UAA2077AM

FEATURES

- Low-noise, wide dynamic range amplifier
- · Very low noise figure
- Dual balanced mixer for over 30 dB on-chip image rejection
- IF I/Q combiner at 110 MHz
- On-chip quadrature network
- RX fast on/off power-down mode
- Shrink small outline packaging
- Very small application (no image filter).

APPLICATIONS

- 1800 MHz front-end for DECT hand-portable equipment
- Compact digital mobile communication equipment
- TDMA receivers.

GENERAL DESCRIPTION

UAA2077AM contains a high frequency low noise receiver front-end intended to be used in DECT mobile telephones. Designed in an advanced BiCMOS process it combines high performance with low power consumption and a high degree of integration, thus reducing external component costs and total front-end size.

The main advantage of the UAA2077AM is its ability to provide over 30 dB of image rejection. Consequently, the image filter between the LNA and the mixer is suppressed.

Image rejection is achieved in the internal architecture by two RF mixers in quadrature and two all-pass filters in I and Q IF channels that phase shift the IF by 45° and 135° respectively. The two phase shifted IFs are recombined

For instance, signals presented at the RF input at LO + IF frequency are rejected through this signal processing while signals at LO – IF frequency can form the IF signal. An internal switch allows the use of infradyne (LO < RF) or supradyne (LO > RF) reception.

and buffered to furnish the IF output signal.

The receiver section consists of a low-noise amplifier that drives a quadrature mixer pair. The IF amplifier has on-chip 45° and 135° phase shifting and a combining network for image rejection. The IF driver has differential open-collector type outputs.

The LO part consists of an internal all-pass type phase shifter to provide quadrature LO signals to the receive mixers. The centre frequency of the phase shifter is adjustable for maximum image rejection in a given band. The all-pass filters outputs are buffered before being fed to the receive mixers. All RF and IF inputs or outputs are balanced.

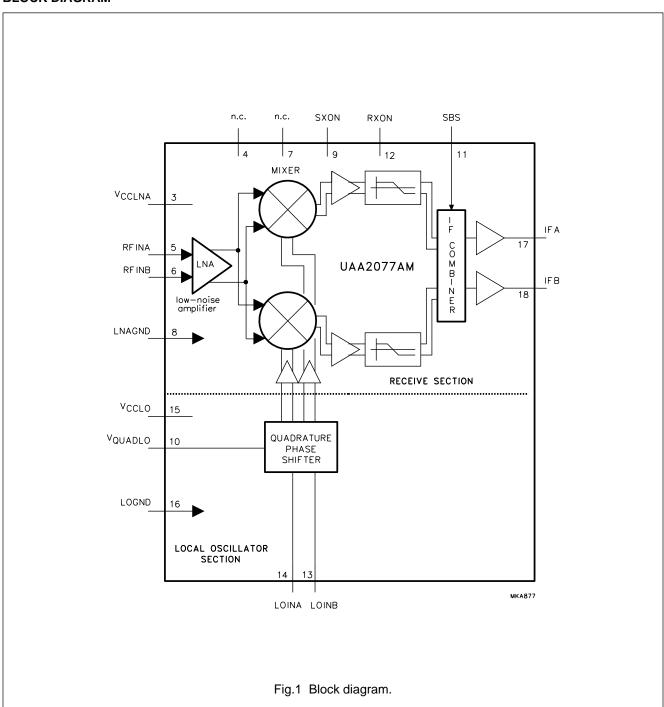
different power-down modes. A special mode of operation called synthesizer-ON mode, controlled by pin SXON can be used to minimize the LO pulling when the receiver is turned on. When SXON is HIGH, all internal buffers on the LO path are turned on. Pin SBS allows a selection of whether to reject the upper or lower image frequency. When SBS is HIGH, supradyne reception is activated. Special care has been taken for fast power-up switching.

Two pins RXON and SXON are used to control the

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CC}	supply voltage	T _{amb} = 0 to 70 °C	3.15	4.0	5.3	V
			3.6	4.0	5.3	V
I _{CCRX}	receive supply current		22	27	33	mA
I _{CCPD}	supply current in power-down		_	_	50	μΑ
Т	operating ambient temperature		_30	+25	+85	°C

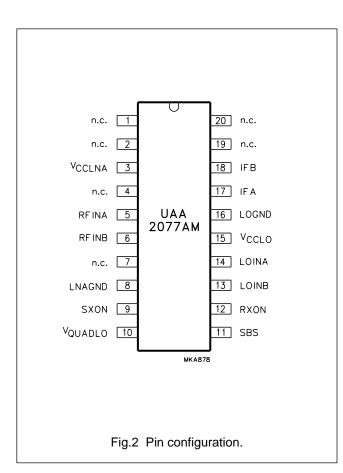
ORDERING INFORMATION


TYPE NUMBER		PACKAGE				
I TPE NOWIBER	NAME	DESCRIPTION	VERSION			
UAA2077AM	SSOP20	plastic shrink small outline package; 20 leads; body width 4.4 mm	SOT266-1			

2

1995 Jul 31

UAA2077AM


BLOCK DIAGRAM

UAA2077AM

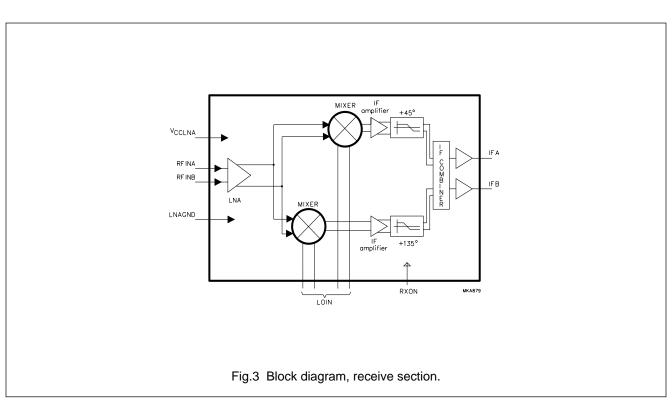
PINNING

SYMBOL	PIN	DESCRIPTION
n.c.	1	not connected
n.c.	2	not connected
V _{CCLNA}	3	supply voltage for LNA and IF parts
n.c.	4	not connected
RFINA	5	RF input A (balanced)
RFINB	6	RF input B (balanced)
n.c.	7	not connected
LNAGND	8	ground for LNA and IF parts
SXON	9	synthesizer-ON mode enable
V _{QUADLO}	10	input voltage for LO quadrature trimming
SBS	11	sideband selection input
RXON	12	receive mode enable
LOINB	13	LO input B (balanced)
LOINA	14	LO input A (balanced)
V _{CCLO}	15	supply voltage for LO parts
LOGND	16	ground for LO parts
IFA	17	IF output A (balanced)
IFB	18	IF output B (balanced)
n.c.	19	not connected
n.c.	20	not connected

UAA2077AM

FUNCTIONAL DESCRIPTION

Receive section


The circuit contains a low-noise amplifier followed by two high dynamic range mixers. These mixers are of the Gilbert-cell type, the whole internal architecture is fully differential.

The local oscillator, shifted in phase to 45° and 135°, mixes the amplified RF to create I and Q channels. The two I and Q channels are buffered, phase shifted by 45° and 135° respectively, amplified and recombined internally to realize the image rejection.

Balanced signal interfaces are used for minimizing crosstalk due to package parasitics. The RF impedance level is 35 Ω (real part).

The IF output is differential and of the open-collector type. Typical application will load the output with a differential 1 k Ω load; i.e. a 1 k Ω resistor load at each IF output, plus a 2 k Ω to x Ω narrow band matching network (x Ω being the input impedance of the IF filter). The path to V $_{CC}$ for the DC current is achieved via tuning inductors. The output voltage is limited to V $_{CC}$ + 3V $_{be}$ or 3 diode forward voltage drops.

Fast switching, on/off, of the receive section is controlled by the hardware input RXON.

UAA2077AM

Local oscillator section

The local oscillator (LO) input directly drives the two internal all-pass networks to provide quadrature LO to the receive mixers.

The centre frequency of the receive band is adjustable by the voltage on pin $V_{\rm QUADLO}$. This voltage trims the all-pass network to the selected LO frequency range. This should be achieved by connecting a resistor between $V_{\rm QUADLO}$ and $V_{\rm CC}$. Optimization of image rejection can be obtained by trimming at this point.

The LO differential input impedance is 35 Ω (real part). A synthesizer-ON mode is used to power-up the LO input buffers, thus minimizing the pulling effect on the external VCO when entering receive mode. This mode is active when SXON = 1.

There are no internal biassing components attached to the pins LOINA and LOINB. These pins are connected by capacitors to the internal phase shifting network.

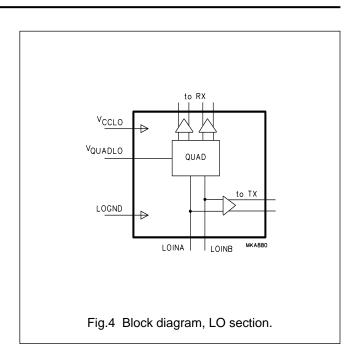


Table 1 Control of power status

EXTERNAL	. PIN LEVEL	CIRCUIT MODE OF OPERATION
RXON	SXON	CIRCUIT WIODE OF OPERATION
LOW	LOW	power-down mode
HIGH	X	receive mode
LOW	HIGH	synthesizer-ON mode (only LO buffers enabled)

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _{CC}	supply voltage	_	9	V
ΔGND	difference in ground supply voltage applied between LOGND and LNAGND	_	0.6	V
P _{I(max)}	maximum power input	_	20	dBm
T _{j(max)}	maximum operating junction temperature	_	150	°C
P _{max}	maximum power dissipation	_	250	mW
T _{sta}	storage temperature	-65	+150	°C

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient in free air	120	K/W

6

HANDLING

Every pin withstands the ESD test in accordance with MIL-STD-883C Class 2 (method 3015.5).

2.5

mA

Image rejecting front-end for DECT applications

UAA2077AM

DC CHARACTERISTICS

 V_{CC} = 4.0 V; T_{amb} = 25 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT			
Pins: V _{CCLNA} and V _{CCLO}									
V _{CC}	supply voltage	over full temperature range	3.6	4.0	5.3	V			
		T _{amb} between 0 and 70 °C	3.15	4.0	5.3	V			
I _{CCRX}	receive supply current	receive mode active; DC tested	22	27	33	mA			
I _{CCPD}	supply current in power-down	DC tested	_	_	50	μΑ			
I _{CCSX}	supply current	synthesizer-ON mode only	3	5	7	mA			
Pins: RXO	N, SXON and SBS			•	•	•			
V _{th}	CMOS threshold voltage	note 1	_	1.25	_	V			
V _{IH}	HIGH level input voltage		0.7V _{CC}	_	V _{CC}	V			
V _{IL}	LOW level input voltage		-0.3	_	+0.8	V			
I _{IH}	HIGH level static input current	pin at V _{CC} – 0.4 V	-1	_	+1	μΑ			
I _{IL}	LOW level static input current	pin at 0.4 V	-1	_	+1	μΑ			
Pins: RFIN	A and RFINB		,	•	•				
VI	DC input voltage level	receive mode enabled	_	2.0	_	V			
Pins: IFA a	Pins: IFA and IFB								

receive mode enabled

Note

Io

1. The referenced inputs should be connected to a valid CMOS input level.

AC CHARACTERISTICS

 V_{CC} = 4.0 V; T_{amb} = -30 to +85 °C; unless otherwise specified.

DC output current

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT		
Receive section (receive section enabled)								
Z _{RF}	RF input impedance (real part)	balanced; at 1890 MHz	_	35	_	Ω		
f_{RF}	RF input frequency		1880	_	1900	MHz		
RL _{RF}	return loss on matched RF input	balanced; note 1	11	15	ı	dB		
G _{CP}	conversion power gain	differential RF inputs to differential IF outputs loaded to $1 \text{ k}\Omega$ differential	17	20	23	dB		
G _{ripple}	gain ripple as a function of RF frequency	note 2	_	0.1	_	dB		
ΔG/T	gain variation with temperature	note 2	-15	-10	-5	mdB/K		
CP1 _{RX}	1 dB compression point	differential RF inputs to	-26	-23	-	dBm		

differential IF outputs; note 1

UAA2077AM

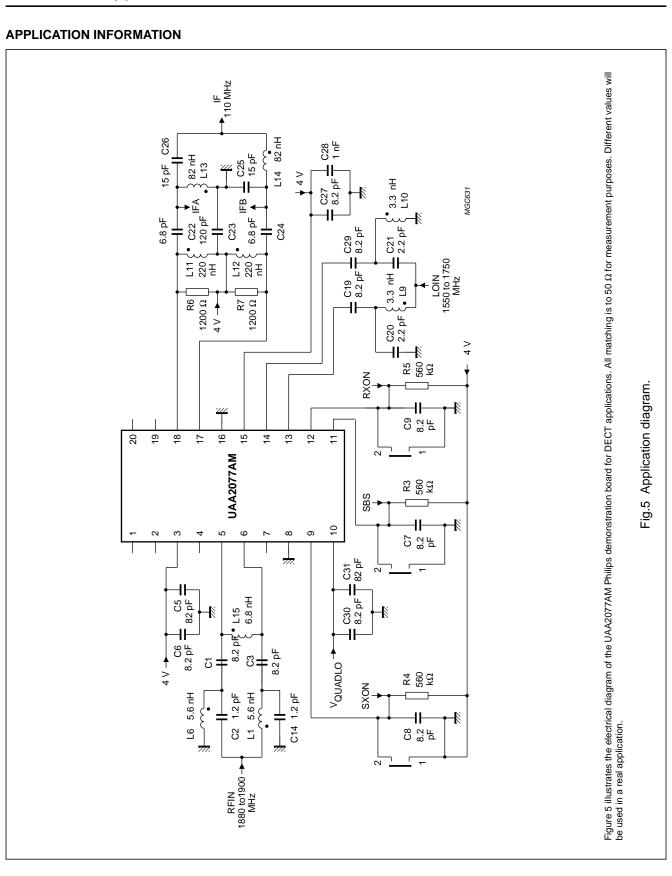
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
DES3	3 dB desensitization point	interference frequency offset 3 MHz; differential RF inputs to differential IF outputs; note 1	_	-30	-	dBm
		interference frequency offset 20 MHz; differential RF inputs to differential IF outputs; note 1	_	-27	_	dBm
IP2D _{RX}	2nd order intercept point	differential RF inputs to differential IF outputs; note 2	15	22	_	dBm
IP3 _{RX}	3rd order intercept point	differential RF inputs to differential IF outputs; note 2	-23	-17	_	dBm
NF _{RX}	overall noise figure	differential RF inputs to differential IF outputs; notes 2 and 3	_	4.3	5.0	dB
Z _{L(IF)}	typical application IF output load impedance	balanced	_	1	_	kΩ
RL _{IF}	return loss on matched IF output	balanced; note 1	11	15	_	dB
f _{IF}	IF frequency range	RF < LO	_	110	_	MHz
IR	rejection of image frequency	V _{QUADLO} tuned	30	_	_	dB
		infradyne; $f_{IF} = 110 \text{ MHz}$; note 4	_	tbf	_	dB
Local oscill	ator section (receive section e	nabled)				
f_{LO}	LO input frequency		1770	_	2010	MHz
Z _{LO}	LO input impedance (real part)	balanced	_	35	_	Ω
RL _{LO}	return loss on matched LO input (including standby mode)	note 1	9	12	_	dB
ΔRL_{LO}	return loss variation ratio between SXON and RXON modes	linear S ₁₁ variation	tbf	tbf	tbf	_
P _{I(LO)}	LO input power level		-6	-3	+3	dBm
RI _{LO}	reverse isolation	LOIN to RFIN at LO frequency; note 2	40			dB
R _{tune}	image rejection tuning resistor	connected between V_{QUADLO} and V_{CC}	0	1	_	kΩ
Timing						

t_{start}

- 1. Measured and guaranteed only on UAA2077AM demonstration board at T_{amb} = 25 °C.
- 2. Measured and guaranteed only on UAA2077AM demonstration board.
- 3. This value includes printed-circuit board and balun losses.

start-up time of each block

4. V_{QUADLO} open-circuit.


1

5

20

μs

UAA2077AM

