mos integrated circuit μ PD178096A,178098A

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD178096A and 178098A are 8-bit single-chip CMOS microcontrollers containing hardware for digital tuning systems.

These microcontrollers employ a 78K/0 Series architecture CPU and allow easy access to internal memories at high speed and easy control of peripheral hardware units. The high-speed 78K/0 Series instructions are ideal for system control.

As peripheral hardware, a prescaler, PLL frequency synthesizer, and frequency counter for digital tuning systems are provided, as well as many I/O ports, timers, A/D converter, serial interface, and a power-ON clear circuit. In addition, the μ PD178096A and 178098A have an IEBusTM controller.

Moreover, a flash memory model, the μ PD178F098, that operates in the same supply voltage range as the mask ROM models, and various development tools are also under development.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

μPD178078, 178098 Subseries User's Manual: U12790E 78K/0 Series User's Manual - Instructions: U12326E

FEATURES

• High-capacity ROM and RAM

	Item	Program Memory (ROM)	Data Memory		
Part Number			Internal High-Speed RAM	Internal Buffer RAM	Internal Expansion RAM
μPD178096A		48 KB	1024 bytes	32 bytes	1024 bytes
μPD178098A		60 KB			2048 bytes

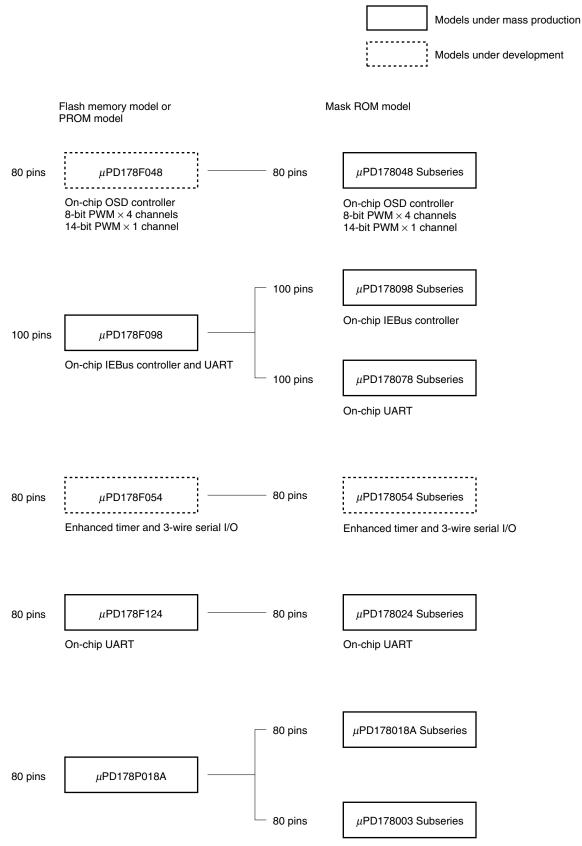
Instruction cycle:
 0.32 μs (with crystal resonator of fx = 6.3 MHz)

 Many internal hardware units General-purpose I/O ports, A/D converter, serial interface, IEBus controller, timers, frequency counter, power-ON clear circuit

- Hardware for PLL frequency synthesizer dual modulus prescaler, programmable divider, phase comparator, charge pump
- Vectored interrupt sources: 21
- Supply voltage:
 V_{DD} = 4.5 to 5.5 V (during PLL and CPU operations)
 V_{DD} = 3.5 to 5.5 V (during CPU operation)

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

APPLICATION FIELD


Car stereos

ORDERING INFORMATION

Part Number	Package
μPD178096AGF-×××-3BA	100-pin plastic QFP (14 $ imes$ 20)
μPD178098AGF-×××-3BA	100-pin plastic QFP (14 $ imes$ 20)

Remark xxx indicates ROM code suffix, which is Exx when the I^2C bus is used.

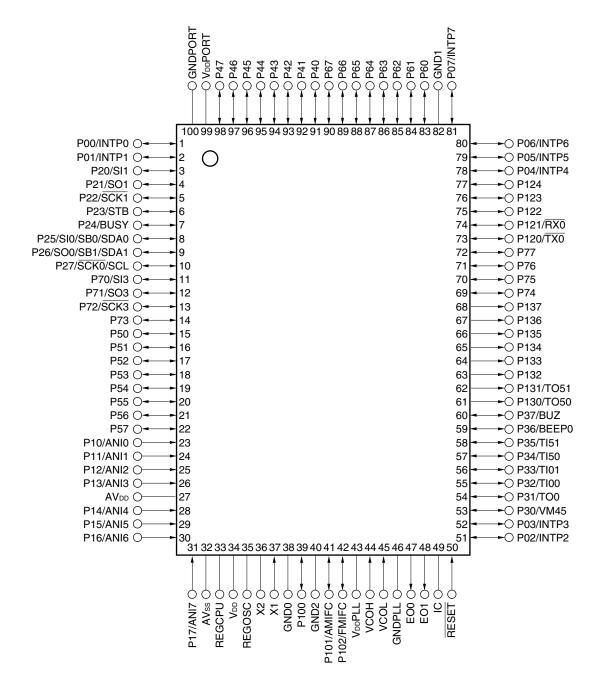
8-BIT DTS SERIES LINEUP

Limits functions of µPD178018A Subseries

OVERVIEW OF FUNCTIONS

	Item	μPD178096	6A	μPD178098A
Internal	ROM	48 KB		60 KB
memory	High-speed RAM	1024 bytes		
	Buffer RAM	32 bytes		
	Expansion RAM	1024 bytes		2048 bytes
General-pu	rpose registers	8 bits $ imes$ 32 registers (8 bits	s × 8 registers >	× 4 banks)
Minimum ir time	nstruction execution		•	s (with crystal resonator of fx = 6.3 MHz) s (with crystal resonator of fx = 4.5 MHz) ^{Note 1}
Instruction set		 16-bit operation Multiply/divide (8 bits × 8 Bit manipulation (set, res BCD adjust, etc. 		
I/O ports		Total:	80 pins	
		CMOS input:	8 pins	
		• CMOS I/O:	64 pins	
		N-ch open-drain output:	8 pins	
A/D conver	ter	8-bit resolution \times 8 channel	els	
Serial inter	face	• 3-wire/SBI/2-wire/I ² C bus ^{Note 2} mode selectable: 1 channel		
		3-wire mode: 1 channel		
			atic transmit/re	ceive function of up to 32 bytes): 1 channel
IEBus cont	roller	Provided		
Timer		Basic timer (timer carry F	· //	
		 16-bit timer/event counte 		channel
		8-bit timer/event counter		channels
		Watchdog timer:		channel
Buzzer out	put	BEEP0 pin: 1 kHz, 1.5 kHz, 3 kHz, 4 kHz		
		BUZ pin: 0.77 kHz. 1.54 k	Hz. 3.08 kHz. 6	.15 kHz (with crystal resonator of fx = 6.3 MH

- **Notes 1.** When using the IEBus controller, the 4.5 MHz crystal resonator cannot be used. Be sure to use the 6.3 MHz crystal resonator.
 - 2. When the I²C bus mode is used (including when the mode is implemented in software without using the peripheral hardware), consult NEC when ordering a mask.

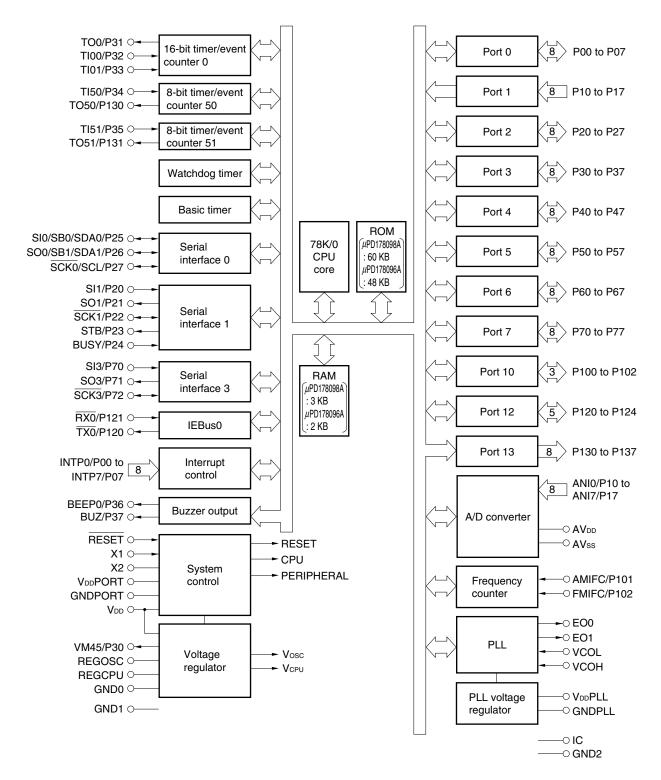

(2/2)

Item		μPD178096A	μPD178098A			
Vectored	Maskable	Internal: 12				
interrupt		External: 8				
sources	Non-maskable	Internal: 1				
	Software	1				
PLL	Division mode	2 types				
frequency		Direct division mode (VCOL pin)				
synthesizer		• Pulse swallow mode (VCOL and VCOH pins)				
	Reference frequency	Seven types selectable in software (1, 3, 9, 10, 12.5, 25, 50 kHz)				
	Charge pump	Error out output: 2 pins				
	Phase comparator	Unlock detectable in software				
Frequency co	ounter	Frequency measurement • AMIFC pin: For 450 kHz counting				
		• FMIFC pin: For 450 kHz/10.7 MHz counting				
Standby fund	otion	HALT mode STOP mode				
Reset		Reset by RESET pin Internal reset by watchdog timer Reset by power-ON clear circuit				
		 Detection of less than 4.5 V^{Note} (Reset does not occur, however.) Detection of less than 3.5 V^{Note} (during CPU operation) Detection of less than 2.3 V^{Note} (in STOP mode) 				
Supply voltag	ge	 V_{DD} = 4.5 to 5.5 V (during CPU, PLL operation) V_{DD} = 3.5 to 5.5 V (during CPU operation) 				
Package		100-pin plastic QFP (14 \times 20)				

Note These voltages are the maximum values. In practice, the chip may be reset at voltages lower than these.

PIN CONFIGURATION (Top View)

• **100-pin plastic QFP (14** × **20)** μPD178096AGF-×××-3BA, 178098AGF-×××-3BA



Cautions 1. Connect the IC (Internally Connect) pin directly to GND0, GND1, or GND2.

- 2. Keep the voltage at AVDD, VDDPORT, and VDDPLL pins same as that at the VDD pin.
- 3. Keep the voltage at AVss, GNDPORT, and GNDPLL pins same as that at GND0, GND1, or GND2.
- 4. Connect each of the REGOSC and REGCPU pins to GND via a 0.1 μF capacitor.

Pin Name			
AMIFC:	AM intermediate frequency counter	P130 to P137:	Port 13
	input	REGCPU:	Regulator for CPU power supply
ANI0 to ANI7:	A/D converter input	REGOSC:	Regulator for oscillation circuit
AVDD:	A/D converter power supply	RESET:	Reset input
AVss:	A/D converter ground	RX0:	IEBus serial data input
BUSY:	Busy output	SB0, SB1:	Serial data bus input/output
BEEP0, BUZ:	Buzzer output	SCK0, SCK1, SCK3:	Serial clock input/output
EO0, EO1:	Error out output	SCL:	Serial clock input/output
FMIFC:	FM intermediate frequency counter	SDA0, SDA1:	Serial data input/output
	input	SI0, SI1, SI3:	Serial data input
GNDPLL:	PLL ground	SO0, SO1, SO3:	Serial data output
GND0 to GND2:	Ground	STB:	Strobe output
IC:	Internally connected	TI00, TI01:	16-bit timer capture trigger input
INTP0 to INTP7:	Interrupt input	TI50, TI51:	8-bit timer clock input
P00 to P07:	Port 0	TO0:	16-bit timer output
P10 to P17:	Port 1	TO50, TO51:	8-bit timer output
P20 to P27:	Port 2	TX0:	IEBus serial data output
P30 to P37:	Port 3	VCOL, VCOH:	Local oscillation input
P40 to P47:	Port 4	VDDPORT:	Port power supply
P50 to P57:	Port 5	VDDPLL:	PLL power supply
P60 to P67:	Port 6	VDD:	Power supply
P70 to P77:	Port 7	VM45:	$V_{DD} = 4.5 V$ monitor output
P100 to P102:	Port 10	X1, X2:	Crystal resonator
P120 to P124:	Port 12		

BLOCK DIAGRAM

CONTENTS

1.	PIN FUNCTIONS	10
	1.1 Port Pins	10
	1.2 Non-Port Pins	
	1.3 Pin I/O Circuits and Recommended Connections of Unused Pins	13
2.	MEMORY SPACE	17
	2.1 Memory Size Switching Register (IMS)	18
	2.2 Internal Expansion RAM Size Switching Register (IXS)	18
3.	PERIPHERAL HARDWARE FUNCTION FEATURES	19
	3.1 Ports	19
	3.2 Clock Generator	20
	3.3 Timers	20
	3.4 Buzzer Output Controller	23
	3.5 A/D Converter	24
	3.6 Serial Interface	24
	3.7 IEBus Controller	28
	3.8 PLL Frequency Synthesizer	31
	3.9 Frequency Counter	32
4.	INTERRUPT FUNCTION	33
5.	STANDBY FUNCTION	37
6.	RESET FUNCTION	37
7.	INSTRUCTION SET	38
8.	ELECTRICAL SPECIFICATIONS	41
9.	PACKAGE DRAWING	57
10.	RECOMMENDED SOLDERING CONDITIONS	58
AP	PENDIX A. DEVELOPMENT TOOLS	59
AP	PENDIX B. RELATED DOCUMENTS	61

1. PIN FUNCTIONS

1.1 Port Pins (1/2)

Pin Name	I/O	Function	After Reset	Alternate Function
P00 to P07	I/O	Port 0 8-bit I/O port Input/output can be specified in 1-bit units.	Input	INTP0 to INTP7
P10 to P17	Input	Port 1 8-bit input port	Input	ANI0 to ANI7
P20	I/O	Port 2	Input	SI1
P21		8-bit I/O port		SO1
P22		Input/output can be specified in 1-bit units.		SCK1
P23				STB
P24				BUSY
P25				SI0/SB0/SDA0
P26				SO0/SB1/SDA1
P27				SCK0/SCL
P30	I/O	Port 3	Input	VM45
P31		8-bit I/O port		TO0
P32		Input/output can be specified in 1-bit units.		T100
P33				TI01
P34				TI50
P35				TI51
P36				BEEP0
P37				BUZ
P40 to 47	I/O	Port 4 8-bit I/O port	Input	-
		Input/output can be specified in 1-bit units.		
P50 to P57	I/O	Port 5	Input	-
		8-bit I/O port		
		Input/output can be specified in 1-bit units.		
P60 to P67	I/O	Port 6	Input	-
		8-bit I/O port		
		Input/output can be specified in 1-bit units.		
P70	I/O	Port 7	Input	SI3
P71		8-bit I/O port		SO3
P72		Input/output can be specified in 1-bit units.		SCK3
P73				_
P74				_
P75				-
P76, P77				-

1.1 Port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
P100	I/O	Port 10	Input	-
P101		3-bit I/O port		AMIFC
P102		Input/output can be specified in 1-bit units.		FMIFC
P120	I/O	Port 12	Input	TX0
P121		5-bit I/O port		RX0
P122 to P124		Input/output can be specified in 1-bit units.		-
P130	Output	Port 13	Low-level	TO50
P131		8-bit output port	output	TO51
P132 to P137		N-ch open-drain output port (15 V withstand)		-

1.2 Non-Port Pins (1/2)

Pin Name	I/O	Function	I	After Reset	Alternate Function
INTP0 to	Input	External maskable interrupt inpu	Input	P00 to P07	
INTP7		(rising edge, falling edge, or both	n rising and falling edges)		
		can be specified.			
SI0	Input	Serial interface serial data input		Input	P25/SB0/SDA0
SI1	1				P20
SI3					P70
SO0	Output	Serial interface serial data output	t	Input	P26/SB1/SDA1
SO1	1				P21
SO3	-				
SB0	I/O	Serial interface serial data	N-ch open drain I/O	Input	P25/SI0/SDA0
SB1	1	input/output			P26/SO0/SDA1
SDA0	1				P25/SI0/SB0
SDA1	1				P26/SO0/SB1
SCK0	I/O	Serial interface serial clock input	t/output	Input	P27/SCL
SCK1					P22
SCK3	1				P72
SCL	1		N-ch open drain I/O		P27/SCK0
STB	Output	Serial interface automatic transn	nit/receive strobe output	Input	P23
BUSY	Input	Serial interface automatic transn	nit busy input	Input	P24
VW45	Output	V _{DD} = 4.5 V monitor output		Input	P30
TI00	Input	External count clock input to 16-	bit timer/event counter 0	Input	P32
TI01	1			P33	
TI50	Input	External count clock input to 8-b	it timer/event counter 50	Input	P34
TI51	1	External count clock input to 8-b	it timer/event counter 51	1	P35

1.2 Non-Port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function	
ТОО	Output	16-bit timer/event counter 0 output	Input	P31	
TO50		8-bit timer/event counter 50 output	Low-level	P130	
TO51		8-bit timer/event counter 51 output output		P131	
BEEP0	Output	Buzzer output	Input	P36	
BUZ				P37	
ANI0 to ANI7	Input	Analog input to A/D converter	Input	P10 to P17	
EO0, EO1	Output	Error out output from charge pump of PLL frequency synthesizer	_	-	
VCOL	Input	Inputs local oscillation frequency of PLL (in HF and MF modes)	-	_	
VCOH	Input	Inputs local oscillation frequency of PLL (in VHF mode)	_	_	
AMIFC	Input	Input to AM intermediate frequency counter	Input	P101	
FMIFC	Input	Input to FM intermediate frequency or AM intermediate frequency counter	Input	P102	
TX0	Output	IEBus controller data output	Input	P120	
RX0	Input	IEBus controller data input	Input	P121	
RESET	Input	System reset input	_	-	
X1	Input	Connection of crystal resonator for system clock oscillation –		-	
X2	_	-		-	
REGOSC	-	Regulator for oscillation circuit. Connect this pin to GND via 0.1 μ F capacitor	-	_	
REGCPU	_	Regulator for CPU power supply. Connect this pin to GND via 0.1 μ F capacitor	_	-	
Vdd	_	Positive power supply	_	_	
GND0 to GND2	_	Ground	-	-	
	_	Port power supply	_	_	
GNDPORT	-	Port ground	_	-	
AVDD	-	A/D converter positive power supply. Keep voltage at this		-	
AVss	-	A/D converter ground. Keep voltage at this pin same as that at GND0 through GND2		-	
VDDPLLNote	_	PLL positive power supply	_		
GNDPLL ^{Note}	_	PLL ground	_	_	
IC	-	Internally connected. Directly connect this pin to GND0, GND1, or GND2	_	_	

Note Connect a capacitor of about 1000 pF between the VDDPLL and GNDPLL pins.

1.3 Pin I/O Circuits and Recommended Connections of Unused Pins

The I/O circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the I/O circuit configuration of each type, refer to **Figure 3-1**.

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pin
P00/INTP0 to P07/INTP7	8	1/0	Input: Independently connect to VDD, VDDPORT, GND0 to GND2, or GNDPORT via a resistor. Output: Leave open.
P10/ANI0 to P17/ANI7	25	Input	Connect to VDD, VDDPORT, GND0 to GND2, or GNDPORT.
P20/SI1	5-K	I/O	Input: Independently connect to VDD, VDDPORT, GND0 to
P21/SO1	5		GND2, or GNDPORT via a resistor.
P22/SCK1	5-K		Output: Leave open.
P23/STB	5		
P24/BUSY	5-K		
P25/SI0/SB0/SDA0	10-D		
P26/SO0/SB1/SDA1	-		
P27/SCK0/SCL			
P30/VM45	5		
P31/TO0	-		
P32/TI00	5-K		
P33/TI01			
P34/TI50			
P35/TI51			
P36/BEEP0	5		
P37/BUZ	-		
P40 to P47			
P50 to P57			
P60 to P67	-		
P70/SI3	5-K		
P71/SO3	5		
P72/SCK3	5-K		
P73	5		
P74	5-K		
P75	5		
P76, P77	-		
P100			
P101/AMIFC			
P102/FMIFC]		
P120/TX0			
P121/RX0	5-K		
P122 to P124	5		

Table 1-1. Types of I/O Circuit (1/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pin
P130/TO50	19	Output	Leave open.
P131/TO51			
P132 to P137			
EO0	DTS-EO1		
EO1			
VCOL, VCOH	DTS-AMP2	Input	Disable PLL in software and select pull-down.
REGOSC, REGCPU	_	-	Connect to GND0, GND1, or GND2 via 0.1 μ F capacitor.
RESET	2	Input	-
AVDD	_	-	Connect to VDD or VDDPORT.
AVss			Connect directly to GND0 to GND2, or GNDPORT.
IC			

Table 1-1. Types of I/O Circuit (2/2)

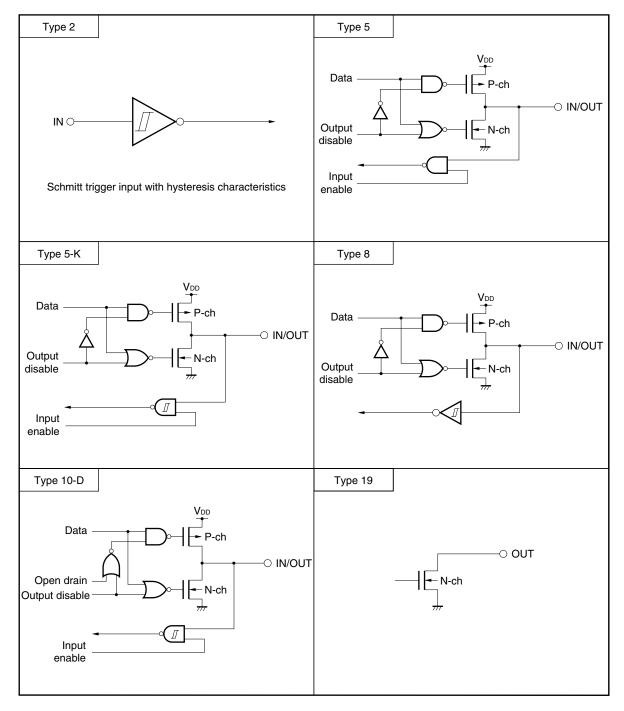
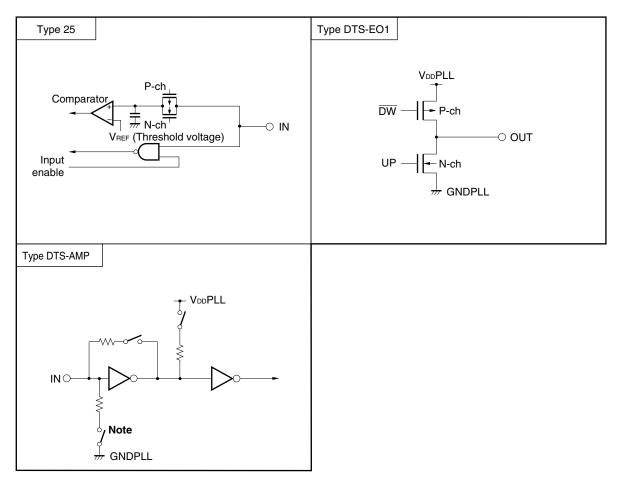
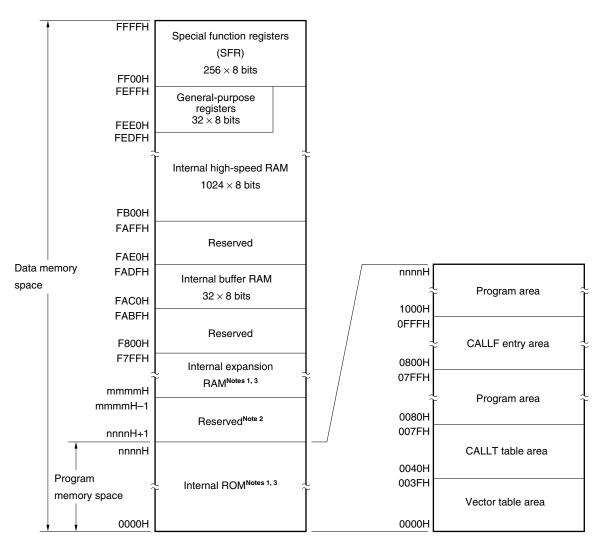


Figure 1-1. Pin I/O Circuits (1/2)

Remark VDD and GND are the positive power supply and ground pins for all port pins. Take VDD and GND as VDDPORT and GNDPORT.




Figure 1-1. Pin I/O Circuits (2/2)

Note This switch is selectable in software only for the VCOL and VCOH pins.

Remark VDD and GND are the positive power supply and ground pins for all port pins. Take VDD and GND as VDDPORT and GNDPORT.

2. MEMORY SPACE

Figure 2-1 shows the memory map of the μ PD178096A and 178098A.

Notes 1. The internal ROM and internal expansion RAM capacities vary depending on the model (refer to the table below).

Part Number	Internal ROM Last Address nnnnH	Internal Expansion RAM First Address mmmmH
μPD178096A	BFFFH	F400H
μPD178098A	EFFFH	F000H

2. The μ PD178098A does not have this reserved area.

Notes 3. The initial values of the memory size switching register (IMS) and internal expansion RAM size switching register (IXS) are CFH and 0CH, respectively. The following values must be set to the registers of each model.

Part Number	IMS	IXS	
μPD178096A	ССН	0AH	
μPD178098A	CFH	08H	

2.1 Memory Size Switching Register (IMS)

IMS is used to select the capacity of the internal memory.

Set CCH to this register of the μ PD178096A. Set CFH to the IMS of the μ PD178098A.

Use an 8-bit memory manipulation instruction to set IMS.

IMS is set to CFH after reset.

Figure 2-2. Format of Memory Size Switching Register (IMS)

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
IMS	RAM2	RAM1	RAM0	0	ROM3	ROM2	ROM1	ROM0	FFF0H	CFH	R/W

RAM2	RAM1	RAM0	Selection of internal high-speed RAM capacity				
1	1	0	1024 bytes				
Other than above Setting pro		ve	Setting prohibited				

RAM3	RAM2	RAM1	RAM0	Selection of internal ROM capacity
1	1	0	0	48 KB
1	1	1	1	60 KB
Other t	Other than above			Setting prohibited

2.2 Internal Expansion RAM Size Switching Register (IXS)

IXS is used to select the capacity of the internal expansion RAM. Set 0AH of this register of the μ PD178096A. Set 08H of the IXS of the μ PD178098A. Use an 8-bit memory manipulation instruction to set IXS.

IXS is set to 0CH after reset.

Figure 2-3. Format of Internal Expansion RAM Size Switching Register (IXS)

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
IXS	0	0	0	IXRAM4	IXRAM3	IXRAM2	IXRAM1	IXRAM0	FFF4H	0CH	R/W

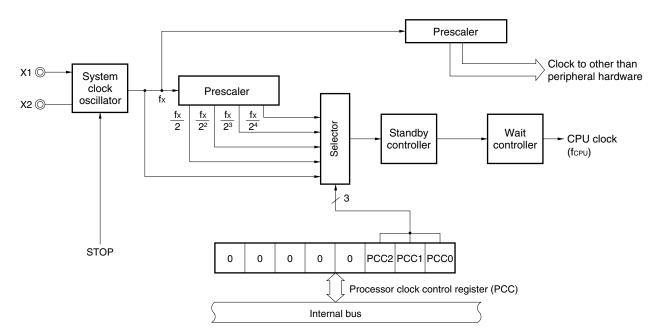
IXRAM4	IXRAM3	IXRAM2	IXRAM1	IXRAM0	Selection of internal expansion RAM capacity
0	1	0	0	0	2048 bytes
0	1	0	1	0	1024 bytes
Other t	Other than above				Setting prohibited

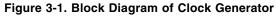
3. PERIPHERAL HARDWARE FUNCTION FEATURES

3.1 Ports

The following three types of I/O ports are available:

• CMOS input (port 1):	8 pins
• CMOS I/O (ports 0, 2 to 7, 10, and 12):	64 pins
N-ch open-drain output (port 13):	8 pins
Total:	80 pins

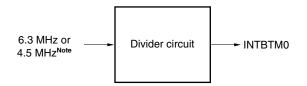

Table 3-1. Port Functions


Name	Pin Name	Function
Port 0	P00 to P07	I/O port. Input/output can be specified in 1-bit units.
Port 1	P10 to P17	Input-only port.
Port 2	P20 to P27	I/O port. Input/output can be specified in 1-bit units.
Port 3	P30 to P37	I/O port. Input/output can be specified in 1-bit units.
Port 4	P40 to P47	I/O port. Input/output can be specified in 1-bit units.
Port 5	P50 to P57	I/O port. Input/output can be specified in 1-bit units.
Port 6	P60 to P67	I/O port. Input/output can be specified in 1-bit units.
Port 7	P70 to P77	I/O port. Input/output can be specified in 1-bit units.
Port 10	P100 to P102	I/O port. Input/output can be specified in 1-bit units.
Port 12	P120 to P124	I/O port. Input/output can be specified in 1-bit units.
Port 13	P130 to P137	N-ch open-drain output port.

3.2 Clock Generator

The instruction execution time can be changed as follows:

- 0.32 μs/0.64 μs/1.27 μs/2.54 μs/5.08 μs (system clock: 6.3 MHz crystal resonator)
- 0.44 μ s/0.89 μ s/1.78 μ s/3.56 μ s/7.11 μ s (system clock: 4.5 MHz crystal resonator)^{Note}
- **Note** When using the IEBus controller, the 4.5 MHz crystal resonator cannot be used. Be sure to use the 6.3 MHz crystal resonator.



3.3 Timers

Five timer channels are provided.

- Basic timer: 1 channel
- 16-bit timer/event counter: 1 channel
- 8-bit timer/event counter: 2 channels
- Watchdog timer: 1 channel

Note When using the IEBus controller, the 4.5 MHz crystal resonator cannot be used. Be sure to use the 6.3 MHz crystal resonator.

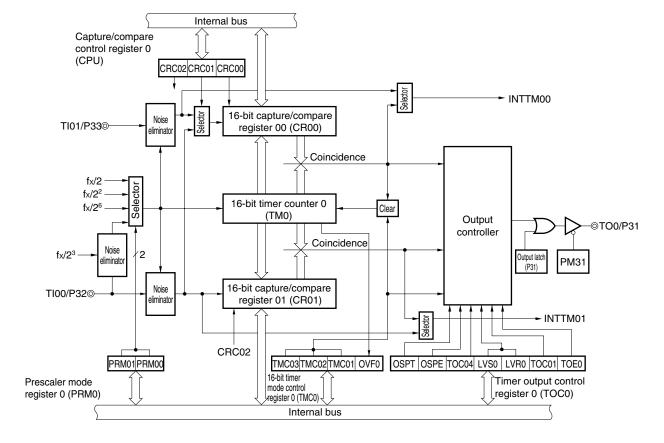
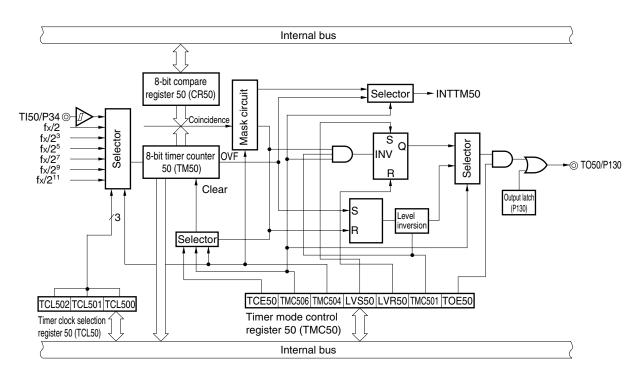



Figure 3-3. Block Diagram of 16-Bit Timer/Event Counter 0

Figure 3-4. Block Diagram of 8-Bit Timer/Event Counter 50

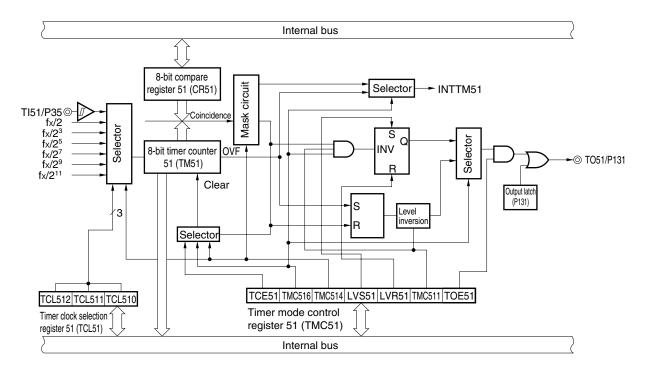
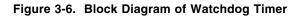
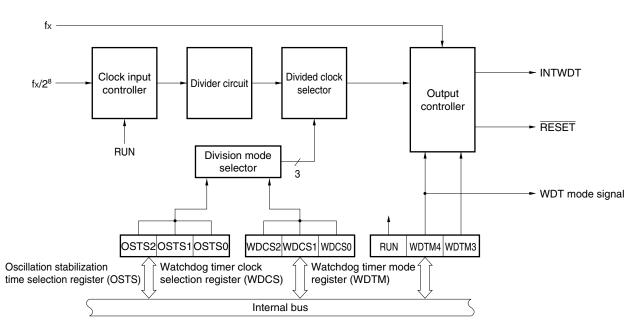




Figure 3-5. Block Diagram of 8-Bit Timer/Event Counter 51

3.4 Buzzer Output Controller

Two types of buzzer output controllers are provided.

- BEEP0 ... 1 kHz/1.5 kHz/3 kHz/4 kHz
- BUZ ... 0.77 kHz/1.54 kHz/3.08 kHz/6.15 kHz (system clock: 6.3 MHz crystal resonator)

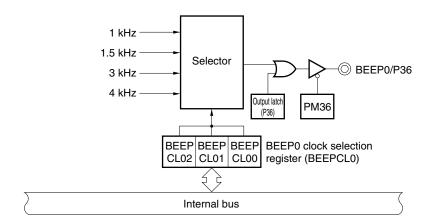
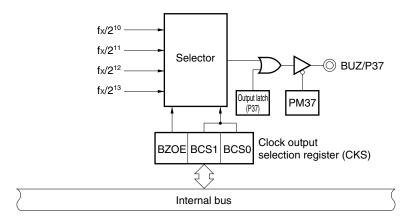
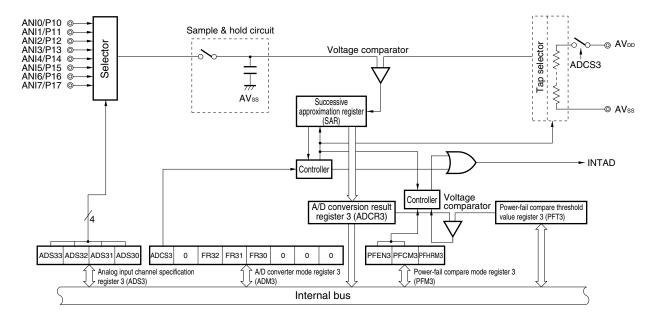



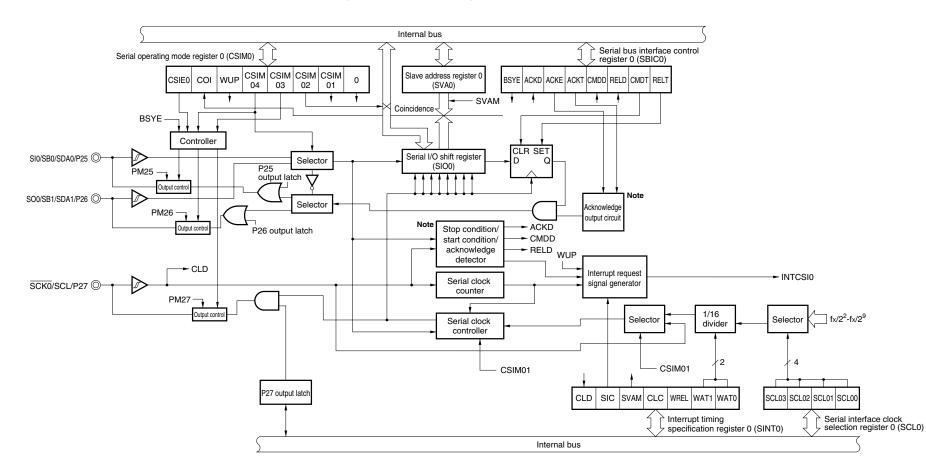
Figure 3-7. Block Diagram of Buzzer Output Controller (BEEP0)

Remark fx: System clock frequency

3.5 A/D Converter

An A/D converter with a resolution of 8 bits \times 8 channels is provided.

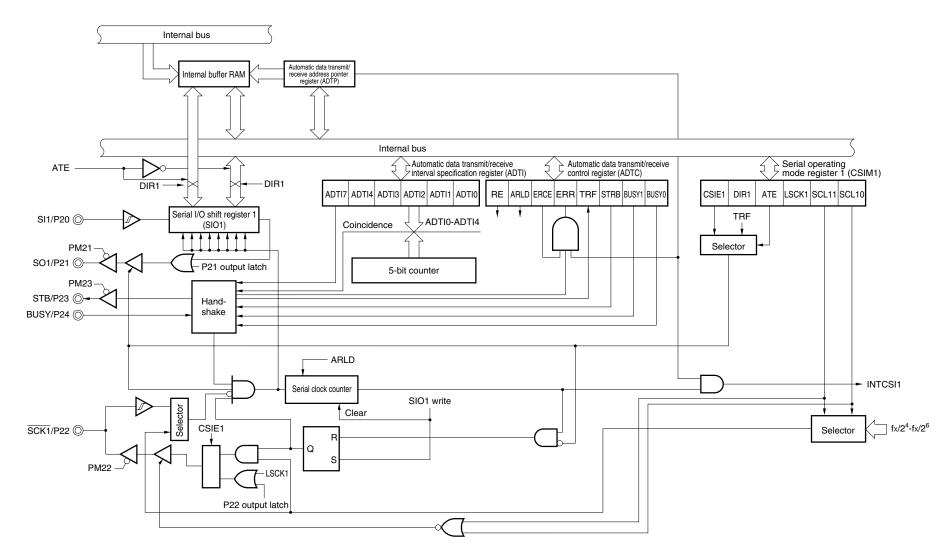


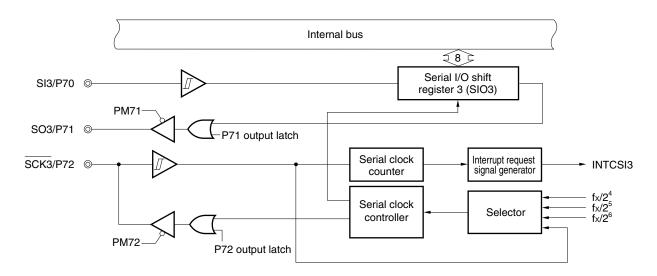

Figure 3-9. Block Diagram of A/D Converter

3.6 Serial Interface

The μ PD178096A and 178098A have three channels.

- Serial interface 0
- Serial interface 1
- Serial interface 3


Function	Serial Interface 0	Serial Interface 1	Serial Interface 3
3-wire serial I/O mode	 (MSB/LSB first selectable) 	 (MSB/LSB first selectable) 	⊖ (MSB first)
3-wire serial I/O mode with automatic transmit/receive function	-	 (MSB/LSB first selectable) 	-
SBI (serial bus interface) mode	⊖ (MSB first)	-	-
2-wire serial I/O mode	○ (MSB first)	_	_
I ² C bus mode	◯ (MSB first)	_	-


Figure 3-10. Block Diagram of Serial Interface 0

Note Example in I²C bus mode operation.

Remark Output control performs selection between CMOS output and N-ch open drain output.

µPD178096A, 178098A

Figure 3-12. Block Diagram of Serial Interface 3

3.7 IEBus Controller

The μ PD178096A and 178098A have an IEBus controller. The functions of this IEBus controller are limited as compared with the existing IEBus interface functions of the μ PD78098 Subseries.

Table 3-3 compares the interfaces of the μ PD78098 Subseries and μ PD178098A Subseries.

Table 3-3. Comparison of IEBus Interface (Between µPD78098 Subseries and µPD178098A Subseries)

Item	μ PD78098 Subseries IEBus	μ PD178098A Subseries IEBus
Communication mode	Modes 0, 1, and 2	Fixed to mode 1
Internal system clock	fx = 6.0 (6.29) MHz	fx = 6.3 MHz ^{Note}
Internal buffer size	Transmit buffer: 33 bytes (FIFO) Receive buffer: 40 bytes (FIFO) Up to 4 frames can be received.	Transmit buffer: 1 byte Receive buffer: 1 byte
CPU processing	Communication start processing (data setting) Setting and management of each communication status Writing data to transmit buffer Reading data from receive buffer	Communication start processing (data setting) Setting and management of each communication status Writing data per 1 byte Reading data per 1 byte Management of transmission such as slave status Management of multiple frames, re-master request processing
Hardware processing	Bit processing (modulation/demodulation, error detection) Field processing (generation/management) Arbitration result detection Parity processing (generation/error detection) Automatic answering of ACK/NACK Automatic data re-transmission processing Automatic re-master processing Transmission processing such as automatic slave status Multiple frame reception processing	Bit processing (modulation/demodulation, error detection) Field processing (generation/management) Arbitration result detection Parity processing (generation/error detection) Automatic answering of ACK/NACK Automatic data re-transmission processing

Note The IEBus controller of the μ PD178098A Subseries operates at fx = 6.3 MHz, and not at fx = 4.5 MHz.

Remark fx: System clock frequency

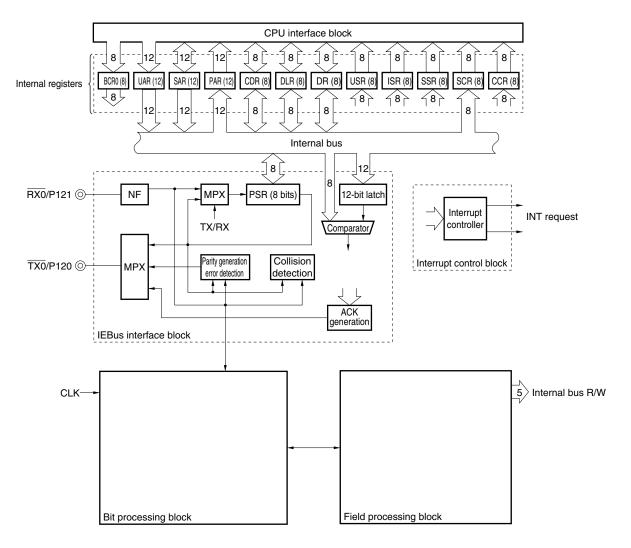


Figure 3-13. Block Diagram of IEBus Controller

The IEBus mainly consists of the following six internal blocks:

- CPU interface block
- · Interrupt control block
- Internal registers
- · Bit processing block
- Field processing block
- IEBus interface block

<CPU interface block>

This block interfaces between the CPU (78K/0) and IEBus.

<Interrupt control block>

This block passes interrupt request signals from the IEBus to the CPU.

<Internal registers>

These are control registers that are used to control the IEBus and settings of each field.

<Bit processing block>

This block generates and disassembles bit timing, and mainly consists of a bit sequence ROM, 8-bit preset timer, and decision unit.

<Field processing block>

This block generates each field in a communication frame and mainly consists of a field sequence ROM, 4-bit down counter, and decision unit.

<IEBus interface block>

This is the interface block for an external driver/receiver, and mainly consists of a noise filter, shift register, collision detector, parity detector, parity generator, and ACK/NACK generator.

3.8 PLL Frequency Synthesizer

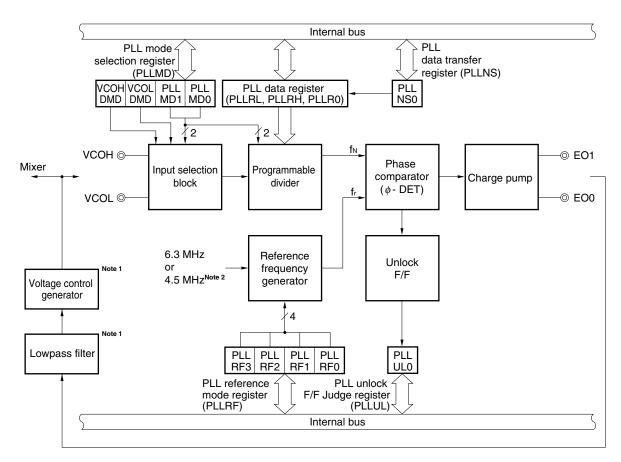


Figure 3-14. Block Diagram of PLL Frequency Synthesizer

Notes 1. These are external circuits.

2. When the IEBus controller is used, the 4.5 MHz crystal resonator cannot be used. Be sure to use the 6.3 MHz crystal resonator.

3.9 Frequency Counter

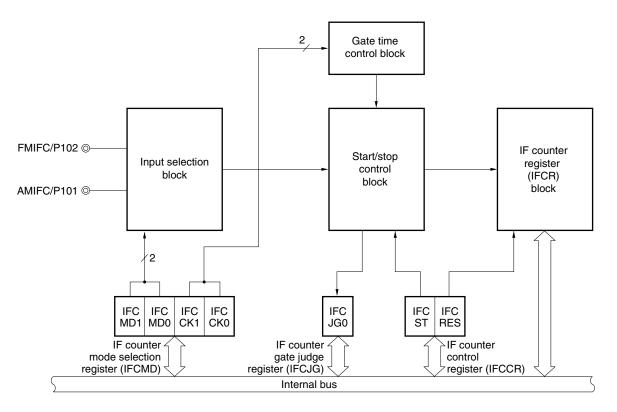


Figure 3-15. Block Diagram of Frequency Counter

4. INTERRUPT FUNCTION

A total of 21 interrupt sources are provided, divided into the following three types.

- Non-maskable: 1^{Note}
- Maskable: 20^{Note}

1

Software:

Interrupt Type	Default Priority ^{Note 1}	Interrupt Source		Internal/ External	Vector Table	Basic Configuration
		Name	Trigger	External	Address	Type ^{Note 2}
Non-maskable	_	INTWDT	Overflow of watchdog timer (when watchdog timer mode 1 is selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Overflow of watchdog timer (when interval timer mode is selected)			(B)
	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1			0008H	
	3	INTP2			000AH	
	4	INTP3			000CH	
	5	INTP4			000EH	
	6	INTP5			0010H	
	7	INTP6			0012H	
	8	INTP7			0014H	
	9	INTCSI0	End of transfer by serial interface 0	Internal	0016H	(B)
	10	INTCSI1	End of transfer by serial interface 1		0018H	
	11	INTCSI3	End of transfer by serial interface 3	-	001AH	-
	12	INTTM50	Generation of coincidence signal of 8-bit timer/event counter 50		001CH	
	13	INTTM51	Generation of coincidence signal of 8-bit timer/event counter 51		001EH	
	14	_	_	_	Note 3	_
	15	_	_	1	Note 3	
	16	_	-		Note 3	
	17	INTBTM0	Generation of coincidence signal of basic timer	Internal	0026H	(B)

Table 4-1. Interrupt Sources (1/2)

Notes 1. Default priority is the priority order when several maskable interrupt requests are generated at the same time. 0 is the highest order and 22 is the lowest order.

- 2. Basic configuration types (A) to (E) correspond to (A) to (E) in Figure 4-1.
- 3. There are no interrupt sources corresponding to vector addresses 0020H, 0022H, and 0024H.

Note Two types of watchdog interrupt sources (INTWDT), non-maskable and maskable, are available, and either of them can be selected.

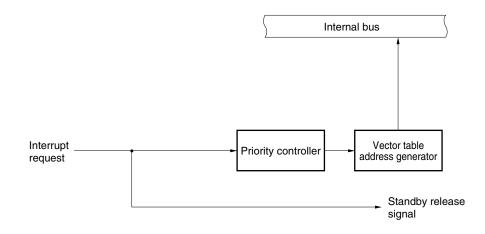
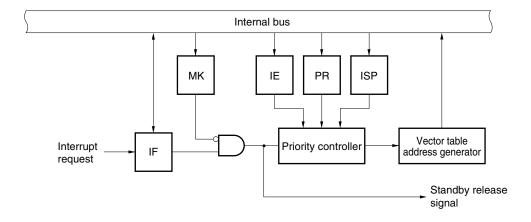
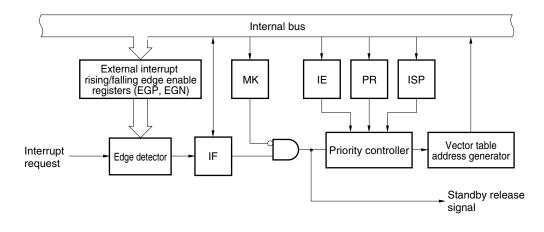

Interrupt Type	Default Priority ^{Note 1}	Interrupt Source		Internal/	Vector Table	Basic Configuration
		Name	Trigger	External	Address	TypeNote 2
Maskable	18	INTTM00	Generation of signal indicating coincidence between 16-bit timer counter 0 (TM0) and capture/compare register 00 (CR00) (when CR00 is used as compare register)	Internal	0028H	(B)
			Detection of input edge of TI00/P32 pin (when CR00 is used as capture register)	External		(D)
	19	INTTM01	Generation of signal indicating coincidence between 16-bit timer counter 0 (TM0) and capture/compare register 01 (CR01) (when CR01 is used as compare register)	Internal	002AH	(B)
			Detection of input edge of TI01/P33 pin (when CR01 is used as capture register)	External		(D)
	20	INTIE1	IEBus0 data access request	Internal	002CH	(B)
	21	INTIE2	IEBus0 communication error and start/end of communication		002EH	
	22	INTAD	End of conversion by A/D converter AD1		0030H	(B)
Software	-	BRK	Execution of BRK instruction	_	003EH	(E)

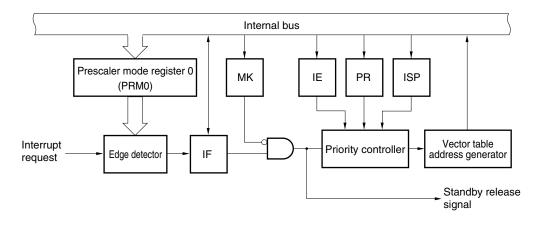
Table 4-1. Interrupt Sources (2/2)


Notes 1. Default priority is the priority order when several maskable interrupt requests are generated at the same time. 0 is the highest order and 22 is the lowest order.

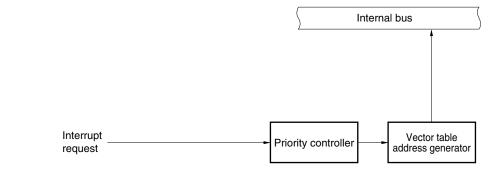
2. Basic configuration types (A) to (E) correspond to (A) to (E) in Figure 4-1.


- Figure 4-1. Basic Configuration of Interrupt Function (1/2)
- (A) Internal non-maskable interrupt

(B) Internal maskable interrupt

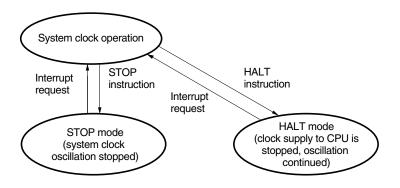


(C) External maskable interrupt (INTP0 to INTP7)



(D) External maskable interrupts (INTTM00, INTTM01)

(E) Software interrupt



- Remark IF: Interrupt request flag
 - IE: Interrupt enable flag
 - ISP: In-service priority flag
 - MK: Interrupt mask flag
 - PR: Priority specification flag

5. STANDBY FUNCTION

There are the following two standby functions to reduce the system power consumption.

- HALT mode: The CPU operating clock is stopped.
 The average current consumption can be reduced by intermittent operation in combination with
 the normal operating mode.
- STOP mode: The system clock oscillation is stopped. All operations by the system clock are stopped and current consumption can be considerably reduced.

Figure 5-1. Standby Function

6. RESET FUNCTION

There are the following three reset methods.

- External reset input by $\overline{\text{RESET}}$ pin
- Internal reset by watchdog timer inadvertent program loop time detection
- Internal reset by Power-ON Clear (POC).

7. INSTRUCTION SET

(1) 8-bit instructions

MOV, XCH, ADD ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

Second Operand First Operand	#byte	A	r ^{Note}	sfr	saddr	!addr16	PSW	[DE]		[HL + byte] [HL + B] [HL + C]	\$addr16	1	None
A	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV	MOV XCH	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH ADD SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
r	MOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP											INC DEC
B,C											DBNZ		
sfr	MOV	MOV											
saddr	MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV									DBNZ		INC DEC
!addr16		MOV											
PSW	MOV	MOV											PUSH POP
[DE]													
[HL]		MOV											ROR4 ROL4
[HL + byte] [HL + B] [HL + C]		MOV											
х													MULU
С													DIVUW

Note Except r = A

(2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

Second Operand First Operand	#word	AX	rp ^{Note}	sfrp	saddrp	!addr16	SP	None
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVW Note						INCW DECW PUSH POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Note Only when rp = BC, DE or HL

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

Second Operand First Operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	BT	SET1
							BF	CLR1
							BTCLR	
sfr.bit						MOV1	BT	SET1
							BF	CLR1
							BTCLR	
saddr.bit						MOV1	BT	SET1
							BF	CLR1
							BTCLR	
PSW.bit						MOV1	BT	SET1
							BF	CLR1
							BTCLR	
[HL].bit						MOV1	BT	SET1
							BF	CLR1
							BTCLR	
CY	MOV1	MOV1	MOV1	MOV1	MOV1			SET1
	AND1	AND1	AND1	AND1	AND1			CLR1
	OR1	OR1	OR1	OR1	OR1			NOT1
	XOR1	XOR1	XOR1	XOR1	XOR1			

(4) Call instruction/branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

Second Operand First Operand	AX	!addr16	!addr11	[addr5]	\$addr16
Basic instruction	BR	CALL BR	CALLF	CALLT	BR, BC, BNC BZ, BNZ
Compound instruction					BT, BF BTCLR DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

8. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

Parameter	Symbol		Conditions		Ratings	Unit
Supply voltage	Vdd				-0.3 to +6.0	V
					-0.3 to V _{DD} + 0.3 ^{Note 1}	V
	AVDD				-0.3 to V _{DD} + 0.3 ^{Note 1}	V
	VDDPLL				-0.3 to V _{DD} + 0.3 ^{Note 1}	V
Input voltage	Vi				-0.3 to VDD + 0.3	V
Output voltage	Vo	Excluding P130 to	o P137		-0.3 to V _{DD} + 0.3	V
Output breakdown voltage	VBDS	P130 to P137	N-ch open drain		16	V
Analog input voltage	VAN	P10 to P17	to P17 Analog input pin		-0.3 to V _{DD} + 0.3	V
Output current, high	Іон	1 pin		-8	mA	
		Total for P00, P0	1, P20 to P27, P50 to	-15	mA	
		P70 to P73				
		Total for P02 to F	P07, P30 to P37, P40	-15	mA	
		P60 to P67, P74	to P77, and P120 to			
		Total for P100 to	P102	-10	mA	
Output current, low	IOL Note 2	1 pin		Peak value	16	mA
				rms	8	mA
		Total for P00, P0	1, P20 to P27,	Peak value	30	mA
		P50 to P57, and	P70 to P73	rms	15	mA
		Total for P02 to F	P07, P30 to P37,	Peak value	30	mA
		P40 to P47, P60	to P67, P74 to P77,	rms	15	mA
		P120 to P124, an	id P130 to P137			
		Total for P100 to	P102	Peak value	20	mA
				rms	10	mA
Operating temperature	TA				-40 to +85	°C
Storage temperature	Tstg				-55 to +125	°C

Notes 1. Keep the voltage at VDDPORT, AVDD, and VDDPLL same as that at the VDD pin.

- 2. The rms value should be calculated as follows: [rms] = [Peak value] $\times \sqrt{\text{Duty}}$
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate function pins are the same as those of port pins.

Recommended Supply Voltage Ranges (T_A = -40 to +85 $^{\circ}$ C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	V _{DD1}	When CPU and PLL are operating		5.0	5.5	V
	VDD2	When CPU is operating and PLL is stopped	3.5	5.0	5.5	V
Data retention voltage	Vddr	When crystal oscillation stops	2.3		5.5	V
Output breakdown	VBDS	P130 to P137 (N-ch open drain)			15	V
voltage						

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 3.5 to 5.5 V)

Parameter	Symbol	Conditi	ons	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P10 to P17, P21, P23, P30, P40 to P47, P50 to P57, P60 P75 to P77, P100 to P102, F	0.7V _{DD}		Vdd	V	
	V _{IH2}	P00 to P07, P20, P22, P24 t P72, P74, P121, RESET	0.8Vdd		Vdd	V	
Input voltage, low	VIL1	P40 to P47, P50 to P57, P60	P10 to P17, P21, P23, P30, P31, P36, P37, P40 to P47, P50 to P57, P60 to P67, P71, P73, P75 to P77, P100 to P102, P120, P122 to P124				V
	VIL2	P00 to P07, P20, P22, P24 t P72, P74, P121, RESET	0		0.2Vdd	V	
Output voltage, high	Voh1	P00 to P07, P20 to P24, P30 to P37, P40 to P47,	$\begin{array}{l} 4.5 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH}} = -1 \ \text{mA} \end{array}$	Vdd - 1.0			V
	P50 to P57, P60 to P67, P70 to P77, P100 to P102, P120 to P124	3.5 V ≤ V _{DD} < 4.5 V, Іон = −100 µА	Vdd - 0.5			V	
	Vон2	EO0, EO1	V _{DD} = 4.5 to 5.5 V, Іон = –3 mA	Vdd - 1.0			V
Output voltage, low	Vol1	P00 to P07, P20 to P27, P30 to P37, P40 to P47,	4.5 V \leq V_DD \leq 5.5 V, IoL = 1 mA			1.0	V
	P50 to P57, P60 to P67, P70 to P77, P100 to P102, P120 to P124, P130 to P137	$3.5 \text{ V} \le \text{V}_{\text{DD}} < 4.5 \text{ V},$ Iol = 100 μA			0.5	V	
	Vol2	EO0, EO1	V _{DD} = 4.5 to 5.5 V, I _{OL} = 3 mA			1.0	V
Input leakage current, high	Іцн	P00 to P07, P10 to P17, P20 to P24, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P100 to P102, P120 to P124, RESET	Vi = Vdd			3	μΑ

Remark Unless specified otherwise, the characteristics of alternate function pins are the same as those of port pins.

Parameter	Symbol	Condit	Conditions				Unit
Input leakage current, low	I.u.	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P100 to P102, P120 to P124, RESET	V1 = 0 V			-3	μA
Output off	ILOH1	P130 to P137	Vo = 15 V			-3	μΑ
leakage current	ILOL1	P130 to P137	Vo = 0 V			3	μA
	ILOH2	P25 to P27 (at N-ch open drain I/O)	Vo = Vdd			-3	μΑ
	ILOL2	P25 to P27 (at N-ch open drain I/O)	Vo = 0 V			3	μΑ
	Ісонз	EO0, EO1	Vo = Vdd			-3	μA
	Ilol3	EO0, EO1	Vo = 0 V			3	μA
Supply current ^{Note}	Idd1	When CPU is operating and Sine wave input to X1 pin $V_1 = V_{DD}$ fx = 6.3 MHz	VI = VDD				mA
	IDD2 In HALT mode with PLL s Sine wave input to X1 pir VI = VDD fx = 6.3 MHz		pped.		0.3	1.0	mA
Data retention	VDDR1	When crystal resonator is o	scillating	3.5		5.5	V
voltage	VDDR2	When crystal oscillation is stopped	Power-failure detection function	2.2			V
	VDDR3		Data memory retained	2.0			V
Data retention	IDDR1	When crystal oscillation is	$T_A = 25^{\circ}C, V_{DD} = 5 V$		2.0	4.0	μA
current	IDDR2	stopped			2.0	20	μA

DC Characteristics (TA = -40 to +85°C, VDD = 3.5 to 5.5 V)

Note Excluding AVDD current and VDDPLL current.

Remarks 1. fx: System clock oscillation frequency

2. Unless specified otherwise, the characteristics of alternate function pins are the same as those of port pins.

Reference Characteristics (T_A = -40 to +85°C, V_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply current	Idds	When CPU and PLL are operating. Sine wave input to VCOH pin At $f_{IN} = 160$ MHz, $V_{IN} = 0.15V_{P-P}$		5		mA

AC Characteristics

(1) Basic operation (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 3.5 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time	Тсү	At fx = 6.3 MHz	0.32		5.08	μs
(minimum instruction execution time)		At fx = 4.5 MHz ^{Note 1}	0.44		7.11	μs
TI00, TI01 input high-/low-level widths	tтіно, tтіlo		4/fsam ^{Note 2}			S
TI50, TI51 input frequency	fтıs				2	MHz
TI50, TI51 input high-/low-level widths	t⊤iH5, t⊤iL5		200			ns
Interrupt input high-/low-level widths	tinth, tintl	INTP0 to INTP7	1			μs
RESET pin low-level width	trsl		10			μs

Notes 1. When the IEBus controller is used, the 4.5 MHz crystal resonator cannot be used. Be sure to use the 6.3 MHz crystal resonator.

fsam = fx/2, fx/4, fx/64 selectable by bits 0 and 1 (PRM00 and PRM01) of prescaler mode register 0 (PRM0). However, fsam = fx/8 when the valid edge of TI00 is selected as the count clock.

- (2) Serial interface (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 3.5 to 5.5 V)
 - (a) Serial interface 0

(i) 3-wire serial I/O mode (SCK0 ... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy1	V _{DD} = 4.5 to 5.5 V	800			ns
			1600			ns
SCK0 high-/low-level width	tкнı,	V _{DD} = 4.5 to 5.5 V	tксү₁/2 – 50			ns
	tĸ∟1		tксү1/2 – 100			ns
SI0 setup time (to SCK0↑)	tsik1	V _{DD} = 4.5 to 5.5 V	100			ns
			150			ns
SI0 hold time (from $\overline{SCK0}$)	tksi1		400			ns
Delay time from SCK0↓ to SO0 output	tkso1	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the $\overline{SCK0}$ and SO0 output lines.

(ii) 3-wire serial I/O mode (SCK0 ... External clock input)

	-					
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксү2	V _{DD} = 4.5 to 5.5 V	800			ns
			1600			ns
SCK0 high-/low-level width	tкн2,	V _{DD} = 4.5 to 5.5 V	400			ns
	tĸL2		800			ns
SI0 setup time (to SCK0↑)	tsik2		100			ns
SI0 hold time (from SCK0↑)	tksi2		400			ns
Delay time from $\overline{\text{SCK0}}\downarrow$ to SO0 output	tĸso2	C = 100 pF ^{Note}			300	ns
SCK0 rise/fall time	tr2, tr2				1000	ns

Note C is the load capacitance of the SO0 output line.

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксүз	V _{DD} = 4.5 to 5.5 V		800			ns
				3200			ns
SCK0 high-/low-level width	tкнз,	V _{DD} = 4.5 to 5	.5 V	tксүз/2 – 50			ns
	tк∟з			tксүз/2 – 150			ns
SB0, SB1 setup time (to SCK0↑)	tsıкз	V _{DD} = 4.5 to 5	.5 V	100			ns
				300			ns
SB0, SB1 hold time (from SCK0 [↑])	tหรเช			tксүз/2			ns
Delay time from $\overline{\text{SCK0}}\downarrow$ to SB0,	tкsoз	R = 1 kΩ	V _{DD} = 4.5 to 5.5 V	0		250	ns
SB1 output		C = 100 pF ^{Note}		0		1000	ns
SB0, SB1↓ from SCK0↑	tкsв			tксүз			ns
$\overline{\text{SCK0}}\downarrow$ from SB0, SB1 \downarrow	tsвк			tксүз			ns
SB0, SB1 high-level width	tsвн			tксүз			ns
SB0, SB1 low-level width	tsвL			tксүз			ns

(iii) SBI mode (SCK0 ... Internal clock output)

Note R and C are the load resistance and load capacitance of the SCK0, SB0 and SB1 output lines.

(iv) SBI mode (SCK0 ... External clock input)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy4	V _{DD} = 4.5 to 5	.5 V	800			ns
				3200			ns
SCK0 high-/low-level width	tкн4,	V _{DD} = 4.5 to 5	.5 V	400			ns
	tĸ∟4			1600			ns
SB0, SB1 setup time (to $\overline{SCK0}$)	tsik4	V _{DD} = 4.5 to 5	.5 V	100			ns
				300			ns
SB0, SB1 hold time (from $\overline{\text{SCK0}}$)	tksi4			tксү4/2			ns
Delay time from $\overline{\text{SCK0}}\downarrow$ to SB0,	tkso4	R = 1 kΩ	V _{DD} = 4.5 to 5.5 V	0		250	ns
SB1 output		C = 100 pF ^{Note}		0		1000	ns
SB0, SB1↓ from SCK0↑	tкsв			tĸcy4			ns
$\overline{\text{SCK0}}\downarrow$ from SB0, SB1 \downarrow	tsвк			tĸcy4			ns
SB0, SB1 high-level width	tsвн			tксү4			ns
SB0, SB1 low-level width	tsbl			tксү4			ns
SCK0 rise/fall time	tr4, tF4					1000	ns

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output lines.

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tĸcy₅	R = 1 kΩ		1600			ns
SCK0 high-level width	tкн5	C = 100 pF ^{Note}		tксү5/2 – 160			ns
SCK0 low-level width	tĸls		V _{DD} = 4.5 to 5.5 V	tксү5/2 – 50			ns
				tксү5/2 – 100			ns
SB0, SB1 setup time (to $\overline{\text{SCK0}}$)	tsik5		V _{DD} = 4.5 to 5.5 V	300			ns
				350			ns
SB0, SB1 hold time (from $\overline{SCK0}$)	tksi5			600			ns
Delay time from $\overline{SCK0}\downarrow$ to SB0, SB1 output	tkso₅			0		300	ns

(v) 2-wire serial I/O mode (SCK0 ... Internal clock output)

Note R and C are the load resistance and load capacitance of the SCK0, SB0 and SB1 output lines.

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCK0 cycle time	t ксү6			1600			ns
SCK0 high-level width	tкнө			650			ns
SCK0 low-level width	tĸl6			800			ns
SB0, SB1 setup time (to SCK0↑)	tsik6			100			ns
SB0, SB1 hold time (from $\overline{SCK0}$)	tksi6			tксү6/2			ns
Delay time from $\overline{\text{SCK0}}\downarrow$ to SB0,	tkso6	R = 1 kΩ	V _{DD} = 4.5 to 5.5 V	0		300	ns
SB1 output		C = 100 pF ^{Note}		0		500	ns
SCK0 rise/fall time	tre, tre					1000	ns

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output lines.

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
SCL cycle time	tkcy7	R = 1 kΩ		10			μs
SCL high-level width	tкн7	C = 100 pF ^{Note}		tксү7 – 160			ns
SCL low-level width	tĸ∟7			tксү7 – 50			ns
SDA0, SDA1 setup time (to SCL↑)	tsık7			200			ns
SDA0, SDA1 hold time (from SCL↓)	tksi7			0			ns
Delay time from SCL↓ to SDA0,	tkso7		V _{DD} = 4.5 to 5.5 V	0		300	ns
SDA1 output				0		500	ns
SDA0, SDA1↓ from SCL↑ or SDA0, SDA1↑ from SCL↑	tкsв			200			ns
SCL↓ from SDA0, SDA1↓	tsвк			400			ns
SDA0, SDA1 high-level width	tsвн			500			ns

(vii) I²C Bus mode (SCL ... Internal clock output)

Note R and C are the load resistance and load capacitance of the SCL, SDA0 and SDA1 output lines.

(viii) I²C Bus mode (SCL ... External clock input)

Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
SCL cycle time	tксув			1000			ns
SCL high-/low-level width	tкн8, tкl8			400			ns
SDA0, SDA1 setup time (to SCL↑)	tsเหช			200			ns
SDA0, SDA1 hold time (from SCL↓)	tksi8			0			ns
Delay time from SCL \downarrow to SDA0,	tkso8	R = 1 kΩ	V _{DD} = 4.5 to 5.5 V	0		300	ns
SDA1 output		C = 100 pF ^{Note}		0		500	ns
SDA0, SDA1↓ from SCL↑ or SDA0, SDA1↑ from SCL↑	tкsв			200			ns
SCL↓ from SDA0, SDA1↓	tsвк			400			ns
SDA0, SDA1 high-level width	tsвн			500			ns
SCL rise/fall time	trs, trs					1000	ns

Note R and C are the load resistance and load capacitance of the SDA0 and SDA1 output lines.

(b) Serial interface 1

(i) 3-wire serial I/O mode (SCK1 ... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tксүэ		800			ns
SCK1 high/low-level width	tкнэ, tк∟э		tксү9/2 — 50			ns
SI1 setup time (to SCK1↑)	tsik9		100			ns
SI1 hold time (from SCK1↑)	tksi9		400			ns
Delay time from $\overline{\text{SCK1}}\downarrow$ to SO1 output	tĸso9	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the $\overline{SCK1}$ and SO1 output lines.

(ii) 3-wire serial I/O mode (SCK1 ... External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tKCY10		800			ns
SCK1 high/low-level width	tкн10, tк∟10		400			ns
SI1 setup time (to SCK1↑)	tsik10		100			ns
SI1 hold time (from SCK1↑)	tksi10		400			ns
Delay time from $\overline{SCK1}\downarrow$ to SO1 output	tkso10	C = 100 pF ^{Note}			300	ns
SCK1 rise/fall time	tr10, tr10				1000	ns

Note C is the load capacitance of the SO1 output line.

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkcy11		800			ns
SCK1 high/low-level width	tкн11, tк∟11		tĸcy11/2 – 50			ns
SI1 setup time (to SCK1↑)	tsik11		100			ns
SI1 hold time (from SCK1↑)	tksi11		400			ns
Delay time from $\overline{\text{SCK1}}\downarrow$ to SO1 output	tkso11	C = 100 pF ^{Note}			300	ns
STB↑ from SCK1↑	tsbd		tксү11/2 — 100		tkcy11/2 + 100	ns
Strobe signal high-level width	tsвw		tксү11/2 – 30		tксү11/2 + 30	ns
Busy signal setup time (to busy signal detection timing)	tвys		100			ns
Busy signal hold time (from busy signal detection timing)	tвүн		100			ns
SCK1↓ from busy inactive	tsps		200			ns

(iii) 3-wire serial I/O mode with automatic transmit/receive function (SCK1 ... Internal clock output)

Note C is the load capacitance of the SO1 output line.

(iv) 3-wire serial I/O mode with automatic transmit/receive function (SCK1 ... External clock input)

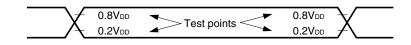
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tKCY12		800			ns
SCK1 high/low-level width	tкн12, tкL12		400			ns
SI1 setup time (to SCK1↑)	tsik12		100			ns
SI1 hold time (from SCK1↑)	tksi12		400			ns
Delay time from $\overline{\text{SCK1}}\downarrow$ to SO1 output	tkso12	C = 100 pF ^{Note}			300	ns
SCK1 rise/fall time	tr12, tr12				1000	ns

Note C is the load capacitance of the SO1 output line.

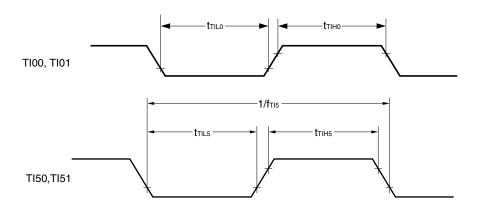
(c) Serial interface 3

(i) 3-wire serial I/O mode (SCK3 ... Internal clock output)

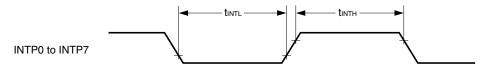
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK3 cycle time	tксү13		800			ns
SCK3 high/low-level width	tкнıз, tк∟ıз		tксү13/2 — 50			ns
SI3 setup time (to SCK3↑)	tsik13		100			ns
SI3 hold time (from SCK3↑)	tksi13		400			ns
Delay time from $\overline{\text{SCK3}}\downarrow$ to SO3 output	tkso13	C = 100 pF ^{Note}			300	ns

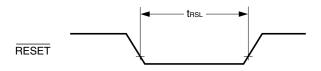

Note C is the load capacitance of the $\overline{SCK3}$ and SO3 output lines.

(ii) 3-wire serial I/O mode (SCK3 ... External clock input)

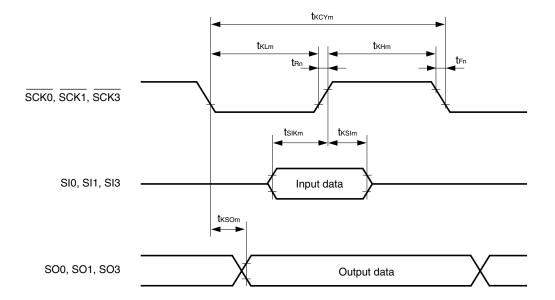

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK3 cycle time	t ксү14		800			ns
SCK3 high/low-level width	tкн14, tк∟14		400			ns
SI3 setup time (to SCK3↑)	tsik14		100			ns
SI3 hold time (from SCK3↑)	tksi14		400			ns
Delay time from SCK3↓ to SO3 output	tkso14	C = 100 pF ^{Note}			300	ns
SCK3 rise/fall time	t R14, t F14				1000	ns

Note C is the load capacitance of the SO3 output line.

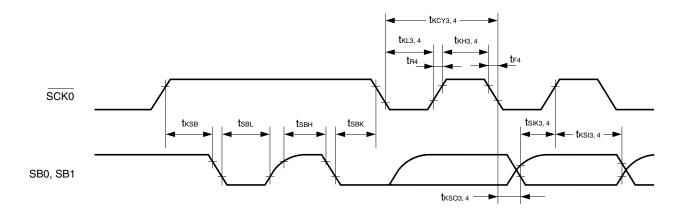

AC Timing Test Points (excluding X1 input)


TI Timing

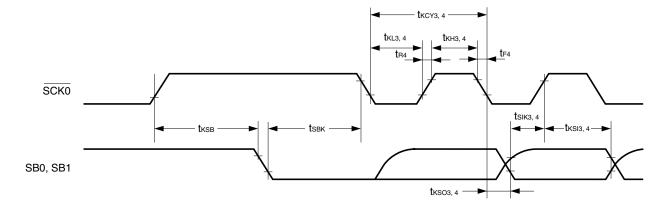
Interrupt Input Timing



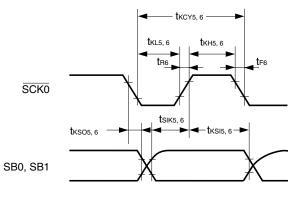
RESET Input Timing

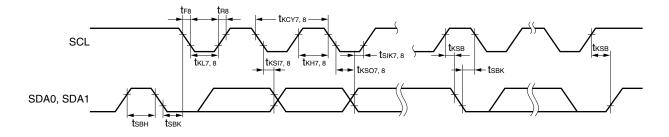

Serial Transfer Timing

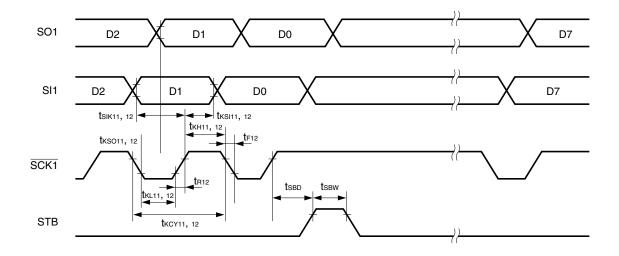
3-wire serial I/O mode:



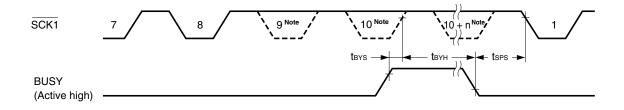
Remark m = 1, 2, 9, 10, 13, 14n = 2, 10, 14


SBI mode (bus release signal transfer):


SBI mode (command signal transfer):



2-wire serial I/O mode:


I²C bus mode:

3-wire serial I/O mode with automatic transmit/receive function:

3-wire serial I/O mode with automatic transmit/receive function (busy processing):

Note The signal is not actually driven low here; it is shown as such to indicate the timing.

IEBus Controller Characteristics ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 3.5$ to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
IEBus system	fs	Fixed to mode 1		6.3 ^{Note}		MHz
clock frequency						

Note Although the system clock frequency is 6.0 MHz in the IEBus standard, in these products, normal operation is guaranteed at 6.3 MHz.

Remark 6.0 MHz and 6.3 MHz cannot both be used as the IEBus system clock frequency.

A/D Converter Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = AV_{DD} = 3.5 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall conversion		V _{DD} = 4.5 to 5.5 V			±1.0	%FSR
error ^{Notes} 1, 2					±1.4	%FSR
Conversion time	tconv		15.2		45.7	μs
Analog input voltage	VIAN		0		Vdd	V

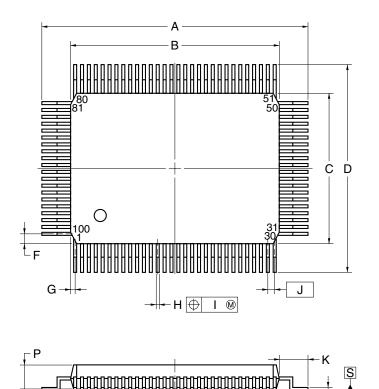
Notes 1. Excludes quantization error (±0.2%FSR).

2. It is indicated as a ratio to the full-scale value.

PLL Characteristics (T_A = -40 to +85°C, V_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating	fin1	VCOL pin, MF mode, sine wave input, V_{IN} = 0.15 $V_{\text{P-P}}$	0.5		3.0	MHz
frequency	fin2	VCOL pin, HF mode, sine wave input, $V_{IN} = 0.15 V_{P-P}$	10		40	MHz
	fіnз	VCOH pin, VHF mode, sine wave input, V_{IN} = 0.15 $V_{\text{P-P}}$	60		130	MHz
	fin4	VCOH pin, VHF mode, sine wave input, V_{IN} = 0.3 $V_{\text{P-P}}$	40		160	MHz

Remark The above values are the result of NEC's evaluation of the device. If the device is likely to be affected by noise in your application, it is recommended to use the device at a voltage higher than the above values.

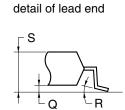

IFC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fin5	AMIFC pin, AMIF count mode, sine wave input, V_{IN} = 0.15 $V_{\text{P}\text{-P}}$	0.4		0.5	MHz
	fine	FMIFC pin, FMIF count mode, sine wave input, $V_{\text{IN}}=0.15~V_{\text{P}\text{-P}}$	10		11	MHz
	fin7	FMIFC pin, AMIF count mode, sine wave input, V_{IN} = 0.15 $V_{\text{P-P}}$	0.4		0.5	MHz

Remark The above values are the result of NEC's evaluation of the device. If the device is likely to be affected by noise in your application, it is recommended to use the device at a voltage higher than the above values.

9. PACKAGE DRAWING

100-PIN PLASTIC QFP (14x20)



N S

L -

Μ

 \square

ΝΟΤΕ

Each lead centerline is located within 0.15 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
А	23.6±0.4
В	20.0±0.2
С	14.0±0.2
D	17.6±0.4
F	0.8
G	0.6
Н	0.30±0.10
I	0.15
J	0.65 (T.P.)
К	1.8±0.2
L	0.8±0.2
М	$0.15\substack{+0.10 \\ -0.05}$
N	0.10
Р	2.7±0.1
Q	0.1±0.1
R	5°±5°
S	3.0 MAX.
P	100GF-65-3BA1-4

10. RECOMMENDED SOLDERING CONDITIONS

The μ PD178096A and 178098A should be soldered and mounted under the following recommended conditions. For details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 10-1. Surface Mounting Type Soldering Conditions

 μ PD178096AGF-xxx-3BA: 100-pin plastic QFP (14 × 20) μ PD178098AGF-xxx-3BA: 100-pin plastic QFP (14 × 20)

Soldering Method	Soldering Conditions	Recommended Conditions Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 sec max. (at 210°C or higher), Count: 3 times or less	IR35-00-3
VPS	Package peak temperature: 215°C, Time: 40 sec max. (at 200°C or higher), Count: 3 times or less	VP15-00-3
Wave soldering	Solder bath temperature: 260°C max., Time: 10 sec max., Count: 1, Preheating temperature: 120°C max., (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max., Time: 3 sec max. (per pin row)	_

Caution Do not use different soldering methods together (except for partial heating).

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for development of systems using the μ PD178098A Subseries.

Language processor software

RA78K0 ^{Notes 1, 2, 3}	Assembler package common to 78K/0 Series
CC78K0 ^{Notes 1, 2, 3}	C compiler package common to 78K/0 Series
DF178098Notes 1, 2, 3	Device file for μ PD178098A Subseries
CC78K0-LNotes 1, 2, 3	C compiler library source file common to 78K/0 Series

Flash memory writing tools

Flashpro III	Dedicated flash programmer
(Part number:	
FL-PR3 ^{Note 4} , PG-FL3)	
FA-100GF-3BA ^{Note 4}	Flash programmer adapter

Debugging tools

• When in-circuit emulator IE-78K0-NS is used

IE-78K0-NS	In-circuit emulator common to 78K/0 Series
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS
IE-78K0-NS-PA	Performance board for enhancing and expanding the IE-78K0-NS function
IE-70000-98-IF-C	Interface adapter necessary when PC-9800 series (except notebook PC) is used as host machine (C bus supported)
IE-70000-CD-IF-A	PC card and interface cable necessary when a notebook PC is used as host machine (PCMCIA socket supported)
IE-70000-PC-IF-C	Interface adapter necessary when IBM PC/AT TM compatible machine is used as host machine (ISA bus supported)
IE-70000-PCI-IF-A	Interface adapter necessary when a PC with a PCI bus is used as host machine
IE-178098-NS-EM1	Emulation board to emulate μ PD178098A Subseries
NP-100GF ^{Note 4}	Emulation probe for 100-pin plastic QFP (GF-3BA type)
EV-9200GF-100	Socket mounted on board of target system created for 100-pin plastic QFP (GF-3BA type)
SM78K0 ^{Notes 1, 2}	System simulator common to 78K/0 Series
ID78K0-NSNotes 1, 2	Integrated debugger common to 78K/0 Series
DF178098Notes 1, 2, 3	Device file for μ PD178098A Subseries

Notes 1. PC-9800 series (Japanese Windows[™]) based

- 2. IBM PC/AT compatible machine (Japanese/English Windows) based
- HP9000 series 700[™] (HP-UX[™]) based, SPARCstation[™] (SunOS[™], Solaris[™]) based, NEWS[™] (NEWS-OS[™]) based
- 4. Products of Naito Densei Machida Mfg. Co., Ltd. (Tel: +81-44-822-3813).

Remark Use the RA78K0, CC78K0, and SM78K0 in combination with the DF178098.

• When in-circuit emulator IE-78001-R-A is used

IE-78001-R-A	In-circuit emulator common to 78K/0 Series
IE-70000-98-IF-C	Interface adapter necessary when PC-9800 series (except notebook PC) is used as host machine (C bus supported)
IE-70000-PC-IF-C	Interface adapter necessary when IBM PC/AT compatible machine is used as host machine (ISA bus supported)
IE-70000-PCI-IF-A	Interface adapter necessary when a PC with a PCI bus is used as host machine
IE-78000-R-SV3	Interface adapter and cable necessary when EWS is used as host machine
IE-178098-NS-EM1	Emulation board to emulate μ PD178098A Subseries
IE-78K0-R-EX1	Emulation probe conversion board necessary when using IE-178098-NS-EM1 on IE-78001-R-A
EP-78064GF-R	Emulation probe for 100-pin plastic QFP (GF-3BA type)
EV-9200GF-100	Socket mounted on board of target system created for 100-pin plastic QFP (GF-3BA type)
SM78K0 ^{Notes 1, 2}	System simulator common to 78K/0 Series
ID78K0 ^{Notes 1, 2}	Integrated debugger common to 78K/0 Series
DF178098 ^{Notes 1, 2, 3}	Device file for μ PD178098A Subseries

Real-time OS

RX78K0 ^{Notes 1, 2, 3}	Real-time OS for 78K/0 series
MX78K0 ^{Notes 1, 2, 3}	OS for 78K/0 series

Notes 1. PC-9800 series (Japanese Windows) based

- 2. IBM PC/AT compatible machine (Japanese/English Windows) based
- HP9000 series 700 (HP-UX) based, SPARCstation (SunOS, Solaris) based, NEWS (NEWS-OS) based

Remark Use the SM78K0 in combination with the DF178098.

APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Device

Document Name		Document No.
μPD178096A, 178098A Data Sheet		This document
μPD178F098 Data Sheet		U12920E
µPD178078, 178098 Subseries User's Manual		U12790E
78K/0 Series User's Manual - Instructions		U12326E
78K/0 Series Application Note	Basics (I)	U12704E

Documents Related to Development Tools (User's Manual)

Document Name		Document No.
RA78K0 Assembler Package	Operation	U14445E
	Language	U14446E
	Structured Assembly Language	U11789E
CC78K0 C Compiler	Operation	U14297E
	Language	U14298E
IE-78001-R-A		To be prepared
IE-78K0-NS		U13731E
IE-178098-NS-EM1		U14013E
EP-78064		EEU-1469
SM78K0S, SM78K0 System Simulator Ver. 2.10 or Later Windows Based	Operation	U14611E
SM78K Series System Simulator Ver. 2.10 or Later	External Part User Open Interface Specifications	U15006E
ID78K0-NS Integrated Debugger Ver. 2.00 or Later Windows Based	Operation	U14379E
ID78K0-NS, ID78K0S-NS Integrated Debugger Ver. 2.20 or Later Windows Based	Operation	U14910E
ID78K0 Integrated Debugger Windows Based	Reference	U11539E
	Guide	U11649E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

Documents Related to Embedded Software (User's Manual)

Document Name		Document No.
78K/0 Series Real-time OS	Fundamental	U11537E
	Installation	U11536E
78K/0 Series OS MX78K0	Fundamental	U12257E

Other Related Documents

Document Name	
SEMICONDUCTOR SELECTION GUIDE - Products & Packages - (CD-ROM)	X13769E
Semiconductor Device Mounting Technology Manual	C10535E
Quality Guides on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability and Quality Control	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

[MEMO]

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Purchase of NEC I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

IEBus is a trademark of NEC Corporation.

Windows is either a registered trademark or trademark of Microsoft Corporation in the United States and/ or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288	NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580	NEC Electronics Ho Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044 NEC Electronics Ho
000-729-9200	NEC Electronics (France) S.A.	Seoul Branch
NEC Electronics (Germany) GmbH Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490	Velizy-Villacoublay, France Tel: 01-3067-5800 Fax: 01-3067-5899	Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411
	NEC Electronics (France) S.A.	NEC Electronics Sing
NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290	Madrid Office Madrid, Spain Tel: 091-504-2787 Fax: 091-504-2860	Novena Square, Sing Tel: 253-8311 Fax: 250-3583
		NEC Electronics T
NEC Electronics Italiana s.r.l. Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99	NEC Electronics (Germany) GmbH Scandinavia Office Taeby, Sweden Tel: 08-63 80 820	Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951
	Fax: 08-63 80 388	NEC do Brasil S.A

long Kong Ltd. 4

long Kong Ltd.

gapore Pte. Ltd. ngapore

Taiwan Ltd.

NEC do Brasil S.A. **Electron Devices Division** Guarulhos-SP, Brasil Tel: 11-6462-6810 Fax: 11-6462-6829

J01.2

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is current as of January, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
 developed based on a customer-designated "quality assurance program" for a specific application. The
 recommended applications of a semiconductor product depend on its quality grade, as indicated below.
 Customers must check the quality grade of each semiconductor product before using it in a particular
 application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).