Refer to (2) PROM programming mode in Pin Configuration.)

Table 3-2 Operation Mode When Program Memory is Written, Read, or Verified

	SPECIF	IES OPE	RATION	OPERATIONAGE		
Vpp	VDD	MD0	MD1	MD2	MD3	OPERATION MODE
		Н	L	Н	L	Clears program memoryaddressto
40.51/	6) (L H	Н	Н	Write mode	
+12.5V	+6V	L	L	Н	Н	Read, verify modes
		Н	X	Н	Н	Program inhibit mode

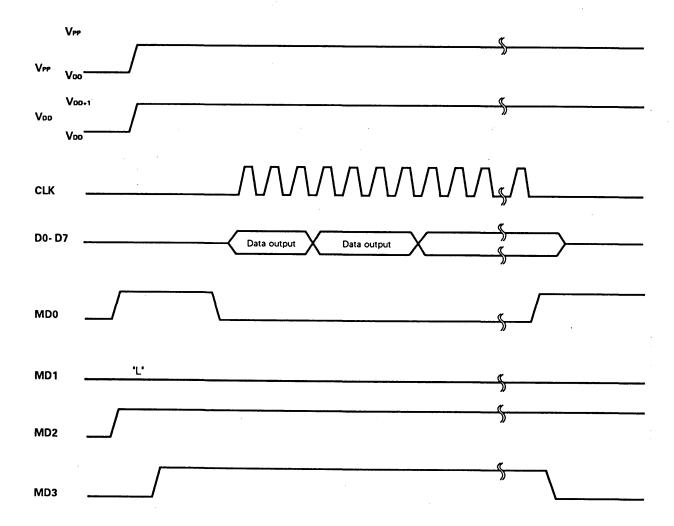

Remarks: X: L or H

3.2 WRITING PROGRAM MEMORY

The program memory can be written at high speeds in the following sequence:

- (1) Pull down the unused pins to GND through a resistor. Keep the CLK pin at the low level.
- (2) Supply 5 V to the VDD and VPP pins.
- (3) Wait for 10 us.
- (4) Set the program memory address 0 clear mode.
- (5) Supply 6 V to the Voo pin and 12.5 V to the VPP pin.
- (6) Set the program inhibit mode.
- (7) Write data in 1-ms write mode.
- (8) Set the program inhibit mode.
- (9) Set the verify mode. If the program memory has been correctly written, proceed to step (10). If not, repeat steps (7) through (9).
- (10) Additional writing of (Number of times the program memory has been written in (7) through (9): X) × 1 ms
- (11) Set the program inhibit mode.
- (12) Input a pulse to the CLK pin four times to update the program memory address by one (+1).
- (13) Repeat steps (7) through (12) until the last address is written.
- (14) Set the program memory address 0 clear mode.
- (15) Change the voltage on the VDD and VPP pins to 5 V.
- (16) Turn off the power.

Steps (2) through (12) are illustrated below.



3.3 READING PROGRAM MEMORY

Read the contents of the program memory of the μ PD17P005 in the following sequence:

- (1) Pull down the unused pins to GND through a resistor. Keep the CLK pin at the low level.
- (2) Supply 5 V to the Voo and VPP pins.
- (3) Wait for 10 us.
- (4) Set the program memory address 0 clear mode.
- (5) Supply 6 V to the Vop pin and 12.5 V to the VPP pin.
- (6) Set the program inhibit mode.
- (7) Set the verify mode. When the clock pulse is input to the CLK pin, data is sequentially output one address at a time with four clocks constituting one cycle.
- (8) Set the program inhibit mode.
- (9) Set the program memory address 0 clear mode
- (10) Change the voltage on the VDD and VPP pins to 5 V.
- (11) Turn off the power.

Steps (2) through (9) are illustrated below.

4. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (Ta = 25±2°C)

PARMETER	SYMBOL	CONDITION	RATINGS	UNIT
Supply Voltage	Voo		- 0.3 to +6.0	V
Input Voltage	Vi		- 0.3 to V _{DD} + 0.3	V
Output Voltage	Vo	Except P1B ₁ - P1B ₃ , P0A ₂ , P0A ₃ , LPFout	- 0.3 to V _{DD} + 0.3	V
Output Withstand Voltage	V _{BD81}	P1B1 - P1B3, LPFout	18.0	V
	V _{BDS2}	P0A ₂ , P0A ₃	Voo + 0.3	V
		1 pin	- 12	mA
High-Level Output Current	Юн	Total of all pins	- 20	mA
		1 pin	12	mA
Low-Level Output Current	loL	Total of all pins	20	mA
Operating Temperature	Topt		- 40 to + 85	°C
Storage Temperature	Tstg		- 55 to + 125	°C

Recommended Operating Conditions

SYMBOL	CONDITIONS	MIN.	TYP.	MAX	UNIT
VDD1	PLL and CPU operate	4.5	5.0	5.5	٧
V _{DD2}	PLL stops, CPU operates	3.5	5.0	5.5	٧
VDDR	Crystal oscillator stops	2.2		5.5	· V
trise	V _{DD} = 0 → 4.5 V			500	ms
Vin1	VCOL, VCOH	0.5		Voo	V _{P-P}
Vin2	AMIFC, FMIFC	0.5		Voo	V _{P-P}
Vaos	P1B1 - P1B3, LPFouт			16.0	٧
Topt	· ,	- 40		+85	°C
	VDD1 VDD2 VDDR trise Vin1 Vin2 VBDS	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VDD1 PLL and CPU operate 4.5 5.0 5.5 VDD2 PLL stops, CPU operates 3.5 5.0 5.5 VDDR Crystal oscillator stops 2.2 5.5 trise VDD = 0 \rightarrow 4.5 V 500 VIn1 VCOL, VCOH 0.5 VDD VIn2 AMIFC, FMIFC 0.5 VDD VBDS P1B1 - P1B3, LPFout 16.0

DC Characteristics (Ta = -40 to $+85^{\circ}$ C, V_{DD} = 4.5 to 5.5 V)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX	UNIT
Supply Voltage	VDD1	CPU and PLL operate	4.5	5.0	5.5	V
	VD02	CPU operates, PLL stops	3.5	5.0	5.5	V
		CPU operates, PLL stops. X _{IN} pin				
	loo1	Sine wave input (fin = 4.5 MHz, Vin = Voo), Ta = 25°C		2.8	5.6	mA
Supply Current	lob2 executed in 1 ms) XIN pin			1.9	3.8	mA
		Sine wave input (fin = 4.5 MHz, Vin = Voo), Ta = 25°C				
	VDDR1	Power failure detected by timer FF; with crystal oscillator	3.5		5.5	٧
Data Retention Voltage	. VDDR2	Power failure detected by timer FF; crystal oscillator stops	2.2		5.5	V
	VDDR3	Data memory (RAM) retained	2.0		5.5	V
	IDDR1	Crystal oscillator stops Ta = 25°C		2	15	μА
Data Retention Current	I DDR2	Crystal oscillator stops V _{DD} = 5.0 V, Ta = 25°C	·	2	10	μΑ
Intermediate Level Output Voltage	Vом1	COMo, COM1 VDD= 5 V	2.3	2.5	2.7	٧
High-Level Input Voltage	Vін1	P0Ao-P0As, P0Bo-P0Bs, P0Co-P0Cs, P1Ao-P1As, P1Do-P1Ds, CE, INTo, INTs	0.8 V _{DD}		V _{DD}	٧
•	VIH2	P0Do-P0D3	0.6 Vpp		Voo	V
	 	P0Ao-P0A3, P0Bo-P0B3, P0Co-P0C3,	0.0.00		730	•
Low-Level Input Voltage	ViL	P0Do-P0D3, P1Ao-P1A3, P1Do-P1D3,	0		0.2 VDD	. V
		CE, INTo, INTo	<u> </u>			
High-Level Output Current	ј он1	P0Ao, P0A1, P0Bo-P0B3, P0Co-P0C3, P1Ao-P1A3, P1Co-P1C3, P1Bo, P2A3,	- 1.0	- 5.0		mA
		Vон = V _{DD} - 1 V				
	IOH2	LCDo-LCD29, EOo, EO1 VoH = VDD - 1 V	- 1.0	- 4.0		mA
Low-Level Output Current	lou	P0Ao-P0A3, P0Bo-P0B3, P0Co-P0C3, P1Ao-P1A3, P1Co-P1C3, P1Bo, P2Ao, Vol = 1 V	1.0	7.0		mA
Low-Level Output current	louz	LCDo-LCD29, EOo, EO1 VoL = 1 V	1.0	3.5		mA
	lous	P1B ₁ -P1B ₃ Vo _L = 1 V	1.0	2.0		mA
·	lo _{L4}	P0A ₂ , P0A ₃ V _{OL} = 1 V	1.0	10.0		mA
	lini	VCOH pulled down ViH = Vpp	0.1	0.8		mA
High-Level Input Current	lih2	VCOL pulled down Vin = Vpp	0.1	0.8		mA
g., acros impor contont	Іінз	Xin pulled down ViH = VDD	0.1	1.3		mA
	lin4	P0Da-P0Da pulled down ViH = Voo	0.05	0.13	0.30	mA
	lu	POA ₂ , POA ₃ VoH = VoD			500	nA
Output Off Leakage Current	lı2	P1B1-P1B3, LPFout Von = 16 V			500	nA
	11.3	EO ₀ , EO ₁ V _{OH} = V _{DD} , V _{OL} = 0 V			±100	nA

AC Characteristics (Ta = -40 to $+85^{\circ}$ C, VDD = 4.5 to 5.5 V)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX	UNIT
	fina	VCOL MF mode, sine wave input V _{IN} = 0.3 V _{P-P}	0.5		30	MHz
	fin2	VCOL HF mode, sine wave input V _{IN} = 0.3 V _{P-P}	5		40	MHz
	fins	VCOH, sine wave input VIN = 0.3 VP-P	9		150	MHz
Operating Fequency	fin4	AMIFC, sine wave input VIN = 0.5 VP-P	0.1		1	MHz
	fins	AMIFC, sine wave input VIN = 0.05 VP-P	0.44		0.46	MHz
	fine	FMIFC, sine wave input VIN = 0.5 VP-P	5		15	MHz
	fin7	FMIFC, sine wave input VIN = 0.06 VP-P	10.5		10.9	MHz
A/D Converter Resolution					6	bit
A/D Converter Total Error		Ta = -10 to +50°C		±1	±1.5	LSB

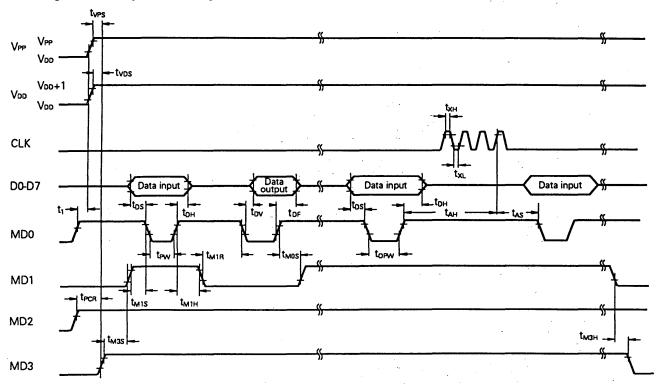
Reference Characteristics

PARAMETER	SYMBOL	CONDITIONS CPU and PLL operate VCOH sine wave input fin = 150 MHz, Vin = 0.5 Vp.p Voo = 5 V, Ta = 25°C		MIN.	TYP.	MAX	UNIT
Supply Current	loos						· mA
High-Level Output Current	1он4	COMo, COM1	VoH = VDD - 1 V		- 0.2		mA
	Іомі	COMo, COM1	Vom = Voo - 1 V		- 20		μА
Intermediate Level Output Current	lom2	COMo, COM1	V _{OM} = 1 V		20		μΑ
Low-Level Output Current	lous	COMo, COM1	Vol = 1 V		0.2		mA

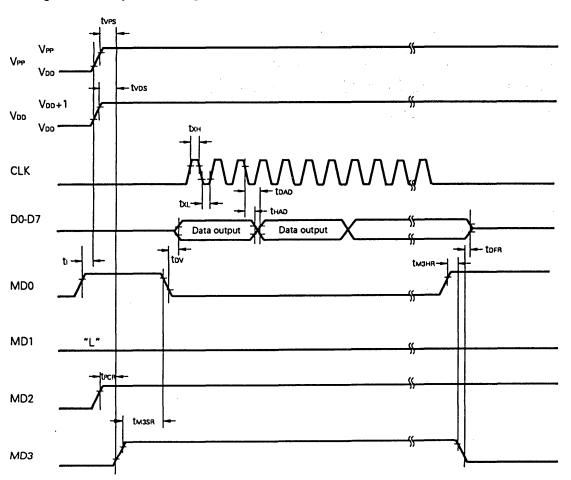
DC Programming Characteristics (Ta = 25°C, VDD = 6.0±0.25 V, VPP = 12.5±0.5 V)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX	UNIT
11:-b-1	ViH1	Other than CLK	0.7 Vpp		Voo	V
High-Level Input Voltage	VIH2	CLK	VDD - 0.5		Voo	V
Low Lovel Lanut Voltage	VILI	Other than CLK	0		0.3 V _{DD}	V
Low-Level Input Voltage	VIL2	CLK	. 0		0.4	٧
Input Leakage Current	lu .	Vin = Vil or Vih			±10	μА
High-Level Output Voltage	Vон	lон = −1 mA	Vpp - 1.0			V
Low-Level Output Voltage	Val	loc = 1 mA			1.0	V
Voo Supply Current	loo				30	mA
V _{PP} Supply Current	l _{PP}	MD0 = VIL, MD1 = VIH			30	mA

Note:Note: 1. Keep VPP to within +13.5 V including the overshoot.

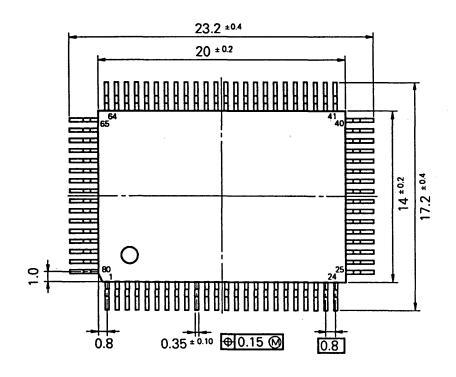

2. Apply VDD before VPP and turn it off after VPP.

AC Programming Characteristics (Ta = 25°C, V_{DD} = 6.0 ± 0.25 V, V_{PP} = 12.5 ± 0.5 V)

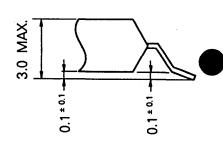

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Address Setup Time* (vs. MD01)	tas		2			μs
MD1 Setup Time (vs. MD0↓)	tmis		2			μs
Data Setup Time (vs. MD0↓)	tos		2			μs
Address Hold Time* (vs. MD01)	tah		2			μs
Data Hold Time (vs. MD01)	tон		2		 	μs
MD01→ Data Output Float Delay Time	tor		0		130	ns
Ver Setup Time (vs. MD31)	tives		2		· · · · · · · · · · · · · · · · · · ·	μs
Voo Setup Time (vs. MD31)	tvos		2			μs
Initial Program Pulse Width	tew		0.95	1.0	1.05	ms
Additional Program Pulse Width	topw		0.95		21.0	ms
MD0 Setup Time (vs. MD11)	tmos		2			μз
MD0↓→ Data Output Delay Time	tov	MD0 = MD1 = ViL			1	μs
MD1 Hold Time (vs. MD01)	tмін		2			μs
MD1 Recovery Time (vs. MD0↓)	t _{M1R}	tm1+ tm1s ≥ 50 <i>μ</i> s	2			μs
Program Counter Reset Time	teca		10			μs
CLK Input High-, Low-Level Width	txH, txL		0.125			μs
CLK Input Frequency	fx				4.19	MHz
Initial Mode Set Time	tı		2			μз
MD3 Setup Time (vs. MD11)	tмзв		2			μs
MD3 Hold Time (vs. MD11)	tмзн		2			μs
MD3 Setup Time (vs. MD0↓)	tmasa	Program memory read	2			μs
Address*→Data Output Delay Time	toad	Program memory read	2			μs
Address*→Data Output Hold Time	thad	Program memory read	0		130	ns
MD3 Hold Time (vs. MD01)	tмзня	Program memory read	2			μз
MD3↓→ Data Output Float Delay Time	tora	Program memory read	2			μs

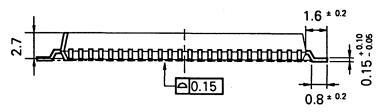
^{*:} The internal address signal is incremented (+1) at the falling edge of thernal address signal is incremented (+1) at the falling edge of the third CLK signal (with one cycle consisting of four clocks). The internal address is not connected to a pin.

Program memory write timing



Program memory read timing




5. PACKAGE DRAWINGS

80-Pin Plastic QFP (14 \times 20) (Unit: mm)

Details of tip of pin

6. RECOMMENDED SOLDERING CONDITIONS

The μ PD17P005 should be soldered under the following recommended conditions. For soldering conditions other than those recommended below, consult NEC.

Table 6-1 List of Recommended Soldering Conditions

PRODUCT NAME	PACKAGE	CODE
		·IR30-162
μPD17P005GF-3B9		·VP15-162
l'		·WS60-162
μPD17P005GF-xxx-3B9	•	Pin partial heating

Table 6-2 Soldering Conditions

CODE	SOLDERING METHOD	SOLDERING CONDITIONS
IR30-162	Infrared reflow	Package peak temperature: 230°C, Time: 30 seconds max. (210°C min.), Number of times: 1, Number of days*: 2 (after this, prebaking is necessary at 125°C for 16 hours)
VP15-162	VPS	Package peak temperature: 215°C, Time: 40 seconds max. (200°C min.), Number of times: 1, Number of days*: 2 (after this, prebaking is necessary at 125°C for 16 hours)
WS60-162	Wave soldering	Soldering oven temperature: 260°C max., Time: 10 seconds max., Number of times: 1, Number of days*: 2 (after this, prebaking is necessary at 125°C for 16 hours)
Pin partial heating	Pin partial heating	Pin temperature: 300°C max., Time: 10 seconds max.

^{*:} The number of days the device can be stored after the dry pack has been opened. The storing conditions are 25°C, 65% RH max.

 $Note: \quad \text{Do not use two or more soldering methods in combination (except for the pin partial heating method)}.$

Remarks: For details of the recommended soldering conditions, refer to "Semiconductor Device Mounting Manual" (IEI-616).

APPENDIX DEVELOPMENT TOOLS

The following development tools are readily available to support the development of the μ PD17P005 program:

Hardware

NAME	OUTLINE	ORDERCODE
	This in-circuit emulator is used in common with the 17K series products. When developing the program of μ PD17P005, a system evaluation board (SE board) is used in combination with the in-circuit emulator.	15.474
In-circuit Emulator	The in-circuit emulator operates with a RAM base. By connecting it to a console, the program can be added to and edited on the console. In addition, more sophisticated program development environments can be created by using the support software SIMPLEHOST ^M .	IE-17K IE-17K-ET*
SE board	Used to evaluate the system of μ PD17P005 in stand-alone mode, or in combination with the in-circuit emulator.	SE-17010
Emulation Probe	Connects the SE board to the target system.	EP-17003GF
Conversion socket	Connects to the target system in combination with the emulation probe.	EV-9200G-80
PROM programmer	The PROM of the μ PD17P005 can be programmed by using a dedicated program adapter AF-9803.	AF-9703 AF-9704 (Ando Electric)
Program adapter	Used in combination with the PROM programmer.	AF-9803 (Ando Electric)

Remarks: For the details of the PROM programmer and program adapter, consult Ando Electric.

Software

NAME	OUTLINE	HOSTMACHINE	os	SUPPLY MEDIA	ORDERCODE		
17K series	AS17K is an assembler that can be		MS-DOS [™]	5"2HD	μS5A10AS17K		
assembler	ssembler used in common with the 17K series products. When developing the		(Ver.3.1toVer.3.30C)	3.5*2HD	μS5A13AS17K		
program of the μ PD17P005, AS17K is used in combination with a device file (AS17005).		IBM PC/AT™	PCDOS [™] (Ver. 3.1)	5"2HC	μS7B10AS17K		
Device file	AS17005 is a device file for μPD17005		MS-DOS	5*2HD	μS5A10AS17005		
(AS17005)	(AS17005) and μPD17P005, and is used in combination with an assembler for the 17K series (AS17K).	1	,	Ma	(Ver.3.1toVer.3.30C)	3.5*2HD	μS5A13AS17005
		IBM PC/AT	PCDOS (Ver. 3.1)	5*2HC	μS7B10AS17005		
Support	SIMPLEHOST is a software package		MS-DOS (Ver. 3.1to MS-	5"2HD	μS5A10IE17K		
software (SIMPLEHOST)	mer suesies manifestines monace	mer emesies men meeting moraco	PC-9800 series	Ver. 3.30C) WINDOWS		μS5A13IE17K	
is deve	is developed by using an in-circuit emulator and a personal computer.	IBM PC/AT	PCDOS (Ver. 3.1) Ver. 3.0)	5"2HC	μ\$7810IE17K		

^{*:} Low-cost model: with external power supply

SIMPLEHOST™ is a trademark of NEC Corporation
MS-DOS™ and MS-WINDOWS™ are trademarks of Microsoft Corporation.
PC/AT™ and PC DOS™ are trademarks of IBM Corporation.

(MEMOI

Note: Purchase of NEC I²C components conveys a license under the Philips I C² Patent Rights to use these components in an I² system, provided that the system comforms to the I²C Standard Specification as defined by Philips.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in the field where very high reliability is required including, but not limited to, aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or those intend to use "Standard" quality grade NEC devices for the application not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment,

Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anti-

crime systems, etc.