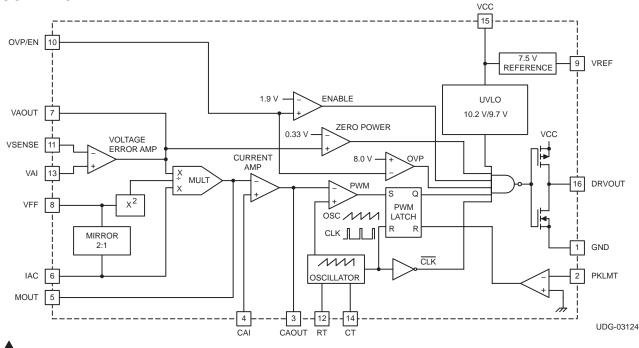


SLUS579 - OCTOBER, 2003

PROGRAMMABLE OUTPUT POWER FACTOR PREREGULATOR

FEATURES


- Controls Boost Preregulator to Near-Unity Power Factor
- World Wide Line Operation
- Over-Voltage Protection
- Accurate Power Limiting
- Average Current Mode Control
- Improved Noise Immunity
- Improved Feed-Forward Line Regulation
- Leading Edge Modulation
- 150-μA Typical Start-Up Current
- Low-Power BiCMOS Operation
- 10.8-V to 17-V Operation
- Programmable Output Voltage (Tracking Boost Topology)

DESCRIPTION

The UCC2819A/UCC3819A provides all the functions necessary for active power factor corrected preregulators. The controller achieves near unity power factor by shaping the ac-input line current waveform to correspond to that of the ac-input line voltage. Average current mode control maintains stable, low distortion sinusoidal line current.

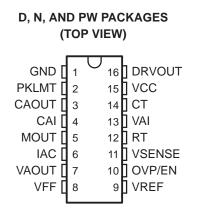
Designed in Texas Instrument's BiCMOS process, the UCC3819A offers new features such as lower start-up current, lower power dissipation, overvoltage protection, a shunt UVLO detect circuitry and a leading-edge modulation technique to reduce ripple current in the bulk capacitor.

The UCC3819A allows the output voltage to be programmed by bringing out the error amplifier noninverting input.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

BLOCK DIAGRAM


SLUS579 - OCTOBER, 2003

DESCRIPTION (CONTINUED)

The UCC3819A is directly pin for pin compatible with the UCC3819. Only the output stage of UCC3819A has been modified to allow use of a smaller external gate drive resistor values. For some power supply designs where an adequately high enough gate drive resistor can not be used, the UCC3819A offers a more robust output stage at the cost of increasing the internal gate resistances. The gate drive of the UCC3819A remains strong at ± 1.2 A of peak current capability.

Available in the 16-pin D, N, and PW packages.

PIN CONNECTION DIAGRAM

AVAILABLE OPTIONS TABLE

	PACKAGE DEVICES								
$T_A = T_J$	SOIC (D) PACKAGE ⁽¹⁾	PDIP (N) PACKAGE	TSSOP (PW) PACKAGE(1)						
0°C to 70°C	UCC3819AD	UCC3819AN	UCC3819APW						
-40°C to 85°C	UCC2819AD	UCC2819AN	UCC2819APW						

NOTES: (1) The D and PW packages are available taped and reeled. Add R suffix to the device type (e.g. UCC3819ADR) to order quantities of 2,500 devices per reel (D package) and 2,000 devices per reel (for PW package). Bulk quantities are 40 units (D package) and 90 units (PW package) per tube.

THERMAL RESISTANCE TABLE

PACKAGE	θjc(°C/W)	θja(°C/W)
SOIC-16 (D)	22	40 to 70 ⁽¹⁾
PDIP-16 (N)	12	25 to 50 ⁽¹⁾
TSSOP-16 (PW)	14 (2)	123 to 147 ⁽²⁾

NOTES: (1) Specified θja (junction to ambient) is for devices mounted to 5-inch² FR4 PC board with one ounce copper where noted. When resistance range is given, lower values are for 5 inch² aluminum PC board. Test PWB was 0.062 inch thick and typically used 0.635-mm trace widths for power packages and 1.3-mm trace widths for non-power packages with a 100-mil x 100-mil probe land area at the end of each trace.

(2) Modeled data. If value range given for θja, lower value is for 3x3 inch. 1 oz internal copper ground plane, higher value is for 1x1-inch. ground plane. All model data assumes only one trace for each non-fused lead.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature (unless otherwise noted)[†]

	UCCx81xA	UNIT
Supply voltage VCC	18	V
Gate drive current, continuous	0.2	
Gate drive current	1.2	A
Input voltage, CAI, MOUT, SS	8	
Input voltage, PKLMT	5	V
Input voltage, VSENSE, OVP/EN, VAI	10	
Input current, RT, IAC, PKLMT	10	mA
Maximum negative voltage, DRVOUT, PKLMT, MOUT	-0.5	V
Power dissipation	1	W
Junction temperature, TJ	–55 to 150	
Storage temperature, T _{stg}	-65 to 150	°C
Lead temperature, T _{SOI} (soldering, 10 seconds)	300	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $T_A = 0^{\circ}C$ to 70°C for the UCC3819A, -40°C to 85°C for the UCC2819A, VCC = 12 V, $R_T = 22 k\Omega$, $C_T = 270 pF$, (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current					
Supply current, off	VCC = (VCC turnon threshold –0.3 V)		150	300	μΑ
Supply current, on	VCC = 12 V, No load on DRVOUT	2	4	6	mA
UVLO					
VCC turnon threshold		9.7	10.2	10.8	
VCC turnoff threshold		9.4	9.7		V
UVLO hysteresis		0.3	0.5		
Voltage Amplifier					
VIO	VAOUT = 2.75 V, VCM = 3.75 V	-15		15	mV
VAI bias current	VAOUT = 2.75 V, VCM = 3.75 V		50	200	
VSENSE bias current	VSENSE = VREF, VAOUT = 2.5 V		50	200	nA
CMRR	VCM = 1 V to 7.5 V	50	70		JD
Open loop gain	VAOUT = 2 V to 5 V	50	90		dB
High-level output voltage	IL = -150 μA	5.3	5.5	5.6	V
Low-level output voltage	I _L = 150 μA	0	50	150	mV

NOTES: 1. Ensured by design, Not production tested.

2. Reference variation for V_{CC} < 10.8 V is shown in Figure 2.

SLUS579 - OCTOBER, 2003

ELECTRICAL CHARACTERISTICS

 $T_A = 0^{\circ}C$ to 70°C for the UCC3819A, -40°C to 85°C for the UCC2819A, VCC = 12 V, $R_T = 22 k\Omega$, $C_T = 270 pF$, (unless otherwise noted)

PARAMETER	TES	TEST CONDITIONS					
Over Voltage Protection and Ena	ble		•	•			
Over voltage reference			VREF +0.48	VREF +0.50	VREF +0.52	V	
Hysteresis			300	500	600	mV	
Enable threshold			1.7	1.9	2.1		
Enable hysteresis			0.1	0.2	0.3	V	
Current Amplifier							
Input offset voltage	V _{CM} = 0 V,	VCAOUT = 3 V	-3.5	0	2.5	mV	
Input bias current	V _{CM} = 0 V,	VCAOUT = 3 V		-50	-100		
Input offset current	$V_{CM} = 0 V,$	V _{CAOUT} = 3 V		25	100	nA	
Open loop gain	$V_{CM} = 0 V,$	$V_{CAOUT} = 2 V \text{ to } 5 V$	90				
Common-mode rejection ratio	$V_{CM} = 0 V \text{ to } 1.5 V,$	V _{CAOUT} = 3 V	60	80		dB	
High-level output voltage	I _L = -120 μA		5.6	6.5	6.8	V	
Low-level output voltage	IL = 1 mA		0.1	0.2	0.5	V	
Gain bandwidth product	See Note 1			2.5		MHz	
Voltage Reference							
Input voltage, (UCC3819A)	$T_A = 0^{\circ}C$ to $70^{\circ}C$		7.387	7.5	7.613		
Input voltage, (UCC2819A)	$T_A = -40^{\circ}C$ to $85^{\circ}C$		7.369	7.5	7.631	V	
Load regulation	IREF = 1 mA to 2 mA		0		10		
Line regulation	VCC = 10.8 V to 15 V,	See Note 2	0		10	mV	
Short-circuit current	$V_{REF} = 0 V$		-20	-25	-50	mA	
Oscillator							
Initial accuracy	$T_A = 25^{\circ}C$		85	100	115	kHz	
Voltage stability	VCC = 10.8 V to 15 V		-1%		1%		
Total variation	Line, temp,	See Note 1	80		120	kHz	
Ramp peak voltage			4.5	5	5.5		
Ramp amplitude voltage (peak to peak)			3.5	4	4.5	V	
Peak Current Limit							
PKLMT reference voltage			–15		15	mV	
PKLMT propagation delay			150	350	500	ns	

NOTES: (1) Ensured by design, Not production tested.

(2) Reference variation for V_{CC} < 10.8 V is shown in Figure 2.

SLUS579 - OCTOBER, 2003

ELECTRICAL CHARACTERISTICS

 $T_A = 0^{\circ}C$ to 70°C for the UCC3819A, -40°C to 85°C for the UCC2819A, VCC = 12 V, $R_T = 22 k\Omega$, $C_T = 270 pF$, (unless otherwise noted)

PARAMETER	IETER TEST CONDITIONS						UNITS
Multiplier							
I _{MOUT} , high line, low power output current, (0°C to 85°C)	I _{AC} = 500 μA,	V _{FF} = 4.7 V,	VAOUT = 1.25 V	0	-6	-20	
I _{MOUT} , high line, low power output current, (–40°C to 85°C)	I _{AC} = 500 μA,	VFF = 4.7 V,	VAOUT = 1.25 V	0		-23	
IMOUT, high line, high power output current	I _{AC} = 500 μA,	V _{FF} = 4.7 V,	VAOUT = 5 V	-70	-90	-105	μA
IMOUT, low line, low power output current	I _{AC} = 150 μA,	VFF = 1.4 V,	VAOUT = 1.25 V	-10	-19	-50	P
IMOUT, low line, high power output current	I _{AC} = 150 μA,	V _{FF} = 1.4 V,	VAOUT = 5 V	-268	-300	-346	
IMOUT, IAC limited	I _{AC} = 150 μA,	V _{FF} = 1.3 V,	VAOUT = 5 V	-250	-300	-400	
Gain constant (K)	I _{AC} = 300 μA,	V _{FF} = 3 V,	VAOUT = 2.5 V	0.5	1	1.5	1/V
	I _{AC} = 150 μA,	V _{FF} = 1.4 V,	VAOUT = 0.25 V		0	-2	
IMOUT, zero current	I _{AC} = 500 μA,	VFF = 4.7 V,	VAOUT = 0.25 V		0	-2	•
IMOUT, zero current, (0°C to 85°C)	I _{AC} = 500 μA,	V _{FF} = 4.7 V,	VAOUT = 0.5 V		0	-3	μA
IMOUT, zero current, (-40°C to 85°C)	I _{AC} = 500 μA,	V _{FF} = 4.7 V,	VAOUT = 0.5 V		0	-3.5	
Power limit (I _{MOUT} x V _{FF})	I _{AC} = 150 μA,	V _{FF} = 1.4 V,	VAOUT = 5 V	-375	-420	-485	μW
Feed-Forward							
VFF output current	I _{AC} = 300 μA			-140	-150	-160	μΑ
Gate Driver							
Pullup resistance	$I_{O} = -100 \text{ mA to}$	–200 mA			9	12	-
Pulldown resistance	I _O = 100 mA				4	10	Ω
Output rise time	C _L = 1 nF,	R _L = 10 Ω,	VDRVOUT = 0.7 V to 9 V		25	50	
Output fall time	C _L = 1 nF,	RL = 10 Ω,	VDRVOUT = 9 V to 0.7 V		10	50	ns
Maximum duty cycle				93%	95%	100%	
Minimum controlled duty cycle	At 100 kHz					2%	
Zero Power							
Zero power comparator threshold	Measured on VA	OUT		0.20	0.33	0.50	V

NOTES: (1) Ensured by design, Not production tested.

(2) Reference variation for V_{CC} < 10.8 V is shown in Figure 2.

SLUS579 - OCTOBER, 2003

PIN ASSIGNMENTS

TERMINAL						
NAME	NO.	1/0	DESCRIPTION			
CAI	4	I	Current amplifier noninverting input			
CAOUT	3	0	Current amplifier output			
СТ	14	Ι	Oscillator timing capacitor			
DRVOUT	16	0	Gate drive			
GND	1	-	Ground			
IAC	6	I	Current proportional to input voltage			
MOUT	5	I/O	Multiplier output and current amplifier inverting input			
OVP/EN	10	I	Over-voltage/enable			
PKLMT	2	I	PFC peak current limit			
RT	12	I	Oscillator charging current			
VAI	13	Ι	Voltage amplifier non-inverting input			
VAOUT	7	0	Voltage amplifier output			
VCC	15	I	Positive supply voltage			
VFF	8	Ι	Feed-forward voltage			
VSENSE	11	Ι	Voltage amplifier inverting input			
VREF	9	0	Voltage reference output			

Pin Descriptions

CAI: Place a resistor between this pin and the GND side of current-sense resistor. This input and the inverting input (MOUT) remain functional down to and below GND.

CAOUT: This is the output of a wide bandwidth operational amplifier that senses line current and commands the PFC pulse-width modulator (PWM) to force the correct duty cycle. Compensation components are placed between CAOUT and MOUT.

CT: A capacitor from CT to GND sets the PWM oscillator frequency according to:

$$f \approx \left(\frac{0.6}{RT \times CT}\right)$$

The lead from the oscillator timing capacitor to GND should be as short and direct as possible.

DRVOUT: The output drive for the boost switch is a totem-pole MOSFET gate driver on DRVOUT. To avoid the excessive overshoot of the DRVOUT while driving a capacitive load, a series gate current-limiting/damping resistor is recommended to prevent interaction between the gate impedance and the output driver. The value of the series gate resistor is based on the pulldown resistance (R_{pulldown} which is 4- Ω typical), the maximum VCC voltage (VCC), and the required maximum gate drive current (Imax). Using the equation below, a series gate resistance of resistance 11 Ω would be required for a maximum VCC voltage of 18 V and for 1.2 A of maximum sink current. The source current will be limited to approximately 900 mA (based on the R_{pullup} of 9- Ω typical).

 $\mathsf{R}_{\mathsf{GATE}} = \frac{\mathsf{VCC} - \left(\mathsf{I}_{\mathsf{MAX}} \times \mathsf{R}_{\mathsf{pulldown}}\right)}{\mathsf{I}_{\mathsf{MAX}}}$

GND: All voltages measured with respect to ground. VCC and REF should be bypassed directly to GND with a 0.1-µF or larger ceramic capacitor.

Pin Descriptions (continued)

IAC: This input to the analog multiplier is a current proportional to instantaneous line voltage. The multiplier is tailored for very low distortion from this current input (I_{IAC}) to multiplier output. The recommended maximum I_{IAC} is 500 μ A.

MOUT: The output of the analog multiplier and the inverting input of the current amplifier are connected together at MOUT. As the multiplier output is a current, this is a high-impedance input so the amplifier can be configured as a differential amplifier. This configuration improves noise immunity and allows for the leading-edge modulation operation. The multiplier output current is limited to $(2 \times I_{IAC})$. The multiplier output current is given by the equation:

$$I_{MOUT} = \frac{I_{IAC} \times (V_{VAOUT} - 1)}{V_{VFF}^{2} \times K}$$

where $K = \frac{1}{V}$ is the multiplier gain constant.

OVP/EN: A window comparator input that disables the output driver if the boost output voltage is a programmed level above the nominal or disables both the PFC output driver and resets SS if pulled below 1.9 V (typ).

PKLMT: The threshold for peak limit is 0 V. Use a resistor divider from the negative side of the current sense resistor to VREF to level shift this signal to a voltage level defined by the value of the sense resistor and the peak current limit. Peak current limit is reached when PKLMT voltage falls below 0 V.

RT: A resistor from RT to GND is used to program oscillator charging current. A resistor between 10 k Ω and 100 k Ω is recommended. Nominal voltage on this pin is 3 V.

VAI: This input can be tied to the VREF or any other voltage reference (\leq 7.5 V) to set the boost regulator output voltage.

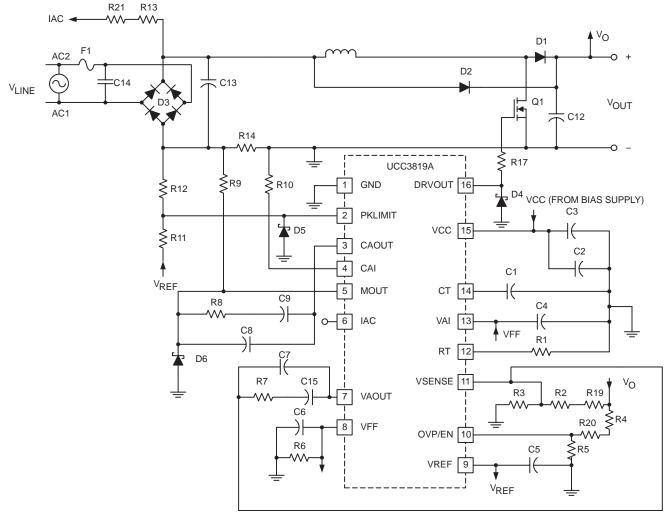
VAOUT: This is the output of the operational amplifier that regulates output voltage. The voltage amplifier output is internally limited to approximately 5.5 V to prevent overshoot.

VCC: Connect to a stable source of at least 20 mA between 10 V and 17 V for normal operation. Bypass VCC directly to GND to absorb supply current spikes required to charge external MOSFET gate capacitances. To prevent inadequate gate drive signals, the output devices are inhibited unless V_{VCC} exceeds the upper under-voltage lockout voltage threshold and remains above the lower threshold.

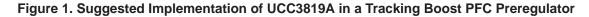
VFF: The RMS voltage signal generated at this pin by mirroring 1/2 of the I_{IAC} into a single pole external filter. At low line, the VFF roll should be 14 V.

VSENSE: This is normally connected to a compensation network and to the boost converter output through a divider network.

VREF: VREF is the output of an accurate 7.5-V voltage reference. This output is capable of delivering 20 mA to peripheral circuitry and is internally short-circuit current limited. VREF is disabled and remains at 0 V when V_{VCC} is below the UVLO threshold. Bypass VREF to GND with a 0.1-µF or larger ceramic capacitor for best stability. Please refer to Figures 8 and 9 for VREF line and load regulation characteristics.

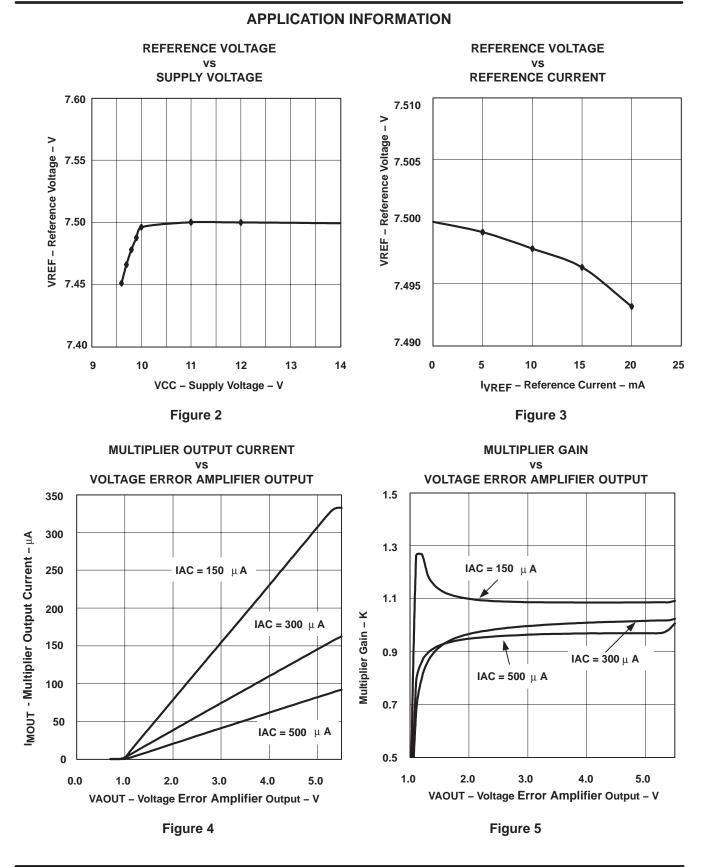


APPLICATION INFORMATION

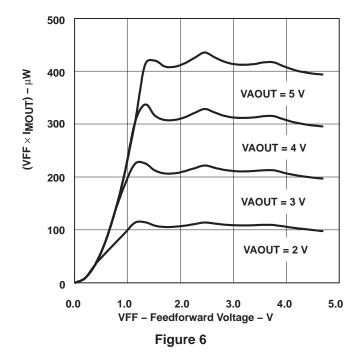

The UCC3819A is based on the UCC3818 PFC preregulator. For a more detailed application information for this part, please refer to the UCC3818 datasheet product folder.

The main difference between the UCC3818 and the UCC3819A is that the non-inverting input of the voltage error amplifier is made available to the user through an external pin (VAI) in the UCC3819A. The SS pin and function were eliminated to accommodate this change.

The benefit of VAI pin is that it can be used to dynamically change the PFC output voltage based on the line voltage (RMS) level or other conditions. Figure 1 shows one suggested implementation of the tracking boost PFC converter as this approach is sometimes referred to. The VAI pin is tied to the VFF pin and hence output voltage scales up with the line voltage. The benefit of this approach is that at lower line voltages the output voltage is lower and that leads to smaller boost inductor value, lower MOSFET conduction losses and reduced component stresses. In order for this feature to work, the downstream converter has to operate over a wider input range.



UDG-01008


SLUS579 - OCTOBER, 2003

SLUS579 - OCTOBER, 2003

APPLICATION INFORMATION

MULTIPLIER CONSTANT POWER PERFORMANCE

References and Resources:

Application Note: *Differences Between UCC3817A/18A/19A and UCC3817/18/19*, Texas Instruments Literature Number SLUA294

User's Guide: UCC3817 BiCMOS Power Factor Preregulator Evaluation Board, Texas Instruments Literature Number SLUU077

Application Note: Synchronizing a PFC Controller from a Down Stream Controller Gate Drive, Texas Instruments Literature Number SLUA245

Seminar topic: *High Power Factor Switching Preregulator Design Optimization*, L.H. Dixon, SEM–700,1990.

Seminar topic: High Power Factor Preregulator for Off-line Supplie", L.H. Dixon, SEM-600, 1988.

Related Products

DEVICE	DESCRIPTION	CONTROL METHOD	TYPICAL POWER LEVEL
UCC3817/A,18/A	BiCMOS PFC controller	ACM ⁽²⁾	75 W to 2 kW+
UC3854	PFC controller	ACM(2)	200 W to 2 kW+
UC3854A/B	Improved PFC controller	ACM(2)	200 W to 2 kW+
UC3855A/B	High performance soft switching PFC controller	ACM(2)	400 W to 2 kW+
UCC38050/1	Transition mode PFC controller	CRM(1)	50 W to 400 W
UCC28510/11/12/13	Advanced PFC+PWM combo controller	ACM(2)	75 W to 1kW+
UCC28514/15/16/17	Advanced PFC+PWM combo controller	ACM ⁽²⁾	75 W to 1kW+

NOTES: (1). Critical conduction mode

(2). Average current mode

www.ti.com

6-Jan-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type		Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Samples
	(1)		Drawing			(2)		(3)	(Requires Login)
UCC2819AD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
UCC2819ADG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
UCC2819ADR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
UCC2819ADRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
UCC2819APW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
UCC2819APWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
UCC2819APWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
UCC2819APWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
UCC3819AD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
UCC3819ADG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
UCC3819ADR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
UCC3819ADRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
UCC3819APW	OBSOLETE	TSSOP	PW	16		TBD	Call TI	Call TI	
UCC3819APWG4	OBSOLETE	TSSOP	PW	16		TBD	Call TI	Call TI	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

PACKAGE OPTION ADDENDUM

www.ti.com

6-Jan-2013

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

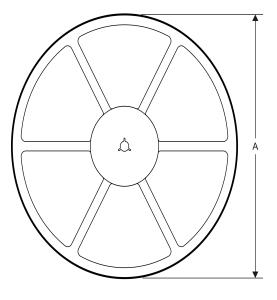
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

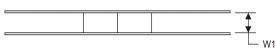
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

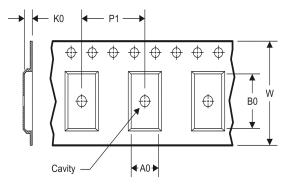
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION

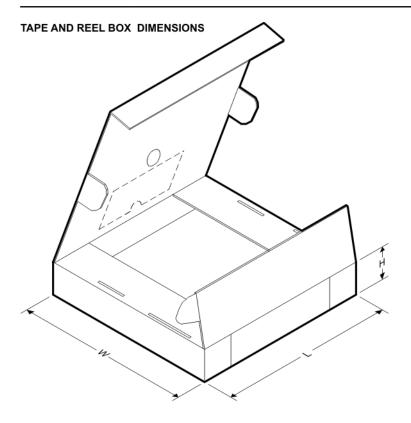
REEL DIMENSIONS


TEXAS INSTRUMENTS

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

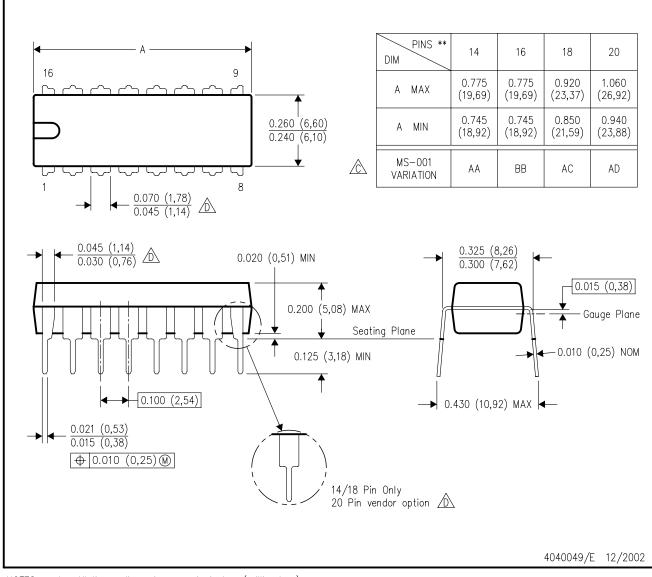

*All dimensions are nomina												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
UCC2819ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
UCC2819APWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
UCC3819ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012

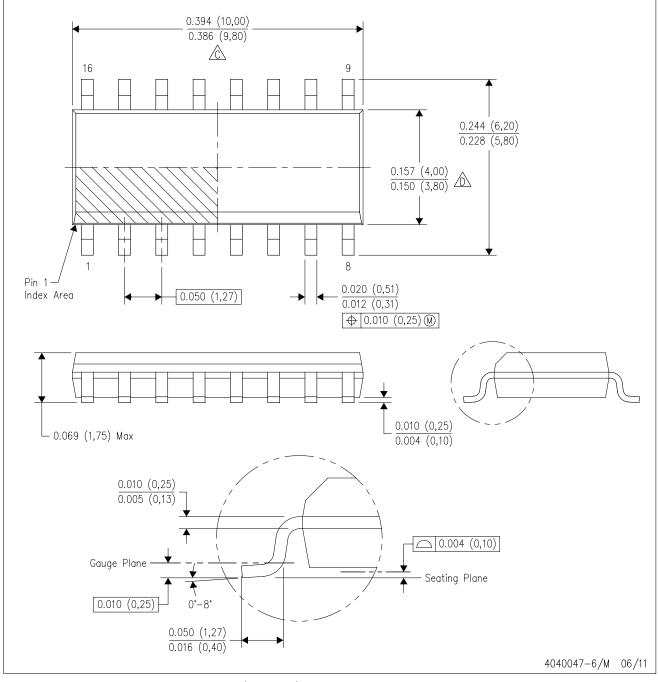

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
UCC2819ADR	SOIC	D	16	2500	333.2	345.9	28.6
UCC2819APWR	TSSOP	PW	16	2000	367.0	367.0	35.0
UCC3819ADR	SOIC	D	16	2500	333.2	345.9	28.6

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

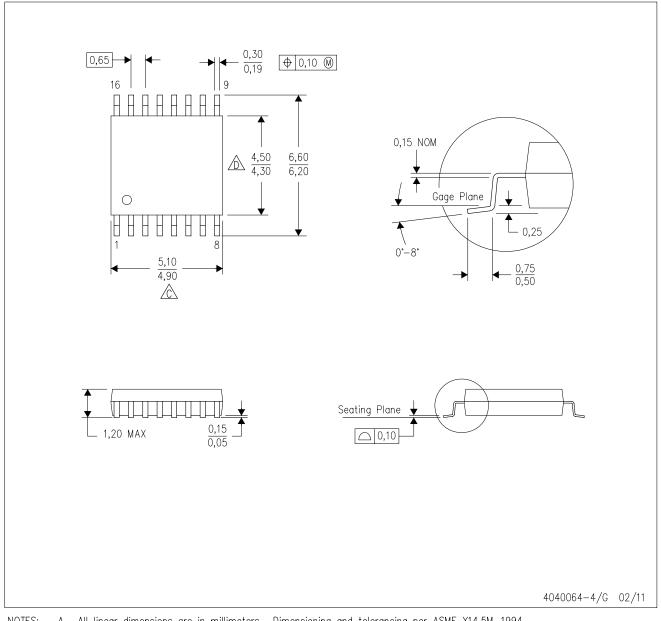
PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

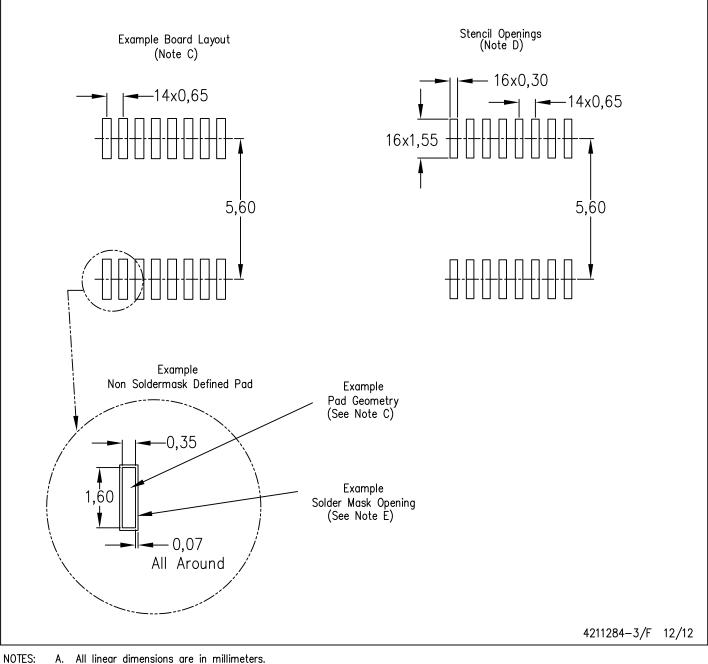
PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. β . This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.


Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated