

Monolityczny układ scalony UCA64123N lub UCY74123N zawiera dwa identyczne, niezależne od włebie przerzutniki monostabilne z podtrzymywanym wyzwalaniem dodatnim (wejście B) lub ujemnym (wejście A) zboczem impulsów wejściowych oraz możliwością zerowania w dowolnym momencie trwania impulsu wyjściowego.

Działanie logiczne przerzutnika monostabilnego opinuje tabela stanów.

Istnieje możliwość wydłużenia czasu trwania impulsu wyjściowego przez przyłożenie kolejnych impulsów wyzwalających w czasie trwania stanu quasistabilneuo lub możliwość skrócenia czasu trwania impulsu wyjściowego przez przyłożenie impulsu zerującego. Bez podtrzymywania wyzwalania czas trwania impulsu wyjściowego jest określony przez stałą czasową $C_T R_T$. Wartość rezystancji R_T powinna być rawarta w zakresie $R_T = 5 \div 50 \text{ k}\Omega$. Pojemność C_T może być dobrana od zera do każdej wymaganej wartości. Czas trwania impulsu wyjściowego t_w dla pojemności $C_T \ge 1000 \text{ pF}$ wynosi

$$t_{\sigma} = 0.32 \cdot C_T \cdot R_T \left(1 + \frac{0.7}{R_T}\right)^{\sigma}$$

przy czym R_T opisano w k Ω , C_T w pF i t_w w ns.

Zalecane warunki pracy

Elementy C_r , R_r należy dołączyć do wyprowadzeń C_{ext} , R_{ext} zgodnie ze schematem. Jeżeli wartość pojemności $C_r \leq 1000$ pF, czas trwania impulsu wyjściowego należy odczytać z wykresu.

Jeżeli C_{τ} jest kondensatorem elektrolitycznym, to elementy zewnętrzne należy dołączyć zgodnie ze schematem.

W układzie tym dioda D jest impulsową diodą krzemową (np. BAYP 94). Czas trwania impulsu wyjściowego należy obliczyć z zależności

$$t_{w} = 0,28 \cdot C_{T} \cdot R_{T} \left(1 + \frac{0,7}{R_{T}}\right)$$

przy czym $R_T = 5 \div 30 \ k\Omega$

Minimalny odstęp czasu pomiędzy impulsami podtrzymującymi wyzwalanie jest określony zależnością

$$t_{\rm smin}[\rm ns] = 0,22 \cdot C_T \ [\rm pF]$$

Układy UCA64123N i UCY74123N są produkowane w obudowach plastykowych A49E(CE71).

Рага	War	Jednostki			
Nazwa	Symbol	min nor	n max	Jednostki	
Napięcie zasilania	Ucc	4,75 5,	5,25	v	
Obciążalność każdego wyjścia w stanie	niskim	NL		10	
	wysokim	N _H		20	
Obciążenie wnoszone przez wej- ścia	A, B			1	s.o.l.
	R	-		2	
Czas ustalania impulsu na wejśc	lse tup	40			
Czas przetrzymywania impulsu na	fhold	40 r			
Czas trwania impulsu na wejścia	f _{wR}	t _{=R} 40		-	
Rezystancja zewnętrzna	R _T	5 50		kΩ	
Pojemność wejścia R _T	C _{RT}		50	pF	
Zakres temperatury otoczenia	UCA64123N		- 40	85	*6
	UCY74123N	Tamb	0	70	

Wartości dopuszczalne parametrów

Parametry			Wartość		
Nazwa	Symbol	min	max	Jeunostki	
Napięcie zasilania	Ucc		7	v	
Napięcie wejściowe	U,		5,5	v	
Ujemny prąd wejściowy	- I ₁		12	mA	
Zakres temperatury przechowywania	late	- 55	125	°C	

Parametry statyczne

(Jeżeli nie podano inaczej — w pełnym zakresie temperatury otoczenia)

Parametry		Wartość			ð		Układ	
Nazwa S		Sym- bol	min	typ ¹⁾	max	Jedn stk	Warunki pomiaru	pomia- rowy
Napięcie wejściowe w stanie niskim		UIL			0,8	v		
Napięcie wejściowe w stanie wysokim		U _{I R}	2			v	1.4.1	
Ujemne napięcie wejściowe		- U ₁			1,5	v	$U_{cc} = 4.75 \text{ V}$ $I_{l} = -12 \text{ mA}$ $t_{amb} = 25 \text{ °C}$	G
Prąd wejściowy w stanie niskim dla wejść:	A, B	IIL			-1,6	mA		
	R				-3,2		$U_{cc} = 5,25 \text{ V}$ $U_{I} = 0,4 \text{ V}$	C
Prąd wejściowy w stanie wyso- kim dla wejść:	A, B	IIB			40	μA	$U_{cc} = 5.25 \text{ V}$	
	R				80		$U_i = 2.4$ V	D
	każdego wejścia				1	mA	$U_{cc} = 5,25 \text{ V}$ $U_{I} = 5,5 \text{ V}$	1
Napięcie wyjściowe w stanie niskim		UoL		0,2	0,4	v	$I_{OL} = 16 \text{ mA}$	
Prąd wyjściowy w stanie ni- skim		IOL			16	mA	$U_{OL} \leq 0.4 \text{ V}$ $U_{CC} = 4.75$	V A
Napięcie wyjściowe w stanie wysokim		Uon	2,4	3,4		v	$I_{OB} = = -800 \ \mu A$	
Prąd wyjściowy w stanie wy- sokim		I _{om}		-	800	μA	$U_{OH} \ge 2.4 \text{ V}$	
Zwarciowy prąd wyjściowy ²) los		los	-10	-25	- 40	mA	$U_{cc} = 5,25 \text{ V}$	E
Prąd zasilania Ia		Icc		46	66	mA	$U_{cc} = 5,25 \text{ V}$	F

1)

Wartości typowe podane są przy $U_{CC} = 5$ V, $t_{emb} = 25^{\circ}$ C Jednocześnie może być zwarte nie więcej niż jedno wyjście

Parametry dynamiczne przy $U_{cc} = 5 \text{ V}, t_{amb} = 25^{\circ}\text{C}$

Parametry			Wartość					Układ
Nazwa	Sym- bol	min	typ	max	Jednostki	Warunki pomiaru	pomia- rowy	
Czas propagacji sygnału do stanu niskiego na wyjściu \overline{Q} od wejścia:	A	IPHL		30	40	ns		
	B			27	36			
Czas propagacji sygnału do stanu wysokiego na wyjściu Q od wej- ścia:	A			22 33				
	B	t _{PLH}		19	28	ns	$C_L = 15 \text{ pF}$ $R_L = 400 \Omega$	
Czas propagacji sygnału do stanu niskie- go na wyjściu Q od wejścia R		t _{phl}		18	27	ns	$C_{T} = 0$ $R_{T} = 5 k\Omega$	Н
Czas propagacji sygnału do stanu wyso- kiego na wyjściu \overline{Q} od wejścia R		t _{plm}	-	30	40	ns		
Czas trwania impulsu wejściowego bez użycia pojemności zewnętrznej		1		45	65	ns	144	
Czas trwania impulsu wyjściowego przy użyciu rezystora zewnętrznego		<i>t</i>	2,76	3,0:	3 3,37	μs	$C_r = 1000 \text{ pF}$ $R_T = 10 \text{ k}\Omega$ $C_L = 15 \text{ pF}$ $R_L = 400 \Omega$	

Pomiary parametrów statycznych

Pomiary parametrów dynamicznych

2.1.8.4. Typowe zastosowania przerzutników 64/74123N

Hys. 2.128

Generacja impulsów z podtrzymywanym wyzwalaniem

 schemat logiczny, b -- przebiegi czasowe przy wyzwalaniu opadającym zboczem, c -- przebiegi czasowe przy wyzwalaniu narastającym zboczem Podstawowym obszarem zastosowań przerzutników monostabilnych są układy generacji przebiegów impulsowych o określonych parametrach. Wyróżniającą cechą przerzutników monostabilnych UCA64123N i UCY74123N jest podtrzymywane wyzwalanie, czyli możliwość ponownego wyzwalania przerzutnika w czasie trwania poprzednio wyzwolonego impulsu. Cecha ta umożliwia generację impulsów o dowolnym czasie trwania. Koniec generowanego impulsu następuje po czasie $t_w + t_{PLH}$ od ostatniego zbocza wyzwalającego (gdzie t_w jest czasem trwania impulsu przy jednokrotnym wyzwalaniu). Graficzną ilustrację generacji impulsów z podtrzymywanym wyzwalaniem pokazano na rys. 2.128. czas trwania impulsu na wyjściu 1Q jest taki jak na wyjściu 2Q, to czas trwania impulsu wyjściowego zostanie odtworzony na wyjściu z dokładnością określoną równością czasów trwania impulsów na wyjściach 1Q i 2Q.

Uklady astabilne

Przerzutniki monostabilne 64/74123N mogą być stosowane do generowania ciągu krótkich impulsów. Na rysunku 2.130 przedstawiono schemat bramkowanych generatorów krótkich impulsów. Przy zamknięciu pętli sprzężenia z wyjściem Q na wejście A(rys. 2.130a) lub z wyjścia Q na wejście B (rys. 2.130b)

Uklad opóźniania impulsów

Na rysunku 2.129 przedstawiono schemat układu opóźniania impulsu z możliwością zachowania czasu trwania impulsu pierwotnego. Pierwszy przerzutnik jest wyzwalany opadającym zboczem, a drugi narastającym zboczem impulsu wejściowego. Jeżeli uzyskuje się ciąg impulsów o czasie trwania równym czasowi opóźniania propagacji w pętli sprzężenia. Czas trwania impulsów można zwiększyć włączając szeregowo do pętli sprzężenia parzystą liczbę elementów logicznych z negacją lub dowolną liczbę elementów nie wprowadzających negacji. Czas trwania odstępu między impulsami określają wartości użyt-

a — generator bramkowany stanem wysokim, b — generator bramkowany stanem niskim

kowych C_T , R_T . Wejście *B* na rys. 2.130a lub wejście *A* na rys. 2.130b służą do bramkowania impulsów w wymaganym przedziale czasowym.

Na rysunku 2.131 przedstawiono schemat generatora o częstotliwości stabilizowanej rezonatorem kwarcowym. Wartości C, R należy dobrać tak, aby częstotliwość generowana przez układ bez rezonatora kwarcowego była większa od częstotliwości nominalnej generatora. Po dołączeniu rezonatora kwarcowego układ generuje przebieg o częstotliwości zależnej od rezonatora.

Komparatory częstotliwości

Przerzutniki monostabilne z podtrzymywanym wyzwalaniem mogą być stosowane w układach porównania częstotliwości. Rysunek 2.132 ilustruje zachowanie przerzutnika dla różnych częstotliwości wyzwalania. Dla częstotliwości wejściowej mniejszej od zadanej $f = \frac{1}{t_w}$ otrzymuje się przebieg pokazany na rys. 2.132b, natomiast dla częstotliwości większej otrzymuje się przebieg przedstawiony na rys. 2.132c. Z uwagi na występowanie różnic tych przebiegów przerzutniki te mogą być wykorzystane w układach porównywania częstotliwości. Na rysunku 2.133 przedstawiono prosty układ sygnalizujący zmniejsze-

nie częstotliwości poniżej wartości zadanej $f = \frac{1}{t_0}$

(t_{x} jest wartością czasu trwania impulsu określonego wartościami elementów C_{T} , R_{T}). Na wejście A przerzutnika RS należy wstępnie przyłożyć impuls do

Rys. 2.132. Generacja przebiegów czasowych z zastosowaniem przerzutnika monostabilnego 64/74123

a — schemat logiczny, b — przebiegi czasowe dla $t_1 > t_w$, c — przebiegi czasowe dla $t_1 < t_w$

Rys. 2.134 Schemat logiczny przedziałowego komparatora częstotliwości

Rys. 2.135 Przebiegi czasowe ilustrujące działanie przedziałowego komparatora częstotliwości

 Przykład komparatora przedziałowego częstotliwości,
 gdzie wykorzystano właściwości przerzutników
 64/74123N przedstawiono na rys. 2.134. Przebiegi
 czasowe ilustrujące działanie komparatora widać na
 rys. 2.135. Częstotliwości graniczne przedziału częstotliwości określają zależności:

$$f_d = \frac{1}{t_1}; \quad f_d = \frac{1}{t_2}$$