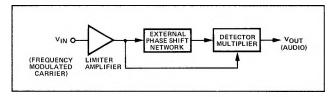
LINEAR INTEGRATED CIRCUITS

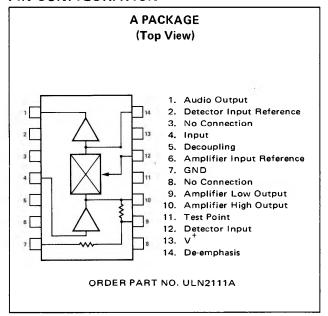
DESCRIPTION

A unique method of FM detection by a new technique of linear gating is featured in the ULN2111 monolithic integrated circuit. This linear device comprises a three-stage limiter and a balanced product detector. Applications for the ULN2111 device include TV sound channels, FM receivers, automatic frequency control systems, and communication receivers.

Other applications for the ULN2111 device are in the more sophisticated circuitry in telemetry receivers, automatic control systems, and servo amplifiers.

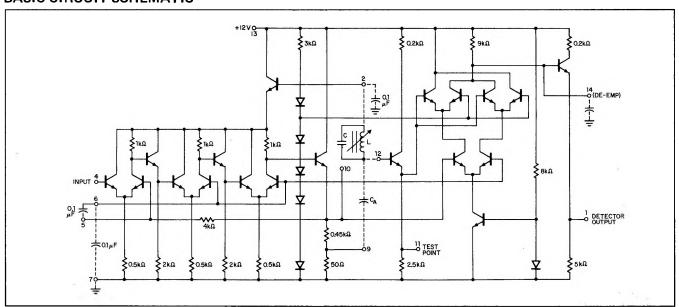

An outstanding feature of the ULN2111 is that only one, simple, low-cost, single winding coil is required for tuning. Consequently, only one screwdriver adjustment is required to tune a detector employing the ULN2111. The frequency range of the ULN2111 extends from 5 kHz to 50 MHz.

Outputs of 0.6V with a total distortion of less than 1% and a limiting threshold voltage of $400\mu V_{rms}$ are typical.


FEATURES

- HIGH SENSITIVITY INPUT LIMITING VOLTAGE AT 4.5MHz = 400μV
- HIGH IF VOLTAGE GAIN 60dB
- SIMPLIFIED TUNING ONE RLC PHASE SHIFT NETWORK
- HIGH STABILITY
- LOW DISTORTION 1.0%
- WIDE FREQUENCY CAPABILITY 5kHz to 50MHz

BLOCK DIAGRAM


PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Input Voltage (Pin 4)	+3.5V
Output Voltage	+15V
Supply Voltage (V+)	+15V
Junction Temperature	+150°C
Storage Temperature	-65°C to +150°C
Operating Temperature	0° C to $+85^{\circ}$ C
Thermal Resistance	0.15°C/mW
$ heta_{ exttt{J-A}}$, Junction to Ambient	
Power Dissipation	300mW

BASIC CIRCUIT SCHEMATIC

SIGNETICS - ULN2111 - FM DETECTOR AND LIMITER

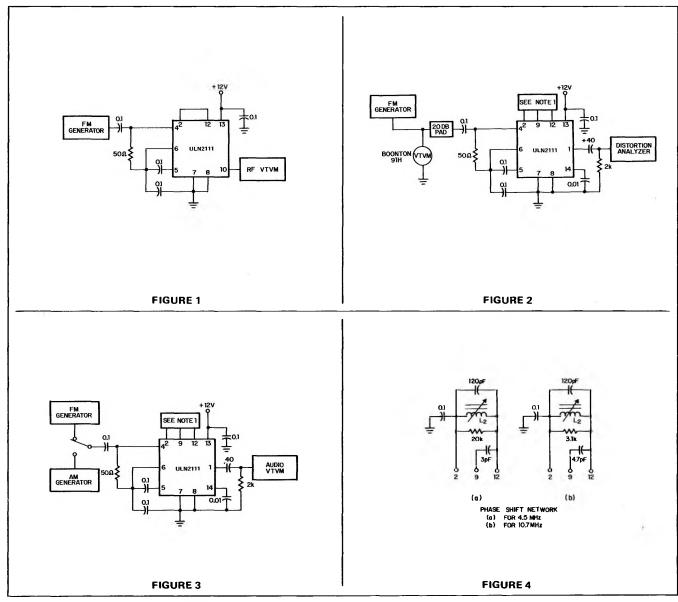
ELECTRICAL CHARACTERISTICS: Standard Conditions: $V_{CC} = +12V \pm 10\%$, $T_A = 25^{\circ}C$

CHARACTERISTICS	SYMBOL		LIM			TEST CONDITIONS		TEST FIGURE	NOTES
		MIN	TYP	MAX	UNITS		Pin	FIGURE	_
Supply Current	¹ cc	12.0	17	22	mA		13		
Amplifier Input Reference	V _{bias}		1.45		\ \	Internally derived	6		
Detector Input Reference	V _{bias}		3.65		V	Internally derived	2		
Amplifier High Output Level	v _{oh}		1.45		V		10		
Amplifier Low Output Level	v _{ol}		0.145		V		9		
Detector Output Level	v _o	4.3	5.0	5.7	V		1		
Amplifier Input Resistance	R _{in}		5.0		ΚΩ		4		
Amplifier Input Capacitance	C _{in}		11		pF		4		
Detector Injection Input Resistance	R _{in}		70		ΚΩ		12		
Detector Injection Input Capacitance	C _{in}		2.7		pF		12		
Amplifier High Output Resistance	Rout		60		Ω	7	10		
Detector Output Resistance	Rout		200		Ω		1		
De-Emphasis Resistance	R _{de}		9		ΚΩ		14	i	
FM Detection for Television Applications:						Detector injection voltage = 60mV_{rms} , f_0 = 4.5 MHz , F deviation = 25 kHz , Peak separation = 150 kHz , FM modulating frequency = 400 Hz , Amplifier source resistance = 50Ω .		*	
Amplifier Voltage Gain	v _g	55	58		dB	$V_{in} \le 0.3 \text{mV}_{rms}$ $V_{cc} = 12 \text{V} \pm 5\%$	10	1	
Amplifier Output Voltage	V _{oa}		1.45		V _{pp}	V _{in} = 10mV _{rms}	10	1	
Input Limiting Threshold	V _{th}		400	800	μV _{rms}		4	2	1
Recovered Audio Output	Avo	0.5	0.6		V _{rms}		1	2	
Output Distortion	Thd		1.5		%	100% FM Modulation	1	2	
AM Suppression	AMR	40	46		dB	V _{in} = 10mV _{rms}	1	3	2
FM Detection for 10.7 MHz Applications:						Detector injection voltage = 60mV_{rms} , $f_0 = 10.7$ MHz, F deviation = 75 kHz, Peak separation = 550 kHz, FM modulating frequency = 400 Hz, Amplifier source resistance = 50Ω .			
Amplifier Voltage Gain	v _g		53		dB	$V_{in} \le 0.3 \text{mV}_{rms}$ $V_{cc} = 12 \text{V} \pm 5\%.$	10	1	
Amplifier Output Voltage	V _{oa}		1.45		V _{pp}	V _{in} = 10mV _{rms}	10	1	
Input Limiting Threshold	v _{th}		500		μV _{rms}		4	2	1
Recovered Audio Output	A _{vo}		0.45		V _{rms}		1	2	
Output Distortion	T _{hd}		1.0		%	100% FM modulation	1	2	
AM Suppression	AMR		40		dB	V _{in} = 10mV _{rms}	,	3	2

2. The Amplitude Modulation Rejection in decibels, often abbreviated AMR, is given by the following formula:

AMR = 20 log
$$\frac{V_{out} \text{ for 100\% FM modulated V}_{i}}{V_{out} \text{ for a 30\% AM V}_{i}}$$

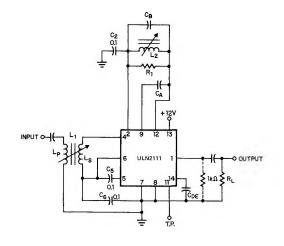
NOTES 1. The limiting threshold voltage is the FM input voltage $\mathbf{V}_{i^{\prime}}$ expressed in rms volts, for a recovered $\rm V_{out}$ which is 3dB less than the recovered $\rm V_{out}$ at a $\rm V_i$ of 200mV $_{rms}$.


USEAGE INFORMATION

- 1. FM DETECTION.
 - a. Tuning. Apply FM modulated signal through DC decoupling network to pin 4, V_{in} = 5mV_{rms}.
 Tune for maximum recovered audio at pin 1 or maximum RF voltage at pin 11.
 - b. General
 - (1) A DC path less than 100Ω shall be provided between pins 2 and 12. No other biasing provisions are required.
 - (2) A DC path less than 300Ω should be provided between pins 4 and 6. No other biasing provisions are required.
 - (3) The maximum AC load current can be increased by adding an external resistor between pins 1 and 7. The minimum value for this resistor is 800Ω, giving a maximum load current of 4mA_{rms}.

2. EXTERNAL DECOUPLING AND MOUNTING CONSIDERATIONS.

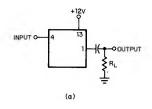
- All decoupling capacitors should be ceramic type with minimum residual inductance at the operating frequency.
- b. Decoupling capacitor leads at pins 5, 6, and 12 should be as short as possible.
- c. Connections from pin 4 should be as far removed as possible from connections at pins 9, 10, and 12.
- d. The power supply pin 13 should be decoupled with a $0.1\mu F$ ceramic capacitor, keeping the leads as short as possible.
- e. When using a large internal impedance power supply (voltage dropping resistor), decouple pin 13 for the lowest audio demodulation frequency.
- f. Keep appropriate distances between the input coil and any other coil in the phase shift network for the voltage gain between these points is high (40 to 60dB).

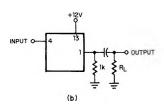

TEST CIRCUITS

NOTES: 1. Phase shift network is specified in Figure 4. 2. All capacitors in microfarads unless otherwise noted.

APPLICATIONS

TYPICAL CIRCUIT REQUIREMENTS FOR FM DETECTION


	Compon			
	TV (4.5 MHz)	FM (10.7 MHz)	Notes	
L ₂ Inductance	7 - 14μΗ	1.5 - 3μΗ	1	
L₂ Nom. Unloaded Q	50	50		
L ₂ Nom. DC Resistance	50Ω	50Ω		
CA	3.0pF	4.7pF		
C _B	120pF	120pF	2	
R ₁	20kΩ	3 1kΩ		
C _s and C ₆	30	20		
C ₂	0.1μF	0.1μF		
C _{de}	0.01μF	0.01μF		


NOTES:

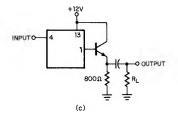
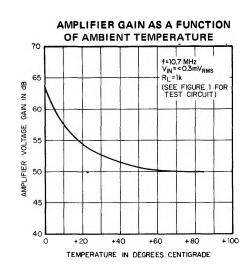
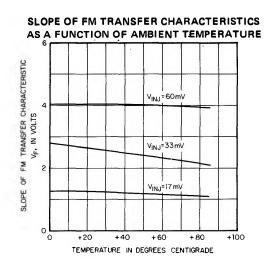
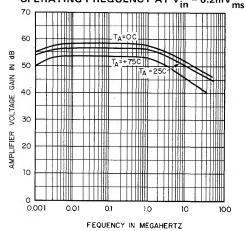

- 1. Suggested coil source: 1.5 3μH Miller 9050, 7 14μH Miller 9052.
- 2. Use NPO type capacitor.

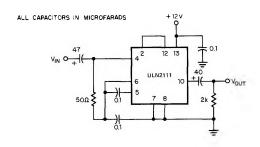
Figure 5

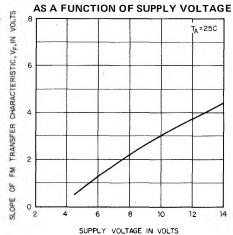
TYPICAL DRIVING CAPABILITIES at $f_0 = 4.5 MHz$

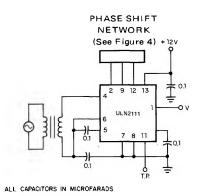


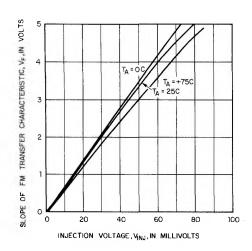


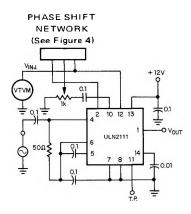

V _o (mV _{rms)}							
Figure $R_{L}(\Omega)$ $\Delta f = 7.5 \text{ kHz}$		Δf = 25 kHz	Remarks				
A B C	2000 200 200	220 130 220	650 400 650	No Clipping No Clipping Clipping at Vo=500mVrms			

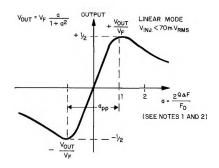

Figure 6




AMPLIFIER VOLTAGE GAIN AS A FUNCTION OF OPERATING FREQUENCY AT V_{in} = $0.2 mV_{ms}$


SLOPE OF FM TRANSFER CHARACTERISTIC




TYPICAL CHARACTERISTIC CURVES (Cont'd.)

SLOPE OF FM TRANSFER CHARACTERISTICS AS A FUNCTION OF INJECTION VOLTAGE

TRANSFER CHARACTERISTICS FOR A SIMPLE LC NETWORK

OUTPUT = f (NORMALIZED DEVIATION)

(The units along the vertical axis are arbitrary units.)

Linear mode: Operation of the FM detector with no limiting after the phase shift network.

NOTES:

1. V_F defines the slope of the FM transfer characteristic, at origin:

$$V_f = \frac{dV_{out}}{da}$$
 $a = 0$

 $V_{\mbox{\scriptsize F}}$ is primarily a function of bias current in the detector and injection voltage.

 V_F will decrease with decreasing V_{CC} or V_{INJ} .

2. a = normalized frequency deviation:

$$a = \frac{2Q\Delta F}{F_0}$$