INTEGRATED CIRCUITS

DATA SHEET

TDA9965 12-bit, 5.0 V, 30 Msps analog-to-digital interface for CCD cameras

Objective specification File under Integrated Circuits, IC02 2000 Aug 31

TDA9965

FEATURES

- Clamp and Track/Hold (CTH) with adjustable bandwidth, Programmable Gain Amplifier (PGA), 12-bit Analog-to-Digital Converter (ADC) and reference regulator
- Fully programmable via a 3-wire serial interface
- Sampling frequency up to 30 MHz
- PGA gain from 0 to 36 dB (in 0.05 dB steps)
- CTH programmable bandwidth from 65 to 265 MHz typical
- Standby mode (20 mW typical)
- Low power consumption of only 325 mW typical
- 5 V operation and 2.5 to 5.25 V operation for the digital outputs
- TTL compatible inputs, TTL and CMOS compatible outputs.

APPLICATIONS

· CCD camera systems.

GENERAL DESCRIPTION

The TDA9965 is a 12-bit analog-to-digital interface for CCD cameras. The device includes a CTH circuit, PGA and a low-power 12-bit ADC, together with its reference voltage regulator.

The CTH has a bandwidth circuit controlled by on-chip DACs via a serial interface.

A 10-bit digital clamp controls the ADC input clamp level.

ORDERING INFORMATION

TYPE		PACKAGE	
NUMBER	NAME	DESCRIPTION	VERSION
TDA9965HL	LQFP48	plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4$ mm	SOT313-2

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CCA}	analog supply voltage		4.75	5	5.25	V
V _{CCD}	digital supply voltage		4.75	5	5.25	V
V _{CCO}	digital output supply voltage		2.5	3	5.25	V
I _{CCA}	analog supply current		_	58	_	mA
I _{CCD}	digital supply current		_	14	_	mA
Icco	digital output supply current	f_{pix} = 18 MHz; C_L = 10 pF; ramp input	_	1	_	mA
ADC _{res}	ADC resolution		_	12	_	bits
V _{i(CTH)(p-p)}	CTH input voltage (peak-to-peak value)		_	400	2000	mV
G _{CTH}	CTH output amplifier gain		_	0	_	dB
f _{pix(max)}	maximum pixel frequency	code f _{co(CTH)} = 0001	30	_	_	MHz
PGA _{dyn}	PGA dynamic range		_	36	_	dB
N _{tot(rms)}	total noise from CTH input to ADC output (RMS value)	$G_{PGA} = 0 dB;$ $code f_{co(CTH)} = 0100$	_	0.75	_	LSB
V _{n(i)(eq)(rms)}	equivalent input noise (RMS value)	$G_{PGA} = 36 \text{ dB}$	_	75	_	μV
P _{tot}	total power consumption		_	365	_	mW

V_{CCD2}

47

TDA9965

SHD

SHP

45

CLAMP

TRACK AND HOLD

4-BIT DAC

PGA

10-BIT DAC

REGULATOR

 V_{RB} V_{RT}

REGEN

15

DEC

REF32

DGND2

AGND4

IN -

AGND5 —

STGE -

AGND1

V_{CCA1}

AGND2

VCCA2 -

PGAOUT-

ADCIN

n.c. —

V_{ref}

10

12

48

Objective specification

Philips Semiconductors

BLOCK DIAGRAM analog-to-digital interface for CCD cameras 12-bit, 5.0 V, 30 Msps V_{CCD1} CLKADC DGND1 STDBY D11 D10 42 40 38 36 CLOCK - D9 35 - D8 34 - D7 33 D6 32 V_CCO2 12-BIT ADC 12/▶ OUTPUT BUFFER - OGND2 V_{CCO1} OGND1 28 - D5 27 - D4

26

25

24

D1

23

D0

- D3

D2

FCE424

Fig.1 Block diagram.

AGND3

18 19

V_{CC}A3

REF = 3.2 V

CLPADC

CLAMP

10

SERIAL

INTERFACE

SCLK

SEN

21

♦ SDATA

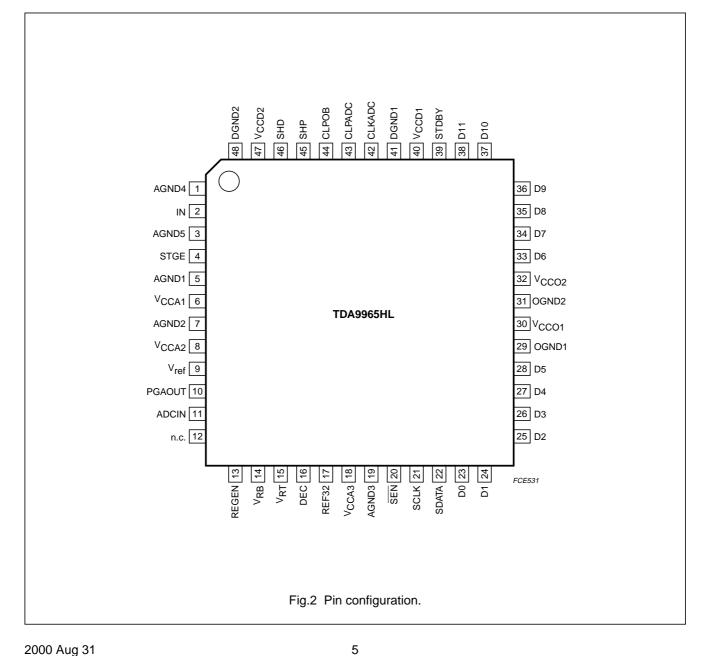
43

CLPOB

44

12-bit, 5.0 V, 30 Msps analog-to-digital interface for CCD cameras

TDA9965


PINNING

SYMBOL	PIN	DESCRIPTION
AGND4	1	analog ground
IN	2	data input signal from CCD
AGND5	3	analog ground
STGE	4	clamp storage capacitor pin
AGND1	5	analog ground
V _{CCA1}	6	analog supply voltage
AGND2	7	analog ground
V _{CCA2}	8	analog supply voltage
V _{ref}	9	ADC clamp reference voltage input (short circuited to ground via a capacitor)
PGAOUT	10	PGA amplifier signal output
ADCIN	11	ADC analog signal input externally connected to PGAOUT
n.c.	12	not connected
REGEN	13	regulator enable input (active HIGH)
V_{RB}	14	regulator reference voltage bottom
V _{RT}	15	regulator reference voltage top
DEC	16	regulator decoupling (decoupled to ground via a capacitor)
REF32	17	internal reference voltage (decoupled to ground via a capacitor)
V _{CCA3}	18	analog supply voltage
AGND3	19	analog ground
SEN	20	enable input for the serial interface shift register (active LOW)
SCLK	21	serial clock input for the serial interface
SDATA	22	serial data for the 10-bit PGA gain, 4-bit DAC for the frequency cut-off, 10 low significant bits for the
		digital ADC clamp and edge pulse control
D0	23	ADC digital output 0 (LSB)
D1	24	ADC digital output 1
D2	25	ADC digital output 2
D3	26	ADC digital output 3
D4	27	ADC digital output 4
D5	28	ADC digital output 5
OGND1	29	digital output ground
V _{CCO1}	30	digital output supply voltage 1
OGND2	31	digital output ground 2
V_{CCO2}	32	digital output supply voltage 2
D6	33	ADC digital output 6
D7	34	ADC digital output 7
D8	35	ADC digital output 8
D9	36	ADC digital output 9
D10	37	ADC digital output 10
D11	38	ADC digital output 11 (MSB)
STDBY	39	standby control pin (active HIGH), all output bits are logic 0 when standby is enabled

12-bit, 5.0 V, 30 Msps analog-to-digital interface for CCD cameras

TDA9965

SYMBOL	PIN	DESCRIPTION
V _{CCD1}	40	digital supply voltage 1
DGND1	41	digital ground 1
CLKADC	42	ADC clock input
CLPADC	43	clamp control pulse input for ADC analog input signal
CLPOB	44	clamp control pulse input at optical black
SHP	45	preset sample hold pulse input
SHD	46	data sample and hold pulse input
V _{CCD2}	47	digital supply voltage 2
DGND2	48	digital ground 2

2000 Aug 31

12-bit, 5.0 V, 30 Msps analog-to-digital interface for CCD cameras

TDA9965

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CCA}	analog supply voltage	note 1	-0.3	+7.0	V
V _{CCD}	digital supply voltage	note 1	-0.3	+7.0	V
V _{CCO}	output stages supply voltage	note 1	-0.3	+7.0	V
ΔV_{CC}	supply voltage difference				
	between V _{CCA} and V _{CCD}		-1.0	+1.0	V
	between V _{CCA} and V _{CCO}		-1.0	+4.0	V
	between V _{CCD} and V _{CCO}		-1.0	+4.0	V
Vi	input voltage	referenced to AGND	-0.3	+7.0	V
Io	output current		_	10	mA
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	ambient temperature		-20	+75	°C
Tj	junction temperature		_	150	°C

Note

HANDLING

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	76	K/W

^{1.} The supply voltages V_{CCA} , V_{CCD} and V_{CCO} may have any value between -0.3 and +7.0 V provided that the supply voltage difference ΔV_{CC} remains as indicated.

12-bit, 5.0 V, 30 Msps analog-to-digital interface for CCD cameras

TDA9965

CHARACTERISTICS

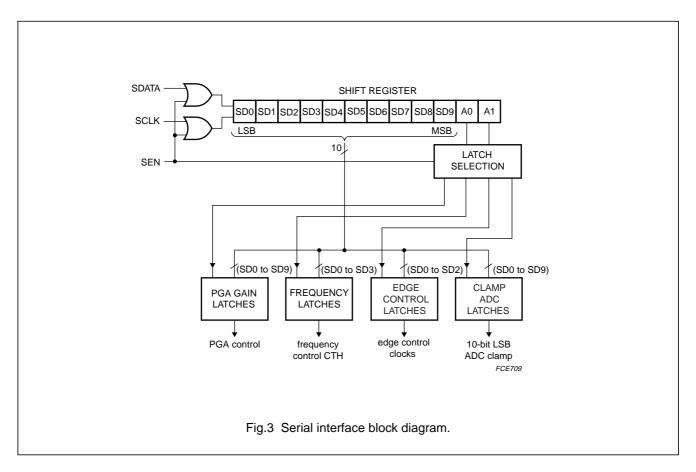
 $V_{CCA} = V_{CCD} = 5 \text{ V}; V_{CCO} = 3 \text{ V}; f_{pix} = 30 \text{ MHz}; T_{amb} = 25 \text{ °C}; unless otherwise specified.}$

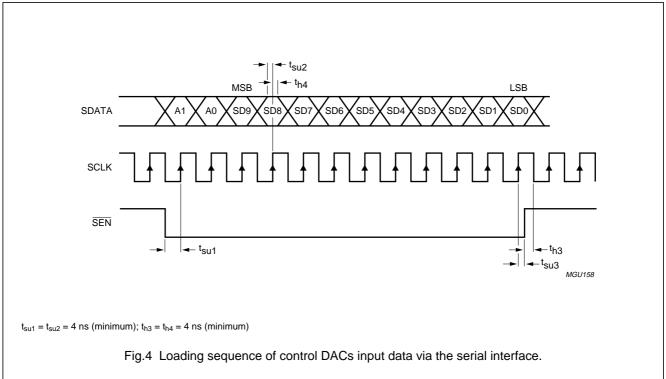
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies			'			•
V _{CCA}	analog supply voltage		4.75	5	5.25	V
V _{CCD}	digital supply voltage		4.75	5	5.25	٧
V _{CCO}	digital output supply voltage		2.5	3	5.25	٧
I _{CCA}	analog supply current		_	58	_	mA
I _{CCD}	digital supply current		_	14	_	mA
I _{cco}	digital output supply current	f _{pix} = 18 MHz; C _L = 10 pF on all data outputs; ramp input	_	1	_	mA
Digital inputs	S					
CLOCK INPUT:	CLKADC (REFERENCED TO DGND)				
V _{IL}	LOW-level input voltage		0	_	0.8	V
V _{IH}	HIGH-level input voltage		2.0	_	V _{CCD}	٧
I _{IL}	LOW-level input current	V _{CLK} = 0.8 V	-1	_	+1	μΑ
I _{IH}	HIGH-level input current	V _{CLK} = 2.0 V	_	_	20	μΑ
Z _i	input impedance	f _{pix} = 30 MHz	_	46	_	kΩ
C _i	input capacitance	f _{pix} = 30 MHz	_	1	_	pF
PINS: SEN, S	CLK, SDATA, STDBY, CLPDM, CL	POB, CLPADC, REGEN, SHP AN	D SHD	•	•	
V _{IL}	LOW-level input voltage		0	_	0.8	V
V _{IH}	HIGH-level input voltage		2.0	_	V _{CCD}	٧
l _i	input current		-2	_	+2	μΑ
Clamp and T	rack/Hold (CTH)					
V _{i(CTH))(p-p)}	input amplitude (peak-to-peak value)		_	-2	_	V
I _{i(IN)}	input current into pin IN (pin 2)		-2	_	+2	μΑ
t _{W(SHP)(min)}	minimum SHP pulse width	V _{N(CCD)} = 2000 mV	9	12	_	ns
t _W (SHD)(min)	minimum SHD pulse width	(peak-to-peak value); black-to-white transition in 1 pixel (99%); code f _{co(CTH)} = 0000	9	12	_	ns
t _{h(IN-SHP)}	CTH input hold time compared to control pulse SHP	see Fig.5	_	1.5	_	ns
t _{h(IN-SHD)}	CTH input hold time compared to control pulse SHD	see Fig.5	_	1.5	_	ns

12-bit, 5.0 V, 30 Msps analog-to-digital interface for CCD cameras

TDA9965

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
t _{st(CTH)}	CTH settling time	see Fig.10; G _{PGA} = 0 dB; V _{i(CTH)} = 2000 mV (peak-to-peak value); black-to-white transition in 1 pixel with 99.5% V _i recovery; CTH bandwidth control DAC input code:				
		0000	_	tbf	_	ns
		0001	_	tbf	_	ns
		0010	_	tbf	_	ns
		0100	_	tbf	_	ns
		1111	_	tbf	_	ns
Amplifier out	puts				•	
V _{PGAOUT(p-p)}	PGA output amplifier dynamic voltage level (peak-to-peak value)		_	2000	_	mV
V _{PGAOUT(b)}	PGA output amplifier black level voltage		_	V _{ref}	_	V
Z _{PGAOUT}	PGA output amplifier output impedance	f _(pix) at 10 kHz for minimum and maximum values	_	5	_	Ω
I _{PGAOUT}	PGA output current drive	static	_	_	1	mA
G _{PGA(min)}	minimum gain of PGA circuit	PGA DAC input code = 0 (10-bit control)	_	0	_	dB
G _{PGA(max)}	maximum gain of PGA circuit	PGA DAC input code ≥767 (10-bit control)	_	36	_	dB
Analog-to-Di	gital Converter (ADC)			'	•	!
f _{pix(max)}	maximum pixel frequency		30	_	_	MHz
t _{WCLKH}	clock pulse width HIGH	one LSB error for black-to-white transition	12	_	_	ns
t _{WCLKL}	clock pulse width LOW		12	_	_	ns
SR _{CLK}	clock input slew rate (rising and falling edges)	10% to 90%	0.5	_	_	V/ns
V _{i(ADC)(p-p)}	ADC input voltage level (peak-to-peak value)	with internal regulator	_	2	_	V
V_{RB}	ADC reference voltage bottom		_	1.25	_	V
V _{RT}	ADC reference voltage top		_	3.625		V
I _{ADCIN}	input current ADCIN (pin 11)		-2	_	+120	μΑ
DNL	differential non linearity	ramp input	_	±0.5	±0.75	LSB
t _{d(s)}	sampling delay time		_	_	5	ns


12-bit, 5.0 V, 30 Msps analog-to-digital interface for CCD cameras


TDA9965

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Total chain ch	naracteristics (CTH + PGA + AD	OC)	!		ļ	
t _d (SHD-CLKADC)	time delay between SHD and CLKADC	see Fig.5; 50% at rising edges CLKADC and SHP: transition full scale ADC code 0 to 4095; $f_{co(CTH)} = 100 \text{ MHz};$ $V_{i(CTH)} = 2000 \text{ mV}$	-	tbf	_	ns
$N_{tot(rms)}$	total noise from CTH input to ADC output (RMS value)	$G_{PGA} = 0 \text{ dB};$ $code f_{co(CTH)} = 0100$	_	0.75	_	LSB
		$G_{PGA} = 36 \text{ dB};$ $code f_{co(CTH)} = 0100$	_	10	_	LSB
O _{CCD(max)}	maximum offset between CCD floating level and CCD dark pixel level		-200	_	+200	mV
$V_{n(i)(eq)(rms)} \\$	equivalent input noise (RMS value)	$G_{PGA} = 36 \text{ dB}$ (code $f_{co(CTH)} = 0011$)	_	75	_	μV
Digital output	ts (f _{pix} = 30 MHz; C _L = 15 pF)					
V _{OH}	HIGH-level output voltage	I _{OH} = -1 mA	V _{CCO} - 0.5	_	Vcco	V
V _{OL}	LOW-level output voltage	I _{OL} = 1 mA	0	_	0.5	V
I _{OZ}	output current in 3-state mode	0 < V _o < V _{CCO}	-20	_	+20	μΑ
t _{h(o)}	output hold time	see Fig.5	8	_	_	ns
t _{d(o)}	output delay time	C _i = 15 pF; V _{CCO} = 5 V	_	17	23	ns
		C _i = 10 pF; V _{CCO} = 5 V	_	15	21	ns
		C _i = 15 pF; V _{CCO} = 3 V	_	20	29	ns
		C _i = 10 pF; V _{CCO} = 3 V	_	17	25	ns
		$C_i = 15 \text{ pF}; V_{CCO} = 2.5 \text{ V}$	_	22	33	ns
		$C_i = 10 \text{ pF}; V_{CCO} = 2.5 \text{ V}$	_	18	28	ns
Serial interfac	ce					
f _{SCLK(max)}	maximum frequency of serial interface		5	_	_	MHz

12-bit, 5.0 V, 30 Msps analog-to-digital interface for CCD cameras

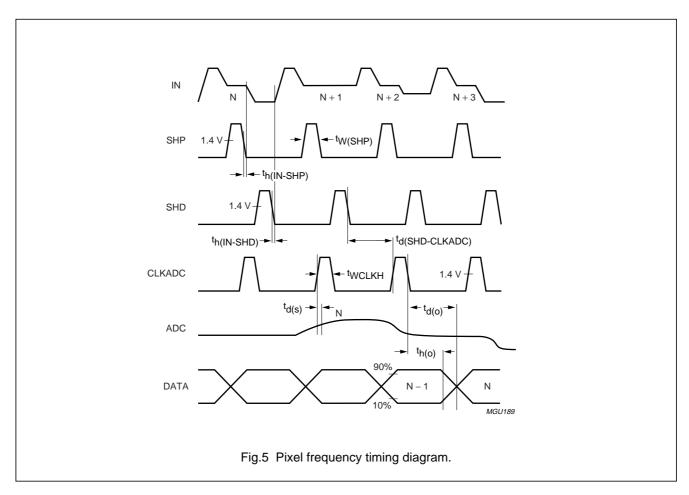
TDA9965

12-bit, 5.0 V, 30 Msps analog-to-digital interface for CCD cameras

TDA9965

Table 1 Serial interface programming

ADDRE	SS BITS	SDATA BITS SD9 to SD0
A1	A0	SDAIA BITS SD9 to SD0
0	0	CLAMP reference of ADC (SD0 to SD9)
0	1	cut-off frequency of CTH (SD0 to SD3)
1	0	PGA gain control (SD0 to SD9)
1	1	edge control for pulses SHP, SHD, CLPOB, CLPADC and CLKADC (see note 1):
		SD0 = 0, SHP and SHD sample on HIGH level
		SD0 = 1, SHP and SHD activated with falling edges
		SD1 = 1, CLPADC and CLPOB activated on HIGH level
		SD2 = 1, CLKADC activated with rising edge


Note

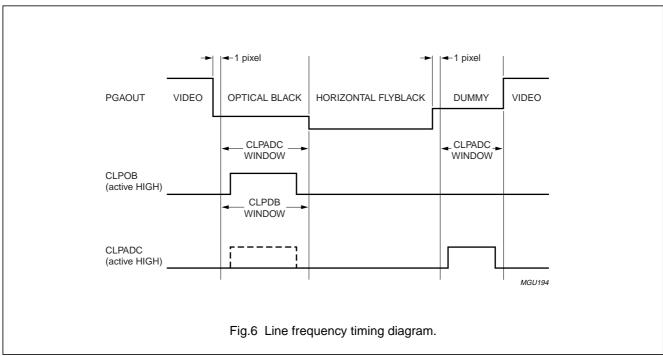
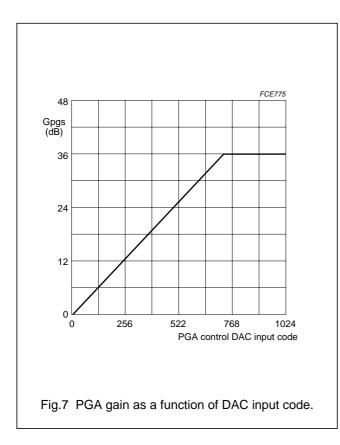
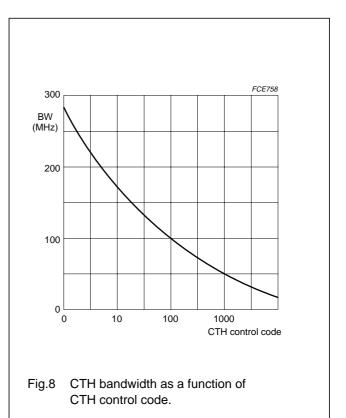
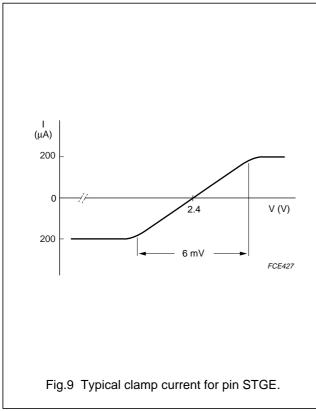

1. When CLPADC is HIGH (SD1 = 1: serial interface), the ADC input is clamped to voltage level of V_{ref} . V_{ref} is connected to ground via a capacitance.

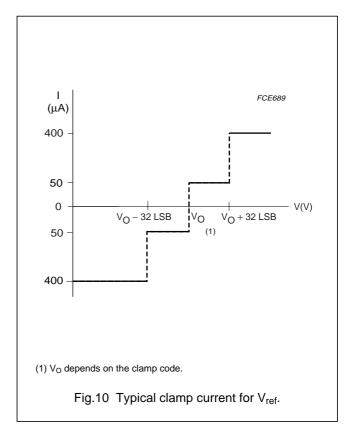
Table 2 Standby selection

STDBY	DATA BITS SD9 to SD0	I _{CCA} + I _{CCD} (TYP.)
1	LOW	4 mA
0	active	70 mA

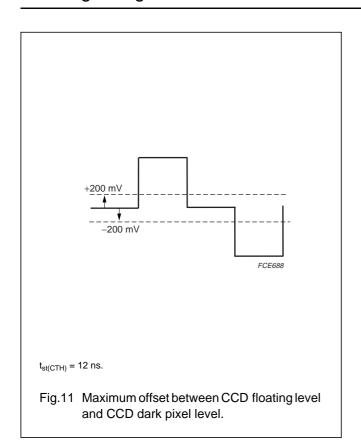

TDA9965



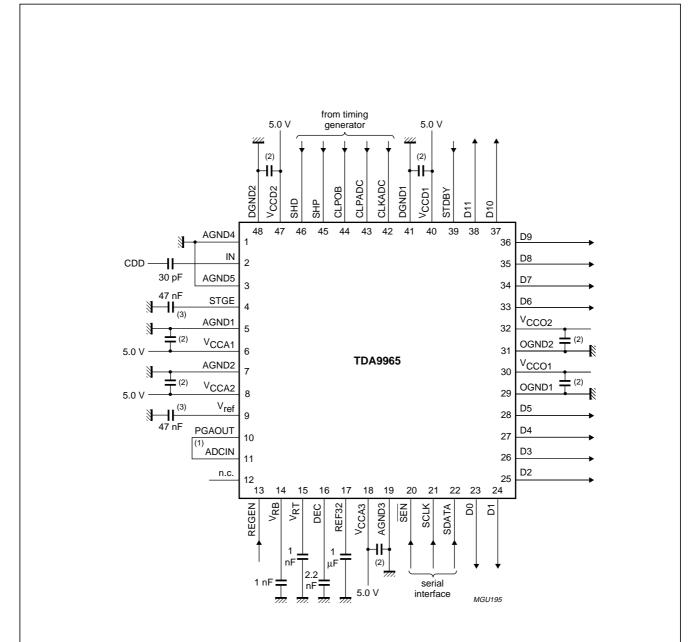



12-bit, 5.0 V, 30 Msps analog-to-digital interface for CCD cameras

TDA9965



12-bit, 5.0 V, 30 Msps analog-to-digital interface for CCD cameras


TDA9965

12-bit, 5.0 V, 30 Msps analog-to-digital interface for CCD cameras

TDA9965

APPLICATION DIAGRAM

Depending on the application, the following connections must be made:

- (1) The clamp level of the signal input at ADCIN can be tuned from code 0 to code 1023 in 1 LSB steps of ADC via the serial interface (clamp ADC activated).
- (2) All supply pins must be decoupled with 100 nF capacitors as closely as possible to the device.
- (2) STGE and V_{ref} capacitors are typical values, performing a typical device start-up time of 300 µs from standby (STDBY) to active (supplies on).

Fig.12 Application diagram.

12-bit, 5.0 V, 30 Msps analog-to-digital interface for CCD cameras

TDA9965

POWER AND GROUNDING RECOMMENDATIONS

Care should be taken to minimise the noise when designing a printed-circuit board for applications such as PC cameras, surveillance cameras, camcorders and digital still cameras.

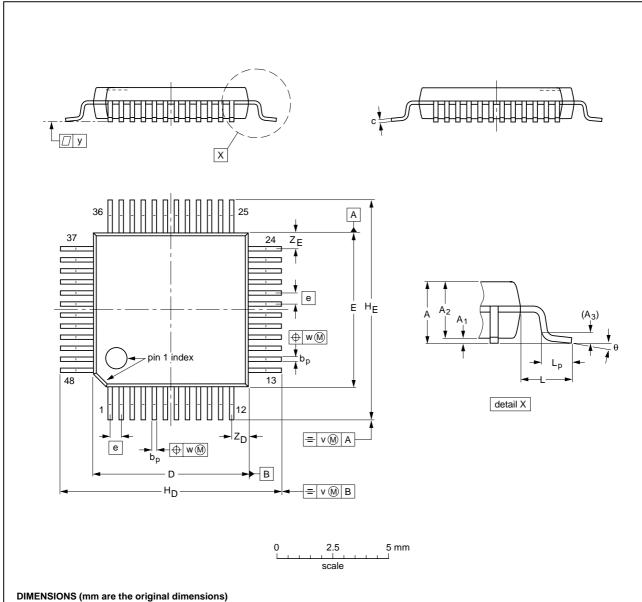
For the front end integrated circuit, the basic rules of printed-circuit board design and implementation of analog components (such as classical operational amplifiers) must be taken into account, particularly with respect to power and ground connections.

The following additional recommendation is given for the CTH input pin (IN) which is internally connected to the programmable gain amplifier.

The connections between CCD interface and CTH input should be as short as possible and a ground ring protection around these connections can be beneficial. Separate analog and digital supplies provide the best solution. If it is not possible to do this on the board then the analog supply pins must be decoupled effectively from the digital supply pins. If the same power supply and ground are used for all the pins then the decoupling capacitors must be placed as closely as possible to the IC package.

In a two-ground system, in order to minimise the noise through the package and die parasitics, the following recommendation must be implemented:

- All the analog and digital supply pins must be decoupled to the analog ground plane. Only the ground pin associated with the digital outputs must be connected to the digital ground plane. All the other ground pins should be connected to the analog ground plane. The analog and digital ground planes must be connected together at one point as closely as possible to the ground pin associated with the digital outputs.
- The digital output pins and their associated lines should be shielded by the digital ground plane which can then be used as a return path for the digital signals.


12-bit, 5.0 V, 30 Msps analog-to-digital interface for CCD cameras

TDA9965

PACKAGE OUTLINE

LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm

SOT313-2

	•			•		,													
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	H _D	HE	L	Lp	v	w	у	Z _D ⁽¹⁾	Z _E ⁽¹⁾	θ
mm	1.60	0.20 0.05	1.45 1.35	0.25	0.27 0.17	0.18 0.12	7.1 6.9	7.1 6.9	0.5	9.15 8.85	9.15 8.85	1.0	0.75 0.45	0.2	0.12	0.1	0.95 0.55	0.95 0.55	7° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT313-2	136E05	MS-026				99-12-27 00-01-19

12-bit, 5.0 V, 30 Msps analog-to-digital interface for CCD cameras

TDA9965

SOLDERING

Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used.

Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 230 °C.

Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

 For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 $^{\circ}$ C.

12-bit, 5.0 V, 30 Msps analog-to-digital interface for CCD cameras

TDA9965

Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE	SOLDERIN	SOLDERING METHOD		
PACKAGE	WAVE	REFLOW ⁽¹⁾		
BGA, LFBGA, SQFP, TFBGA	not suitable	suitable		
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS	not suitable(2)	suitable		
PLCC ⁽³⁾ , SO, SOJ	suitable	suitable		
LQFP, QFP, TQFP	not recommended ⁽³⁾⁽⁴⁾	suitable		
SSOP, TSSOP, VSO	not recommended ⁽⁵⁾	suitable		

Notes

- 1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
- 2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
- 3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- 4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- 5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

12-bit, 5.0 V, 30 Msps analog-to-digital interface for CCD cameras

TDA9965

DATA SHEET STATUS

DATA SHEET STATUS	PRODUCT STATUS	DEFINITIONS (1)
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

Note

1. Please consult the most recently issued data sheet before initiating or completing a design.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

TDA9965

NOTES

TDA9965

NOTES

TDA9965

NOTES

Philips Semiconductors – a worldwide company

Argentina: see South America

Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140, Tel. +61 2 9704 8141, Fax. +61 2 9704 8139 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101 1248. Fax. +43 1 60 101 1210

Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,

220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773

Belgium: see The Netherlands Brazil: see South America

Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,

51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102

Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,

Tel. +1 800 234 7381, Fax. +1 800 943 0087

China/Hong Kong: 501 Hong Kong Industrial Technology Centre,

72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700

Colombia: see South America Czech Republic: see Austria

Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,

Tel. +45 33 29 3333, Fax. +45 33 29 3905 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615 800, Fax. +358 9 6158 0920

France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,

Tel. +33 1 4099 6161, Fax. +33 1 4099 6427

Germany: Hammerbrookstraße 69, D-20097 HAMBURG,

Tel. +49 40 2353 60, Fax. +49 40 2353 6300

Hungary: see Austria

India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,

Tel. +91 22 493 8541, Fax. +91 22 493 0966

Indonesia: PT Philips Development Corporation, Semiconductors Division,

Gedung Philips, Jl. Buncit Raya Kav. 99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080

Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200

Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007

Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),

Tel. +39 039 203 6838. Fax +39 039 203 6800

Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057

Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415

Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,

Tel. +60 3 750 5214, Fax. +60 3 757 4880

Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,

Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087

Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,

Tel. +31 40 27 82785, Fax. +31 40 27 88399

New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811

Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341

Pakistan: see Singapore

Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474

Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW, Tel. +48 22 5710 000, Fax. +48 22 5710 001

Portugal: see Spain

Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW,

Tel. +7 095 755 6918, Fax. +7 095 755 6919

Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,

Tel. +65 350 2538, Fax. +65 251 6500

Slovakia: see Austria Slovenia: see Italy

South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,

2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,

Tel. +27 11 471 5401, Fax. +27 11 471 5398 South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP. Brazil.

Tel. +55 11 821 2333. Fax. +55 11 821 2382 Spain: Balmes 22, 08007 BARCELONA Tel. +34 93 301 6312, Fax. +34 93 301 4107

Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,

Tel. +46 8 5985 2000, Fax. +46 8 5985 2745

Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,

Tel. +41 1 488 2741 Fax. +41 1 488 3263

Taiwan: Philips Semiconductors, 5F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2451, Fax. +886 2 2134 2874

Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.

60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260,

Tel. +66 2 361 7910, Fax. +66 2 398 3447

Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,

ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813

Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,

252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461

United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,

Tel. +1 800 234 7381, Fax. +1 800 943 0087

Uruguay: see South America Vietnam: see Singapore

Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,

Tel. +381 11 3341 299, Fax.+381 11 3342 553

For all other countries apply to: Philips Semiconductors,

Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN,

The Netherlands, Fax. +31 40 27 24825

Internet: http://www.semiconductors.philips.com

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

© Philips Electronics N.V. 2000

753504/01/pp24

Date of release: 2000 Aug 31

Document order number: 9397 750 06824

SCA70

Let's make things better.

