INTEGRATED CIRCUITS

Product specification Supersedes data of 1995 Mar 22 File under Integrated Circuits, IC02 1996 Feb 01

FEATURES

- Two 8-bit ADCs:
 - one Luminance or CVBS channel
- one Chrominance channel
- Sampling rate up to 32 MHz
- Binary or two's complement 3-state TTL outputs for each channel
- Internal reference voltage regulator
- TTL-compatible digital inputs and outputs
- Power dissipation of 530 mW (typical)
- Input selector circuit (five selectable video inputs for CVBS or YC processing)
- Peak white enable input
- Clamp and Automatic Gain Control (AGC) functions for Y/CVBS channel (clamping on code 64 and Peak White level control at code 255)
- Clamp function for C channel (code 128)
- No sample-and-hold circuit required.

APPLICATIONS

- Video signal decoding
- Digital picture processing
- Frame grabbing
- Multimedia with the Philips Desktop Video chip set (and especially SAA7196 multistandard decoder and scaler).

GENERAL DESCRIPTION

The TDA8758 is an 8-bit video high-speed low-power analog-to-digital conversion (ADC) interface for YC and CVBS signal processing. It converts 1-of-3 CVBS input signals or 1-of-2 YC input signals into binary or two's complement words at a sampling rate of 32 MHz. All analog signal inputs are digitally clamped and an ADC interface is provided on the Y/CVBS channel. A fast precharge on clamp and AGC is provided for start-up. All digital inputs and outputs are TTL compatible.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CCA}	analog supply voltage		4.75	5.0	5.25	V
V _{CCD}	digital supply voltage		4.75	5.0	5.25	V
V _{cco}	output stages supply voltage		4.75	5.0	5.25	V
I _{CCA}	analog supply current		-	59	70	mA
I _{CCD}	digital supply current		-	28	40	mA
I _{CCO}	output supply current	C _L = 15 pF	-	19	28	mA
ILE	DC integral linearity error		-	±0.75	±1.5	LSB
DLE	DC differential linearity error		_	±0.4	±1.0	LSB
EB	effective bits (from video input to digital outputs)	f _{clk} = 32 MHz; f _i = 4.43 MHz	_	7.1	-	bits
f _{clk(max)}	maximum clock frequency		30	32	_	MHz
В	maximum –3 dB bandwidth (input preamplifier)	full-scale; 0 dB gain	-	15	-	MHz
α _{ct}	crosstalk between Y and C channels and each video input		-	-63	-55	dB
P _{tot}	total power dissipation		_	530	724	mW

QUICK REFERENCE DATA

ORDERING INFORMATION

TYPE		PACKAGE				
NUMBER	NAME	DESCRIPTION	VERSION			
TDA8758G	LQFP48	plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4$ mm	SOT313-2			

TDA8758

YC 8-bit low-power analog-to-digital video interface

BLOCK DIAGRAM

PINNING

SYMBOL	PIN	DESCRIPTION
DEC1	1	decoupling input 1
CHROM2	2	chrominance analog voltage input 2
AGND	3	analog ground
CHROM1	4	chrominance analog voltage input 1
SEL2	5	selection control input 2
CVBS3	6	luminance analog voltage input 3
C _{CLPY}	7	Y channel clamping capacitor
SDN	8	stabilizer decoupling node
Y2/CVBS2	9	luminance analog voltage input 2
V _{CCA}	10	analog supply voltage (+5 V)
Y1/CVBS1	11	luminance analog voltage input 1
SEL1	12	selection control input 1
C _{AGC}	13	AGC capacitor
PWE	14	peak white enable input (active LOW)
DEC3	15	decoupling input 3
ANOUTY	16	analog output for Y channel
REG2	17	decoupling input 2 (internal stabilization loop decoupling)
DGND	18	digital ground
GATE A	19	AGC control input
GATE B	20	clamp control input
V _{CCD}	21	digital supply voltage (+5 V)
OFY	22	Y channel output format/chip enable (3-state input)
Y7	23	Y channel data output; bit 7 (MSB)
Y6	24	Y channel data output; bit 6
Y5	25	Y channel data output; bit 5
Y4	26	Y channel data output; bit 4
Y3	27	Y channel data output; bit 3
Y2	28	Y channel data output; bit 2
Y1	29	Y channel data output; bit 1
Y0	30	Y channel data output; bit 0 (LSB)
OGND2	31	output ground 2
V _{CCO2}	32	output supply voltage 2 (+5 V)
C7	33	C channel data output; bit 7 (MSB)
C6	34	C channel data output; bit 6
C5	35	C channel data output; bit 5
C4	36	C channel data output; bit 4
C3	37	C channel data output; bit 3
C2	38	C channel data output; bit 2
C1	39	C channel data output; bit 1
C0	40	C channel data output; bit 0 (LSB)

SYMBOL	PIN	DESCRIPTION
V _{CCO1}	41	output supply voltage 1 (+5 V)
CLK	42	clock input
OGND1	43	output ground 1
REG1	44	decoupling input 1 (internal stabilization loop decoupling)
ANOUTC	45	analog output for C channel
DEC2	46	decoupling input 2
OFC	47	C channel output format/chip enable (3-state input)
C _{CLPC}	48	C channel clamping capacitor

FUNCTIONAL DESCRIPTION

The TDA8758 provides a simple interface between CVBS or Y/C analog signals and a digital colour decoder.

Video inputs selection

The input selector allows a choice from different video sources, and has one of the following configurations:

- A: Two Y/C and one CVBS signals
- B: One Y/C and two CVBS signals
- C: Three CVBS signals (only the Y channel is used).

The wiring of the five video inputs (pins 2, 4, 6, 9 and 11) and the control of the two selection inputs (pins 5 and 12) will depend on the available video sources.

• In configuration A, connect as follows:

- Y1 to pin 11
- C1 to pin 4
- Y2 to pin 9
- C2 to pin 2
- CVBS3 to pin 6.

Keep SEL2 (pin 5) LOW and select Y1/C1 or Y2/C2 by switching SEL1 (pin 12).

CVBS3 is selected with SEL1 and SEL2 HIGH.

- In configuration B, replace Y1 (or Y2) by a CVBS input (no more C1 or C2). The selection mode is the same.
- In configuration C, connect as follows:
 - CVBS1 to pin 11
 - CVBS2 to pin 9
 - CVBS3 to pin 6.

Use both SEL1 and SEL2 to select inputs.

Remark: the video inputs selection is a static selection.

Synchronization pulses

GATE A and GATE B pulses are synchronization pulses occurring during the sync period and rear porch respectively. They should be distinct.

On the Y channel, the digital output of the ADC is compared to internal digital reference levels. The resultant outputs control the charge or discharge current of a capacitor connected to the C_{AGC} pin. The voltage across this capacitor controls the gain of the video amplifier. This is the control loop.

The sync level comparator is active during a positive-going pulse at the GATE A input. This means that sync pulse of the composite video signal is used as an amplitude reference. The bottom of the sync pulse is adjusted to obtain a digital output of logic 1 at the converter Y output. As the black level is digital level 64, the sync pulse will have a digital amplitude of 64 LSBs.

The Peak White control loop is active when the selection pin $\overrightarrow{\mathsf{PWE}}$ is LOW. Then, if the Y video signal exceeds the digital code of 255, it will be limited to avoid any over-range of the converter.

The clamp level control is accomplished by using the same techniques as used for the gain control. On both Y and C channels, the black level digital comparators are active during a positive-going pulse at the GATE B input. On the Y channel, the clamping capacitor connected to the C_{CLPY} pin will be charged or discharged to adjust the digital output to code 64. On the C channel, the clamping capacitor connected or discharged or discharged or discharged or discharged or discharged to adjust the digital output to code 128.

TDA8758

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CCA}	analog supply voltage		-0.3	+7.0	V
V _{CCD}	digital supply voltage		-0.3	+7.0	V
V _{CCO}	output supply voltage		-0.3	+7.0	V
ΔV_{CC}	supply voltage difference between V_{CCA} and V_{CCD}		-1.0	+1.0	V
	supply voltage difference between V_{CCO} and V_{CCD}		-1.0	+1.0	V
	supply voltage difference between V_{CCA} and V_{CCO}		-1.0	+1.0	V
VI	input voltage	referenced to AGND	-	5.0	V
V _{clk(p-p)}	AC input voltage for switching (peak-to-peak value)	referenced to DGND	-	V _{CCO}	V
I _O	output current		-	+6	mA
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	operating ambient temperature		0	+70	°C
Tj	junction temperature		-	+150	°C

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient in free air	72	K/W

CHARACTERISTICS

 $V_{CCA} = V_{10} \text{ to } V_3 = 4.75 \text{ to } 5.25 \text{ V}; V_{CCD} = V_{21} \text{ to } V_{18} = 4.75 \text{ to } 5.25 \text{ V}; V_{CCO1} = V_{41} \text{ to } V_{43} = 4.75 \text{ to } 5.25 \text{ V}; V_{CC02} = V_{32} \text{ to } V_{31} = 4.75 \text{ to } 5.25 \text{ V}; \text{AGND and DGND shorted together; } V_{CCA} \text{ to } V_{CCD} = -0.25 \text{ to } +0.25 \text{ V}; V_{CCO} \text{ to } V_{CCD} = -0.25 \text{ to } +0.25 \text{ V}; V_{CCO} \text{ to } V_{CCD} = -0.25 \text{ to } +0.25 \text{ V}; V_{CCA} \text{ to } V_{CCO} = -0.25 \text{ to } +0.25 \text{ V}; T_{amb} = 0 \text{ to } +70 \text{ °C}; \text{ typical values measured at } V_{CCA} = V_{CCD} = V_{CCO} = 5 \text{ V} \text{ and } T_{amb} = 25 \text{ °C}; \text{ unless otherwise specified.}$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies						
V _{CCA}	analog supply voltage		4.75	5.0	5.25	V
V _{CCD}	digital supply voltage		4.75	5.0	5.25	V
V _{cco}	output stages supply voltage		4.75	5.0	5.25	V
I _{CCA}	analog supply current		-	59	70	mA
I _{CCD}	digital supply current		-	28	40	mA
I _{CCOtot}	total output supply current	C _L = 15 pF	-	19	28	mA
Video ampli	fier inputs					
Y1/CVBS1,	Y2/CVBS2, CVBS3, CHROM1 AND CHROI	M2 INPUTS				
V _{I(p-p)}	input voltage (peak-to-peak value)	AGC load with external capacitor; note 1				
	Y channel		0.7	-	1.4	V
	C channel		-	1.0	_	V
Z _i	input impedance	f _i = 6 MHz	-	25	-	kΩ
CI	input capacitance	f _i = 6 MHz	-	2	_	pF

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
SEL1 AND SI	EL2 TTL INPUTS; see Table 1		1		I	.I
VII	LOW level input voltage		0	_	0.8	V
ViH	HIGH level input voltage		2.0	_	VCCD	V
IIL	LOW level input current	V ₁ = 0.4 V	-400	_	-	μA
I _{IH}	HIGH level input current	V ₁ = 2.7 V	_	_	20	μA
GATE A AND	GATE B TTL INPUTS; see Figs 5 and 6		1	1	1	4
V _{IL}	LOW level input voltage		0	-	0.8	V
VIH	HIGH level input voltage		2.0	-	V _{CCD}	V
I _{IL}	LOW level input current	V ₁ = 0.4 V	-400	-	-	μA
I _{IH}	HIGH level input current	V ₁ = 2.7 V	-	-	20	μA
AGC INPUT (PIN 13); see Fig.8					
V _{13(min)}	AGC voltage for minimum gain at -3 dB		_	3.3	_	V
V _{13(max)}	AGC voltage for maximum gain at +3 dB		-	3.75	-	V
I ₁₂	AGC output current		see Table 2			
C-CHANNEL C	CLAMP INPUT (PIN 48)					-
V ₄₈	CLAMP voltage for code 128 output		-	3.45	-	V
I ₄₈	CLAMP output current		see Table 3			
Y-CHANNEL C	LAMP INPUT (PIN 7)					
V ₇	CLAMP voltage for code 64 output		-	3.70	-	V
I ₇	CLAMP output current		see Table 3			
Video ampli	fier dynamic characteristics					
α _{ct}	crosstalk between video inputs (pins 2, 4, 6, 9 and 11)	$V_{CCA} = 4.75 \text{ to } 5.25 \text{ V}$	-	-63	-55	dB
В	-3 dB bandwidth		_	15	_	MHz
ΔG	gain range		-3	-	+3	dB
G _{stab}	gain stability as a function of:					
	supply voltage	f _i = 4.43 MHz	-	_	0.5	%
	supply voltage and temperature		-	-	6	%
Analog-to-d	igital converter inputs				•	
CLK INPUT (F	PIN 42)					
V _{IL}	LOW level input voltage		0	_	0.8	V
V _{IH}	HIGH level input voltage		2.0	_	V _{CCD}	V
IIL	LOW level input current	V _{clk} = 0.4 V	-400	-	-	μA
I _{IH}	HIGH level input current	V _{clk} = 2.7 V	-	-	20	μA
CI	input capacitance	f _{clk} = 32 MHz	-	2	-	pF

[1	1	
SYMBOL	PARAMETER CONDITIONS		MIN.	TYP.	MAX.	UNIT
OFY AND OF	C INPUTS; 3-STATE; see Table 4					
V _{IL}	LOW level input voltage		0	-	0.2	V
V _{IH}	HIGH level input voltage		2.6	_	V _{CCD}	V
VI	input voltage in high impedance state		-	1.15	-	V
IIL	LOW level input current		-370	-300	-	μA
I _{IH}	HIGH level input current		-	500	700	μA
Analog-to-d	igital converter outputs					
ANOUTY AN	D ANOUTC OUTPUTS (PINS 16 AND 45); Se	e Table 5				
V _{ANOUT}	output voltage	digital output = 00	-	2.6	-	V
V _{ANOUT}	output voltage	digital output = 255	-	3.6	-	V
V _{ANOUT(p-p)}	NOUT(p-p) output voltage amplitude (peak-to-peak value)		-	1.0	-	V
DIGITAL OUTF	ритѕ Y0 то Y7, C0 то C7					
V _{OL}	LOW level output voltage	I _{OL} = 2 mA	0	-	0.6	V
V _{OH}	HIGH level output voltage	$I_{OL} = -0.4 \text{ mA}$	2.4	-	V _{CCD}	V
Switching c	haracteristics; see Fig.9					
f _{clk(max)}	CLK input maximum frequency	note 2	30	32	-	MHz
t _{CPH}	clock pulse width HIGH		12	-	_	ns
t _{CPL}	clock pulse with LOW		12	_	-	ns
Analog sigr	al processing from video input to digit	al output on both channe	ls; 0 dB (gain (f _{clk}	= 32 MH	z)
INL	DC integral non-linearity		_	±0.75	±1.5	LSB
DNL	DC differential non-linearity		_	±0.4	±1.0	LSB
AINL	AC integral non linearity	f _i = 4.43 MHz	-	±1.5	-	LSB
ADNL	AC differential non-linearity	f _i = 4.43 MHz	_	±0.5	-	LSB
THD	total harmonic distortion	note 3	_	-52	-	dB
EB	effective bits	f _i = 4.43 MHz; note 4	-	7.1	-	bits
G _{diff}	differential gain	$V_{16,45} = 1.0 V (p-p);$ see Fig.4; PAL modulated ramp; note 5	_	1.5	3.0	%
Φdiff	differential phase	see Fig.5; PAL modulated ramp; note 5	-	0.6	1.5	deg
SVRR2	supply voltage ripple rejection	note 6	-	-	5	%/V

TDA8758

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Timing (f _{clk}	= 32 MHz); see Fig.9			1		
DIGITAL OUTF	PUTS (C _L = 15 pF)					
t _{ds}	sampling delay time		-	2	-	ns
t _h	output hold time		10	-	-	ns
t _d	output delay time		-	15	18	ns
t _W	clamp pulse width	see Figs 6 and 7	2	3	-	μs
3-state outp	out delay times; see Fig.10					
t _{dZH}	enable HIGH		-	12	14	ns
t _{dZL}	enable LOW		-	10	12	ns
t _{dHZ}	disable HIGH		-	58	62	ns
t _{dLZ}	disable LOW		-	70	74	ns

Notes

- 1. 0 dB is obtained at the AGC amplifier when applying $V_{I(p-p)} = 1.0$ V on Y channel.
- It is recommended that the rise and fall times of the clock are ≥1 ns. In addition, a 'good layout' for the digital and analog grounds is recommended.
- 3. THD (total harmonic distortion) is obtained with the addition of the first five harmonics:

THD =
$$20 \log \frac{F}{\sqrt{(2nd)^2 + (3rd)^2 + (4th)^2 + (5th)^2 + (6th)^2}}$$

a) F being the fundamental harmonic referenced at 0 dB for a full-scale sine wave input.

- 4. Effective bits are obtained via a Fast Fourier Transform (FFT) treatment taking 8 K acquisition points per equivalent fundamental period. The calculation takes into account all harmonics and noise up to half of the clock frequency (NYQUIST frequency). Conversion to signal-to-noise ratio: S/N = EB × 6.02 + 1.76 dB.
- 5. Measurement carried out using video analyser VM700A, where video analog signal is reconstructed through a digital-to-analog converter.
- 6. The supply voltage ripple rejection is the relative variation of the analog signal (full-scale signal at input) for 0.5 V of supply variation:

$$SVRR2 = \frac{\Delta \left(V_{1(00)} - V_{1(FF)}\right) \times \left(V_{1(00)} - V_{1(FF)}\right)}{\Delta V_{CCA}}$$

Table 1 Video input selection

SEL1	SEL2	Y-CHANNEL	C-CHANNEL	FIGURE 3
0	X ⁽¹⁾	Y1/CVBS1	CHROM1	(a)
1	0	Y2/CVBS2	CHROM2	(b)
1	1	CVBS3	CHROM2	(C)

Note

1. X = don't care.

TDA8758

Table 2AGC output current

PWE	GATE A	DIGITAL OUTPUT	I _{AGC}
0	0	output < 255	0 μΑ
		output > 255	+540 μΑ
0	1	output < 0	+8 μA
		0 < output < 255	–8 μA
		output > 255	+540 μA
1	0	X ⁽¹⁾	0 μΑ
1	1	output < 0	+8 μA
		0 < output < 255	–8 μA

Table 4 OFY and OFC input coding

OFY (or OFC)	Y0 to Y7 (or C0 TO C7)
0	active, twos complement
1	high impedance
open circuit ⁽¹⁾	active, binary

Note

1. Use $C \ge 10 \text{ pF}$ to DGND.

Note

1. X = don't care.

Table 3 CLAMP output current

CLAMP	GATE B	DIGITAL OUTPUT	I _{CLAMP}
С	1	output < 128	+54 μΑ
		output > 128	–54 μA
X ⁽¹⁾	0	X ⁽¹⁾	0 μΑ
Y	1	output < 64	+54 μΑ
		64 < output	–54 μA

Note

1. X = don't care.

Table 5	Output coding and	ANOUTY (or	ANOUTC)	voltage	(typical	values)
---------	-------------------	------------	---------	---------	----------	---------

STEP	VI	BINARY OUTPUTS						TWOS COMPLIMENT									
		D7	D6	D5	D4	D3	D2	D1	D0	D7	D6	D5	D4	D3	D2	D1	D0
Underflow	_	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	2.6	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
1	_	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1
	_									-	-	-			-	-	-
	_							-		-	-			-	-	-	-
254	_	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1	0
255	3.6	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
Overflow	_	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1

APPLICATION INFORMATION

TDA8758

YC 8-bit low-power analog-to-digital video interface

PACKAGE OUTLINE

TDA8758

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

Reflow soldering

Reflow soldering techniques are suitable for all LQFP packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

Wave soldering

Wave soldering is **not** recommended for LQFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices. If wave soldering cannot be avoided, the following conditions must be observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The footprint must be at an angle of 45° to the board direction and must incorporate solder thieves downstream and at the side corners.

Even with these conditions, do not consider wave soldering LQFP packages LQFP48 (SOT313-2), LQFP64 (SOT314-2) or LQFP80 (SOT315-1).

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

Product specification

TDA8758

DEFINITIONS

Data sheet status					
Objective specification	This data sheet contains target or goal specifications for product development.				
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.				
Product specification	This data sheet contains final product specifications.				
Limiting values					
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.					
Application information					

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.