Signetics

Linear Products

DESCRIPTION

The UC1842 family of control ICs provides in an 8-Pin mini-DIP the necessary features to implement off-line, fixed-frequency current-mode control schemes with a minimal external parts count. This technique results in improved line regulation, enhanced load response characteristics, and a simpler, easier to design control loop. Topological advantages include inherent pulse-by-pulse current limiting.

Protection circuitry includes built-in undervoltage lock-out and current limiting. Other features include fully-latched operation, a 1% trimmed bandgap reference, and start-up current less than 1mA.

These devices feature a totem-pole output designed to source and sink high peak current from a capacitive load, such as the gate of a power MOSFET. Consistent with N-channel power devices, the output is low in the OFF-state.

UC1842 UC2842 UC3842 Current-Mode PWM Controller

Product Specification

FEATURES

- Low start-up current (\leq 1mA)
- Automatic feed-forward compensation
- Pulse-by-pulse current limiting
- Enhanced load response characteristics
- Undervoltage lock-out with hysteresis
- Double pulse suppression
- High current totem-pole output
- Internally-trimmed bandgap reference
- 400kHz operation, guaranteed min

APPLICATIONS

- Off-line switched mode power supplies
- DC-to-DC converters

PIN CONFIGURATIONS

BLOCK DIAGRAM

UC1842, UC2842, UC3842

.

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
8-Pin Plastic DIP	0 to +70°C	UC3842N
14-Pin Plastic SO	0 to +70°C	UC3842D
8-Pin Plastic DIP	-40 to +85°C	UC2842N
14-Pin Plastic SO	-40 to +85°C	UC2842D
8-Pin Plastic DIP	-55 to +125°C	UC1842N

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage (I _{CC} < 30mA)		Self-Limiting
V _{CC}	Supply voltage (low impedance source)	30	V
IOUT	Output current ^{2, 3}	±1	A
	Output energy (capacitive load)	5	μJ
	Analog inputs (Pin 2, Pin 3)	-0.3 to 6.3	v
	Error amp output sink current	10	mA
PD	Power dissipation at $T_A \le 70^{\circ}$ C (derate 12.5mW/°C for $T_A > 70^{\circ}$ C) ²	1	w
T _{STG}	Storage temperature range	-65°C to +150	°C
TSOLD	Lead temperature (soldering, 10sec max)	300	°C

NOTES:

All voltages are with respect to Pin 5; all currents are positive into the specified terminal.
See section in application note on "Power Dissipation Calculation".
This parameter is guaranteed, but not 100% tested in production.

.

_

Current-Mode PWM Controller

UC1842, UC2842, UC3842

DC AND AC ELECTRICAL CHARACTERISTICS (Unless otherwise stated, these specifications apply for $-55 \leqslant T_J \leqslant 125^\circ$ C for UC1842/43; $-25 \leqslant T_J \leqslant 85^\circ$ C for UC2842/43; $0 \leqslant T_J \leqslant 70^\circ$ C for UC3842/43; $V_{CC} = 15^4$; $R_T = 10k\Omega$; $C_T = 3.3n$ F.)

SYMBOL	PARAMETER	TEST CONDITIONS	UC1842 UC2842			UC3842			UNIT
			Min	Тур	Max	Min	Тур	Max	
Referenc	e section								
VOUT	Output voltage	$T_{J} = 25^{\circ}C, I_{O} = 1mA$	4.95	5.00	5.05	4.90	5.00	5.10	V
	Line regulation	$12 \leq V_{IN} \leq 25V$		6	20		6	20	mV
	Load regulation	$1 \leq I_0 \leq 20 \text{mA}$		6	25		6	25	mV
	Temp. stability ¹			0.2	0.4		0.2	0.4	mV/°C
	Total output variation ¹	Line, load, temp.	4.90		5.10	4.82		5.18	v
V _{NOISE}	Output noise voltage1	10Hz ≪ f ≪ 10kHz, T _J = 25°C		50			50		μV
	Long-term stability ¹	T _J = 125°C, 1000 Hrs.		5	25		5	25	mV
	Output short-circuit	T _J = 25°C	- 30	-100	-130	- 30	-100	-130	mA
	Output short-circuit	$-55 < T_J \leq 0^{\circ}C$	- 30	- 100	-180	-30	-100	-180	mA
Oscillator	section	· · · · · · · · · · · · · · · · · · ·							
	Initial accuracy	T _J = 25°C	47	52	57	47	52	57	kHz
	Voltage stability	$12 \leq V_{CC} \leq 25V$		0.2	1		0.2	1	%
	Temp. stability ¹	$T_{MIN} \leq T_{J} \leq T_{MAX}$		5			5		%
	Amplitude	V _{PIN 4} peak-to-peak		1.7			1.7		V
Error am	p section								
	Input voltage	V Pin 1 = 2.5V	2.45	2.50	2.55	2.42	2.50	2.58	V
BIAS	Input bias current			-0.3	-1	-	-0.3	-2	μΑ
A _{VOL}		$2 \leq V_{O} \leq 4V$	65	90		65	90		dB
	Unity gain bandwidth ¹	T _J = 25°C	0.7	1		0.7	1		MHz
	Unity gain bandwidth	T _{MIN} < T _J < T _{MAX}	0.5			0.5			MHz
PSRR	Power supply rejection ratio	$12 \leq V_{CC} \leq 25V$	60	70		60	70		dB
ISINK	Output sink current	V _{PIN 2} = 2.7V, V _{PIN 1} = 1.1V	2	6		2	6		mA
ISOURCE	Output source current	V _{PIN 2} = 2.3V, V _{PIN 1} = 5V	-0.5	-0.8		-0.5	-0.8		mA
	V _{OUT} High	$V_{PIN 2} = 2.3V$, $R_L = 15k$ to ground	5	6		5	6		V
	V _{OUT} Low	$V_{PIN 2} = 2.7V, R_{L} = 15k \text{ to Pin 8}$		0.7	1.1		0.7	1.1	V
Current s	ense section						•		
	Gain ^{2, 3}		2.85	3	3.15	2.85	3	3.15	V/V
	Maximum input signal ²	V _{PIN 1} = 5V	0.9	1	1.1	0.9	1	1.1	V
PSRR	Power supply rejection ratio ²	$12 \leq V_{CC} \leq 25V$		70			70		dB
IBIAS	Input bias current			-2	-10		-2	- 10	μA
	Delay to output ¹			150	300		150	300	ns

UC1842, UC2842, UC3842

DC AND AC ELECTRICAL CHARACTERISTICS (Continued) (Unless otherwise stated, these specifications apply for

(Unless otherwise stated, these specifications apply for -55 \leq T_J \leq 125°C for UC1842/43; -25 \leq T_J \leq 85°C for UC2842/43; 0 \leq T_J \leq 70°C for UC3842/43; V_{CC} = 15V⁴; R_T = 10kΩ; C_T = 3.3nF.)

SYMBOL	PARAMETER	TEST CONDITIONS	UUU	UC1842/43 UC2842/43			UC3842/43		
			Min	Тур	Max	Min	Тур	Max	
Output s	ection		•						
I _{OL}	Output Low-Level	I _{SINK} = 20mA		0.1	0.4	[0.1	0.4	v
		I _{SINK} = 200mA		1.5	2.2		1.5	2.2	v
L.	Output High Loval	I _{SOURCE} = 20mA	13	13.5		13	13.5		v
ЮН		I _{SOURCE} = 200mA	12	13.5		12	13.5		v
t _R	Rise time	$C_L = 1nF$		50	150		50	150	ns
t _F	Fall time	C _L = 1nF		50	150		50	150	ns
Undervol	Itage lockout section				• • • •	•	•		
	Start threshold	X842	15	16	17	14.5	16	17.5	v
	Start threshold	X843	7.8	8.4	9.0	7.8	8.4	9.0	v
	Min. operating voltage after	X842	9	10	11	8.5	10	11.5	V
	turn on	X843	7.0	7.6	8.2	7.0	7.6	8.2	V
PWM see	ction				•	•			
	Maximum duty cycle	X842/43	93	97	100	93	97	100	%
	Minimum duty cycle				0			0	%
Total sta	indby current								
	Start-up current			0.5	1		0.5	1	mA
Icc	Operating supply current	$V_{PIN 2} = V_{PIN 3} = 0V$		11	17		11	17	mA
	V _{CC} zener voltage	I _{CC} = 25mA		34			34		v
Maximum	operating frequency section			4	L		·	L	
	Maximum operating fre- quency for all functions op- erating cycle-by-cycle		400			400			kHz

NOTES:

1. These parameters, although guaranteed, are not 100% tested in production.

2. Parameter measured at trip point of latch with $V_{PIN 2} = 0$.

3. Gain defined as:

 $A = \frac{\Delta V_{PIN 1}}{\Delta V_{PIN 3}}; \ 0 \le V_{PIN 3} \le 0.8V.$

UC1842, UC2842, UC3842

UNDERVOLTAGE LOCKOUT

ERROR AMP CONFIGURATION

UC1842, UC2842, UC3842

TYPICAL PERFORMANCE CHARACTERISTICS

UC1842, UC2842, UC3842

OPEN-LOOP LABORATORY TEST FIXTURE

SHUTDOWN TECHNIQUES

NOTE: Shutdown of the UC1842 can be accomplished by two methods; either raise Pin 3 above 1V or pull Pin 1 below a voltage two diode drops above ground. Either method causes the output of the PWM comparator to be high (refer to Block Diagram). The PWM latch is reset dominant so that the output will remain low until the next clock cycle after the shutdown condition at Pins 1 and/or 3 is removed. In the examples shown, an externally-latched shutdown may be accomplished by adding an SCR which will be reset by cycling V_{CC} below the lower UVLO threshold (10V). At this point all internal bas is removed, allowing the SCR to reset.

1

UC1842, UC2842, UC3842

OFF-LINE FLYBACK REGULATOR

SPECIFICATIONS

Input line voltage:				
Input frequency:				
Switching frequency:				
Output power:				
Output voltage:				
Output current:				
Line regulation:				
Load regulation:				

90V_{AC} to 130V_{AC} 50 or 60Hz 40kHz±10% 25W maximum 5V±5% 2 to 5A 0.01%/V

8%/A

Efficiency @ 25 W,	
V _{IN} = 90V _{AC} :	70%
$V_{IN} = 130V_{AC}$:	65%
Output short-circuit current:	2.5A average

NOTE:

This circuit uses a low-cost feedback scheme in which the DC voltage developed from the primaryside control winding is sensed by the UC1842 error amplifier. Load regulation is therefore dependent on the coupling between secondary and control windings, and on transformer leakage inductance. For applications requiring better load regulation, a UC1901 Isolated Feedback Generator can be used to directly sense the output voltage. -

Current-Mode PWM Controller

UC1842, UC2842, UC3842

.