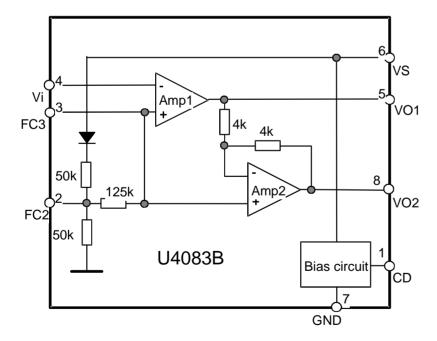
Features

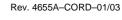
- Wide Operating Voltage Range: 2 V to 16 V
- Low Current Consumption: 2.7 mA Typically
- . Chip Disable Input to Power-down the Integrated Circuit
- Low Power-down Quiescent Current
- Drives a Wide Range of Speaker Loads
- Output Power $P_0 = 250 \text{ mW}$ at $R_1 = 32 \Omega$ (Speaker)
- Low Harmonic Distortion (0.5% Typically)
- Wide Gain Range: 0 dB to 46 dB


Benefits

- Low Number of External Components
- Low Current Consumption

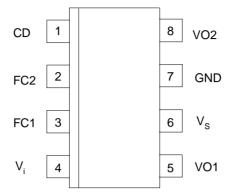
Description

The integrated circuit U4083B is a low-power audio amplifier for telephone loudspeakers. It has differential speaker outputs to maximize the output swing at low supply voltages. There is no need for coupler capacitors. The U4083B has an open loop gain of 80 dB where the closed loop gain is adjusted with two external resistors. A chip disable pin permits powering down and/or muting the input signal.


Figure 1. Block Diagram

Low-power Audio Amplifier for Telephone Applications

U4083B



Pin Configuration

Figure 2. Pinning SO8

Pin Description

Pin	Symbol	Function	
1	CD	Chip disable	
2	FC2	Filtering, power supply rejection	
3	FC1	Filtering, power supply rejection	
4	V _i	Amplifier input	
5	VO1	Amplifier output 1	
6	V _S	Itage supply	
7	GND	Ground	
8	VO2	Amplifier output 2	

Functional Description Including External Circuitry

Pin 1: Chip Disable Digital Input (CD)

Pin 1 (chip disable) is used to power down the IC to conserve power or muting or both.

Input impedance at Pin 1 is typically 90 k Ω .

• Logic 0 < 0.8 V IC enabled (normal operation)

• Logic 1 > 2 V IC disabled

Figure 17 shows the power supply current diagram. The change in differential gain from normal operation to muted operation (muting) is more than 70 dB.

Switching characteristics are as follows:

• turn-on time $t_{on} = 12 \text{ to } 15 \text{ ms}$

• turn-off time $t_{off} \le 2 \mu s$

They are independent of C_1 , C_2 and V_S .

Voltages at Pins 2 and 3 are supplied from V_S and therefore, do not change when the U4083B is disabled. The outputs — V_{O1} (Pin 5) and V_{O2} (Pin 8) — turn to a high impedance condition by removing the signal from the speaker.

When signals are applied from an external source to the outputs (disabled), they must not exceed the range between the supply voltage, V_S , and ground.

Pins 2 and 3: Filtering, Power Supply Rejection

Power supply rejection is provided by capacitors C_1 and C_2 at Pin 3 and Pin 2, respectively. C_1 is dominant at high frequencies whereas C_2 is dominant at low frequencies (Figure 6 to Figure 9). The values of C_1 and C_2 depend on the conditions of each application. For example, a line-powered speakerphone (telephone amplifier) will require more filtering than a system powered by regulated power supply.

The amount of rejection is a function of the capacitors and the equivalent impedance at Pin 3 and Pin 2 (see electrical characteristic equivalent resistance, R).

Apart from filtering, capacitors C_1 and C_2 also influence the turn-on time of the circuit at power-up since capacitors are charged up through the internal resistors (50 k Ω and 125 k Ω) as shown in the block diagram.

Figure 3 shows the turn-on time versus C_2 at $V_S = 6$ V, for two different C_1 values.

The turn-on time is 60% longer when $V_S = 3 \text{ V}$ and 20% shorter when $V_S = 9 \text{ V}$.

The turn-off time is less than 10 µs.

Pin 4: Amplifier Input V_i Pin 5: Amplifier Output 1 V_{O1} Pin 8: Amplifier Output 2 V_{O2} There are two identical operational amplifiers. Amplifier 1 has an open-loop gain \geq 80 dB at 100 Hz (Figure 4), whereas the closed-loop gain is set by external resistors, R_f and R_i (Figure 5). The amplifier is unity gain stable, and has a unity gain frequency of approximately 1.5 MHz. A closed-loop gain of 46 dB is recommended for a frequency range of 300 Hz to 3400 Hz (voice band). Amplifier 2 is internally set to a gain of -1.0 dB (0 dB). The outputs of both amplifiers are capable of sourcing and sinking a peak current of 200 mA. Output voltage swing is between 0.4 V and V_S - 1.3 V at maximum current (Figure 20 and Figure 21).

The output dc offset voltage between Pins 5 and 8 (V_{O1} - V_{O2}) is mainly a function of the feedback resistor, R_f , because the input offset voltages of the two amplifiers neutralize each other.

Bias current of Amplifier 1 which is constant with respect to V_s , flows out of Pin 4 (V_i) and through R_f , forcing V_{01} to shift negative by an amount equal to $R_f I_{IB}$ and V_{O2} positive to an equal amount.

The output offset voltage specified in the electrical characteristics is measured with the feedback resistor (R_f = 75 k Ω) shown in typical application circuit, Figure 22. It takes into account the bias current as well as internal offset voltages of the amplifiers.

Pin 6: Supply and Power Dissipation

Power dissipation is shown in Figure 10 to Figure 12 for different loads. Distortion characteristics are given in Figure 13 to Figure 15.

$$P_{totmax} = \frac{T_{jmax} - T_{amb}}{R_{thJA}}$$

where

T_{imax} = Junction temperature = 140°C

 T_{amb} = Ambient temperature

R_{thJA} = Thermal resistance, junction-ambient

Power dissipated within the IC in a given application is found from the following equation:

$$P_{tot} = (V_S \times I_S) + (I_{RMS} \times V_S) - (R_L \times I_{RMS}^2)$$

Is is obtained from Figure 17.

I_{RMS} is the RMS current at the load R_L.

The IC's operating range is defined by a peak operating load current of ±200 mA (Figure 10 to Figure 15). It is further specified with respect to different loads (see Figure 16). The left (ascending) portion of each of the three curves is defined by the power level at which 10% distortion occurs. The center flat portion of each curve is defined by the maximum output current capability of the integrated circuit. The right (descending) portion of each curve is defined by the maximum internal power dissipation of the IC at 25°C. At higher ambient temperatures, the maximum load power must be reduced according to the above mentioned equation.

Layout Considerations

Normally, a snubber is not needed at the output of the IC, unlike many other audio amplifiers. However, the PC board layout, stray capacitances, and the manner in which the speaker wires are configured, may dictate otherwise. Generally, the speaker wires should be twisted tightly, and be not more than a few cm (or inches) in length.

Absolute Maximum Ratings

Reference point Pin 7, $T_{amb} = 25^{\circ}C$ unless otherwise specified.

Parameters		Symbol	Value	Unit	
Supply voltage	Pin 6	V _S	-1.0 to +18	V	
Voltages Disabled	Pins 1, 2, 3 and 4 Pins 5 and 8		-1.0 to (V _S +1.0) -1.0 to (V _S +1.0)	V V	
Output current	Pins 5 and 8		±250	mA	
Junction temperature		T _j	+140	°C	
Storage temperature range		T _{stg}	-55 to +150	°C	
Ambient temperature range		T _{amb}	-20 to +70	°C	
Power dissipation SO	8: T _{amb} = 60°C	P _{tot}	440	mW	

Thermal Resistance

Parameters		Symbol	Value	Unit	
Junction ambient	SO8	R_{thJA}	180	K/W	

Operation Recommendation

Parameters		Symbol	Value	Unit
Supply voltage	Pin 6	V _S	2 to 16	V
Load impedance	Pins 5 to 8	R_L	8.0 to 100	Ω
Load current		I _L	± 200	mA
Differential gain (5.0 kHz bandwidth)		ΔG	0 to 46	dB
Voltage at CD Pin 1		V _{CD}	V _S	V
Ambient temperature ran	nge	T _{amb}	-20 to +70	°C

Electrical Characteristics

T_{amb} = +25°C, reference point Pin 7, unless otherwise specified

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Amplifiers (AC Characteristics)	·	'	"	'		1
Open-loop gain (Amplifier 1, f < 100 Hz)		G _{VOL1}	80			dB
Closed-loop gain (Amplifier 2)	$V_S = 6.0 \text{ V}, \text{ f} = 1.0 \text{ kHz}, R_L = 32 \Omega$	G _{V2}	-0.35	0	+0.35	dB
Gain bandwidth product		G _{BW}		1.5		MHz
Output power	$V_S = 3.0 \text{ V}, R_L = 16 \Omega, d < 10\%$ $V_S = 6.0 \text{ V}, R_L = 32 \Omega, d < 10\%$ $V_S = 12 \text{ V}, R_L = 100 \Omega, d < 10\%$	Po Po Po	55 250 400			mW
Total harmonic distortion (f = 1.0 kHz)	$V_S = 6.0 \text{ V}, R_L = 32 \Omega,$ $P_0 = 125 \text{ mW}$ $V_S > 3.0 \text{ V}, R_L = 8 \Omega,$ $P_0 = 20 \text{ mW}$	d		0.5 0.5	1.0	%
	$V_{S} > 12 \text{ V}, R_{L} = 32 \Omega,$ $P_{o} = 200 \text{ mW}$	d		0.6		70

Electrical Characteristics (Continued)

 T_{amb} = +25°C, reference point Pin 7, unless otherwise specified

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Power supply rejection ratio	$V_S = 6.0 \text{ V}, \ \Delta V_S = 3.0 \text{ V}$ $C_1 = \alpha, \ C_2 = 0.01 \ \mu\text{F}$ $C_1 = 0.1 \ \mu\text{F}, \ C_2 = 0, \ f = 1.0 \ \text{kHz}$	PSRR PSRR	50	12		dB
	$C_1 = 1.0 \mu F, C_2 = 5.0 \mu F,$ f = 1.0 kHz	PSRR		52		
Muting	V _S = 6.0 V, 1.0 kHz < f < 20 kHz, CD = 2.0 V	G _{MUTE}		>70		dB
Amplifiers (DC Characteristics)	•					
Output DC level at V_{O1} , V_{O2} $R_f = 75 \text{ kW}$	$V_S = 3.0 \text{ V}, R_L = 16 \Omega$ $V_S = 6.0 \text{ V}$ $V_S = 12 \text{ V}$	V _o V _o V _o	1.0	1.15 2.65 5.65	1.25	٧
Output high level	I _O = - 75 mA, 2.0 V < V _S < 16 V	V _{OH}		V _S -1		V
Output low level	$I_O = -75 \text{ mA},$ 2.0 V < V _S < 16 V	V _{OL}		0.16		V
Output DC offset voltage (V _{O1} - V _{O2})	$V_S = 6.0 \text{ V}, R_f = 75 \text{ k}\Omega,$ $R_L = 32 \Omega$	ΔV _O	-30	0	+30	mV
Input bias current at V _i	V _S = 6.0 V	-I _{IB}		100	200	nA
Equivalent resistance at Pin 3	V _S = 6.0 V	R	100	150	220	kΩ
Equivalent resistance at Pin 2	V _S = 6.0 V	R	18	25	40	kΩ
Chip disable Pin 1 Input voltage low Input voltage high Input resistance	$V_{S} = V_{CD} = 16 \text{ V}$	V _{IL} V _{IH} R _{CD}	2.0 50	90	0.8 175	V V kΩ
Power supply current	$\begin{aligned} &V_{S} = 3.0 \text{ V, } R_{L} = \alpha, \text{ CD} = 0.8 \text{ V} \\ &V_{S} = 16 \text{ V, } R_{L} = \alpha, \text{ CD} = 0.8 \text{ V} \\ &V_{S} = 3.0 \text{ V, } R_{L} = \alpha, \text{ CD} = 2.0 \text{ V} \end{aligned}$	I _S I _S		65	4.0 5.0 100	mA mA μA

Typical Temperature Performance

 $T_{amb} = -20 \text{ to } +70^{\circ}\text{C}$

Function	Typical Change	Units	
Input bias current at V _i	±40	pA/°C	
Total harmonic distortion $V_S = 6.0 \text{ V}, R_L = 32 \Omega, P_o = 125 \text{ mW}, f = 1.0 \text{ kHz}$	+ 0.003	%/°C	
Power supply current $V_S = 3.0 \text{ V}, R_L = \alpha, CD = 0 \text{ V}$ $V_S = 3.0 \text{ V}, R_L = \alpha, CD = 2.0 \text{ V}$	- 2.5 - 0.03	μΑ/°C μΑ/°C	

Figure 3. Turn-on Time versus C_1 , C_2 at Power On

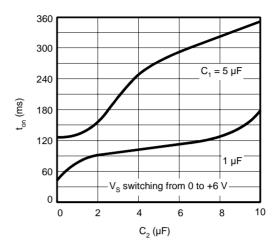


Figure 4. Amplifier 1 — Open-loop Gain and Phase

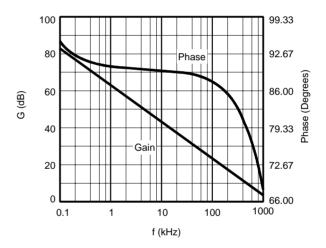
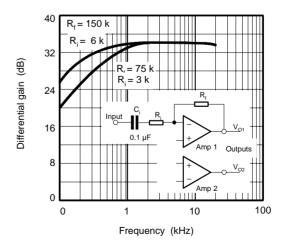
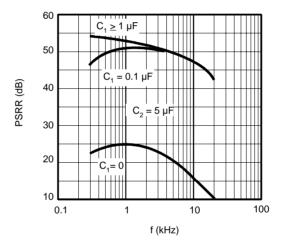
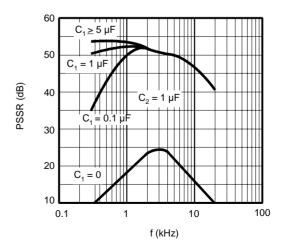



Figure 5. Differential Gain versus Frequency




Figure 6. Power Supply Rejection versus Frequency — C_2 = 10 μF

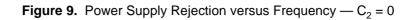


Figure 7. Power Supply Rejection versus Frequency — $C_2 = 5 \mu F$

Figure 8. Power Supply Rejection versus Frequency — C_2 = 1 μF

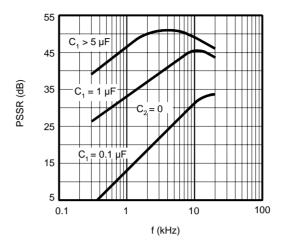
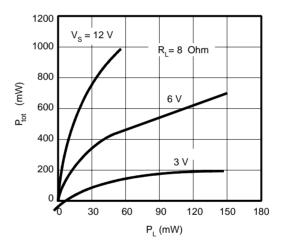
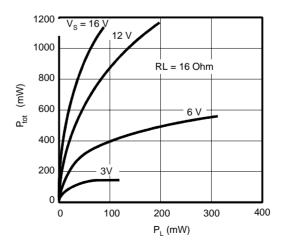
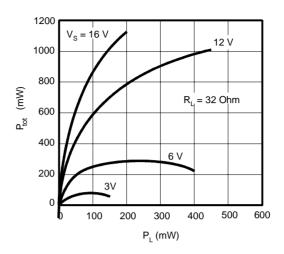
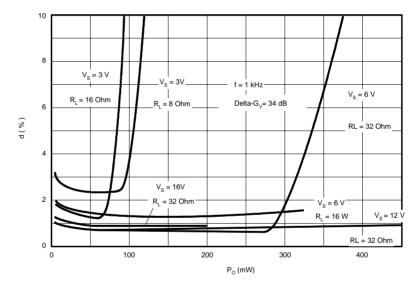
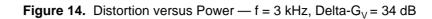


Figure 10. Device Dissipation — R_L = 8 Ω


Figure 11. Device Dissipation — $R_L = 16 \Omega$





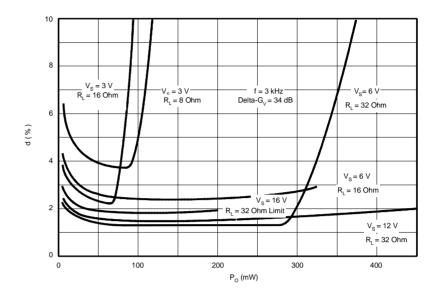

Figure 12. Device Dissipation — $R_L = 32 \Omega$

Figure 13. Distortion versus Power — f = 1 kHz, Delta- $G_V = 34 \text{ dB}$

Figure 15. Distortion versus Power — f = 1 or 3 kHz, Delta- $G_V = 12$ dB

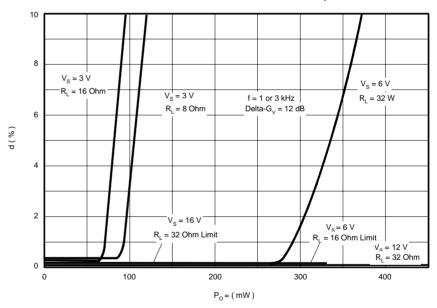


Figure 16. Maximum Allowable Load Power

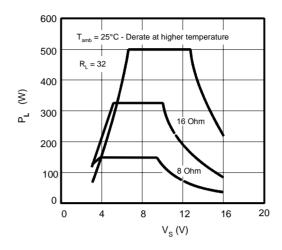


Figure 17. Power-supply Current

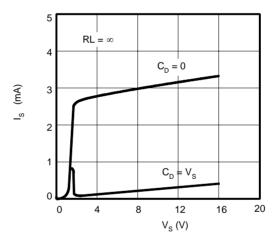


Figure 18. Small Signal Response

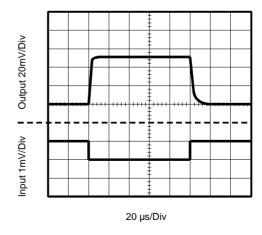


Figure 19. Large Signal Response

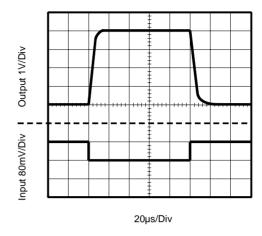


Figure 20. $V_S - V_{OH}$ versus Load Current

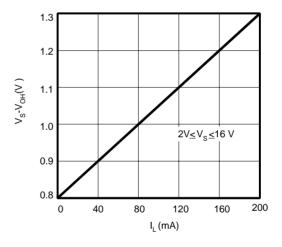
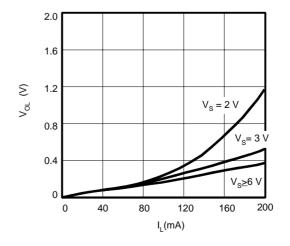
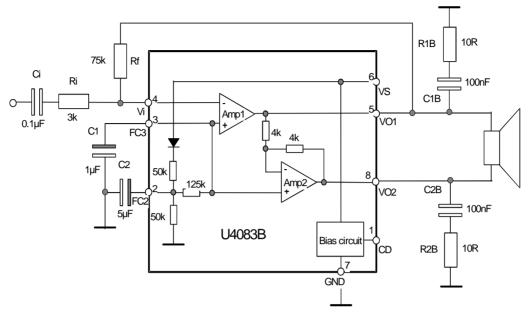
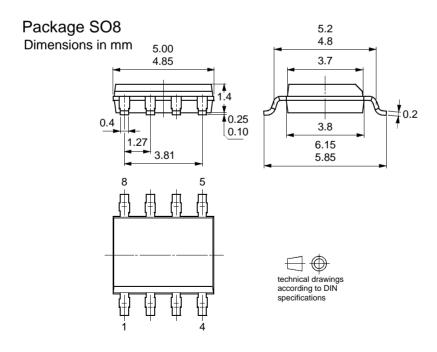


Figure 21. V_{OL} versus Load Current


Figure 22. Application Circuit

Ordering Information

Extended Type Number	Package	Remarks
U4083B-MFP	SO8	Tube
U4083B-MFPG3	SO8	Taped and reeled

Package Information

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

RF/Automotive

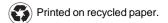
Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail literature@atmel.com


Web Site http://www.atmel.com

© Atmel Corporation 2003.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Atmel® is the registered trademark of Atmel.

Other terms and product names may be the trademarks of others.

