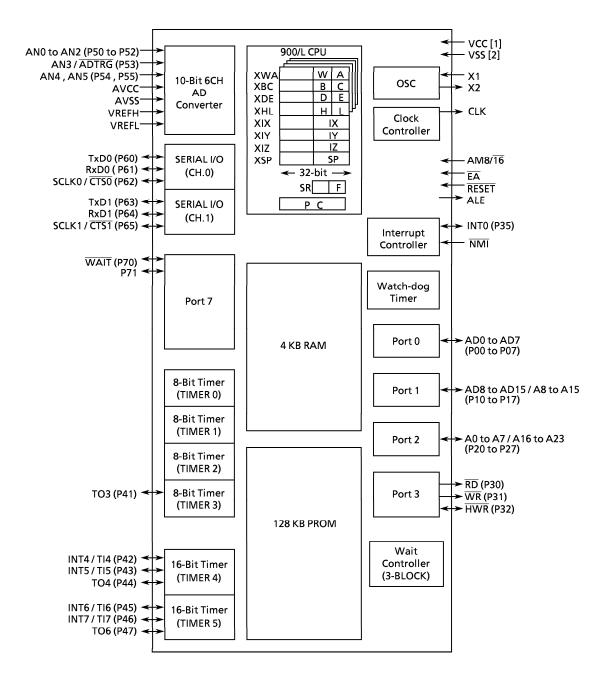
Low Voltage / Low Power CMOS 16-bit Micro-controller

TMP93PW32F

Outline and Device Characteristics 1.


The TMP93PW32 is OTP type MCU which includes 128 Kbyte One-time PROM. Using the adaptersocket (BM11132), you can write and verify the data for the TMP93PW32. The TMP93PW32F has the same pin-assignment as TMP93CS32 (Mask ROM type).

Writing the program to Built-in PROM, the TMP93PW32 operates as the same way as the TMP93CS32. The memory map and capacity of built in ROM and RAM are different between TMP93CS32 and TMP93PW32. The TMP93PW32 has the PROM of 128 Kbyte and the RAM of 4 Kbyte, and the TMP93CS32 has the ROM of 64 Kbyte and the RAM of 2 Kbyte. Following figure shows each memory map.

MCU	ROM	RAM	Package	Adapter Socket
TMP93PW32F	OTP 128 Kbyte	4 Kbyte	P-QFP64-1414-0.80A	BM11132
-				000707EBP

- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance / Handling Precautions.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA
- making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
 The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments medical instruments. transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. The information contained herein is subject to change without notice.

Note: The items in parentheses () are the initial setting after reset.

Figure 1.1 TMP93PW32 Block Diagram

TOSHIBA

2. Pin Assignment and Functions

The assignment of input/output pins for the TMP93PW32, their names and functions are described below.

2.1 Pin Assignment

Figure 2.1.1 shows pin assignment of the TMP93PW32F.

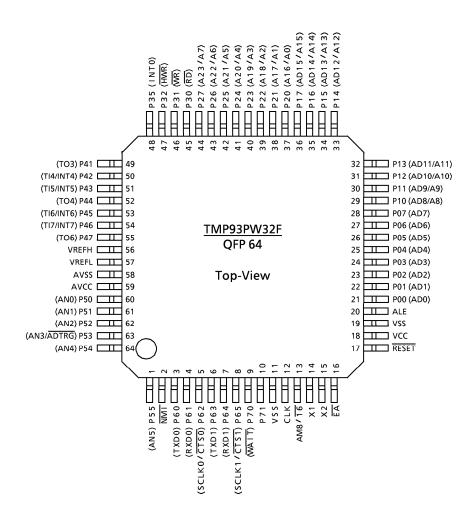


Figure 2.1.1 Pin Assignment (64-pin QFP)

2.2 Pin Names and Functions

The TMP93PW32 has MCU mode and PROM mode.

(1) Table 2.2.1 shows pin function of TMP93PW32 in MCU mode.

Table 2.2.1	Pin Names and Function (1/3)
	i in Names and Function (1/3/

Pin name	Number of pins	I/O	Functions				
P00 to P07		I/O	Port 0: I/O port that allows selection of I/O on a bit basis				
/ AD0 to AD7	8	3-state	Address/data (lower): Bits 0 to 7 for address/data bus				
P10 to P17		I/O	Port 1: I/O port that allows selection of I/O on a bit basis				
/ AD8 to AD15	8	3-state	Address/data (upper): Bits 8 to 15 for address/data bus				
/ A8 to A15		Output	Address: Bits 8 to 15 for address bus				
P20 to P27		I/O	Port 2: I/O port that allows selection of I/O on a bit basis				
	8		(with pull-up resistor)				
/ A0 to A7	0	· · ·	Address: Bits 0 to 7 for address bus				
/ A16 to A23		Output	Address: Bits 16 to 23 for address bus				
P30	1	Output	Port 30: Output port				
/ RD	I	Output	Read: Strobe signal for reading external memory				
P31		Output	Port 31: Output port				
/ WR	1	Output	Write: Strobe signal for writing data on pins AD0 to 7				
P32	1	I/O	Port 32: I/O port (with pull-up resistor)				
/ HWR	1	Output	High write: Strobe signal for writing data on pins AD8 to 15				
P35		I/O	Port 35: I/O port				
/ INT0	1	Input	Interrupt request pin 0: Interrupt request pin with programmable level/rising edge				
P41		I/O	Port 41: I/O port				
/ TO3	1	Output	PWM output 3: 8-bit PWM timer 3 output				
P42		I/O	Port 42: I/O port				
	1	Input	Timer input 4: Timer 4 count / capture trigger signal input				
/ TI4 / INT4		Input	Interrupt request pin 4: Interrupt request pin with programmable rising / falling edge				
P43		I/O	Port 43: I/O port				
/ TI5	1		Timer input 5: Timer 4 count / capture trigger signal input				
/INT5		-	Interrupt request pin 5: Interrupt request pin with rising edge _/				
P44			Port 44: I/O port				
/ TO4	1		Timer output 4: Timer 4 output pin				

Pin name	Number of pins	I/O	Functions			
P45		I/O	Port 45: I/O port			
/ TI6	1	Input	Timer input 6: Timer 5 count / capture trigger signal input			
/ INT6		Input	nterrupt request pin 6: Interrupt request pin with programmable rising / falling edge			
P46		I/O	Port 46: I/O port			
/ TI7	1	Input	Timer input 7: Timer 5 count / capture trigger signal input			
/ INT7		Input	Interrupt request pin 7: Interrupt request pin with rising edge 🖌			
P47	1	I/O	Port 47: I/O port			
/ TO6	1	Output	Timer output 6: Timer 5 output pin			
P50 to P52, P54, P55	-	Input	Port 50 to Port 52, Port 54, Port 55: Input port			
/ AN0 to AN2, AN4, AN5	5	Input	Analog input: Analog signal input for AD converter			
P53		Input	Port53: Input Port			
/ AN3	1	Input	Analog input: Analog signal input for AD converter			
/ ADTRG		Input	AD converter external start trigger input			
P60		I/O	Port 60: I/O port (with pull-up resistor)			
/TXD0	1	Output	Serial send data 0			
P61		I/O	Port 61: I/O port (with pull-up resistor)			
/ RXD0	1	Input	Serial receive data 0			
P62		I/O	Port 62: I/O port (with pull-up resistor)			
/ <u>CTS0</u>	1	Input	Serial data send enable 0 (Clear to Send)			
/ SCLK0		I/O	Serial Clock I/O 0			
P63	1	I/O	Port 63: I/O port (with pull-up resistor)			
/TXD1	1	Output	Serial send data 1			
P64	1	I/O	Port 64: I/O port (with pull-up resistor)			
/RXD1	1	Input	Serial receive data 1			
P65		I/O	Port 65: I/O port (with pull-up resistor)			
/ <u>CTS1</u>	1	Input	Serial data send enable 1 (Clear to Send)			
/ SCLK1		I/O	Serial clock I/O 1			
D70		I/O	Port 70: I/O port (High current output available)			
P70 / WAIT	1	Input	WAIT: Pin used to request CPU bus wait (It is active in 1 WAIT + N			
/ WAII			mode. Set by the Bus-width/wait control register.)			
P71	1	I/O	Port 71: I/O port (High current output available)			
NMI	1	Input	Non-maskable interrupt request pin: Interrupt request pin with falling edge. Can also be operated at falling and rising edges by program.			
CLK	1	Output				
ĒĀ	1	Input				

Pin name	Number of pins	I/O	Functions
AM8/16	1	Input	Address Mode: Selects external Data Bus width. "1" should be inputted. The Data Bus Width for external access is set by Chip Select / WAIT Control register, Port 1 Control register.
ALE	1	Output	Address Latch Enable Can be disabled for reducing noise.
RESET	1	Input	Reset: Initializes TMP93PW32. (With pull-up resistor)
VREFH	1	Input	Pin for high level reference voltage input to AD converter
VREFL	1	Input	Pin for low level reference voltage input to AD converter
AVCC	1	Input	Power supply pin for AD converter
AVSS	1	Input	GND pin for AD converter (0 V)
X1	1	Input	Oscillator connecting pin
X2	1	Output	Oscillator connecting pin
VCC	1	Input	Power supply pin
VSS	2	Input	GND pin (All VSS pins are connected to the GND (0 V).)

Table 2.2.1	Pin Names and Function (3/3)
10010 2.2.1	Thirteances and Tanction (5/5)

Note: Built-in pull-up resistors can be released from the pins other than the $\overline{\text{RESET}}$ pin by software.

(2) PROM mode

Table 2.2.2 shows pin function of the TMP93PW32 in PROM mode.

Pin function	Number of pins	Input / Output	Function	Pin name (MCU mode)	
A7 to A0	8	Input		P27 to P20	
A15 to A8	8	Input	Memory address of program	P17 to P10	
A16	1	Input		P71	
D7 to D0	8	I/O	Memory data of program	P07 to P00	
CE	1	Input	Chip enable	P32	
ŌĒ	1	Input	Output control	P30	
PGM	1	Input	Program control	P31	
VPP	1	Power supply	12.75 V / 5 V (Power supply of program)	ĒĀ	
vcc	2	Power supply Power	6.25 V / 5 V	VCC, AVCC	
vss	3	Power supply	0 V VSS, AVSS		
Pin function	Number of pins	Input/ Output	Disposal of pin		
P60	1	Input	Fix to low level (security pin)		
RESET	1	Input	Fix to low level (PROM mode)		
CLK	1	Input			
ALE	1	Output	Open		
X1	1	Input	Self oscillation with resonator		
Х2	1	Output			
P65 to P61 AM8 / 16	6	Input	Fix to high level		
P35 P47 to P41 P55 to P50 P70 VREFH VREFL <u>NMI</u>	18	I/O	Open		

 Table 2.2.2
 Pin Name and function of PROM mode

3. Operation

This section describes the functions and basic operational blocks of the TMP93PW32. The TMP93PW32 has PROM in place of the mask ROM which is included in the TMP93CS32. The other configuration and functions are the same as the TMP93CS32. Regarding the functions of the TMP93PW32 (not described), see the part of TMP93CS32.

The TMP93PW32 has two operational modes: MCU mode and PROM mode.

3.1 MCU mode

(1) Mode-setting and function

The MCU mode is set by opening the CLK pin (pin open). In the MCU mode, the operation is same as TMP93CS32 except the followings.

(2) Memory-map

The memory map of TMP93PW32 is not same as that of TMP93CS32. Figure 3.1.1 shows the memory map in MCU mode. Figure 3.1.2 show that in PROM mode.

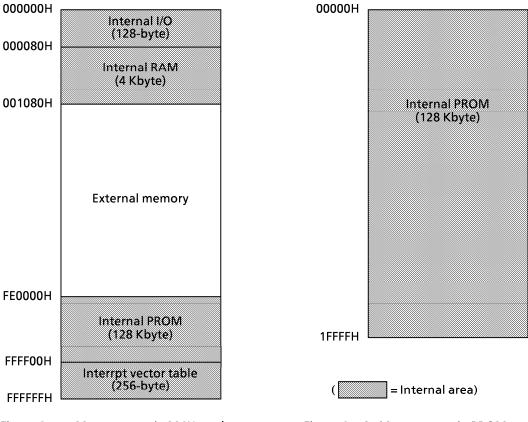


Figure 3.1.1 Memory map in MCU mode

Figure 3.1.2 Memory map in PROM mode

(3) Care point of bus width / wait controller

The built in RAM capacity of the TMP93PW32 is larger than that of the TMP93CS32, therefor the following point is different about the accessing area of WAITC1.

Setting WAITC1<B1C1to 0> to "00"

TMP93PW32	TMP93CS32
1080H to 7FFFH	880 to7FFFH

WAITC0 and WAITC2 addressing area are the same as TMP93CS32.

- 4. **Electrical Characteristics**
- Absolute Maximum Ratings (TMP93PW32) 4.1

"X" used in an expression shows a cycle of clock $f_{\rm FPH}$. If a clock gear or a low speed oscillator is selected, a value of "X" is different. The value as an example is gear = 1/fc (SYSCR1 < GEAR 2 to 0 > = "000").

Parameter	Parameter Symbol Rating		Unit	
Power Supply Voltage	Vcc	– 0.5 to 6	.5	V
	V	except EA pin	– 0.5 to Vcc + 0.5	v
Input Voltage	V _{IN}	EA pin	– 0.5 to 14.0	V
Output current (Per 1 pin) P7	I _{OL1}		20	mA
Output current (Per 1 pin) except P7	I _{OL2}		2	mA
Output Current (total)	ΣI_{OL}		120	mA
Output Current (total)	Σ I _{OH}		- 80	mA
Power Dissipation (Ta = 85° C)	PD		350	mW
Soldering Temperature (10 s)	T _{SOLDER}		260	Ĵ
Storage Temperature	T _{STG}	- 6	5 to 150	Ĵ
Operating Temperature	T _{OPR}		40 to 85	Ĵ

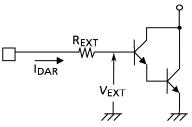
Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

4.2 DC Characteristics (1/2)

					Та	= - 40 to	85°C
	Parameter	Symbol	Condition	Min	Typ. (Note)	Max	Unit
Pow	er Supply Voltage	Vcc	fc = 4 to 20 MHz	4.5		5.5	
	$ \begin{pmatrix} AVcc = Vcc \\ AVss = Vss = 0 & V \end{pmatrix} $		fc = 4 to 12.5 MHz	2.7			V
age	AD0 to 15	VIL	$Vcc \ge 4.5 V$			0.8	
<u>+</u>	Port2 to 7 (except P35)	VIL1	Vcc < 4.5 V	- 0.3		0.6 0.3 Vcc	
nput w Vol	RESET, NMI, INTO	V _{IL2}	Vcc = 2.7 to 5.5 V	-0.5		0.25 Vcc	
Low L	EA, AM8/16 X1	V _{IL3}	$VCC = 2.7 \ 10 \ 3.3 \ V$			0.3 0.2 Vcc	v
ag e		V _{IL4} V _{IH}	Vcc ≧ 4.5 V	2.2		0.2 VCC	
olta	Port2 to 7 (except P35)	VIH1	Vcc < 4.5 V	2.0 0.7 Vcc			
<u>+</u> >	RESET, NMI, INTO	V _{IH2}	Vcc = 2.7 to 5.5 V	0.75 Vcc		Vcc + 0.3	
l n p u H i gh	EA, AM8/16 X1	V _{IH3} V _{IH4}	VCC = 2.7 to 5.5 V	Vcc – 0.3 0.8 Vcc			
	put Low Voltage	V _{OL}	I _{OL} = 1.6 mA (Vcc = 2.7 to 5.5 V)	0.0 vec		0.45	v
Out	out Low current (P7)	I _{OL7}	$V_{OL} = 1.0 V (Vcc = 5 V \pm 10\%)$ (Vcc = 3 V ± 10%)	16 7			mA
Output High Voltage		V _{OH1}	I _{OH} = -400 μA (Vcc = 3 V ± 10%)	2.4			v
	Sat high voltage	V _{OH2}	I _{OH} = -400 μA (Vcc = 5 V ± 10%)	4.2			V

Note: Typical values are for Ta = 25°C and V_{CC} = 5 V unless otherwise noted.

4.2 DC Characteristics (2/2)


Parameter	Symbol	Condition	Min	Typ.(Note1)	Max	Unit
Darlington Drive Current (8 Output Pins max.)	I _{DAR} (Note2)	V _{EXT} = 1.5 V R _{EXT} = 1.1 kΩ (Vcc = 5 V ± 10% only)	- 1.0		- 3.5	mA
Input Leakage Current	ILI	$0.0 \leq V_{IN} \leq V_{CC}$		0.02	± 5	
Output Leakage Current	ILO	$0.2 \le V_{IN} \le V_{CC} - 0.2$		0.05	± 10	- μΑ
Power Down Voltage (at STOP, RAM Back up)	V _{STOP}	V _{IL2} = 0.2 Vcc, V _{IH2} = 0.8 Vcc	2.0		6.0	
		Vcc = 5.5 V	45		130	
RESET	D	Vcc = 4.5 V	50		160	. k Ω
Pull Up Resistance	R _{RST}	Vcc = 3.3 V	70		280	· K12
		Vcc = 2.7 V	90		400	"
Pin Capacitance	CIO	fc = 1 MHz			10	pF
<u>Schmitt_Wi</u> dth RESET, NMI, INTO	V _{TH}		0.4	1.0		V
		Vcc = 5.5 V	45		130	
Programmable	R _{KH}	Vcc = 4.5 V	50		160	
Pull Up Resistance		Vcc = 3.3 V	70		280	· K 12
		Vcc = 2.7 V	90		400	
NORMAL (Note3)	lcc	$Vcc = 5 V \pm 10\%$		25	30	
RUN	1	fc = 20 MHz		22	27	
IDLE2				13	17	
IDLE1				3.4	5	mA
NORMAL (Note3)		Vcc = 3 V ± 10%		8.0	11	
RUN	1	fc = 12.5 MHz		7.0	10	1
IDLE2	1	(Typ.: Vcc = 3.0 V)		4.2	6	1
IDLE1]			1.2	1.8	
STOP	1	Ta ≦ 50°C			10	
		Ta ≦ 70°C Vcc = 2.7 V to 5.5 V		0.2	20] μΑ
		Ta ≦ 85°C		<u> </u>	50	

Note 1: Typical values are for Ta = 25° C and V_{CC} = 5 V unless otherwise noted.

- Note 2: I_{DAR} is guranteed for total of up to 8 ports.
- Note 3: I_{CC} measurement conditions (NORMAL, SLOW):

Only CPU is operational ; output pins are open and input pins are fixed.

(Reference) Definition of IDAR

4.3 AC Electrical Characteristics

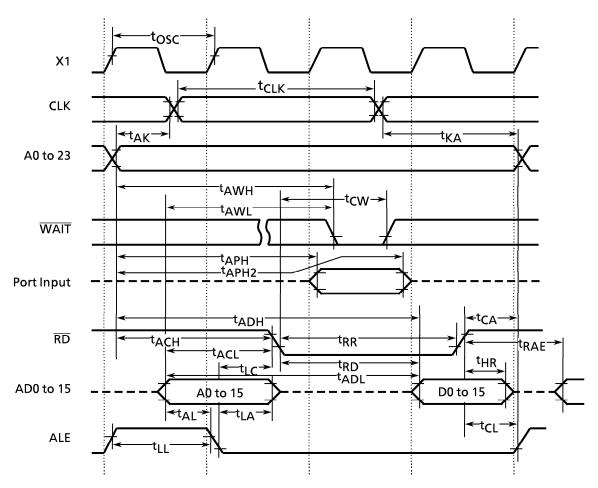
(1) $Vcc = 5 V \pm 10\%$

No.	Parameter	Symbol	Vari	able	16 N	ЛНz	20 N	ЛНz	Unit
NO.	Farameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
1	Osc. Period (= x)	tosc	50	31250	62.5		50		ns
2	CLK pulse width	t _{CLK}	2x – 40		85		60		ns
3	A0 to 23 Valid \rightarrow CLK Hold	t _{AK}	0.5x – 20		11		5		ns
4	CLK Valid \rightarrow A0 to 23 Hold	t _{KA}	1.5x – 70		24		5		ns
5	A0 to 15 Valid \rightarrow ALE fall	t _{AL}	0.5x – 15		16		10		ns
6	ALE fall \rightarrow A0 to 15 Hold	t _{LA}	0.5x – 20		11		5		ns
7	ALE High pulse width	t _{LL}	x – 40		23		10		ns
8	ALE fall $\rightarrow \overline{RD}/\overline{WR}$ fall	t _{LC}	0.5x – 25		6		0		ns
9	$\overline{RD}/\overline{WR}$ rise \rightarrow ALE rise	t _{CL}	0.5x – 20		11		5		ns
10	A0 to 15 Valid $\rightarrow \overline{RD}/\overline{WR}$ fall	t _{ACL}	x – 25		38		25		ns
11	A0 to 23 Valid $\rightarrow \overline{RD}/\overline{WR}$ fall	t _{ACH}	1.5x – 50		44		25		ns
12	$\overline{\text{RD}}/\overline{\text{WR}}$ rise \rightarrow A0 to 23 Hold	t _{CA}	0.5x – 25		6		0		ns
13	A0 to 15 Valid \rightarrow D0 to 15 input	t _{ADL}		3.0x – 55		133		95	ns
14	A0 to 23 Valid \rightarrow D0 to 15 input	t _{ADH}		3.5x – 65		154		110	ns
15	$\overline{\text{RD}}$ fall \rightarrow D0 to 15 input	t _{RD}		2.0x - 60		65		40	ns
16	RD Low pulse width	t _{RR}	2.0x – 40		85		60		ns
17	$\overline{\text{RD}}$ rise \rightarrow D0 to 15 Hold	t _{HR}	0		0		0		ns
18	$\overline{\text{RD}}$ rise \rightarrow A0 to 15output	t _{RAE}	x – 15		48		35		ns
19	WR Low pulse width	tww	2.0x – 40		85		60		ns
20	D0 to 15 Valid $\rightarrow \overline{WR}$ rise	t _{DW}	2.0x – 55		70		45		ns
21	$\overline{\text{WR}}$ rise \rightarrow D0 to 15 Hold	t _{WD}	0.5x – 15		16		10		ns
22	A0 to 23 Valid $\rightarrow \overline{\text{WAIT}}$ input $\binom{1 \text{ WAIT}}{+ n \text{ mode}}$	t _{AWH}		3.5x – 90		129		85	ns
23	A0 to 15 Valid $\rightarrow \overline{\text{WAIT}}$ input $\begin{pmatrix} 1 & \text{WAIT} \\ + n & \text{mode} \end{pmatrix}$	t _{AWL}		3.0x – 80		108		70	ns
24	$\overline{\text{RD}}/\overline{\text{WR}} \text{ fall} \rightarrow \overline{\text{WAIT}} \text{ Hold } (1 \text{ WAIT} + n \text{ mode})$	t _{CW}	2.0x + 0		125		100		ns
25	A0 to 23 Valid \rightarrow PORT input	t _{APH}		2.5x – 120		36		5	ns
26	A0 to 23 Valid \rightarrow PORT Hold	t _{APH2}	2.5x + 50		206		175		ns
27	$\overline{\text{WR}}$ rise \rightarrow PORT Valid	t _{CP}		200		200		200	ns

AC Measuring Conditions

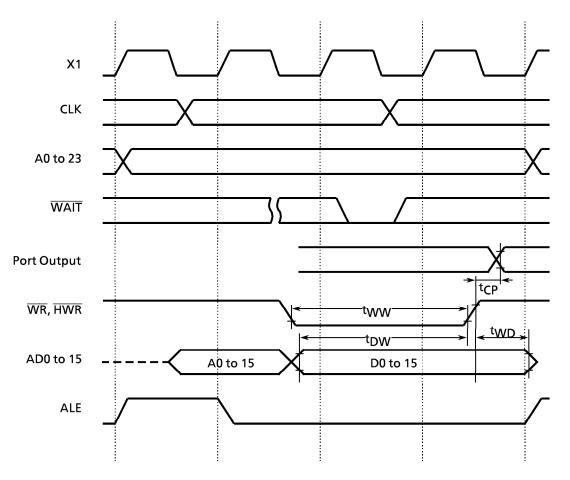
- Output Level: High 2.2 V / Low 0.8 V, CL = 50 pF (However CL = 100 pF for AD0 to AD15, A0 to A23, ALE, RD, WR, HWR, CLK)
- Input Level: High 2.4 V / Low 0.45 V (AD0 to AD15) High 0.8 × Vcc / Low 0.2 × Vcc (Except for AD0 to AD15)

(2) $Vcc = 3 V \pm 10\%$


No.	Parameter	Sumbol	Vari	able	12.5	MHz	Unit
NO.	Farameter	Symbol	Min	Max	Min	Max	Unit
1	Osc. Period (= x)	tosc	80	31250	80		ns
2	CLK pulse width	t _{CLK}	2x – 40		120		ns
3	A0 to 23 Valid \rightarrow CLK Hold	t _{AK}	0.5x – 30		10		ns
4	CLK Valid \rightarrow A0 to 23 Hold	t _{KA}	1.5x – 80		40		ns
5	A0 to 15 Valid \rightarrow ALE fall	t _{AL}	0.5x – 35		5		ns
6	ALE fall \rightarrow A0 to 15 Hold	t _{LA}	0.5x – 35		5		ns
7	ALE High pulse width	t _{LL}	x – 60		20		ns
8	ALE fall $\rightarrow \overline{RD}/\overline{WR}$ fall	t _{LC}	0.5x – 35		5		ns
9	$\overline{RD}/\overline{WR}$ rise \rightarrow ALE rise	t _{CL}	0.5x – 40		0		ns
10	A0 to 15 Valid $\rightarrow \overline{RD}/\overline{WR}$ fall	t _{ACL}	x – 50		30		ns
11	A0 to 23 Valid $\rightarrow \overline{RD}/\overline{WR}$ fall	t _{ACH}	1.5x – 50		70		ns
12	$\overline{\text{RD}}/\overline{\text{WR}}$ rise \rightarrow A0 to 23 Hold	t _{CA}	0.5x – 40		0		ns
13	A0 to 15 Valid \rightarrow D0 to 15 input	t _{ADL}		3.0x – 110		130	ns
14	A0 to 23 Valid \rightarrow D0 to 15 input	t _{ADH}		3.5x – 125		155	ns
15	$\overline{\text{RD}}$ fall \rightarrow D0 to 15 input	t _{RD}		2.0x – 115		45	ns
16	RD Low pulse width	t _{RR}	2.0x – 40		120		ns
	$\overline{\text{RD}}$ rise \rightarrow D0 to 15 Hold	t _{HR}	0		0		ns
18	$\overline{\text{RD}}$ rise \rightarrow A0 to 15output	t _{RAE}	x – 25		55		ns
	WR Low pulse width	tww	2.0x – 40		120		ns
20	D0 to 15 Valid $\rightarrow \overline{WR}$ rise	t _{DW}	2.0x – 120		40		ns
21	$\overline{\text{WR}}$ rise \rightarrow D0 to 15 Hold	t _{WD}	0.5x – 40		0		ns
22		t _{AWH}		3.5x – 130		150	ns
23	A0 to 15 Valid $\rightarrow \overline{\text{WAIT}}$ input $\binom{1 \text{ WAIT}}{+ \text{ n mode}}$	tAWL		3.0x – 100		140	ns
24	$\overline{\text{RD}/\text{WR}} \text{ fall} \rightarrow \overline{\text{WAIT}} \text{ Hold } (\begin{array}{c} 1 \text{ WAIT} \\ + n \text{ mode} \end{array})$	tcw	2.0x + 0		160		ns
25	A0 to 23 Valid \rightarrow PORT input	t _{APH}		2.5x – 195		5	ns
26	A0 to 23 Valid \rightarrow PORT Hold	t _{APH2}	2.5x + 50		250		ns
27	WR rise→PORT Valid	t _{CP}		200		200	ns

AC Measuring Conditions

- Output Level: High 0.7 \times V_{CC} / Low 0.3 \times V_{CC}, CL = 50 pF
- Input Level: High 0.9 × V_{CC} / Low 0.1 × V_{CC}


TOSHIBA

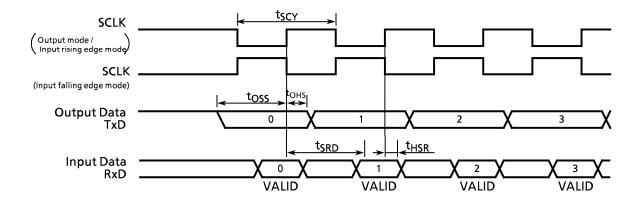
(3) Read Cycle

TOSHIBA

(4) Write Cycle

4.4 Serial Channel Timing

(1) I/O Interface Mode


1 SCLK Input Mode

Parameter	Symbol	Varia	12.5 MHz		20 MHz		Unit	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
SCLK cycle	t _{SCY}	16X		1.28		0.8		μ S
Output Data \rightarrow Rising / falling edge of SCLK	t _{OSS}	t _{SCY} /2 – 5X – 50		190		100		ns
SCLK rising / falling edge \rightarrow Output Data hold	t _{OHS}	5X – 100		300		150		ns
SCLK rising / falling edge→ Input Data hold	t _{HSR}	0		0		0		ns
SCLK rising / falling edge→ effective data input	t _{SRD}		t _{SCY} – 5X – 100		780		450	ns

Note: SCLK rising / falling timing ; SCLK rising in the rising mode of SCLK, SCLK falling in the falling mode of SLCK.

② SCLK Output Mode

Parameter	Symbol	Varia	Variable			20MHz		Unit
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
SCLK cycle (programmable)	t _{SCY}	16X	8192X	1.28	655.36	0.8	409.6	μ S
Output Data \rightarrow SCLK rising edge	t _{OSS}	t _{SCY} – 2X – 150		970		550		ns
SCLK rising edge \rightarrow Output Data hold	t _{OHS}	2X – 80		80		20		ns
SCLK rising edge→Input Data hold	t _{HSR}	0		0		0		ns
SCLK rising edge→ effective data input	t _{SRD}		t _{SCY} – 2X – 150		970		550	ns

(2) UART Mode (SCLK0, 1 are external input)

Parameter	Sumbol	Varia	12.5 MHz		20 MHz		Unit	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
SCLK cycle	t _{SCY}	4x + 20		340		220		ns
SCLK Low level pulse width	t _{SCYL}	2x + 5		165		105		ns
SCLK High level pulse width	t _{SCYH}	2x + 5		165		105		ns

4.5 **AD Conversion Characteristics**

```
AV_{CC} = V_{CC}, AV_{SS} = V_{SS}
```

Parameter	Symbol	Power Supply	Min	Тур.	Max	Unit
Angles reference veltage (.)	N	V _{CC} = 5 V ± 10%	V _{CC} – 1.5 V	V _{CC}	V _{CC}	
Analog reference voltage (+)	V _{REFH}	V _{CC} = 3 V ± 10%	V _{CC} – 0.2 V	V _{CC}	V _{CC}	
		V _{CC} = 5 V ± 10%	V _{SS}	V _{SS}	V _{SS} + 0.2 V	V
Analog reference voltage (–)	V _{REFL}	V _{CC} = 3 V ± 10%	V _{SS}	V _{SS}	V _{SS} + 0.2 V	
Analog input voltage range	V _{AIN}		V _{REFL}		V _{REFH}	
Analog current for analog reference voltage		V _{CC} = 5 V ± 10%		0.5	1.5	mA
<vrefon> = 1</vrefon>	I _{REF} (VREFL = 0 V)	$V_{CC} = 3 V \pm 10\%$		0.3	0.9	
<vrefon> = 0</vrefon>		V _{CC} = 2.7 to 5.5 V		0.02	5.0	μA
Error		$V_{CC} = 5 V \pm 10\%$		± 1.0	± 3.0	LSB
(except quantization errors)	_	V _{CC} = 3 V ± 10%		± 1.0	± 5.0	

 $\begin{array}{ll} Note \ 1: & 1LSB \,{=}\, (V_{REFH} \,{-}\, V_{REFL}) \,{/}\, 2^{10} \, [V] \\ Note \ 2: & The \ operation \ above \ is \ guaranteed \ for \ f_{FPH} \geq 4 \ MHz. \end{array}$

Note 3: The value I_{CC} includes the current which flows through the AVCC pin.

4.6 Event Counter Input Clock (external input clock: TI4, TI5, TI6, TI7)

Parameter	Sumbol	Vari	Variable		12.5 MHz		20 MHz	
	Symbol	Min	Max	Min	Max	Min	Max	Unit
Clock Cycle	t _{VCK}	8X + 100		740		500		ns
Low level clock Pulse width	t _{VCKL}	4X + 40		360		240		ns
High level clock Pulse width	t _{VCKH}	4X + 40		360		240		ns

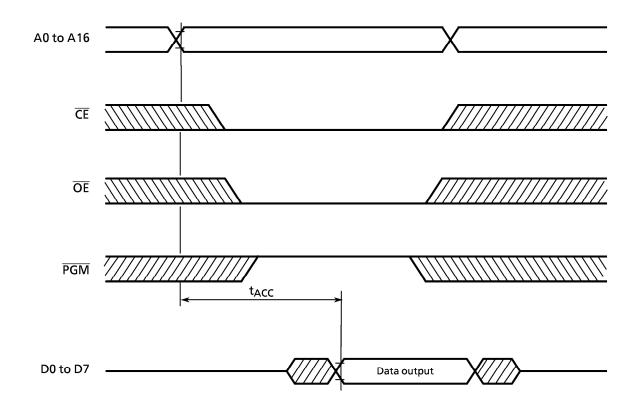
4.7 **Interrupt and Capture Operation**

(1) NMI, INTO Interrupts

Parameter	Symbol	Variable		12.5 MHz		20 MHz		Unit
		Min	Max	Min	Max	Min	Max	Unit
NMI, INTO Low level Pulse width	t _{INTAL}	4X		320		200		ns
NMI, INTO High level Pulse width	t _{INTAH}	4X		320		200		ns

(2) INT4 to 7 Interrupts and Capture

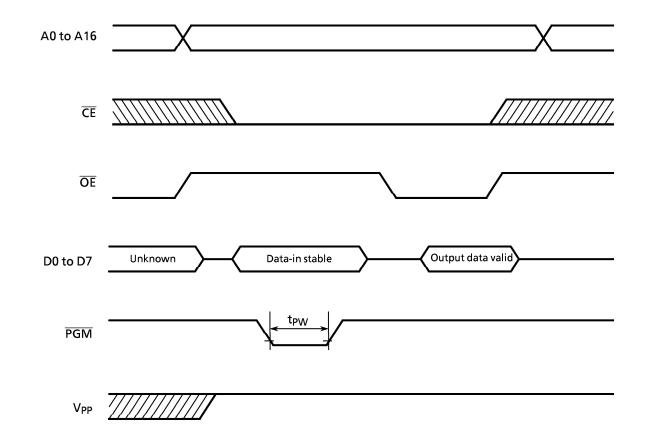
Parameter	Symbol	Variable		12.5 MHz		20 MHz		11-1-14
		Min	Max	Min	Max	Min	Max	Unit
INT4 to INT7 Low level Pulse width	t _{INTBL}	4X + 100		420		300		ns
INT4 to INT7 High level Pulse width	t _{INTBH}	4X + 100		420		300		ns


4.8 Read operation in PROM Mode

DC / AC characteristics

Ta = 25	± 5°C	Vcc = 5	V ± 10%
---------	-------	---------	---------

Parameter	Symbol	Condition	Min	Max	Unit
V _{PP} Read Voltage Input High Voltage (A0 to A16, CE, OE, PGM) Input Low Voltage (A0 to A16, CE, OE, PGM)	V _{PP} V _{IH1} VIL1	- -	4.5 2.2 - 0.3	5.5 V _{CC} + 0.3 0.8	V V V
Address to Output Delay	t _{ACC}	C _L = 50 _P F	_	2.25T_{CYC} + α	ns


 T_{CYC} = 400 ns (10 MHz Clock) α = 200 ns

4.9 **Program operation in PROM Mode**

DC / AC characteristics

Parameter	Symbol	Condition	Min	Тур.	Max	Unit
Programming Supply Voltage Input High Voltage (D0 to D7, A0 to A16, CE, OE, PGM)	V _{PP} V _{IH}	- -	12.50 2.6	12.75	13.00 V _{CC} + 0.3	V V
Input Low Voltage $(D0 \text{ to } D7, A0 \text{ to } A16, \overline{CE}, \overline{OE}, \overline{PGM})$	VIL	-	- 0.3		0.8	v
V _{CC} Supply Current	Icc	fc = 10 MHz	-		50	mA
V _{PP} Supply Current	I _{PP}	V _{PP} = 13.00 V	-		50	mA
PGM Program Pulse Width	t _{PW}	C _L = 50 _P F	0.095	0.1	0.105	ms

- Note 1: The power supply of V_{PP} (12.75 V) must be set power-on at the same time or the later time for a power supply of V_{CC} and must be clear power-on at the same time or early time for a power supply of V_{CC} .
- Note 2: The pulling up/down device on condition of V_{PP} = 12.75 V suffer a damage for the device.
- Note 3: The maximum spec of V_{PP} pin is 14.0 V. Be carefull a overshoot at the program writing.