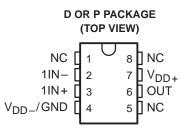
- Low Input Noise Voltage: 35 nV/√Hz Max at f = 10 Hz 15 nV/√Hz Max at f = 1 kHz
- Low Input Offset Voltage: 500 μV Max at T_A = 25°C 1.5 mV Max at T_A = Full Range
- Excellent Offset Voltage Stability With Temperature . . . 4 μ V/°C Typ

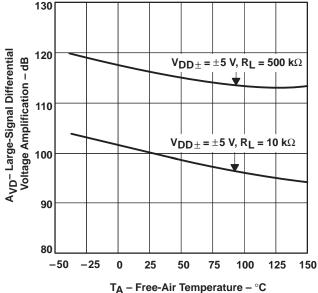
description


The TLC2801 is a precision, low-noise operational amplifier manufactured using Texas Instruments Advanced LinCMOS[™] process. The TLC2801 combines the noise performance of the lowest-noise JFET amplifiers with the dc precision available previously only in bipolar amplifiers. The Advanced LinCMOS[™] process uses silicon-gate technology to obtain input offset voltage stability with temperature and time that far exceeds that obtainable using metal-gate technology. In addition, this technology makes possible input impedance levels that meet or exceed levels offered by top-gate JFET and expensive dielectric-isolated devices.

The combination of excellent dc and noise performance with a common-mode input voltage range that includes the negative rail makes the TLC2801 an ideal choice for high-impedance, low-level signal conditioning applications in either single-supply or split-supply configurations.

The device inputs and output are designed to withstand -100-mA surge currents without sustaining latch-up. In addition, internal ESD-protection circuits prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in degradation of the device parametric performance.

The TLC2801 is characterized for operation over the temperature range of -40° C to 150° C.

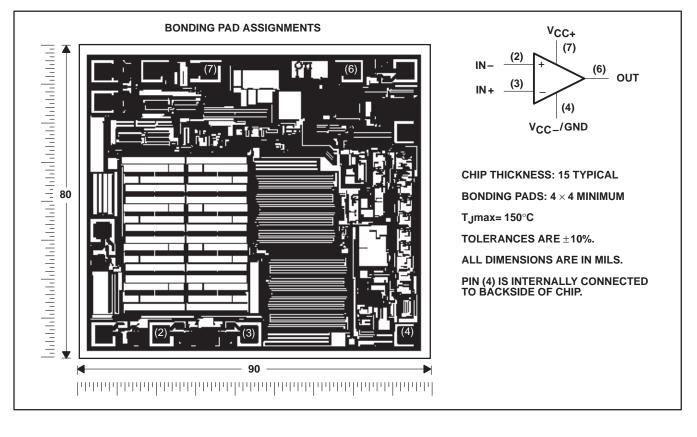

- Low Input Bias Current: 1 pA Typ at T_A = 25°C 250 pA Typ at T_A = 150°C
- Specified for Both Single-Supply and Split-Supply Operation
- Common-Mode Input Voltage Range Includes the Negative Rail

NC - No internal connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Advanced LinCMOS is a trademark of Texas Instruments Incorporated.

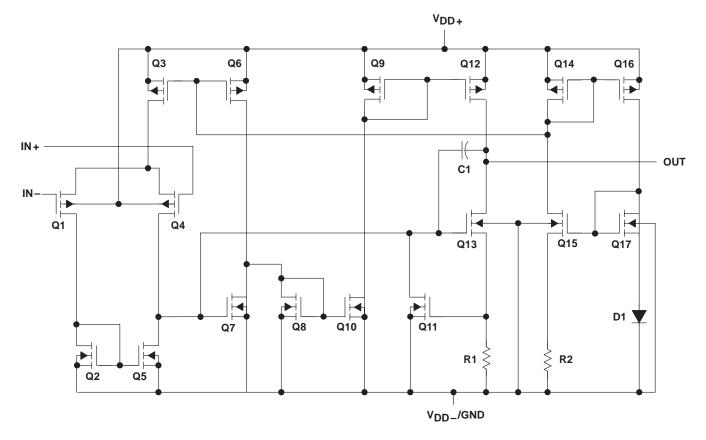
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.


SLOS116B - JULY 1982 - REVISED SEPTEMBER 1996

AVAILABLE OPTIONS						
	Viemov	PACKAGE	DEVICES	CHIP		
TA	V _{IO} max AT 150°C	SMALL OUTLINE (D)	PLASTIC DIP (P)	FORM (Y)		
-40°C to 150°C	1.5 mV	TLC2801ZD	TLC2801ZP	TLC2801Y		

The D packages are available taped and reeled. Add R suffix to the device type when ordering (e.g., TLC2801ZDR).

TLC2801Y chip information


This chip, properly assembled, displays characteristics similar to the TLC2801. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

SLOS116B - JULY 1982 - REVISED SEPTEMBER 1996

equivalent schematic

SLOS116B - JULY 1982 - REVISED SEPTEMBER 1996

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Input current, I_I (each input) $\pm 5 \text{ m}_A$ Output current, I_O $\pm 50 \text{ m}_A$ Duration of short-circuit current at (or below) 25° C (see Note 3) $\pm 10^{\circ}$ C to 150° COperating free-air temperature range, T_A -40° C to 150° CStorage temperature range -65° C to 175° C	nA ed °C
Storage temperature range	С

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD± and VDD-.

2. Differential voltages are at the noninverting input with respect to the inverting point.

3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

recommended operating conditions

	MIN	MAX	UNIT
Supply voltage, $V_{DD\pm}$	±2.3	±8	V
Common-mode input voltage, VIC	V _{DD-}	V _{DD+} -2.3	V
Operating free-air temperature, T _A	-40	150	°C

SLOS116B - JULY 1982 - REVISED SEPTEMBER 1996

electrical characteristics at specified free-air temperature, $V_{DD\pm}$ = ±5 V (unless otherwise noted)

		TEST CONDITIONS		- +	TLC2801Z			UNIT	
	PARAMETER		JONDITIONS	T _A †	MIN	TYP	MAX		
Vie	lanut offect voltogo			25°C		100	500	μV	
VIO	Input offset voltage			Full range			1500	μv	
αVIO	Temperature coefficient of input offset voltage			−55°C to 150°C		4		μV/∘C	
	Input offset voltage long-term drift (see Note 4)	V _{IC} = 0,	R _S = 50 Ω	25°C		0.001	0.005	μV/mo	
li o	lanut offect ourrest	1 E	25°C		0.5		pА		
IIO	Input offset current			Full range			3	nA	
lin	Input bias current	F	25°C		1		pА		
IВ	input bias current		Full range			30	nA		
VICR	Common-mode input voltage range	R _S = 50 Ω		Full range	-5 to 2.7			V	
Varia				25°C	4.7	4.8		v	
VOM+	Maximum positive peak output voltage swing	R _I = 10 kΩ	D 4010		4.5			V	
V _{OM} -	Maximum negative peak output voltage swing			25°C	-4.7	-4.9		v	
°OM−	Maximum negative peak output voltage swing			Full range	-4.5			V	
		$V_{O} = \pm 4 V$,	RL = 500 kΩ	25°C	300	460			
AVD	Large-signal differential voltage amplification	v0 - ±+ v,	NL = 300 N22	Full range	100			V/mV	
ΛVD		$V_{O} = \pm 4 V$,	$R_L = 10 \text{ k}\Omega$	25°C	50	100		v/IIIv	
		v0 - ±+ v,	NL = 10 K32	Full range	15				
CMRR	Common-mode rejection ratio	V _O = 0,	$V_{IC} = V_{ICR}min$,	25 °C	90	115		dB	
		R _S = 50 Ω		Full range	85				
k SVR	Supply-voltage rejection ratio $(\Delta V_{DD} + /\Delta V_{IO})$	$V_{DD\pm} = \pm 2.3 \text{ V to } \pm 8 \text{ V}$		25°C	90	110		dB	
- JAK				Full range	85				
IDD	Supply current	$V_{O} = 0,$	No load	25°C Full range		1.1	1.5	mA	
50		, , , , , , , , , , , , , , , , , , ,	O = 0, No load				1.5		

operating characteristics at specified free-air temperature, V_{DD\pm} = ±5 V

PARAMETER		TEST CONDITIONS	- +	TLC2801Z			UNIT	
		TEST CONDITIONS	Τ _Α †	MIN	TYP	MAX	UNIT	
SR	Slew rate unity gain	$V_{O} = \pm 2.3 V$, $R_{L} = 10 k\Omega$,	25 °C	2	2.7		V/µs	
SK	Siew rate unity gain	$V_{O} = \pm 2.3 \text{ V}, R_{L} = 10 \text{ k}\Omega,$ $C_{L} = 100 \text{ pF}$	Full range	1				
V	Equivalent input noise voltage	f = 10 Hz	25°C		18	35		
Vn	Equivalent input hoise voitage	f = 1 kHz	23.0		8	15	nV/√Hz	
	Deals to peak aguivalent input poice valtage	f = 0.1 to 1 Hz	25°C		0.5			
VN(PP)	Peak-to-peak equivalent input noise voltage	f = 0.1 to 10 Hz	25 0		0.7		μV	
I _n	Equivalent input noise current		25°C		0.6		fA/√Hz	
	Gain-bandwidth product	$ f = 10 \text{ kHz}, \qquad R_L = 10 \text{ k}\Omega, \\ C_L = 100 \text{ pF} $	25°C		1.9		MHz	
фт	Phase margin at unity gain	$R_{L} = 10 \text{ k}\Omega$, $C_{L} = 100 \text{ pF}$	25°C		48°			

[†]Full range is –40°C to 150°C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T_A = 150°C extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

SLOS116B - JULY 1982 - REVISED SEPTEMBER 1996

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS	- +	TLC2801Z			UNIT
	PARAMETER	TEST CONDITIONS	T _A †	MIN	TYP	MAX	
Vie	Input offset voltage		25°C		100	500	μV
VIO	input onset voltage		Full range			1500	μv
^α VIO	Temperature coefficient of input offset voltage]	Full range		4		μV/°C
	Input offset voltage long-term drift (see Note 4)	$V_{IC} = 0$, $R_S = 50 \Omega$	25°C		0.001	0.005	μV/mo
10	Input offset current	$V_{1C} = 0, I(S = 50.22)$	25°C		0.5		pА
U			Full range			3	μA
IB	Input bias current		25°C		1		pА
IB			Full range			30	PΛ
VICR	Common-mode input voltage range	R _S = 50 Ω	Full range	-5 to 2.7			v
V			25°C	4.7	4.8		v
VOH	Maximum high-level output voltage	$P_{\rm L} = 10 k_{\rm O}$	Full range	4.4			v
VOL	Maximum low-level output voltage	R _L = 10 kΩ	25°C		0	50	mV
VOL	Maximum low-level output voltage		Full range			50	IIIV
		$V_0 = 1 V \text{ to } 4 V,$	25°C	150	315		
AVD	Large-signal differential voltage amplification	RL = 500 kΩ	Full range	50			V/mV
AVD	Large-signal unerential voltage amplification	$V_{O} = 1 V \text{ to } 4 V,$	25°C	25	55		v/IIIv
		R _L = 10 kΩ	Full range	5			
CMRR	Common-mode rejection ratio	$V_{O} = 0$, $V_{IC} = V_{ICR}$ min,	25 °C	90	110		dB
OMINI		R _S = 50 Ω	Full range	85			üD
k SVR	Supply-voltage rejection ratio $(\Delta V_{DD} + /\Delta V_{IO})$	V _{DD} = 4.6 V to 16 V	25°C	90	110		dB
"2VK	Supply-voltage rejection ratio $(\Delta v DD \pm /\Delta v 0)$		Full range	85			
IDD	Supply current	$V_{O} = 0$, No load	25°C		1.1	1.5	mA
עטי			Full range			1.5	ma

operating characteristics at specified free-air temperature, V_{DD} = 5 V

PARAMETER		TEST CONDITIONS	- t	TLC2801Z			UNIT
		TEST CONDITIONS	Τ _Α †	MIN	TYP	MAX	UNIT
SR	Slew rate unity gain	$V_{O} = 0.5 V$ to 2.5 V,	25 °C	1.8	2.5		V/us
SK	Siew rate unity gain	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$	Full range	0.8			v/µs
V	Equivalent input noise voltage	f = 10 Hz	25°C		18	35	a) (/ 1 1 =
Vn	Equivalent input noise voltage	f = 1 kHz	25°C		8	15	nV/√Hz
Variation	Peak-to-peak equivalent input noise voltage	f = 0.1 to 1 Hz	25°C		0.5		μV
VN(PP)	f	f = 0.1 to 10 Hz	25°C		0.7		μv
I _n	Equivalent input noise current		25°C		0.6		fA/√Hz
	Gain-bandwidth product	$ f = 10 \text{ kHz}, \qquad R_L = 10 \text{ k}\Omega, \\ C_L = 100 \text{ pF} $	25°C		1.8		MHz
фт	Phase margin at unity gain	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$	25°C		45°		

[†]Full range is –40°C to 150°C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T_A = 150°C extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLC2801Z, TLC2801Y Advanced LinCMOS[™] LOW-NOISE PRECISION OPERATIONAL AMPLIFIERS SLOS116B – JULY 1982 – REVISED SEPTEMBER 1996

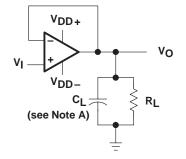
electrical characteristics at V_DD = 5 V, T_A = 25°C (unless otherwise noted)

PARAMETER		TEST CONDITIONS		TLC2801Z			UNIT
	PARAMIETER	TEST CONDITIONS		MIN	TYP	MAX	
VIO	Input offset voltage				100	500	μV
	Input offset voltage long-term drift (see Note 4)		Rg = 50 Ω		0.001	0.005	μV/mo
IIO	Input offset current	VIC= 0,	KS = 30.32		0.5		pА
I _{IB}	Input bias current				1		pА
VICR	Common-mode input voltage range	R _S = 50 Ω	R _S = 50 Ω	0 to 2.7			V
VOH	Maximum high-level output voltage	$R_L = 10 \text{ k}\Omega$	R _L = 10 kΩ	4.7	4.8		V
VOL	Maximum low-level output voltage	IO = 0	IO = 0		0	50	mV
A	Lorge signal differential voltage emplification	$V_{O} = 1 V \text{ to } 4 V,$	RL = 500 kΩ	150	315		V/mV
AVD	Large-signal differential voltage amplification	$V_{O} = 1 V \text{ to } 4 V,$	$R_L = 10 \ k\Omega$	25	55		
CMRR	Common-mode rejection ratio	$V_{O} = 0,$ R _S = 50 Ω	$V_{IC} = V_{ICR}$ min, R _S = 50 Ω	90	110		dB
k SVR	Supply-voltage rejection ratio ($\Delta V_{DD\pm}/\Delta V_{IO}$)	V_{DD} = 4.6 V to 16 V	V_{DD} = 4.6 V to 16 V	90	110		dB
I _{DD}	Supply current	V _O = 2.5 V,	No load		1	1.5	mA

operating characteristics at V_{DD} = 5 V, T_A = 25°C


PARAMETER		TEST CON	TEST CONDITIONS		TLC2801Z		
	PARAMETER	TESTCOM	IDITION5	MIN TYP MAX		MAX	UNIT
SR	Positive slew rate at unity gain	$V_{O} = 0.5 V \text{ to } 2.5 V,$ $C_{L} = 100 \text{ pF}$	R _L = 10 kΩ,	1.8	2.5		V/µs
V	f = 10 Hz		18				
۷ _n	Equivalent input noise voltage	f = 1 kHz	8			nV/√Hz	
	Peak-to-peak equivalent input noise voltage	f = 0.1 to 1 Hz			0.5		μV
VN(PP)		f = 0.1 to 10 Hz			0.7		μv
In	Equivalent input noise current				0.6		pA/√Hz
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF	R _L = 10 kΩ,		1.8		MHz
^ф т	Phase margin at unity gain	$R_L = 10 \text{ k}\Omega,$	C _L = 100 pF		45°		

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T_A = 150°C extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.



SLOS116B - JULY 1982 - REVISED SEPTEMBER 1996

PARAMETER MEASUREMENT INFORMATION

Figure 1. Noise-Voltage Test Circuit

NOTE A: C₁ includes fixture capacitance.

Figure 3. Slew-Rate Test Circuit

10 kΩ \sim V_{DD+} ٧₀ **100** Ω V_{DD}-CL RL (see Note A)

NOTE A: C1 includes fixture capacitance.

Figure 2. Phase-Margin Test Circuit

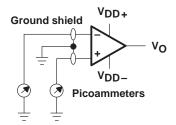
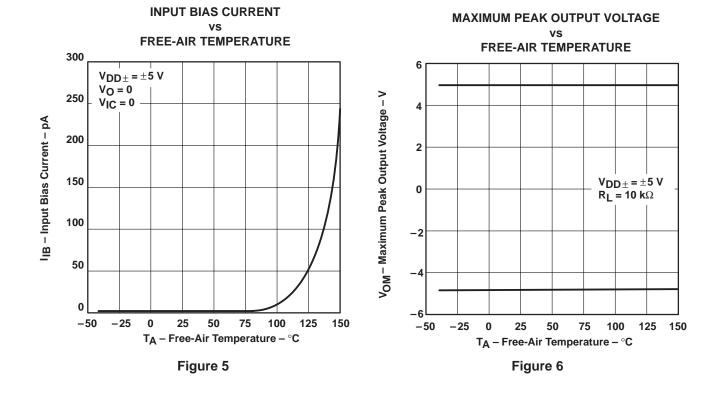


Figure 4. Input-Bias and Offset-**Current Test Circuit**

typical values

Typical values as presented in this data sheet represents the median (50% point) of device parametric performance.

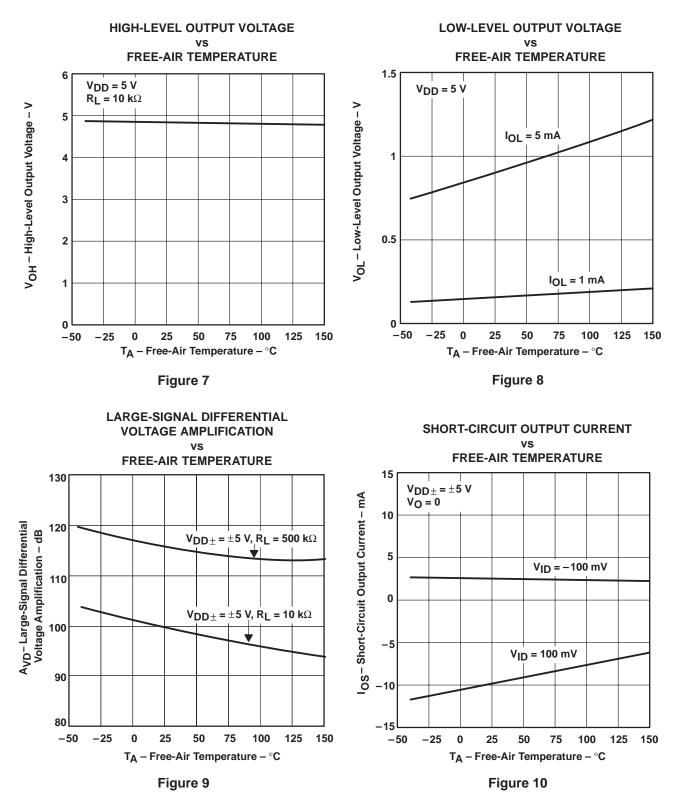
input bias and offset current


At the picoamp bias-current level typical of the TLC2801, accurate measurement of the bias current becomes difficult. Not only does this measurement require a picoammeter, but test socket leakages can easily exceed the actual device bias currents. To measure these small currents, Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltage applied but with no device in the socket. The device is then inserted in the socket and a second test measuring both the socket leakage and the device input bias current is performed. The two measurements are then subtracted algebraically to determine the bias current of the device.

TYPICAL CHARACTERISTICS

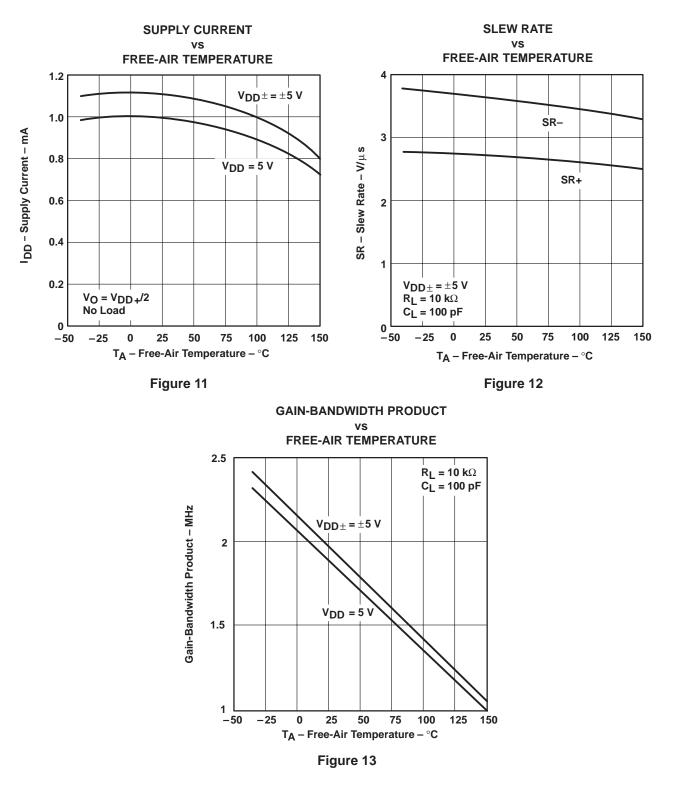
Table of Graphs

			FIGURE
I _{IB}	Input bias current	vs Free-air temperature	5
VOM	Maximum peak output voltage	vs Free-air temperature	6
VOH	High-level output voltage	vs Free-air temperature	7
VOL	Low-level output voltage	vs Free-air temperature	8
AVD	Differential voltage amplification	vs Free-air temperature	9
IOS	Short-circuit output current	vs Free-air temperature	10
IDD	Supply current	vs Free-air temperature	11
SR	Slew rate	vs Free-air temperature	12
	Gain-bandwidth product	vs Free-air temperature	13



TLC2801Z, TLC2801Y Advanced LinCMOSTM LOW-NOISE PRECISION OPERATIONAL AMPLIFIERS SLOS116B – JULY 1982 – REVISED SEPTEMBER 1996

– JULY 1982 – REVISED SEPTEMBER 1996



TLC2801Z, TLC2801Y Advanced LinCMOS[™] LOW-NOISE PRECISION OPERATIONAL AMPLIFIERS SLOS116B – JULY 1982 – REVISED SEPTEMBER 1996

TYPICAL CHARACTERISTICS

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated