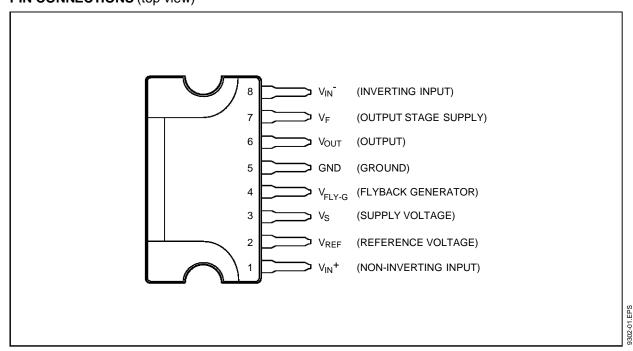


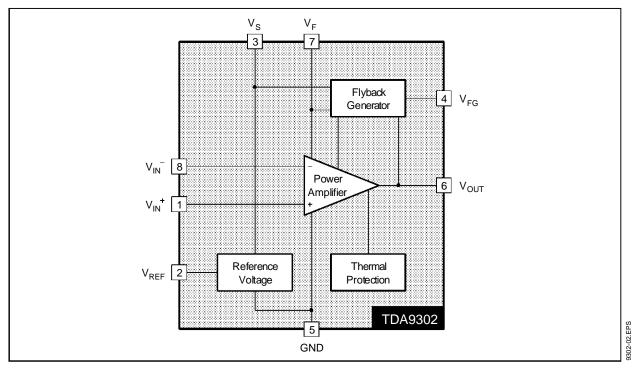
TV VERTICAL DEFLECTION OUTPUT CIRCUIT

PRELIMINARY DATA

- POWER AMPLIFIER
- THERMAL PROTECTION
- FLYBACK GENERATOR
- REFERENCE VOLTAGE
- WELL SUITED FOR AUTOMATIC INSERTION
- OPERATING SUPPLY VOLTAGE RANGE : 10 to 30V



DESCRIPTION


The TDA9302 is a monolithic integrated circuit in CLIPWATT 8 pins in line package. It is a high efficiency power booster for direct driving of vertical windings of TV yokes.

It is intended for use in low-cost TV as well as in monitors and display units.

PIN CONNECTIONS (top view)

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

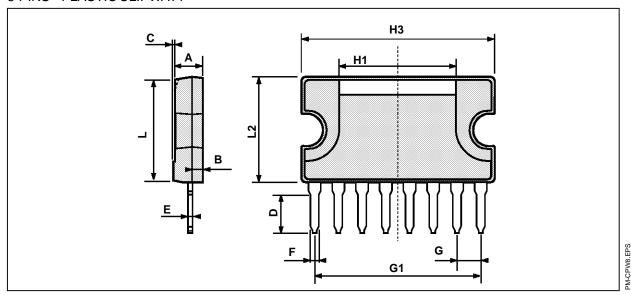
Symbol	Parameter	Pins	Value	Unit
Vs	Supply Voltage	3	35	V
V _F , V _O	Flyback Peak Voltage	6, 7	65	V
V _i +, V _i -	Amplifier Input Voltage	1, 8	V_S	V
I _{OP}	Peak Output Current	6	1.5	Α
l ₄	Flyback DC Current at V _O < V _S	4	100	mA
l ₄	Flyback Peak Current - f = 50 or 60Hz, t _{FLY} < 1.5ms	4	1.8	А
P _{tot}	Total Power Dissipation at T _{case} = 70°C		13	W
T _{stg}	Storage Temperature		-40, +150	°C
Tj	Junction Temperature		internally limited	°C

THERMAL DATA

Symbol	Parameter	Value	Unit	
Tj	Junction Temperature at Thermal Shutdown	Тур.	140	°C
T _{sh}	Thermal Protection Hysteresis	Тур.	25	°K
R _{th (j-c)}	Junction-case Thermal Resistance	Max.	3	°C/W

9302-02.TBL

ELECTRICAL CHARACTERISTICS


Refer to the test circuit. $V_S = 35V$, $T_{amb} = 25^{\circ}C$, unless otherwise specified

Symbol	Parameter	Test Conditions	Pins	Min.	Тур.	Max.	Unit
Vs	Supply Voltage Range		3	10		35	V
I _{S(SB)}	Supply Standby Current	$I_O = I_{flyb} = 0$	3		8		mA
I _{O(SB)}	Power Stage Standby Current	$I_O = I_{flyb} = 0$	7		17	35	mA
I ₁₋₈	Power Amplifier Input Current	V _I = 1V	1, 8			1	micA
R ₁₋₈	Power Amplifier Input Resistance		1, 8		200		kΩ
V _{4L}	Flyback Output Saturation Voltage	$I_{fb} = 10mA$	4			450	mV
V _{6L}	Power Output Low Side Saturation Voltage	I _O = 0.1A I _O = 0.8A	6			1.2 2.3	V
V _{6H}	Power Output High Side Saturation Voltage	I _O = -0.1A I _O = -0.8A	6			2.1 3.2	V
V _{6/7}	Power Output Diode Forward Voltage	$I_{d} = 0.8A$	6		1.5		V
V _{4/3}	Flyback Output Diode Forward Voltage	$I_{d} = 0.8A$	4		1.5		V
V _{REF}	Reference Voltage		2	2.05	2.2	2.35	V
$\frac{dV_{REF}}{dV_{S}}$	Reference Voltage Drift versus V _S	V _S = 10V to 35V	2			2	mV/V
$\frac{dV_{REF}}{dT_{j}}$	Reference Voltage Drift versus Junction Temperature	$T_j = 0^{\circ}C \text{ to } 125^{\circ}C$	2			150	ppm/°C

9302-03.TBL

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC CLIPWATT

Dimensions		Millimeters			Inches	
Dimensions	Min.	Тур.	Max.	Min.	Тур.	Max.
А			3.10			0.122
В			1.10			0.04
С		0.15			0.006	
D		3.50			0.14	
E		0.52			0.02	
F		0.80			0.03	
G		2.55			0.10	
G1		17.78			0.70	
H1		12.00			0.48	
H3		20.00			0.79	
L		15.90			0.62	
L2		11.00			0.43	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I²C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips I²C Patent. Rights to use these components in a I²C system, is granted provided that the system conforms to the I²C Standard Specifications as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

