### UAA2067G

### FEATURES

- Receiver with:
  - low noise amplifier
  - dual quadrature mixers for image rejection (lower sideband)
  - I and Q combining networks at a fixed IF
- Both high-frequency and low-frequency VCOs including buffers with good isolation for low pulling
- Transmitter with:
  - dual quadrature mixers for image rejection (lower sideband)
  - amplitude ramping circuit
  - amplifier with high output power.

### APPLICATIONS

- 1800 MHz transceiver for DECT hand-portable equipment
- TDMA systems.

### GENERAL DESCRIPTION

The UAA2067G is a low-power transceiver intended for use in portable and base station transceivers complying with the DECT system. The IC performs in accordance with specifications in the -30 to  $+85^{\circ}$ C temperature range.

The UAA2067G contains a front-end receiver for the 1800 to 1900 MHz frequency range, a high-frequency VCO for the 1700 to 1800 MHz range, a low-frequency VCO for the 110 to 140 MHz frequency range and a transmitter with a high-output power amplifier driver stage for the 1800 to 1900 MHz frequency range. Designed in an advanced BiCMOS process, it combines high performance with low-power consumption and a high degree of integration, thus reducing external component costs and total radio size.

Its first advantage is to provide typically 34 dB of image rejection in the receiver path. Thus, the image filter between the LNA and the mixer is redundant and consequently can be removed. The receiver section consists of a low-noise amplifier that drives a quadrature mixer pair. Image rejection is achieved by this RF mixer pair and the two phase shifters in the I and Q channels that phase shift the IF by 45° and 135° respectively. The two phase shifted IFs are recombined and buffered to furnish the IF output signal.

Signals presented at the RF input at LO - IF frequency are rejected through this signal processing while signals at LO + IF frequency can form the IF signal.

Its second advantage is to provide a good buffered high-frequency VCO signal to the RX and TX mixers and to the synthesizer-prescaler. Switching the receiver or transmitter section **on** gives a very small change in VCO frequency.

Its third advantage is to provide a good buffered low-frequency VCO signal to the TX mixers, to the synthesizer-prescaler and the second down conversion mixer in a double conversion receiver. Switching the transmitter section **on** gives a very small change in VCO frequency.

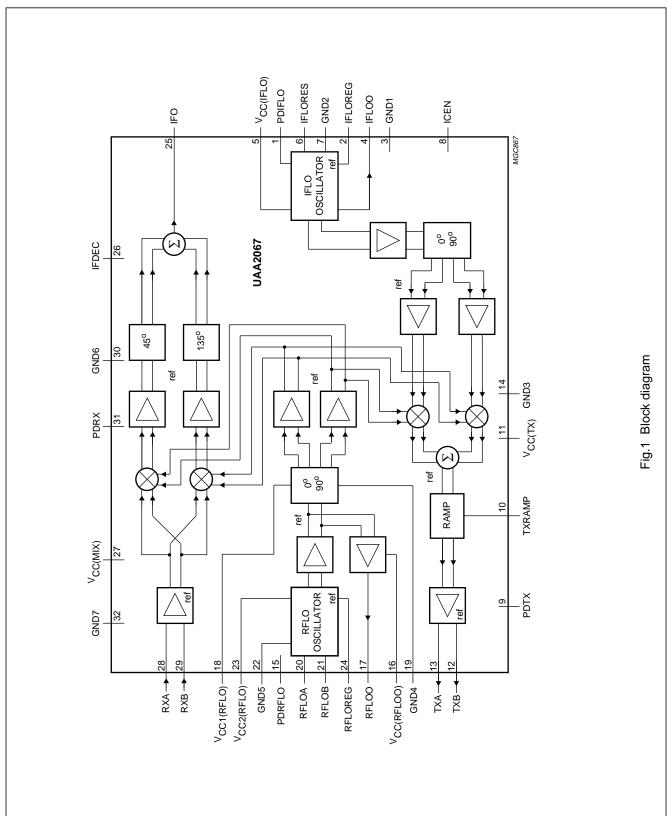
The frequency of each VCO is determined by a resonator network that is external to the IC. Each VCO has a regulated power supply voltage that has been designed specifically for minimizing a change in frequency due to changes in the power supply voltage, which may be caused for instance by switching **on** the power amplifier.

Its fourth advantage is to provide typically 33 dBc of image rejection in the single-sideband up-conversion mixer. Thus the image filter between the preamplifier and the antenna is redundant and may consequently be removed. Image rejection is achieved in the internal architecture by two RF mixers in quadrature and two phase shifters in the low-frequency VCO signal that shifts the phase to 0° and 90°. The output signals of the mixers are summed to form the single-upper-sideband output signal.

The output stage is a high-level output buffer with an output power of approximately 4 dBm. The output level is sufficient to drive a three-stage bipolar preamplifier for DECT.

#### **ORDERING INFORMATION**

|          |                                                                                          | PACKAGE     |         |
|----------|------------------------------------------------------------------------------------------|-------------|---------|
|          | NAME                                                                                     | DESCRIPTION | VERSION |
| UAA2067G | LQFP32plastic low profile quad flat package; 32 leads; body $5 \times 5 \times 1.4$ mmSC |             |         |


### Preliminary specification

### UAA2067G

### QUICK REFERENCE DATA

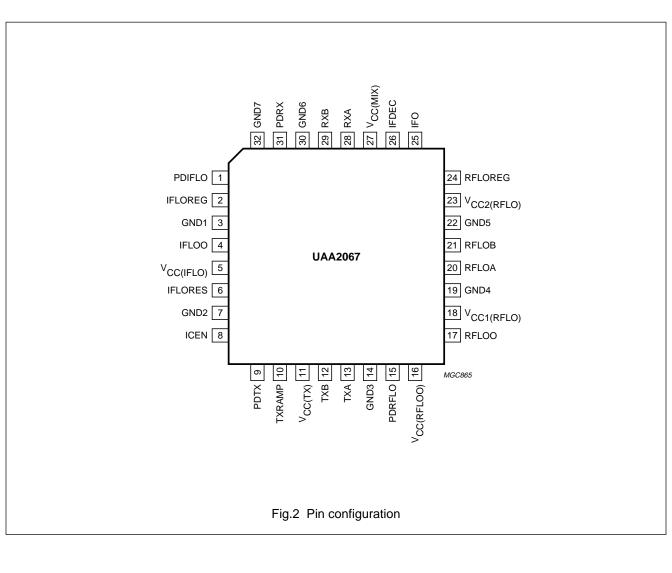
| SYMBOL                | PARAMETER                          | MIN. | TYP. | MAX. | UNIT |
|-----------------------|------------------------------------|------|------|------|------|
| V <sub>CC</sub>       | supply voltage                     | 3.0  | 3.6  | 5.5  | V    |
| I <sub>CC(RX)</sub>   | receive supply current             | -    | 24   | -    | mA   |
| I <sub>CC(TX)</sub>   | transmit supply current            | -    | 42   | -    | mA   |
| I <sub>CC(RFLO)</sub> | RF oscillator supply current       | -    | 15   | -    | mA   |
| I <sub>CC(IFLO)</sub> | IF oscillator supply current       | -    | 7    | -    | mA   |
| NF <sub>RX</sub>      | receive noise figure               | -    | -    | 7.0  | dB   |
| G <sub>CP</sub>       | conversion power gain              | -    | 30   | -    | dB   |
| IR <sub>RX</sub>      | receive image frequency rejection  | -    | 34   | -    | dB   |
| f <sub>RFLO</sub>     | RFLO frequency range               | 1.7  | -    | 1.8  | GHz  |
| f <sub>IFLO</sub>     | IFLO frequency range               | 110  | -    | 140  | MHz  |
| Pout                  | output transmit power              | -    | 4    | -    | dBm  |
| IR <sub>TX</sub>      | transmit image frequency rejection | -    | 33   | -    | dBc  |
| T <sub>amb</sub>      | operating ambient temperature      | -30  | +25  | +85  | °C   |

### **BLOCK DIAGRAM**



### UAA2067G

Preliminary specification


### PINNING

| SYMBOL                 | PIN | DESCRIPTION                                     |
|------------------------|-----|-------------------------------------------------|
| PDIFLO                 | 1   | power-down for IFLO                             |
| IFLOREG                | 2   | regulator decoupling for IFLO                   |
| GND1                   | 3   | ground for IFLO; note 1                         |
| IFLOO                  | 4   | IFLO output                                     |
| V <sub>CC(IFLO)</sub>  | 5   | supply voltage for IFLO                         |
| IFLORES                | 6   | IFLO resonator                                  |
| GND2                   | 7   | ground for IFLO resonator; note 1               |
| ICEN                   | 8   | IC enable                                       |
| PDTX                   | 9   | power-down for transmitter                      |
| TXRAMP                 | 10  | power ramping transmitter                       |
| V <sub>CC(TX)</sub>    | 11  | supply voltage for transmitter output stage     |
| ТХВ                    | 12  | transmitter RF output B                         |
| ТХА                    | 13  | transmitter RF output A                         |
| GND3                   | 14  | ground for transmitter output stage             |
| PDRFLO                 | 15  | power-down for RFLO                             |
| V <sub>CC(RFLOO)</sub> | 16  | supply voltage for RFLO output                  |
| RFLOO                  | 17  | RFLO output                                     |
| V <sub>CC1(RFLO)</sub> | 18  | supply voltage for RFLO oscillator; note 2      |
| GND4                   | 19  | ground for RFLO oscillator; note 3              |
| RFLOA                  | 20  | RFLO resonator                                  |
| RFLOB                  | 21  | RFLO resonator                                  |
| GND5                   | 22  | ground for RFLO oscillator; note 3              |
| V <sub>CC2(RFLO)</sub> | 23  | supply voltage for RFLO oscillator; note 2      |
| RFLOREG                | 24  | regulator decoupling for RFLO                   |
| IFO                    | 25  | receiver IF output                              |
| IFDEC                  | 26  | IF decoupling                                   |
| V <sub>CC(MIX)</sub>   | 27  | supply voltage for receiver and transmit mixers |
| RXA                    | 28  | receiver RF input A                             |
| RXB                    | 29  | receiver RF input B                             |
| GND6                   | 30  | ground for receiver and transmit mixers         |
| PDRX                   | 31  | power-down for receiver                         |
| GND7                   | 32  | die-pad ground                                  |

#### Notes

- 1. Pins 3 and 7 are internally connected.
- 2. Pins 18 and 23 are internally connected.
- 3. Pins 19 and 22 are internally connected.





### UAA2067G

### FUNCTIONAL DESCRIPTION

### **Receive section**

The circuit contains a balanced low-noise amplifier followed by two high dynamic range mixers. The local oscillator signals, shifted in phase to 0 and 90° mix the amplified RF signal to the I and Q channels. These two channels are buffered, phase shifted by 45° and 135° respectively, amplified and recombined internally to realize the image rejection. Signals at the RF input at RFLO – IF frequencies are rejected through the signal processing while signals at the RFLO + IF frequencies form the IF signals.

An image rejection of typically 34 dB is obtained for an IF between 100 and 120 MHz.

Balanced signals are used for minimizing crosstalk due to package parasitics. The IF output is single-ended. The typical load is 50  $\Omega$ .

Fast switching, **on/off** of the receive section is controlled by the hardware input PDRX.

### **RFLO** section

The high-frequency oscillator (RFLO oscillator) supplies the local oscillator signal for the down-conversion (receive) and up-conversion (transmit) mixers. This VCO uses an on-chip regulator for a power-supply voltage-independent output frequency. The buffered VCO signal is fed into a phase shifter and an off-chip prescaler-synthesizer. The output signal of the phase-shifter is used for driving the RX and TX mixers. Due to the good isolation in the buffer stages, a very small change in VCO frequency is obtained when switching the RX and TX mixers **on**.

Fast switching, **on/off** of the oscillator section is controlled by the hardware input PDRFLO.

### **IFLO** section

The low-frequency oscillator (IFLO oscillator) internally supplies the local oscillator signal to the single-sideband transmit mixer. The buffered VCO signal is fed into a phase shifter. The output signal of the phase-shifter is used for driving the TX mixers and the off-chip prescaler-synthesizer and second down-conversion mixer.

Due to the good isolation in the buffer stages, a very small change in VCO frequency is obtained when switching the TX mixer **on**.

Fast switching **on/off** of the oscillator section is controlled by the hardware input PDIFLO input.

### Transmit mixer

The circuit contains two balanced mixers, each of which is driven by the RFLO and IFLO signals. The output signal of the two mixers is summed and buffered to obtain the single upper-sideband signal at frequency RFLO + IFLO.

With the use of an off-chip time constant, the ramping circuit defines the power ramp-up and ramp-down of the pre-amplifier output signal.

Balanced signals are used for minimizing crosstalk due to package parasitics.

Fast switching, **on/off**, of the transmit section is controlled by the hardware input PDTX.

The power supply voltage of the transmit mixers, the adding circuit and ramping circuit is taken from the  $V_{CC(MIX)}$  and GND6 for maximum isolation from the preamplifier output stage.

### **OPERATING MODES**

To use the IC, all  $V_{CC}$  pins must be connected to the supply voltage.

For transceiving a DECT signal, the RFLO and IFLO sections should be powered-on. After a stable frequency has been reached (mainly determined by the synthesizer design), the receiver or transmitter can be powered-on.

GMSK data modulation can be supplied in two different ways: the data is directly modulated on IFLO or RFLO.

The ramping of the power level can be set with a time constant that is external to the IC.

Table 1 gives the definition of the polarity of the switching signals on the receiver, the RFLO, the IFLO and the transmitter sections.

### UAA2067G

Preliminary specification

### Table 1 Switching signals on the receiver

| SIGNAL | SECTION                         | LEVEL | on/off            |
|--------|---------------------------------|-------|-------------------|
| PDRX   | receiver section powered-on     | LOW   | on <sup>(1)</sup> |
|        | receiver section powered-off    | HIGH  | off               |
| PDRFLO | RFLO section powered-on         | LOW   | on <sup>(1)</sup> |
|        | RFLO section powered-off        | HIGH  | off               |
| PDIFLO | IFLO section powered-on         | LOW   | on <sup>(1)</sup> |
|        | IFLO section powered-off        | HIGH  | off               |
| PDTX   | transmitter section powered-on  | LOW   | on <sup>(1)</sup> |
|        | transmitter section powered-off | HIGH  | off               |
| ICEN   | all sections disabled           | LOW   | off               |
|        | all sections enabled            | HIGH  | on                |

#### Note

1. Active when ICEN is enabled.

#### LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

| SYMBOL                | PARAMETER                                                       | MIN. | MAX. | UNIT |
|-----------------------|-----------------------------------------------------------------|------|------|------|
| V <sub>CC</sub>       | supply voltage                                                  | -    | 6    | V    |
| ΔGND                  | difference in ground supply voltage applied between all grounds | -    | 0.6  | V    |
| P <sub>I(max)</sub>   | maximum power input                                             | -    | +20  | dBm  |
| T <sub>j(max)</sub>   | maximum operating junction temperature                          | -    | +150 | °C   |
| P <sub>dis(max)</sub> | maximum power dissipation in stagnant air at 25°C               | -    | 500  | mW   |
| T <sub>stg</sub>      | storage temperature                                             | -65  | +150 | °C   |

### THERMAL CHARACTERISTICS

| SYMBOL              | PARAMETER                                               | VALUE | UNIT |
|---------------------|---------------------------------------------------------|-------|------|
| R <sub>th j-a</sub> | thermal resistance from junction to ambient in free air | 90    | K/W  |

### HANDLING

Every pin withstands the ESD test in accordance with "MIL-STD-883C class 2 (method 3015.5)".

### UAA2067G

Preliminary specification

### **DC CHARACTERISTICS**

 $V_{CC}$  = 3.6 V;  $T_{amb}$  = 25 °C; unless otherwise specified.

| SYMBOL                  | PARAMETER                                                                     | CONDITIONS                                                  | MIN. | TYP. | MAX.                  |    |
|-------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------|------|------|-----------------------|----|
| Pins: V <sub>CC(M</sub> | IX), V <sub>CC(TX)</sub> , V <sub>CC(IFLO)</sub> , V <sub>CC1(RFLO)</sub> , V | V <sub>CC2(RFLO)</sub> and V <sub>CC(RFLOO)</sub>           | •    |      |                       |    |
| V <sub>CC</sub>         | supply voltage                                                                | over full temperature range                                 | 3.0  | 3.6  | 5.5                   | V  |
| I <sub>CC(RX)</sub>     | supply current                                                                | receiver section <b>on</b> ; DC tested                      | 18   | 24   | 30                    | mA |
| I <sub>CC(RFLO)</sub>   | supply current RFLO                                                           | RFLO section on; DC tested                                  | 11   | 15   | 20                    | mA |
| I <sub>CC(IFLO)</sub>   | supply current IFLO                                                           | IFLO section on; DC tested                                  | 5    | 7    | 9                     | mA |
| I <sub>CC(TX)</sub>     | supply current                                                                | transmitter section <b>on</b> ; DC tested                   | 34   | 42   | 54                    | mA |
| I <sub>CC(PD)</sub>     | supply current                                                                | power-down mode; DC tested                                  | -    | 2    | 50                    | μA |
| Pins: PDRX              | , PDTX, PDRFLO, PDIFLO and IC                                                 | EN                                                          |      |      |                       |    |
| V <sub>IH</sub>         | HIGH level input voltage                                                      |                                                             | 2.1  | -    | V <sub>CC</sub> + 0.3 | V  |
| V <sub>IL</sub>         | LOW level input voltage                                                       |                                                             | -0.3 | -    | 0.8                   | V  |
| I <sub>IH</sub>         | HIGH level static input current                                               | pin at V <sub>CC</sub> – 0.4 V                              | -1   | -    | +1                    | μA |
| IIL                     | LOW level static input current                                                | pin at 0.4 V                                                | -1   | -    | +1                    | μA |
| Pins: RXA,              | RXB, IFO and IFDEC                                                            |                                                             |      |      |                       |    |
| V <sub>RXA,B</sub>      | DC input voltage level                                                        | receiver section <b>on</b>                                  | 2.1  | 2.4  | 2.7                   | V  |
| V <sub>IFO</sub>        | DC output voltage level                                                       | receiver section <b>on</b>                                  | 0.9  | 1.1  | 1.3                   | V  |
| V <sub>IFDEC</sub>      | DC level                                                                      | receiver section <b>on</b>                                  | 2.45 | 2.65 | 2.85                  | V  |
| Pins: RFLO              | A, RFLOB, RFLOREG and RFLO                                                    | 0                                                           |      |      |                       |    |
| I <sub>RFLOA,B</sub>    | DC current                                                                    | RFLO section on                                             | 1    | 2    | 3                     | mA |
| V <sub>RFLOREG</sub>    | DC level                                                                      | RFLO section on                                             | 2.45 | 2.65 | 2.85                  | V  |
| V <sub>RFLOO</sub>      | DC output voltage level                                                       | RFLO section on                                             | 2.8  | 3.1  | 3.4                   | V  |
| Pins: IFLOF             | RES, IFLOREG and IFLOO                                                        |                                                             |      |      |                       |    |
| VIFLORES                | DC level                                                                      | IFLO section <b>on</b>                                      | 1.85 | 2.1  | 2.3                   | V  |
| VIFLOREG                | DC level                                                                      | IFLO section <b>on</b>                                      | 2.35 | 2.55 | 2.8                   | V  |
| V <sub>IFLOO</sub>      | DC output voltage level                                                       | IFLO section <b>on</b>                                      | 2.2  | 2.45 | 2.7                   | V  |
| Pins: TXA,              | TXB and TXRAMP                                                                |                                                             |      | -    |                       |    |
| I <sub>TXA,B</sub>      | DC output current                                                             | transmitter section on                                      | 2    | 10   | 18                    | mA |
| I <sub>TXRAMP</sub>     | DC input current                                                              | V <sub>TXRAMP</sub> = 3 V; transmitter<br>section <b>on</b> | -    | -    | 200                   | μA |
|                         |                                                                               |                                                             |      |      | •                     |    |

### UAA2067G

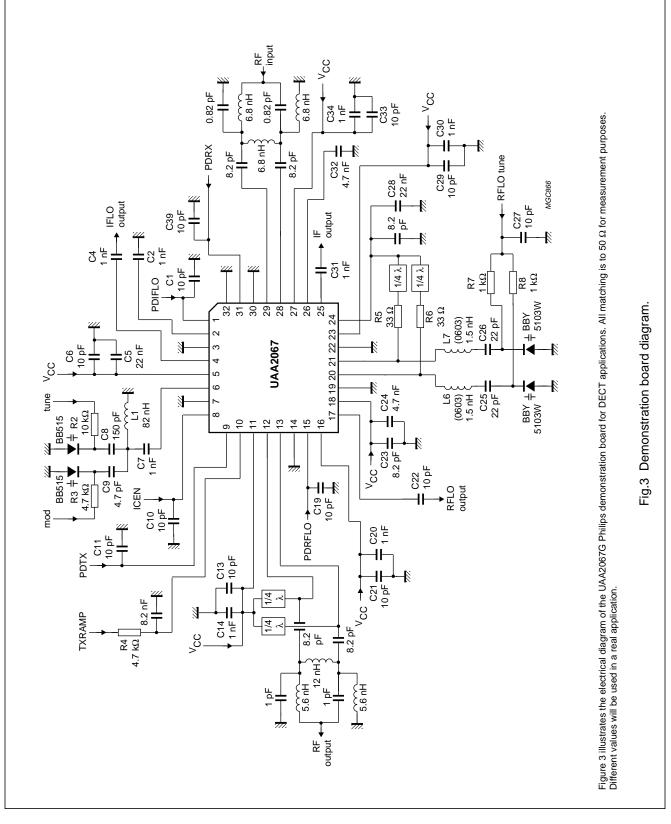
Preliminary specification

### AC CHARACTERISTICS

 $V_{CC}$  = 3.0 to 5.5 V;  $T_{amb}$  = –30 to +85°C; unless otherwise specified.

| SYMBOL                | PARAMETER                                                    | CONDITIONS                                           | MIN. | TYP.     | MAX. | UNIT |
|-----------------------|--------------------------------------------------------------|------------------------------------------------------|------|----------|------|------|
| Receive mo            | de (receiver and RFLO sections po                            | wered-on)                                            | 1    |          |      |      |
| f <sub>RFI</sub>      | RF input frequency                                           |                                                      | 1800 | -        | 1900 | MHz  |
| Z <sub>RFI</sub>      | RF input impedance                                           | note1                                                | _    | 50       | -    | Ω    |
| RL <sub>RF</sub>      | return loss on matched RF input                              | note 1                                               | _    | -20      | -15  | dB   |
| PRFLO <sub>RX</sub>   | RFLO level at input to RX balun                              | note 1                                               | _    | -70      | -40  | dBm  |
| DES3 <sub>RX</sub>    | RF interference for 3 dB desensitization                     | interference frequency offset<br>6 MHz; note 1       | -39  | -35      | -    | dBm  |
| G <sub>CP</sub>       | conversion power gain                                        | RF input to IF output (typical load)                 | 24   | 30       | 36   | dB   |
| CP1 <sub>RX</sub>     | 1 dB input compression point                                 | referenced to RF input; note 1                       | -36  | -33      | _    | dBm  |
| P <sub>o(RX)</sub>    | IF power for<br>CP1 <sub>RX</sub> < P <sub>in</sub> < +8 dBm | referenced to IF power at CP1 <sub>RX</sub> ; note 1 | -6   | -        | +6   | dB   |
| t <sub>rec</sub>      | recovery time for P <sub>in</sub> = +12 dBm                  | note 1                                               | _    | 2        | 30   | μs   |
| IP2-2 <sub>RX</sub>   | mixer 2-2 spurious intercept point                           | referenced to the RF input;<br>note 1                | -6   | +2       | _    | dBm  |
| IP3 <sub>RX</sub>     | 3rd order intercept point                                    | referenced to the RF input;<br>note 1                | -30  | -26      | -    | dBm  |
| NF <sub>RX</sub>      | overall noise figure                                         | RF input to differential IF output;<br>note 1        | -    | 6.3      | 7    | dB   |
| f <sub>IF</sub>       | IF frequency range                                           |                                                      | 100  | 110      | 120  | MHz  |
| Z <sub>L(IF)</sub>    | typical application IF output load impedance                 |                                                      | -    | 50       | _    | Ω    |
| RL <sub>IF</sub>      | return loss on matched IF output impedance                   | note 1                                               | -    | -20      | -15  | dB   |
| IR <sub>RX</sub>      | image frequency rejection                                    |                                                      | 20   | 34       | -    | dB   |
| PSRR                  | power supply rejection ratio                                 | note 1; typical load; at 110 MHz                     | 35   | _        | -    | dB   |
| RF local osc          | illator (RFLO section powered-on)                            | )                                                    |      |          |      |      |
| f <sub>RFLO</sub>     | oscillator frequency                                         |                                                      | 1700 | -        | 1800 | MHz  |
| Z <sub>i(RFLO)</sub>  | oscillator input impedance                                   | balanced; at 1.77 GHz                                | -    | -250     | -    | Ω    |
| V <sub>o(RFLO)</sub>  | local oscillator output level; RMS value                     | note 2                                               | 50   | 75       | _    | mV   |
| Z <sub>o(RFLO)</sub>  | local oscillator output impedance                            | at 1.77 GHz                                          | -    | 30 – 60j | -    | Ω    |
| R <sub>L(RFLO)</sub>  | typical load resistance                                      |                                                      | -    | 300      | -    | Ω    |
| C <sub>L(RFLO)</sub>  | typical load capacitance                                     |                                                      | -    | 2        | -    | pF   |
| HAR <sub>(RFLO)</sub> | harmonic levels at RFLO output                               | note 1                                               | -    | -        | -20  | dBc  |
|                       |                                                              |                                                      |      |          |      |      |

### UAA2067G


| SYMBOL                   | PARAMETER                                               | CONDITIONS                                                       | MIN. | TYP. | MAX. | UNIT   |
|--------------------------|---------------------------------------------------------|------------------------------------------------------------------|------|------|------|--------|
| IF local oscil           | lator (IFLO section powered-on)                         |                                                                  |      |      |      |        |
| f <sub>IFLO</sub>        | oscillator frequency                                    |                                                                  | 110  | 120  | 140  | MHz    |
| Z <sub>i(IFLO)</sub>     | oscillator input impedance (real part)                  |                                                                  | -    | -480 | -    | Ω      |
| V <sub>o IFLO</sub>      | IF local oscillator output level;<br>RMS value          |                                                                  | 100  | 160  | -    | mV     |
| Z <sub>o(IFLO)</sub>     | local oscillator output impedance (real part)           |                                                                  | -    | -    | 100  | Ω      |
| R <sub>L(IFLO)</sub>     | typical load resistance                                 |                                                                  | -    | 5    | -    | kΩ     |
| C <sub>L(IFLO)</sub>     | typical load capacitance                                |                                                                  | -    | 7    | -    | pF     |
| HAR <sub>(IFLO)</sub>    | harmonic levels at IFLO output                          | note 1                                                           | _    | _    | –15  | dBc    |
| Transmit mo              | de (transmitter, RFLO and IFLO se                       | ections powered-on)                                              |      |      |      |        |
| f <sub>TX</sub>          | RF output frequency                                     |                                                                  | 1800 | -    | 1900 | MHz    |
| Z <sub>o(TX)</sub>       | RF output impedance                                     | balanced                                                         | _    | 50   | -    | Ω      |
| RL <sub>TX</sub>         | return loss on matched RF output impedance              | note 1                                                           | -    | -20  | -15  | dB     |
| FTRFLO <sub>TX</sub>     | RFLO feedthrough at the TX output                       | referenced to the desired<br>frequency; T <sub>amb</sub> = 25 °C | -    | -25  | -23  | dBc    |
| Pout                     | output transmit power                                   | $V_{TXRAMP} = 0 V; T_{amb} = 25 °C$                              | 1    | 4    | 7    | dBm    |
| IR <sub>TX</sub>         | image frequency rejection                               | referenced to the desired<br>frequency                           | 20   | 33   | -    | dBc    |
| Z <sub>inTXRAMP</sub>    | input impedance at pin TXRAMP                           |                                                                  | 10   | -    | -    | kΩ     |
| C <sub>inTXRAMP</sub>    | input capacitance at pin TXRAMP                         |                                                                  | -    | -    | 10   | pF     |
| V <sub>TXRAMP(max)</sub> | ramp voltage for $P_{out} = P_{max}$                    |                                                                  | -    | 0    |      | V      |
| V <sub>TXRAMP(min)</sub> | ramp voltage for<br>$P_{out} = P_{max} - 30 \text{ dB}$ |                                                                  | -    | 3.0  | -    | V      |
| CNR <sub>TX</sub>        | carrier-to-noise ratio at TX output                     | $\Delta f$ = 4320 kHz; T <sub>amb</sub> = 25 °C;<br>note 1       | +127 | +131 | -    | dBc/Hz |

#### Notes

1. Measured and guaranteed only on the Philips demonstration board, including PCB and balun.

2. The imaginary part of the load impedance has been tuned out.

### **APPLICATION INFORMATION**



UAA2067G

### UAA2067G

### Application-indicative values

Measured on the Philips demonstration board, including PCB and balun at  $T_{amb}$  = 25 °C.

| SYMBOL                | PARAMETER                                                                                                | CONDITIONS                               | MIN.    | TYP. | MAX. | UNIT   |
|-----------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------|---------|------|------|--------|
| STIVIDUL              | FARAMETER                                                                                                | CONDITIONS                               | IVIIIN. |      |      | UNIT   |
| RF local osc          | illator (RFLO section powered-on)                                                                        |                                          |         |      |      |        |
| CNR <sub>RFLO</sub>   | carrier-to-noise ratio                                                                                   | ∆f = 864 kHz                             | -       | 117  | -    | dBc/Hz |
|                       |                                                                                                          | ∆f = 2500 kHz                            | -       | 128  | -    | dBc/Hz |
|                       |                                                                                                          | Δf = 4320 kHz                            | _       | 132  | _    | dBc/Hz |
| PULL <sub>RFLO</sub>  | pulling due to enabling RX or TX                                                                         | V <sub>TXRAMP</sub> = 3 V                | _       | 5    | -    | kHz    |
| SHIFT <sub>RFLO</sub> | frequency shift due to 200 mV $V_{CC}$ change                                                            |                                          | -       | 5    | -    | kHz    |
| IF local osci         | llator (IFLO section powered-on)                                                                         |                                          |         |      |      |        |
| CNR <sub>IFLO</sub>   | carrier-to-noise ratio                                                                                   | ∆f = 4320 kHz                            | _       | 140  | _    | dBc/Hz |
| SPUR <sub>IFLO</sub>  | spurious signal modulation due to 0.5 mV (RMS value) on the power supply                                 | ∆f = 4320 kHz                            | -       | -60  | -    | dBc    |
| PULLIFLO              | pulling due to enabling TX                                                                               |                                          | _       | 1    | _    | kHz    |
| SHIFTIFLO             | frequency shift due to 200 mV $V_{CC}$ change                                                            |                                          | _       | 2.5  | -    | kHz    |
| Transmit mo           | ode (transmitter, RFLO and IFLO sections po                                                              | owered-on)                               |         |      |      |        |
| PSRR <sub>TX</sub>    | spurious signal modulation due to 0.5 mV (RMS value) on $V_{CC(MIX)},V_{CC(TX)}$ and $V_{CC(RFLO)}$ only | $\Delta f = 4320 \text{ kHz};$<br>note 1 | -       | -58  | _    | dBc    |
| SPUR <sub>TX</sub>    | spurious signals                                                                                         | RFLO – 3IFLO                             | _       | -40  | _    | dBc    |
|                       |                                                                                                          | RFLO + 2IFLO                             | _       | -35  | _    | dBc    |
|                       |                                                                                                          | RFLO + 5IFLO                             | _       | -51  | -    | dBc    |
| N <sub>TX</sub>       | white noise level at the output                                                                          |                                          | _       | 131  | _    | dBc/Hz |

#### Note

1. Including PSRR of the RFLO circuitry.