UM82C8167

Real-Time Clock(RTC)

Features

- Microprocessor compatible (8-bit data bus)
- Milliseconds through month counters
$82<8167$
- 56 bits of RAM with comparator to compare the real time counter to the RAM data
- 2 INTERRUPT OUTPUTS with 8 possible interrupt signals
- Single +5 V power supply
- POWER DOWN input that disables all inputs and out puts except for one of the interrupts
- Status bit to indicate rollover during a read
- $32,768 \mathrm{Hzz}$ crystal oscillator
- Four-year calendar (no leap year)
- 24-hour clock
- 24 pin dual-in-line package

General Description

The UM82C8167 is a Si-gate CMOS LSI used as a real time clock in microprocessor systems. This product includes an addressable real time counter, 56 bits of static RAM and two interrupt outputs. User can disable the
chip from the rest of the system for standby low power operation by use of a POWER DOWN input. With an on chip oscillator circuit, it can generate the $32,768 \mathrm{~Hz}$ time base.

Pin Configuration

Block Diagram

\section*{Absolute Maximum Ratings*
 Voltage at All Inputs and Outputs
 | | $\mathrm{V}_{\mathrm{DO}}+0.3$ to $\mathrm{V}_{\mathrm{SS}}-0.3$ |
| :---: | :---: |
| Operating Temperature | . . . $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Storage Temperature | . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}$ | 6 V |

D. C. Electrical Characteristics

$\left(T_{A}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{S S}=0 \mathrm{~V}$)

Parameter	Conditions	Min.	Typ.	Max.	Units
Supply Voltage $V_{D D}$ $V_{D D}$ (Note 1)	Outputs Enabled Power Down Mode	$\begin{aligned} & 40 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$
Supply Current IDD. Static IDD, Dynamic IDD. Dynamic	$\begin{aligned} & \text { Outputs TRI-STATE, } \mathrm{f}_{I N}=D C, V_{D D}=5.5 \mathrm{~V} \\ & \text { Outputs TRI-STATE, } \mathrm{f}_{I N}=32 \mathrm{KHz}, V_{D D}= \\ & 5.5 \mathrm{~V} \\ & V_{I H} \geqslant V_{D D}-0.3 \mathrm{~V}, V_{I L} \leqslant V_{S S}+0.3 \mathrm{~V} \\ & \text { Outputs TRI-STATE, } f_{I N}=32 \mathrm{KHz} \\ & V_{D D}=5.5 \mathrm{~V}, \mathrm{~V}_{I H}=2.0 \mathrm{~V}, \mathrm{~V}_{I L}=0.8 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 10 \\ & 20 \end{aligned}$ 5	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA
Input Voltage $V_{\text {IL }}$ Logical Low $V_{\text {IH }}$ Logical High		$\begin{aligned} & 00 \\ & 2.0 \end{aligned}$		$\begin{gathered} 0.8 \\ V_{D D} \end{gathered}$	$\begin{aligned} & V \\ & v \end{aligned}$
I_{L} Input Leakage Current	$\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {DD }}$	-1		1	$\mu \mathrm{A}$
Output Voltage $V_{\text {OL Logical Low }}$ V_{OH} Logical High TRI-STATE	(i/O and Interrupt Output) $V_{D D}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$ $V_{D D}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$, $\mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$ $V_{\text {OUT }}=O V$, $V_{\text {OUT }}=V_{\text {DD }}$	$\begin{gathered} 2.4 \\ U .8 V_{D D} \end{gathered}$		$\begin{gathered} 0.4 \\ -1 \\ 1 \end{gathered}$	V V V $\mu \mathrm{A}$ $\mu \mathrm{A}$
Output Impedance Logical Low, Sink Logical High, Leakage	(Ready and Standby Interrupt Output) $V_{D D}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$ $V_{\text {OUT }} \leqslant V_{\text {DD }}$			$\begin{gathered} 0.4 \\ 10 \end{gathered}$	$\begin{gathered} V \\ \mu \mathrm{~A} \end{gathered}$

Note 1: To insure that no illegal data is read from or written into the chip during power up, the power down input should be enabled only after all other lines (Read, Write, Chip Select, and Data Bus) are valid.

AC Characteristics

Interrupt Timing

$\left.10^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{D D} \leqslant 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}\right)$

Symbol	Parameter	Min.	Max.	Units
tinton	Status Register Clock to INTERRUPT OUTPUT (Pin 13) High (Note 1)		5	μs
tsbyon	Compare Valid to STANDBY INTERRUPT (Pin 14) Low (Note 1)		5	$\mu \mathrm{s}$
IINTOFF	Trailing Edge of Status Register Read to INTERRUPT OUTPUT Low		5	$\mu \mathrm{S}$
${ }^{\text {t SBYOFF }}$	Trailing Edge of Write Cycle $9 d 0=0$; Address $=16 \mathrm{H}$) to STANDBY INTERRUPT Off (high Impedance State)		5	$\mu \mathrm{s}$

Note 1: The status register clocks are: The corresponding counter's rollover to its reset state or the compare becoming valid. The compare becomes valid $61 \mu \mathrm{~s}$ after the $1 / 10,000$ of a second counter is clocked, if the real time counter data matches the RAM data.

Read Cycle Timing

$10^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}} \leqslant 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Min.	Max.	Units
${ }^{t} A R$	Address Bus Valid to Read Strobe	100		ns
${ }^{\text {t }}$ CSR	Chip Select to Read Strobe	0		ns
${ }^{\text {t }}$ RRY	Read Strobe to Ready Strobe		150	ns
${ }^{\text {tryo }}$	Ready Strobe to Data Valid		800	ns
${ }^{\text {t }}$ AD	Address Bus Valid to Data Valid		1050	ns
${ }^{\text {t }}$ RH	Data Hold Time From Trailing Edge of Read Strobe	0		ns
${ }^{\text {t }} \mathrm{HZ}$	Trailing Edge of Read Strobe to TRI-STATE Mode		250	ns
$t_{\text {RYM }}$	Read Hold Time after Ready Strobe	0		ns
${ }^{\text {tra }}$	Address Bus Hold Time from Trailing Edge of Read Strobe	50		ns
trydu	Rising Edge of Ready to Data Valid		100	ns

Note 2: If $\mathrm{t}_{\mathrm{AR}}=0$ and Chip Select. Address Valid or Read are coincident then they must exist for 1050 ns .

Write Cycle Timing

$10^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C} 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}} \leqslant 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Min.	Max.	Units
${ }^{t}$ AW	Address Valid to Write Strobe	100		ns
${ }^{\text {t }}$ CSW	Chip Select to Write Strobe	0		ns
${ }^{\text {t }}$ DW	Data Valid before Write Strobe	100		ns
${ }^{\text {t WR }}$ Y	Write Strobe to Ready Strobe		150	ns
$t_{\text {tr }}$	Ready 1 Strobe Width		800	ns
${ }^{\text {t RYH }}$	Write Hold Time after Ready Strobe	0		ns
${ }^{\text {two }}$	Data Hold Time after Write Strobe	50		ns
${ }^{\text {t wa }}$	Address Hold Time after Write Strobe	50		ns

Note 3: If data changes while CS and WR are low, then it must remain coincident within 1050 ns after the data change to ensure a valid writing.
Data bus loading is 100 pF
Ready output loading is 50 pF and $3 \mathrm{k} \Omega$ pull-up.
Input and output AC timing levels:

$$
\begin{aligned}
& \text { Logical one }=2.0 \mathrm{~V} \\
& \text { Logical zero }=0.8 \mathrm{~V}
\end{aligned}
$$

Timing Waveforms

READ CYCLE TIMING

WRITE CYCLE TIMING

Functional Description

Real Time Counter

The real time counter is divided into 4 -bit digits with 2 digits being accessed during any read or write cycle. Each digit represents a BCD number and is defined in Table 1. Any unused bits are held at a logical zero and ignored during a write. An unused bit is any bit not necessary to provide a full BDC number. For example, tens of hours can not legally exceed the number 2, thus only 2 bits are necessary to define the tens of hours. The other 2 bits
in the tens of hours digit are unused. The unused bits are designated in Table 1 as dashes.

The addressable portion of the counter is from milliseconds to months. The counter itself is a ripple counter. The ripple delay is less than 60μ s above 4.0 V and 300μ s at 2.0 V .

Table 1. Real Time Counter Format

(-) Indicates unused bits

RAM

56 bits of RAM are contained on-chip. These can be used for any necessary power down storage or as an alarm latch for comparison to the real time counter. The data in the RAM can be compared to the real time counter on a digit basis. The only digits that are not compared are the unit, ten thousandths of seconds and days of the week (these are unused in the real time counter). If the two most
significant bits of any RAM digit are ones then this RAM location will always compare.

The RAM is formatted the same as the real time counter, 4 bits per digits, 14 digits, however there are no unused bits. The unused bits in the real time counter will compare only to zeros in the RAM.

Interrupts and Comparator

There are two interrupt outputs. The first and most flexible is the INTERRUPT OUTPUT (a true high signal). This output can be programmedrto provide 8 different output signals. They are: $10 \mathrm{~Hz}, 1 \mathrm{~Hz}$, once per minute, once per hour, once a day, once a week, once a month, and when a RAM/real time counter comparison occurs. To enable the output a one is written into the interrupt control register at the bit location corresponding to the desired output frequency (Figure 1). Once one or more bits have been set in the interrupt control register, the corresponding counter's rollover to reset state will clock the interrupt status register and cause the interrupt output to go high. To reset the interrupt and to identify which frequency caused the interrupt, the interrupt status register is read. Reading this register places the contents of the status register on the data bus. The interrupt frequency will be identified by a one in the respective bit position. Removing the read will reset the interrupt.

The second interrupt is the STANDBY INTERRUPT (open drain output, active low). This interrupt occurs when enabled and when a RAM/ real time counter comparison occurs. The STANDBY INTERRUPT is enabled by writing a one on the D0 line at address 16 H or disabled by writing a zero on the DO line. This interrupt is not triggered by the edge of the compare signal, but rather by the level. Thus if the compare is enabled when the STANDBY INTERRUPT is enabled, the interrupt will turn on immediately

The comparator is a cascaded exclusive NOR. Its oulput is latched $61 \mu \mathrm{~s}$ after the rising edge of the $1 \mathrm{KH} /$ clloch signal (input to the ten thousandth of seconds countur) This allows the counter to ripple through before looking at the comparator. For operation at less than 40 V , the thousandth of seconds counters should not be included in a comparison because of the possibility of having a ripple delay greater than $61 \mu \mathrm{~s}$. (For output timing see interrup) timing.)

Tables 2 and 3 are referred for the address input codes and functions and for the counter and latch reset format.

Power Down Mode

The POWER DOWN input is essentially a second chip select. It disables all inputs and outputs except for the STANDBY INTERRUPT. When this input is at a logical zero, the device will not respond to any external signals. It will, however, maintain time keeping and turn on the STANDBY INTERRUPT if programmed to do so. (The programming must be down before the POWER DOWN input goes to a logical zero.) When switching $V_{D D}$ to the standby or power down mode, the POWER DOWN input should go to a logical zero at least $1 \mu \mathrm{~s}$ before $V_{D D}$ is switched. When switching V_{DD} all other inputs must remain between $\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$. When restoring $V_{D D}$ to the normal operating mode, it is necessary to insure that all other inputs are at valid levels before switching the POWER DOWN input back to a logical one. These precautions are necessary to insure that no data

Figure 1. Interrupt Register Format

Table 2. Address Codes and Functions

A4	A3	A2	A1	A0	Function
0	0	0	0	0	Counter - Thousandths of Seconds
0	0	0	0	1	Counter - Hundredths and Tenths of Seconds
0	0	0	1	0	Counter - Seconds
0	0	0	1	1	Counter - Minutes
0	0	1	0	0	Counter - Hours
0	0	1	0	1	Counter - Day of the Week
0	0	1	1	0	Counter - Day of the Month
0	0	1	1	1	Counter - Months
0	1	0	0	0	Latches - Thousandths of Seconds
0	1	0	0	1	Latches - Hundredths and Tenths of Seconds
0	1	0	1	0	Latches - Seconds
0	1	0	1	1	Latches - Minutes
0	1	1	0	0	Latches - Hours
0	1	1	0	1	Latches - Day of the Week
0	1	1	1	0	Latches - Day of the Month
0	1	1	1	1	Latches - Months
1	0	0	0	0	Interrupt Status Register
1	0	0	0	1	Interrupt Control Register
1	0	0	1	0	Counter Reset
1	0	0	1	1	Latch Reset
1	0	1	0	0	Status Bit
1	0	1	0	1	GO' Command
1	0	1	1	0	Standby Interrupt
1	1	1	1	1	Test Mode

All others unused.

Table 3. Counter and Latch Reset Format

D0	D1	D2	D3	D4	D5	D6	D7	Counter or Latch Reset
1	0	0	0	0	0	0	0	Thousandths of Seconds
0	1	0	0	0	0	0	0	Hundredths and Tenths of Seconds
0	0	1	0	0	0	0	0	Seconds
0	0	0	1	0	0	0	0	Minutes
0	0	0	0	1	0	0	0	Hours
0	0	0	0	0	1	0	0	Day of the Week
0	0	0	0	0	0	1	0	Day of the Month
0	0	0	0	0	0	0	1	Months

For Counter Reset A4-A0 Must be 10010
For Latch Reset A4-A0 Must be 10011
is lost or altered when changing to or from the power down mode.

Counter and RAM Resets; GO Command

The counters and RAM can be reset by writing all 1's (FF) at address 12 H or 13 H respectively.

A write pulse at address 15 H will reset the thousandths, hundredths, tenths, units, and tens of seconds counters. This GO command is used for precise starting of the clock.

The data on the data bus is ignored during the writing. If the seconds counter is at a value greater than 39 when the GO is issued, the minute counter will increment; otherwise the minute counter is unaffected. This command is not necessary to start the clock, but merely a convenient way to start precisely at a given minute.

Status Bit

The status bit is provided to inform the user that the clock is in the process of rolling over when a counter is read. The
status bit is set if this 1 KHz clock occurs during or after any counter read. This tells the user that the clock is rippling through the real time counter. Because the clock is rippling, invalid data may be read from the counter. If the status bit is set following a counter read, the counter should be reread.

The status bit appears on D0 when address 14 H is read. All the other data lines will be zero. The bit is set when a logical one appears. This bit should be read every time a counter read or after a series of counter reads are done. The trailing edge of the read at address 14 H will reset the status bit.

Oscillator

The oscillator is the standard parallel resonant oscillator. Externally, 2 capacitors, a 20M Ohm resistor and the crystal are required. The 20 M Ohm resistor is connected between OSC IN and OSC OUT to bias the internal inverter in the linear region. For micropower crystals a resistor in series with the oscillator output may be necessary to insure the crystal is not overdriven. This resistor should be approximately 200 K Ohms. The capacitor values should be typically $20 \mathrm{pF}-25 \mathrm{pF}$. The crystal frequency is $32,768 \mathrm{~Hz}$.

The oscillator input can be externally driven, if desired. In
this case the output should be left floating and the input level should be within 0.3 V of the supplies.

A ground line or ground plane between pins 9 and 10 may be necessary to prevent interference of the oscillator by the A4 address

Control Lines

The READ, WRITE, CHIP SELECT signals are active low inputs. The READY signal is an open drain output. At the start of each read or write cycle the READY line (open drain) will pull low and remain low until valid data from a chip read appears on the bus or data on the bus is latched in during a writing. READ and WRITE must be accompanied by a CHIP SELECT (see Timing waveforms for read and write cycle).

During a read or write, address bits must not change while chip select and control strobes are low.

Test Mode

The test mode is merely a mode for production testing. It allows the counters to count at a higher than normal rate. In this mode the 32 KHz oscillator input is connected directly to the ten thousandths of seconds counter. The chip select and write lines must be low and the address must be held at 1 FH .

Typical Application

Figure 2. Standby Interrupt is Enable (ON) for Normal Operation and Disabled for Standby Operation

