FEATURES

- Wide frequency range: VHF, UHF and 900 MHz bands
- High sensitivity
- High dynamic range
- Electronically adjustable filters on chip
- Suitable for data rates up to 2400 bits/s
- Wide frequency offset and deviation range
- Fully POCSAG compatible FSK receiver
- Power on/off mode selectable by the chip enable input
- Low supply voltage; low power consumption
- 1-cell battery-low detection circuit
- High integration level
- Interfaces directly to the PCA5000A, PCF5001 and PCD5003 POCSAG decoders.

APPLICATIONS

- Wide area paging
- On-site paging
- Telemetry
- RF security systems
- Low bit-rate wireless data links.

GENERAL DESCRIPTION

The UAA2082 is a high-performance low-power radio receiver circuit primarily intended for VHF, UHF and 900 MHz pager receivers for wide area digital paging systems, employing direct FM non-return-to-zero (NRZ) frequency shift keying (FSK).

The receiver design is based on the direct conversion principle where the input signal is mixed directly down to the baseband by a local oscillator on the signal frequency. Two complete signal paths with signals of 90° phase difference are required to demodulate the signal.
All channel selectivity is provided by the built-in IF filters. The circuit makes extensive use of on-chip capacitors to minimize the number of external components.

The battery monitoring circuit has an external sense input and a 1.1 V detection threshold for easy operation in a single-cell supply concept.
The UAA2082 was designed to operate together with the PCA5000A, PCF5001 or PCD5003 POCSAG decoders, which contain a digital input filter for optimum call success rate.

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
UAA2082H	LQFP32	plastic low profile quad flat package; 32 leads; body $7 \times 7 \times 1.4 \mathrm{~mm}$	SOT358-1
UAA2082U	28 pads	naked die; see Fig.8	

Advanced pager receiver

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{P}	supply voltage		1.9	2.05	3.5	V
I_{P}	supply current		2.3	2.7	3.2	mA
$\mathrm{IP}_{(\text {(off) }}$	stand-by current		-	-	3	$\mu \mathrm{A}$
$\mathrm{P}_{\mathrm{i}(\text { ref) }}$	RF input sensitivity	BER $\leq 3 / 100$; $\pm 4 \mathrm{kHz}$ deviation; data rate $1200 \mathrm{bits} / \mathrm{s} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ $\begin{aligned} & \mathrm{f}_{(\text {(RF })}=173 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{i} \text { (RF) }}=470 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{i}(\mathrm{RF})}=930 \mathrm{MHz} \end{aligned}$		$\begin{array}{\|l\|} \hline-126.5 \\ -124.5 \\ -120.0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-123.5 \\ -121.5 \\ -114.0 \\ \hline \end{array}$	dBm dBm dBm
$\mathrm{P}_{\mathrm{i}(\text { mix })}$	mixer input sensitivity	BER $\leq 3 / 100 ;$ f f_{i} (RF) $=470 \mathrm{MHz}$; $\pm 4 \mathrm{kHz}$ deviation; data rate $1200 \mathrm{bits} / \mathrm{s} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	-	-115.0	-110.0	dBm
$\mathrm{V}_{\text {th }}$	detection threshold for battery LOW indicator	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	1.05	1.10	1.15	V
		$\mathrm{T}_{\text {amb }}=-10$ to $+70^{\circ} \mathrm{C}$	1.03	1.10	1.17	V
$\mathrm{T}_{\text {amb }}$	operating ambient temperature		-10	-	+70	${ }^{\circ} \mathrm{C}$

BLOCK DIAGRAMS (173 MHz)

Table 1 Tolerances of components shown in Figs 1 and 2 (notes 1 and 2)

COMPONENT	TOLERANCE (\%)	REMARK
Inductances		
L1	± 5	$Q_{\text {min }}=100$ at 173 MHz
L2, L3, L6, L7	± 20	$\mathrm{Q}_{\text {min }}=50$ at $173 \mathrm{MHz} ; \mathrm{TC}=(+25$ to +125$) \times 10^{-6} / \mathrm{K}$
L4, L5	± 10	$\mathrm{Q}_{\text {min }}=30$ at $173 \mathrm{MHz} ; \mathrm{TC}=(+25$ to +125$) \times 10^{-6} / \mathrm{K}$
L8	± 20	$\mathrm{Q}_{\text {min }}=30$ at $173 \mathrm{MHz} ; \mathrm{TC}=(+25$ to +125$) \times 10^{-6} / \mathrm{K}$
L9	± 10	$\mathrm{Q}_{\text {min }}=30$ at $57 \mathrm{MHz} ; \mathrm{TC}=(+25$ to +125$) \times 10^{-6} / \mathrm{K}$
Resistors		
R1 to R7	± 2	TC $=+50 \times 10^{-6} / \mathrm{K}$
Capacitors		
C1, C2, C7, C8, C9, C15	± 5	$\mathrm{TC}=(0 \pm 30) \times 10^{-6} / \mathrm{K} ; \tan \delta \leq 30 \times 10^{-4}$ at 1 MHz
C3, C6, C12	-	TC $=(-750 \pm 300) \times 10^{-6} / \mathrm{K} ; \tan \delta \leq 50 \times 10^{-4}$ at 1 MHz
C4, C5, C14, C18, C19, C20	± 10	$\mathrm{TC}=(0 \pm 30) \times 10^{-6} / \mathrm{K} ; \tan \delta \leq 10 \times 10^{-4}$ at 1 MHz
C10, C11	± 5	$\mathrm{TC}=(0 \pm 30) \times 10^{-6} / \mathrm{K} ; \tan \delta \leq 21 \times 10^{-4}$ at 1 MHz
C13	± 20	
C16	-	TC $=(-1700 \pm 500) \times 10^{-6} / \mathrm{K} ; \tan \delta \leq 50 \times 10^{-4}$ at 1 MHz
C17	± 5	$\mathrm{TC}=(0 \pm 30) \times 10^{-6} / \mathrm{K} ; \tan \delta \leq 26 \times 10^{-4}$ at 1 MHz

Notes

1. Recommended crystal: $\mathrm{f}_{\mathrm{XTAL}}=57.647 \mathrm{MHz}$ (crystal with 8 pF load), 3rd overtone, pullability $>2.75 \times 10^{-6} / \mathrm{pF}$ (change in frequency between series resonance and resonance with 8 pF series capacitor at $25^{\circ} \mathrm{C}$), dynamic resistance $\mathrm{R} 1<40 \Omega, \Delta \mathrm{f}= \pm 5 \times 10^{-6}$ for $\mathrm{T}_{\mathrm{amb}}=-10$ to $+55^{\circ} \mathrm{C}$ with $25^{\circ} \mathrm{C}$ reference, calibration plus aging tolerance: -5×10^{-6} to $+15 \times 10^{-6}$.
2. This crystal recommendation is based on economic aspects and practical experience. Normally the spreads for R1, pullability and calibration do not show their worst case limits simultaneously in one crystal. In such a rare event, the tuning range will be reduced to an insufficient level.

Fig. 5 Mixer input sensitivity test circuit; $f_{i(R F)}=469.95 \mathrm{MHz}$.

Table 2 Tolerances of components shown in Figs 3, 4 and 5 (notes 1 and 2)

COMPONENT	TOLERANCE (\%)	REMARK
Inductances		
L1, L10	± 5	$\mathrm{Q}_{\text {min }}=145$ at 470 MHz
L2, L3, L6, L7	± 20	$\mathrm{Q}_{\text {min }}=50$ at $470 \mathrm{MHz} ; \mathrm{TC}=(+25$ to +125$) \times 10^{-6} / \mathrm{K}$
L4, L5	± 10	$\mathrm{Q}_{\text {min }}=40$ at 470 MHz ; TC $=(+25$ to +125$) \times 10^{-6} / \mathrm{K}$
L8	± 10	$\mathrm{Q}_{\text {min }}=30$ at $156 \mathrm{MHz} ; \mathrm{TC}=(+25$ to +125$) \times 10^{-6} / \mathrm{K}$
L9	± 10	$\mathrm{Q}_{\text {min }}=40$ at $78 \mathrm{MHz} ; \mathrm{TC}=(+25$ to +125$) \times 10^{-6} / \mathrm{K}$
Resistors		
R1 to R6	± 2	TC $=+50 \times 10^{-6} / \mathrm{K}$
Capacitors		
C1, C2, C7, C8, C9	± 5	TC $=(0 \pm 30) \times 10^{-6} / \mathrm{K}$; tan $\delta \leq 30 \times 10^{-4}$ at 1 MHz
C3, C6, C12, C23	-	TC $=(-750 \pm 300) \times 10^{-6} / \mathrm{K} ; \tan \delta \leq 50 \times 10^{-4}$ at 1 MHz
C4, C5, C14, C18 to C22	± 10	TC $=(0 \pm 30) \times 10^{-6} / \mathrm{K} ; \tan \delta \leq 10 \times 10^{-4}$ at 1 MHz
C10, C11	± 5	TC $=(0 \pm 30) \times 10^{-6} / \mathrm{K} ; \tan \delta \leq 21 \times 10^{-4}$ at 1 MHz
C13	± 20	
C16	-	TC = (-1700 $\pm 500) \times 10^{-6} / \mathrm{K} ; \tan \delta \leq 50 \times 10^{-4}$ at 1 MHz
C17	± 5	$\mathrm{TC}=(0 \pm 30) \times 10^{-6} / \mathrm{K} ; \tan \delta \leq 26 \times 10^{-4}$ at 1 MHz

Notes

1. Recommended crystal: $\mathrm{f}_{\mathrm{XTAL}}=78.325 \mathrm{MHz}$ (crystal with 8 pF load), 3rd overtone, pullability $>2.75 \times 10^{-6} / \mathrm{pF}$ (change in frequency between series resonance and resonance with 8 pF capacitor at $25^{\circ} \mathrm{C}$), dynamic resistance $\mathrm{R} 1<30 \Omega, \Delta \mathrm{f}= \pm 5 \times 10^{-6}$ for $\mathrm{T}_{\mathrm{amb}}=-10$ to $+55^{\circ} \mathrm{C}$ with $25^{\circ} \mathrm{C}$ reference, calibration plus aging tolerance: -5×10^{-6} to $+15 \times 10^{-6}$.
2. This crystal recommendation is based on economic aspects and practical experience. Normally the spreads for R1, pullability and calibration do not show their worst case limits simultaneously in one crystal. In such a rare event, the tuning range will be reduced to an insufficient level.

BLOCK AND TEST DIAGRAM (930 MHz)

Fig. 6 Test circuit; $\mathrm{f}_{\mathrm{i}(\mathrm{RF})}=930.50 \mathrm{MHz}$.

Table 3 Tolerances of components shown in Fig. 6 (note 1)

COMPONENT	TOLERANCE (\%)	REMARK
Inductances		
L1	± 10	$\mathrm{Q}_{\text {typ }}=150$ at 930 MHz
L2, L3, L6, L7	-	microstrip inductor
L4, L5	± 5	$\mathrm{Q}_{\text {typ }}=100$ at 930 MHz
L8	± 10	$\mathrm{Q}_{\text {typ }}=65$ at 310 MHz
L10, L11	± 10	$\mathrm{Q}_{\text {typ }}=150$ at 930 MHz
Resistors		
R1 to R4	± 2	TC $=(0 \pm 200) \times 10^{-6} / \mathrm{K}$
Capacitors		
C1, C2, C7, C8, C9, C15	± 5	TC $=(0 \pm 30) \times 10^{-6} / \mathrm{K}$; tan $\delta \leq 30 \times 10^{-4}$ at 1 MHz
C3, C6, C12	-	TC $=(0 \pm 200) \times 10^{-6} / \mathrm{K} ; \tan \delta \leq 30 \times 10^{-4}$ at 1 MHz
C4, C5, C14, C19	± 10	$\mathrm{TC}=(0 \pm 30) \times 10^{-6} / \mathrm{K} ; \tan \delta \leq 10 \times 10^{-4}$ at 1 MHz
C13	± 20	

Note

1. The external oscillator signal $\mathrm{V}_{\mathrm{i}(\mathrm{OSC})}$ has a frequency of $\mathrm{f}_{\mathrm{OSC}}=310.1667 \mathrm{MHz}$.

Advanced pager receiver

PINNING (LQFP32)

SYMBOL	PIN	DESCRIPTION
TS	1	test switch; connection to ground for normal operation
BLI	2	battery LOW indicator output
DO	3	data output
RE	4	receiver enable input
TPI	5	IF test point; I channel
TPQ	6	IF test point; Q channel
VI1RF	7	pre-amplifier RF input 1
VI2RF	8	pre-amplifier RF input 2
n.c.	9	not connected
RRFA	10	external emitter resistor for pre-amplifier
GND1	11	ground 1 (0 V)
VO2RF	12	pre-amplifier RF output 2
VO1RF	13	pre-amplifier RF output 1
VP	14	supply voltage
VI2MI	15	I channel mixer input 2
VI1MI	16	I channel mixer input 1
n.c.	17	not connected
VI1MQ	18	Q channel mixer input 1
VI2MQ	19	Q channel mixer input 2
GND2	20	ground 2 (0 V)
COM	21	gyrator filter resistor; common line
RGYR	22	gyrator filter resistor
n.c.	23	not connected
VO1MUL	24	frequency multiplier output 1
VO2MUL	25	frequency multiplier output 2
RMUL	26	external emitter resistor for frequency multiplier
SENSE	27	battery LOW detector sense input
OSC	28	oscillator collector
n.c.	29	not connected
GND3	30	ground 3 (0 V)
OSB	31	oscillator base; crystal input
OSE	32	oscillator emitter

Fig. 7 Pin configuration; LQFP32.

Advanced pager receiver

CHIP DIMENSIONS AND BONDING PAD LOCATIONS

See Table 4 for bonding pad description and locations for x / y co－ordinates．

Where：
O Pad number 1 （diameter $124 \mu \mathrm{~m}$ ）
\square Pad $124 \mu \mathrm{~m} \times 124 \mu \mathrm{~m}$
『 Pad not used
［囲 Pad $100 \mu \mathrm{~m} \times 100 \mu \mathrm{~m}$
圈 Pad $100 \mu \mathrm{~m} \times 100 \mu \mathrm{~m}$ with reference point

Chip area： $18.15 \mathrm{~mm}^{2}$
Chip thickness： $380 \pm 20 \mu \mathrm{~m}$ ．
Drawing not to scale．
Fig． 8 Bonding pad locations．

Advanced pager receiver

Table 4 Bonding pad centre locations (dimensions in $\mu \mathrm{m}$)

SYMBOL	PAD		DESCRIPTION	\mathbf{y}
TPI	1	IF test point; I channel	-32	1296
TPQ	2	IF test point; Q channel	-32	1000
VI1RF	3	pre-amplifier RF input 1	-32	360
VI2RF	4	pre-amplifier RF input 2; note 1	0	0
RRFA	5	external emitter resistor for pre-amplifier	472	0
GND1	6	ground 1 (0 V)	1160	0
VO2RF	7	pre-amplifier RF output 2	1688	0
VO1RF	8	pre-amplifier RF output 1	2232	0
VP	9	supply voltage	2760	0
VI2MI	10	I channel mixer input 2	3608	0
VI1MI	11	I channel mixer input 1	4216	0
VI1MQ	12	Q channel mixer input 1	4216	360
VI2MQ	13	Q channel mixer input 2	4216	960
GND2	14	ground 2 (0 V)	4216	1360
COM	15	gyrator filter resistor; common line	4216	2024
RGYR	16	gyrator filter resistor	4216	2496
VO1MUL	17	frequency multiplier output 1	4216	3136
VO2MUL	18	frequency multiplier output 2	4176	3456
RMUL	19	external emitter resistor for frequency multiplier	3668	3458
SENSE	20	battery LOW detector sense input	2952	3456
OSC	21	oscillator collector	2312	3456
GND3	22	ground 3 (0 V)	1832	3456
OSB	23	oscillator base; crystal input	1328	3456
OSE	24	oscillator emitter	432	3456
TS	25	test switch; connection to ground for normal operation	-32	3456
BLI	26	battery LOW indicator output	-32	3136
DO	27	data output	-32	2512
RE	28	receiver enable input	-32	2152
		lower left corner of chip (typical values)	-278	-186

Note

1. All x / y co-ordinates are referenced to the centre of pad 4 (VI2RF); see Fig.8.

Fig. 9 Internal circuits drawn for LQFP32.

FUNCTIONAL DESCRIPTION

The complete circuit consists of the following functional blocks as shown in Figs 1 to 6.

Radio frequency amplifier

The RF amplifier is an emitter-coupled pair driving a balanced cascode stage, which drives an external balanced tuned circuit. Its bias current is set by an external 300Ω resistor R1 to typically $770 \mu \mathrm{~A}$. With this bias current the optimum source resistance is $1.3 \mathrm{k} \Omega$ at VHF and $1.0 \mathrm{k} \Omega$ at UHF. At 930 MHz a higher bias current is required to achieve optimum gain. A value of 120Ω is used for R1, which corresponds with a bias current of approximately 1.3 mA and an optimum source resistance of approximately 600Ω.The capacitors C 1 and C2 transform a 50Ω source resistance to this optimum value. The output drives a tuned circuit with capacitive divider (C7, C8 and C9) to provide maximum power transfer to the phase-splitting network and the mixers.

Mixers

The double balanced mixers consist of common base input stages and upper switching stages driven from the frequency multiplier. The 300Ω input impedance of each mixer acts together with external components (C10, C11; L4, L5 respectively) as phase shifter/power splitter to provide a differential phase shift of 90 degrees between the I channel and the Q channel. At 930 MHz all external phase shifter components are inductive (L10, L11; L4, L5).

Oscillator

The oscillator is based on a transistor in common collector configuration. It is followed by a cascode stage driving a tuned circuit which provides the signal for the frequency multiplier. The oscillator transistor requires an external bias voltage $\mathrm{V}_{\text {bias(osc) }}$ (1.22 V typ.). The oscillator bias current (typically $250 \mu \mathrm{~A}$) is determined by the $1.5 \mathrm{k} \Omega$ external resistor R5. The oscillator frequency is controlled by an external 3rd overtone crystal in parallel resonance mode. External capacitors between base and emitter (C17) and from emitter to ground (C16) make the oscillator transistor appear as having a negative resistance for small signals; this causes the oscillator to start. Inductance L9 connected in parallel with capacitor C16 to the emitter of the oscillator transistor prevents oscillation at the fundamental frequency of the crystal.

The resonant circuit at output pin OSC selects the second harmonic of the oscillator frequency. In other applications a different multiplication factor may be chosen.
At 930 MHz an external oscillator circuit is required to provide sufficient local oscillator signal for the frequency multiplier.

Frequency multiplier

The frequency multiplier is an emitter-coupled pair driving an external balanced tuned circuit. Its bias current is set by external resistor R4 to typically $190 \mu \mathrm{~A}(173 \mathrm{MHz}), 350 \mu \mathrm{~A}$ (470 MHz) and $1 \mathrm{~mA}(930 \mathrm{MHz}$). The oscillator signal is internally AC coupled to one input of the emitter-coupled pair while the other input is internally grounded via a capacitor. The frequency multiplier output signal between pins VO1MUL and VO2MUL drives the upper switching stages of the mixers. The bias voltage on pins VO1MUL and VO2MUL is set by external resistor R3 to allow sufficient voltage swing at the mixer outputs. The value of R3 depends on the operating frequency: $1.5 \mathrm{k} \Omega$ $(173 \mathrm{MHz}), 820 \Omega(470 \mathrm{MHz})$ and $330 \Omega(930 \mathrm{MHz})$.

Low noise amplifiers, active filters and gyrator filters

The low noise amplifiers ensure that the noise of the following stages does not affect the overall noise figure. The following active filters before the gyrator filters reduce the levels of large signals from adjacent channels. Internal AC couplings block DC offsets from the gyrator filter inputs.

The gyrator filters implement the transfer function of a 7th order elliptic filter. Their cut-off frequencies are determined by the $47 \mathrm{k} \Omega$ external resistor R2 between pins RGYR and COM. The gyrator filter output signals are available on IF test pins TPI and TPQ.

Limiters

The gyrator filter output signals are amplified in the limiter amplifiers to obtain IF signals with removed amplitude information.

Demodulator

The limiter amplifier output signals are fed to the demodulator. The demodulator output DO is going LOW or HIGH depending upon which of the input signals has a phase lead.

Battery LOW indicator

The battery LOW indicator senses the supply voltage and sets its output HIGH when the voltage at input SENSE is less than $\mathrm{V}_{\text {th }}$ (typically 1.10 V). Low battery warning is available at BLI.

Band gap reference

The whole chip except the oscillator section can be powered-up and powered-down by enabling and disabling the band gap reference via the receiver enable pin RE.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).
Ground pins GND1, GND2 and GND3 connected together.

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{P}	Supply voltage	-0.3	+8.0	V
$\mathrm{~T}_{\text {stg }}$	storage temperature	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	operating ambient temperature	-10	+70	${ }^{\circ} \mathrm{C}$
V_{es}	electrostatic handling; note 1			
	pins VI1RF and VI2RF	-1500	+2000	V
	pin RRFA	-500	+2000	V
	pins VO1RF and VO2RF	-2000	+250	V
	pins VP and OSB	-500	+500	V
	pins OSC and OSE	-2000	+500	V
	other pins	-2000	+2000	V

Note

1. Equivalent to discharging a 100 pF capacitor via a $1.5 \mathrm{k} \Omega$ resistor.

DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{P}}=2.05 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-10$ to $+70^{\circ} \mathrm{C}$ (typical values at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$); measurements taken in test circuit Figs $1,2,3$ or 4 with crystal at pin OSB disconnected; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
V_{P}	supply voltage		1.9	2.05	3.5	V
I_{P}	supply current	$\begin{aligned} & \mathrm{V}_{\text {RE }}=\mathrm{HIGH} ; \\ & \left.\mathrm{f}_{\mathrm{i}} \mathrm{RF}\right)=173 \text { and } 470 \mathrm{MHz} \\ & \hline \end{aligned}$	2.3	2.7	3.2	mA
		$\mathrm{V}_{\text {RE }}=\mathrm{HIGH} ; \mathrm{f}_{\mathrm{i}}(\mathrm{RF})=930 \mathrm{MHz}$	2.9	3.4	3.9	mA
$\mathrm{I}_{\text {P(off) }}$	stand-by current	$\mathrm{V}_{\text {RE }}=$ LOW	-	-	3	$\mu \mathrm{A}$
$\mathrm{V}_{\text {bias(osc) }}$	oscillator bias voltage		1.20	1.22	1.24	V

Receiver enable input (pin RE)

V_{IH}	HIGH level input voltage		1.4	-	V_{P}	V
V_{IL}	LOW level input voltage		0	-	0.3	V
I_{IH}	HIGH level input current	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{P}}=3.5 \mathrm{~V}$	-	-	20	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{IL}}$	LOW level input current	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	0	-	-1.0	$\mu \mathrm{~A}$

Battery LOW indicator output (pin BLI)

$\mathrm{V}_{\text {OH }}$	HIGH level output voltage	$\mathrm{V}_{\text {SENSE }}<\mathrm{V}_{\mathrm{th}} ; \mathrm{I}_{\mathrm{BLI}}=-10 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{P}}-0.5$	-	-	V
V_{OL}	LOW level output voltage	$\mathrm{V}_{\mathrm{SENSE}}>\mathrm{V}_{\mathrm{th}} ; \mathrm{I}_{\mathrm{BL}}=+10 \mu \mathrm{~A}$	-	-	0.5	V
$\mathrm{~V}_{\text {th }}$	voltage threshold for battery LOW indicator	$\mathrm{V}_{\mathrm{P}}=2.05 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	1.05	1.10	1.15	V
	$\mathrm{V}_{\mathrm{P}}=2.05$ to $3.5 \mathrm{~V} ;$ $\mathrm{T}_{\mathrm{amb}}=-10$ to $+70^{\circ} \mathrm{C}$	1.03	1.10	1.17	V	

Demodulator output (pin DO)

V_{OH}	HIGH level output voltage	$\mathrm{I}_{\mathrm{DO}}=-10 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{P}}-0.5$	-	-	V
V_{OL}	LOW level output voltage	$\mathrm{I}_{\mathrm{DO}}=+10 \mu \mathrm{~A}$	-	-	0.5	V

AC CHARACTERISTICS (173 MHz)

$V_{P}=2.05 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; test circuit Figs 1 or $2 ; \mathrm{f}_{\mathrm{i}(\mathrm{RF})}=172.941 \mathrm{MHz}$ with $\pm 4.0 \mathrm{kHz}$ deviation; 1200 baud pseudo random bit sequence modulation ($\mathrm{t}_{\mathrm{r}}=250 \pm 25 \mu \mathrm{~s}$ measured between 10% and 90% of voltage amplitude) and 20 kHz channel spacing; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Radio frequency input						
$\mathrm{P}_{\mathrm{i}(\text { ref) }}$	input sensitivity ($\mathrm{P}_{\mathrm{i} \text { (ref) }}$ is the maximum available power at the RF input of the test board)	BER $\leq 3 / 100$; note 1	-	-126.5	-123.5	dBm
		$\mathrm{T}_{\text {amb }}=-10$ to $+70^{\circ} \mathrm{C}$; note 2	-	-	-120.5	dBm
		$\mathrm{V}_{\mathrm{P}}=1.9 \mathrm{~V}$	-	-	-117.5	dBm
Mixers to demodulator						
$\alpha_{\text {acs }}$	adjacent channel selectivity	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	69	72	-	dB
		$\mathrm{T}_{\text {amb }}=-10$ to $+70^{\circ} \mathrm{C}$	67	-	-	dB
$\alpha_{\text {ci }}$	IF filter channel imbalance		-	-	2	dB
α_{c}	co-channel rejection		-	4	7	dB
$\alpha_{\text {sp }}$	spurious immunity		50	60	-	dB
$\alpha_{\text {im }}$	intermodulation immunity		55	60	-	dB
$\alpha_{b l}$	blocking immunity	$\Delta \mathrm{f}> \pm 1 \mathrm{MHz}$; note 3	78	85	-	dB
$\mathrm{f}_{\text {offset }}$	frequency offset range (3 dB degradation in sensitivity)	deviation $\mathrm{f}= \pm 4.0 \mathrm{kHz}$	± 2.0	-	-	kHz
		deviation $\mathrm{f}= \pm 4.5 \mathrm{kHz}$	± 2.5	-	-	kHz
$\Delta f_{\text {dev }}$	deviation range (3 dB degradation in sensitivity)		2.5	-	7.0	kHz
$\mathrm{t}_{\text {on }}$	receiver turn-on time	data valid after setting RE input HIGH; note 4	-	-	5	ms

Notes

1. The bit error rate BER is measured using the test facility shown in Fig.12. Note that the BER test facility contains a digital input filter equivalent to the one used in the PCA5000A, PCF5001 and PCD5003 POCSAG decoders.
2. Capacitor C 16 requires re-adjustment to compensate temperature drift.
3. Δf is the frequency offset between the required signal and the interfering signal.
4. Turn-on time is defined as the time from pin RE going HIGH to the reception of valid data on output pin DO. Turn-on time is measured using an external oscillator (turn-on time using the internal oscillator is dependent upon the oscillator circuitry).

AC CHARACTERISTICS (470 MHz)

$V_{P}=2.05 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; test circuit Figs 3 or $4 ; \mathrm{f}_{\mathrm{i}(\mathrm{RF})}=469.950 \mathrm{MHz}$ with $\pm 4.0 \mathrm{kHz}$ deviation; 1200 baud pseudo random bit sequence modulation ($\mathrm{t}_{\mathrm{r}}=250 \pm 25 \mu$ s measured between 10% and 90% of voltage amplitude) and 20 kHz channel spacing; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Radio frequency input						
$\mathrm{P}_{\mathrm{i}(\text { ref) }}$	input sensitivity ($\mathrm{P}_{\mathrm{i} \text { (ref) }}$ is the maximum available power at the RF input of the test board)	BER $\leq 3 / 100$; note 1	-	-124.5	-121.5	dBm
		$\mathrm{T}_{\text {amb }}=-10$ to $+70^{\circ} \mathrm{C}$; note 2	-	-	-118.5	dBm
		$\mathrm{V}_{\mathrm{P}}=1.9 \mathrm{~V}$	-	-	-115.5	dBm
Mixer input						
$\mathrm{P}_{\mathrm{i}(\text { mix })}$	input sensitivity	BER $\leq 3 / 100$; note 3	-	-115.0	-110.0	dBm
Mixers to demodulator						
$\alpha_{\text {acs }}$	adjacent channel selectivity	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	67	70	-	dB
		$\mathrm{T}_{\text {amb }}=-10$ to $+70^{\circ} \mathrm{C}$	65	-	-	dB
α_{ci}	IF filter channel imbalance		-	-	2	dB
α_{c}	co-channel rejection		-	4	7	dB
$\alpha_{\text {sp }}$	spurious immunity		50	60	-	dB
$\alpha_{\text {im }}$	intermodulation immunity		55	60	-	dB
$\alpha_{\text {b }}$	blocking immunity	$\Delta \mathrm{f}> \pm 1 \mathrm{MHz}$; note 4	75	82	-	dB
$\mathrm{f}_{\text {offset }}$	frequency offset range (3 dB degradation in sensitivity)	deviation $\mathrm{f}= \pm 4.0 \mathrm{kHz}$	± 2.0	-	-	kHz
		deviation $\mathrm{f}= \pm 4.5 \mathrm{kHz}$	± 2.5	-	-	kHz
$\Delta \mathrm{f}_{\text {dev }}$	deviation range (3 dB degradation in sensitivity)		2.5	-	7.0	kHz
$\mathrm{t}_{\text {on }}$	receiver turn-on time	data valid after setting RE input HIGH; note 5	-	-	5	ms

Notes

1. The bit error rate BER is measured using the test facility shown in Fig.12. Note that the BER test facility contains a digital input filter equivalent to the one used in the PCA5000A, PCF5001 and PCD5003 POCSAG decoders.
2. Capacitor C 16 requires re-adjustment to compensate temperature drift.
3. Test circuit Fig.5. $\mathrm{P}_{\mathrm{i}(\text { mix })}$ is the maximum available power at the input of the test board. The bit error rate BER is measured using the test facility shown in Fig.12.
4. Δf is the frequency offset between the required signal and the interfering signal.
5. Turn-on time is defined as the time from pin RE going HIGH to the reception of valid data on output pin DO. Turn-on time is measured using an external oscillator (turn-on time using the internal oscillator is dependent upon the oscillator circuitry).

AC CHARACTERISTICS (930 MHz)

$V_{P}=2.05 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; test circuit Fig. 6 ; note $1 ; \mathrm{f}_{\mathrm{i}}(\mathrm{RF})=930.500 \mathrm{MHz}$ with $\pm 4.0 \mathrm{kHz}$ deviation; 1200 baud pseudo random bit sequence modulation ($\mathrm{t}_{\mathrm{r}}=250 \pm 25 \mu \mathrm{~s}$ measured between 10% and 90% of voltage amplitude) and 20 kHz channel spacing; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Radio frequency input						
$\mathrm{P}_{\mathrm{i} \text { (ref) }}$	input sensitivity ($\mathrm{P}_{\mathrm{i}(\text { ref })}$ is the maximum available power at the RF input of the test board)	BER $\leq 3 / 100$; note 2	-	-120.0	-114.0	dBm
		$\mathrm{V}_{\mathrm{P}}=1.9 \mathrm{~V}$	-	-	-108.0	dBm
Mixers to demodulator						
$\alpha_{\text {acs }}$	adjacent channel selectivity	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	60	69	-	dB
α_{c}	co-channel rejection		-	5	10	dB
$\alpha_{\text {sp }}$	spurious immunity		40	60	-	dB
$\alpha_{\text {im }}$	intermodulation immunity		53	60	-	dB
$\alpha_{b l}$	blocking immunity	$\Delta \mathrm{f}> \pm 1 \mathrm{MHz}$; note 3	65	74	-	dB
$\mathrm{f}_{\text {offset }}$	frequency offset range (3 dB degradation in sensitivity)	deviation $\mathrm{f}= \pm 4.0 \mathrm{kHz}$	± 2.0	-	-	kHz
		deviation $\mathrm{f}= \pm 4.5 \mathrm{kHz}$	± 2.5	-	-	kHz
$\Delta \mathrm{f}_{\text {dev }}$	deviation range (3 dB degradation in sensitivity)		2.5	-	7.0	kHz
t_{on}	receiver turn-on time	data valid after setting RE input HIGH; note 4	-	-	5	ms

Notes

1. The external oscillator signal $\mathrm{V}_{\mathrm{i}(\mathrm{OSC})}$ has a frequency of $\mathrm{f}_{\mathrm{OSC}}=310.1667 \mathrm{MHz}$ and a level of -15 dBm .
2. The bit error rate BER is measured using the test facility shown in Fig.12. Note that the BER test facility contains a digital input filter equivalent to the one used in the PCA5000A, PCF5001 and PCD5003 POCSAG decoders.
3. Δf is the frequency offset between the required signal and the interfering signal.
4. Turn-on time is defined as the time from pin RE going HIGH to the reception of valid data on output pin DO. Turn-on time is measured using an external oscillator (turn-on time using the internal oscillator is dependent upon the oscillator circuitry).

TEST INFORMATION

Tuning procedure for AC tests

1. Turn on the signal generator: $\mathrm{f}_{\text {gen }}=\mathrm{f}_{\mathrm{i}(\mathrm{RF})}+4 \mathrm{kHz}$, no modulation, $\mathrm{V}_{\mathrm{i}(\mathrm{RF})}=1 \mathrm{mV}$ (RMS).
2. Measure the IF with a counter connected to test pin TPI. Tune C16 to set the crystal oscillator to achieve $f_{\mathrm{IF}}=4 \mathrm{kHz}$ Change the generator frequency to $f_{g e n}=f_{i(R F)}-4 \mathrm{kHz}$ and check that $f_{I F}$ is also 4 kHz . For a received input frequency $f_{i(R F)}=172.941 \mathrm{MHz}$ the crystal frequency is $f_{\text {XTAL }}=57.647 \mathrm{MHz}$, while for $f_{i(R F)}=469.950 \mathrm{MHz}$ the crystal frequency is $f_{\text {XTAL }}=78.325 \mathrm{MHz}$. For a received input frequency $\mathrm{f}_{\mathrm{i}(\mathrm{RF})}=930.500 \mathrm{MHz}$ an external oscillator signal must be used with $\mathrm{f}_{\mathrm{i}(\mathrm{OSC})}=310.1667 \mathrm{MHz}$ and a level of -15 dBm (for definition of crystal frequency, see Table 1).
3. Set the signal generator to nominal frequency ($\mathrm{f}_{\mathrm{i} \text { (RF) })}$) and turn on the modulation deviation $\pm 4.0 \mathrm{kHz}, 600 \mathrm{~Hz}$ square wave modulation, $\mathrm{V}_{\mathrm{i}(\mathrm{RF})}=1 \mathrm{mV}(\mathrm{RMS})$. Note that the RF signal should be reduced in the following tests, as the receiver is tuned, to ensure $\mathrm{V}_{0(\mathbb{F})}=10$ to $50 \mathrm{mV}(\mathrm{p}-\mathrm{p})$ on test pins TPI or TPQ.
4. Tune C15 (oscillator output circuit) and C12 (frequency multiplier output) to obtain a peak audio voltage on pin TPI.
5. Tune C3 and C6 (RF input and mixer input) to obtain a peak audio voltage on pin TPI. When testing the mixer input sensitivity tune C23 instead of C3 and C6 (test circuit Fig.5).
6. Check that the output signal on pin TPQ is within 3 dB in amplitude and at $90^{\circ}\left(\pm 20^{\circ}\right)$ relative phase of the signal on pin TPI.
7. Check that data signal appears on output pin DO and proceed with the AC test.

AC test conditions

Table 5 Definitions for AC test conditions (see Table 6)

SIGNAL	
DESCRIPTION	
Modulated test signal 1	
Frequency	$172.941,469.950$ or 930.500 MHz
Deviation	$\pm 4.0 \mathrm{kHz}$
Modulation	1200 baud pseudo random bit sequence
Rise time	$250 \pm 25 \mu \mathrm{~s}$ (between 10% and 90% of final value)
Modulated test signal 2	
Deviation	$\pm 2.4 \mathrm{kHz}$
Modulation	400 Hz sine wave
Other definitions	
f_{1}	frequency of signal generator 1
f_{2}	frequency of signal generator 2
f_{3}	frequency of signal generator 3
$\Delta \mathrm{f}_{\mathrm{cs}}$	channel spacing (20 kHz)
P_{1}	maximum available power from signal generator 1 at the test board input
P_{2}	maximum available power from signal generator 2 at the test board input
P_{3}	maximum available power from signal generator 3 at the test board input
$\mathrm{P}_{\mathrm{i} \text { (ref) }}$	maximum available power at the test board input to give a Bit Error Rate (BER) $\leq 3 / 100$ test signal 1, in the absence of interfering signals and under the conditions as specified in Chapters "AC characteristics (173 MHz)", "AC characteristics (470 MHz)" and "AC characteristics (930 MHz)"

Advanced pager receiver

Table 6 AC test conditions; notes 1 and 2

SYMBOL	PARAMETER	CONDITIONS	TEST SIGNALS
α_{a}	adjacent channel selectivity; Fig.11(b)	$\begin{aligned} & \mathrm{f}_{2}=\mathrm{f}_{1} \pm \Delta \mathrm{f}_{\mathrm{CS}} \\ & \text { generator 1: modulated test signal } 1 \\ & \text { generator 2: modulated test signal } 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{P}_{1}=\mathrm{P}_{\mathrm{i}(\mathrm{ref})}+3 \mathrm{~dB} \\ & \mathrm{P}_{2}=\mathrm{P}_{1}+\alpha_{\mathrm{a}(\mathrm{~min})} \end{aligned}$
α_{c}	co-channel rejection; Fig.11(b)	$\begin{aligned} & \mathrm{f}_{2}=\mathrm{f}_{1} \pm \mathrm{up} \text { to } 3 \mathrm{kHz} \\ & \text { generator 1: modulated test signal } 1 \\ & \text { generator 2: modulated test signal } 2 \end{aligned}$	$\begin{aligned} & P_{1}=P_{i(\text { ref })}+3 \mathrm{~dB} \\ & \mathrm{P}_{2}=\mathrm{P}_{1}-\alpha_{\mathrm{c}(\text { max })} \end{aligned}$
$\alpha_{\text {sp }}$	spurious immunity; Fig.11(b)	$\begin{aligned} & \hline \mathrm{f}_{2}=100 \mathrm{kHz} \text { to } 2 \mathrm{GHz} \\ & \text { generator 1: modulated test signal } 1 \\ & \text { generator 2: modulated test signal } 2 \\ & \hline \end{aligned}$	$\begin{aligned} & P_{1}=P_{i(\text { ref })}+3 d B \\ & P_{2}=P_{1}+\alpha_{\text {sp }(\text { min })} \\ & \hline \end{aligned}$
$\alpha_{\text {im }}$	intermodulation immunity; Fig.11(c)	$f_{2}=f_{1} \pm \Delta f_{c s} ; f_{3}=f_{1} \pm 2 \Delta f_{c s}$ generator 1: modulated test signal 1 generator 2: unmodulated generator 3: modulated test signal 2	$\begin{aligned} & \mathrm{P}_{1}=\mathrm{P}_{\mathrm{i}(\text { ref })}+3 \mathrm{~dB} \\ & \mathrm{P}_{2}=\mathrm{P}_{1}+\alpha_{\mathrm{im}(\text { min })} \\ & \mathrm{P}_{3}=\mathrm{P}_{2} \\ & \hline \end{aligned}$
α_{b}	blocking immunity; Fig.11(b)	$\begin{aligned} & \hline \mathrm{f}_{2}=\mathrm{f}_{1} \pm 1 \mathrm{MHz} \\ & \text { generator 1: modulated test signal } 1 \\ & \text { generator 2: modulated test signal } 2 \\ & \hline \end{aligned}$	$\begin{aligned} & P_{1}=P_{i(\text { ref })}+3 d B \\ & P_{2}=P_{1}+\alpha_{b l(\text { min })} \end{aligned}$
$\mathrm{f}_{\text {offset }}$	frequency offset range; Fig.11(a)	deviation $= \pm 4.0 \mathrm{kHz}, \mathrm{f}_{1}=\mathrm{f}_{\mathrm{i} \text { (RF) }} \pm 2 \mathrm{kHz}\left(\mathrm{f}_{\text {offset(min) }}\right)$ generator 1: modulated test signal 1	$\mathrm{P}_{1}=\mathrm{P}_{\mathrm{i} \text { (ref) })}+3 \mathrm{~dB}$
$\Delta \mathrm{f}_{\text {dev }}$	deviation range; Fig.11(a)	deviation $= \pm 2.5$ to $\pm 7 \mathrm{kHz} ;\left(\Delta \mathrm{f}_{\operatorname{dev}(\min)}\right.$ to $\left.\Delta \mathrm{f}_{\operatorname{dev}(\max)}\right)$ generator 1: modulated test signal 1	$\mathrm{P}_{1}=\mathrm{P}_{\mathrm{i} \text { (ref) })}+3 \mathrm{~dB}$
ton	receiver turn-on time; Fig.11(a)	note 3 generator 1: modulated test signal 1	$\mathrm{P}_{1}=\mathrm{P}_{\mathrm{i}(\text { (ref) }}+10 \mathrm{~dB}$

Notes

1. The tests are executed without load on pins TPI and TPQ.
2. All minimum and maximum values correspond to a bit error rate $(B E R) \leq 3 / 100$ in the wanted signal $\left(P_{1}\right)$.
3. The BER measurement is started $5 \mathrm{~ms}\left(\mathrm{t}_{\mathrm{on}(\text { max })}\right)$ after $\mathrm{V}_{\text {RE }}$ goes HIGH ; BER is then measured for 100 bits ($B E R \leq 3 / 100$).
(a)

(b)

(c)

(a) One generator.
(b) Two generators.
(c) Three generators.
(1) See Fig. 12.

Fig. 11 Test configurations.

Fig. 12 BER test facility.

Advanced pager receiver

PRINTED-CIRCUIT BOARDS

Fig. 13 PCB top view for LQFP32; test circuit Figs 1 and 3.

Advanced pager receiver

UAA2082

MBD561

Fig. 14 PCB bottom view for LQFP32; test circuit Figs 1 and 3.

Advanced pager receiver

MLC234
$\mathrm{V}_{\mathrm{EE}}=\mathrm{GND} ; \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{P}}$.
Fig. 15 PCB top view with components for LQFP32; test circuit Fig.3.

Advanced pager receiver

UAA2082

Fig. 16 PCB bottom view with components for LQFP32; test circuit Fig.3.

Advanced pager receiver

Fig. 17 PCB top view with components for LQFP32; test circuit Fig.5.

Advanced pager receiver

UAA2082

Fig. 18 PCB bottom view with components for LQFP32; test circuit Fig.5.

Fig. 19 PCB top view with components for LQFP32; test circuit Fig.6.

Advanced pager receiver

UAA2082

Fig. 20 PCB bottom view with components for LQFP32; test circuit Fig. 6.

