
INTEGRATED CIRCUITS

Product specification Supersedes data of 1995 Mar 22 File under Integrated Circuits, IC02 1996 Jan 12

TDA8753A

FEATURES

- Triple analog-to-digital converter
- 8-bit resolution
- Sampling rate up to 20 MHz
- Power dissipation of 500 mW (typical)
- Internal clamp functions
- 4 : 1 : 1 output data encoder
- Y binary output
- U, V two's complement outputs
- Sample rate converter permits programmable horizontal compression factors from 1 to 2
- Serial microcontroller interface
- TTL compatible inputs.

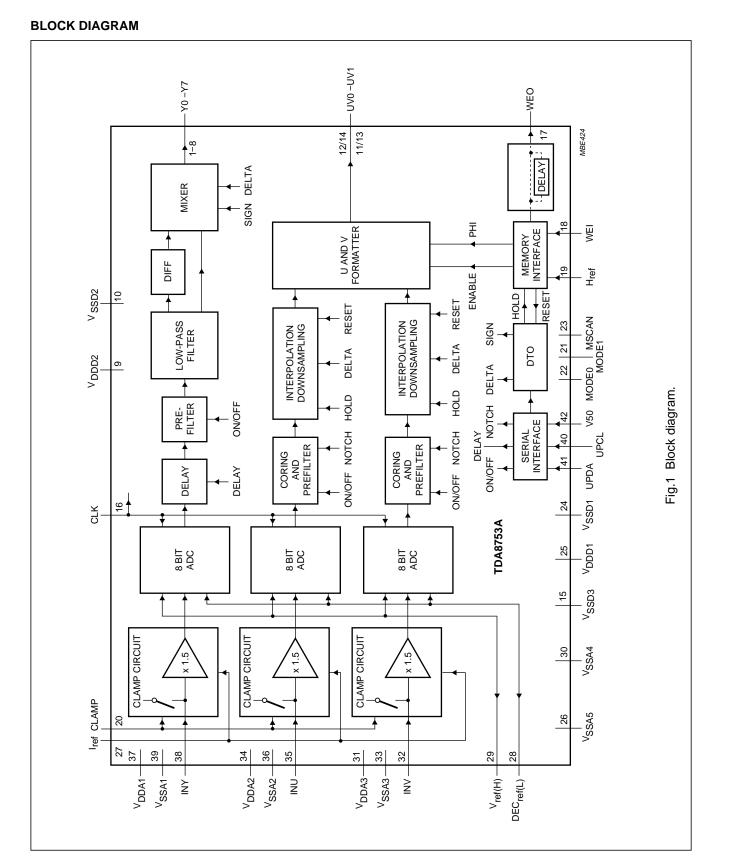
QUICK REFERENCE DATA

APPLICATIONS

- High-speed analog-to-digital conversion for video signal digitizing in 4 : 1 : 1 format
- 100 Hz improved definition TV for all formats (4/3, 16/9, 14/9 etc.).

GENERAL DESCRIPTION

The TDA8753A is a monolithic CMOS 8-bit video low-power analog-to-digital conversion interface for YUV signals. It converts the YUV analog input signal into 8-bit binary coded digital words in format 4 : 1 : 1 at a sampling rate of 20 MHz. All analog signal inputs are clamped. The device includes a digital sample rate converter for variable compression with a factor 1 to 2.


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{DDA}	analog supply voltage		4.75	5.0	5.25	V
V _{DDD}	digital supply voltage		4.75	5.0	5.25	V
I _{DDA}	analog supply current		-	55	63	mA
I _{DDD}	digital supply current		-	45	55	mA
INL	integral non-linearity	f _{clk} = 16 MHz; ramp input	-	±0.75	-	LSB
DLE	differential non-linearity	f _{clk} = 16 MHz; ramp input; Y	-	±0.5	0.75	LSB
		f_{clk} = 16 MHz; ramp input; U and V	-	±0.6	±0.9	LSB
SNR	signal-to-noise ratio without harmonics	note 1	43	-	-	dB
f _{clk}	maximum conversion rate		20	-	-	MHz
P _{tot}	total power dissipation	note 2	-	500	650	mW

Notes

- 1. The signal-to-noise ratio without harmonics is measured using a 16 MHz clock frequency. This value is given for a 4.43 MHz input frequency on the Y channel (1.5 MHz on the U and V channels).
- The external resistor (between V_{DDA} and I_{ref}) fixing internal static currents influences P_{tot}. The value of the resistor should be 5.6 kΩ (5%).

ORDERING INFORMATION

TYPE	PACKAGE			
NUMBER	NAME	DESCRIPTION	VERSION	
TDA8753A	SDIP42	plastic shrink dual in-line package; 42 leads (600 mil)	SOT270-1	

TDA8753A

3

PINNING

SYMBOL	PIN	DESCRIPTION	
Y7	1	Y data output, bit 7 (MSB)	
Y6	2	Y data output, bit 6	
Y5	3	Y data output, bit 5	
Y4	4	Y data output, bit 4	
Y3	5	Y data output, bit 3	
Y2	6	Y data output, bit 2	
Y1	7	Y data output, bit 1	
Y0	8	Y data output, bit 0 (LSB)	
V _{DDD2}	9	digital supply voltage 2, (+5 V)	
V _{SSD2}	10	digital ground 2	
U1	11	U data output, bit 1 (n)	
U0	12	U data output, bit 0 (n – 1)	
V1	13	V data output, bit 1 (n)	
V0	14	V data output, bit 0 (n – 1)	
V _{SSD3}	15	digital ground 3	
CLK	16	clock input	
WEO	17	write enable output	
WEI	18	write enable input	
H _{ref}	19	horizontal reference signal input	
CLAMP	20	clamp control input	
MODE1	21	test mode select	
MODE0	22	test mode select	
MSCAN	23	test pin	
V _{SSD1}	24	digital ground 1	
V _{DDD1}	25	digital supply voltage 1 (+5 V)	
V _{SSA5}	26	analog ground 5	
I _{ref}	27	current level reference	
DEC _{ref(L)}	28	decoupling output from reference LOW	
V _{ref(H)}	29	reference voltage input (HIGH)	
V _{SSA4}	30	analog ground 4	
V _{DDA3}	31	analog supply voltage 3, (+5 V)	
INV	32	V analog voltage input	
V _{SSA3}	33	analog ground 3	
V _{DDA2}	34	analog supply voltage 2 (+5 V)	
INU	35	U analog voltage input	
V _{SSA2}	36	analog ground 2	
V _{DDA1}	37	analog supply voltage 1 (+5 V)	
INY	38	Y analog voltage input	
V _{SSA1}	39	analog ground 1	

		_	
SYMBOL	PIN		ESCRIPTION
UPCL UPDA	40 41	control clos	ck input
V50	41	data execu	•
	12		
, C	Y7 1 Y6 2 Y5 3 Y4 4 Y3 5 Y2 6 Y1 7 Y0 8 /SSD2 10 U1 11 U0 12 V1 13 V0 14 /SSD3 15 CLK 16 WEO 17 WEI 18 Href 19 SLAMP 20 IODE1 21	TDA8753A	42 \vee 50 41 \cup PDA 40 \cup PCL 39 \vee SSA1 38 \mid NY 37 \vee DDA1 36 \vee SSA2 35 \mid NU 34 \vee DDA2 33 \vee SSA3 32 \mid NV 31 \vee DDA3 30 \vee SSA4 29 \vee ref(H) 28 $DEC_{ref(L)}$ 27 \mid ref 26 \vee SSA5 25 \vee DDD1 24 \vee SSD1 23 \mid SSA1 23 \mid SSA1 23 \mid SSA5 25 \mid DDD1 24 \vee SSD1 23 \mid SSA1 23 \mid SSA1 24 \vee SSD1 23 \mid SSA1 25 \mid DDD2
	Fig.2	Pin configu	uration.

TDA8753A

FUNCTIONAL DESCRIPTION

Analog-to-digital converter

The TDA8753 implements 3 independent CMOS 8-bit analog-to-digital converters. The converters use a multi-step approach with offset compensated comparators.

Clamping

An internal clamping circuit is provided in each of the 3 analog channels. The analog pins INY, INV and INU are switched to on-chip clamping levels during an active pulse on the clamp input CLP. The clamping level in the Y channel is code level 16. The clamping level in the U/V channel is code level 128 (output code 0 in the 2's complement description) see Tables 3 and 4.

Sample rate converter

A sample rate converter is integrated in the TDA8753A to facilitate programming of the horizontal aspect ratio which can be varied from a factor 1 to 2.

This includes conversion from 16/9 to 14/9 and 4/3. In the U/V channel a linear interpolation is sufficient because of the four times oversampling.

Discrete time oscillator (DTO)

A discrete time oscillator is used to calculate for every sample of the phase delay that is needed for a given compression factor.

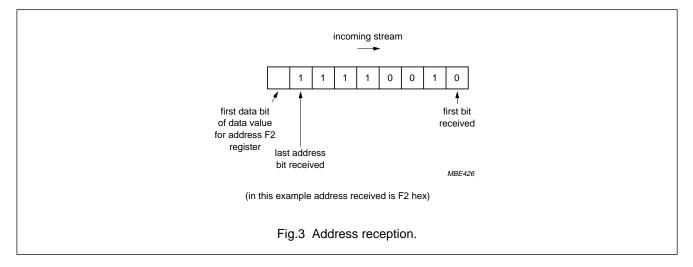
Serial interface (SIO)

All controls are sent to the TDA8753A via a serial microprocessor interface. Data from this interface will be made active at the vertical input pulse V50.

The TDA8753A has three addressable control registers which can be loaded via the signals UPDA and UPCL. The format of this bus is fixed according to mode 0 of the 8051 family UART at 1 Mbaud (8 bits are transmitted, LSB first).

Serial interface protocol

POWER-ON STATE


When powered up the SIO is in an unknown state and all data in the registers is random. When signals are applied to UPCL and UPDA in this state, the behaviour is unpredictable. The only way to exit from this state to a known state is apply a V50 signal to the TDA8753A.

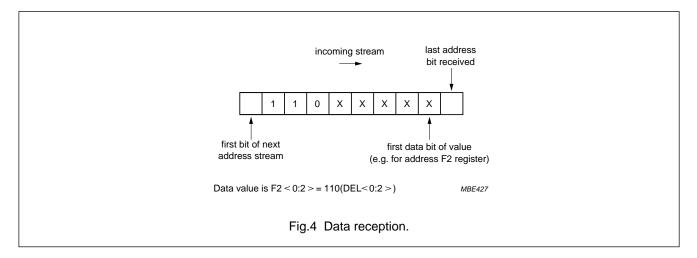
INITIALIZATION STATE

From power-on or any other state, the INIT state is entered (at the latest) one TDA8753A clock period after the end of the V50 HIGH state. In this state the F0, F1 and F2 TDA8753A registers are loaded with the values that are in the corresponding line buffers BF0, BF1 and BF2. The first time V50 is issued after power-on, this data is unknown. After a rising UPCL edge has been detected, the address reception state is entered.

ADDRESS RECEPTION STATE

Bits are counted at each rising UPCL edge. The next 8 bits received on UPDA line are considered as address bits. The address reception is illustrated in Fig.3.

TDA8753A


The TDA8753A registers have address F0, F1 and F2 hexadecimal notation. Whenever the received address (decoded on the first 8 bits received) is one of these, the event is recorded in such a way that the next data received by the TDA8753A will be captured in the line buffer BF0, BF1 and BF2 respectively.

When 8 bits have been received, the data reception state is entered. The address reception state can also be exited at any time when V50 goes HIGH. The F0, F1 and F2 registers may not be loaded properly if there is some activity in progress on the incoming line.

DATA RECEPTION STATE

The next 8 bits are considered as data bits according to the format of Fig.4.

When 8 data bits have been received, the data is recorded in the BF0, BF1 or BF2 line buffers if the previous address recorded was F0 hex, F1 hex or F2 hex respectively. The bit count is then reset to zero and the address reception state is entered. This state may be ended any time when V50 goes HIGH but in that condition F0, F1 and F2 registers may not be loaded properly.

Table 1 Data allocation

ADDRESS	PARAMETER	FUNCTION	NUMBER OF BITS	BIT POSITION
F0H	CF	compression factor value will be (1 + cf/255) which results in a range from 1 to 2	8	7:0
F1H	UV_CORING	coring definition in U and V channels; see Table 5	2	1:0
	UV_FILTER_TYPE	notch filter selection in U and V channels $(0 = 4 \text{ MHz}; 1 = 2 \text{ MHz})$	1	2
	PRE_ON	luminance prefilter active	1	3
	NOTCH_ON	notch prefilter active	1	4
	DTO_ON	DTO control	1	5
	SEL_DTO_RES	select DTO reset (0 = WE; 1 = H_{ref})	1	6
	WEO_DEL_SEL	select delay in WEO		
F2H	Y_VAR_DELAY	luminance delay compression (see Table 5)		
		not used; load 0	5	7:2

TDA8753A

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{DDD}	digital supply voltage		-0.3	6.5	V
V _{DDA}	analog supply voltage		-0.3	6.5	V
V _{DDA} – V _{DDD}	supply voltage difference		-0.5	+0.5	V
VI	input voltage	referenced to AGND	_	V _{DDA}	V
V _{clk(p-p)}	AC input voltage for switching (peak-to-peak value)	referenced to DGND	-	V _{DDD}	V
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	operating ambient temperature		0	+70	°C

THERMAL RESISTANCE

SYMBOL	PARAMETER	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient in free air	45	K/W

HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

CHARACTERISTICS

 $V_{DDA} = V_{DDD} = 4.75$ to 5.25 V; V_{SSA} and V_{SSD} shorted together; $V_{DDA} - V_{DDD} = -0.1$ to +0.1 V (see note 1); $V_{ref(H)} = 2.38$ V; $f_{clk} = 20$ MHz with 50% duty cycle; 5.6 k Ω (5%) connected between I_{ref} and V_{DDA}; CL = 15 pF; $T_{amb} = 0$ to 70 °C; typical values measured at $V_{DDA} = V_{DDD} = 5$ V; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Supply					ł		
V _{DDA}	analog supply voltage		4.75	5.0	5.25	V	
V _{DDD}	digital supply voltage		4.75	5.0	5.25	V	
I _{DDA}	analog supply current		_	55	63	mA	
I _{DDD}	digital supply current		-	45	55	mA	
Digital inputs a	Digital inputs and clock input (WE, H _{ref} , CLAMP, MODE1, MODE0, SCCL, UPCL, UPDA and V50)						
V _{IL}	LOW level input voltage		0	-	0.8	V	
V _{IH}	HIGH level input voltage		2.0	-	V _{DDD}	V	
Cl	input capacitance		_	7	15	pF	
1L ₁	input leakage current	V _I = 0 V; V _{DDD} = 5 V	-10	-	+10	μA	

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Clamp and ref	erences [I _{ref} , DEC _{ref(L)} and V _{ref(H)}]			1	- I	_!
A _{CL}	clamping accuracy	Y	-4	-	+1	LSB
		U and V	-1	-	+1	LSB
C _{clamp}	serial clamp capacitor		10	22	_	nF
Z _{ADC}	internal impedance between pin 29 and V _{SSA}		_	420	-	Ω
V _{ref(H)}	converter reference HIGH, applied to pin 29		_	2.38	-	V
V _{DECref(L)}	converter reference voltage LOW, applied to pin 28	V _{ref(H)} = 2.38 V	_	0.39	-	V
Y analog input	t (INY); V _{ref(H)} = 2.38 V, V _{ref(L)} = 0.39	V; see Table 4				
V _{i(p-p)}	input voltage, full range (peak-to-peak value)	ramp input	_	1.26	-	V
li	input current	clamp non-active	-	5	100	nA
CI	input capacitance		-	_	15	pF
U,V analog inp	outs (INU and INV); V _{ref(H)} = 2.38 V, V	/ _{ref(L)} = 0.39 V; see Ta	ble 4	1		
V _{i(p-p)}	input voltage (peak-to-peak value)	ramp input	-	1.26	_	V
i	input current	clamp non-active	_	5	100	nA
CI	input capacitance		-	-	15	pF
Inputs isolatio	'n	1				
α _{act}	crosstalk between INY, INU and INV		_	-	-50	dB
Digital outputs	s (Y0 to Y7, U1, U0, V1 and V0); see	Table 3		1	-	
V _{OL}	LOW level output voltage	I _{OL} = 1.6 mA	0	_	0.5	V
V _{он}	HIGH level output voltage	I _{OH} = 0.4 mA	2.4	_	V _{DDD}	V
	processing (f _{CLK} = 20 MHz)	1	Į	-1	-	
G _{diff}	differential gain	note 2	_	1.5	_	%
Φ_{diff}	differential phase	note 2	_	1.0	_	deg
f _{all}	harmonics (full scale) all	note 3; Y	_	-53	_	dB
	components	U and V	_	-55	_	dB
SVR	supply voltage ripple rejection	note 4	_	2	_	%/V
В	bandwidth	–1 dB; note 5	_	6	_	MHz
Transfer funct	ion (f _{cik} = 16 MHz)					_
INL	integral non-linearity	ramp input	_	±0.75	_	LSB
DNL	differential non-linearity	ramp input; Y	_	±0.5	±0.75	LSB
		ramp input; U and V	_	±0.6	±0.9	LSB
SNR	signal-to-noise ratio without	note 6; Y	41	44.5	_	dB
	harmonics	U and V	42	46	_	dB

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Timing (f _{clk} = 2	20 MHz; C _L = 15 pF); see Figs 7 and	10; note 7	1	1	1	
f _{clk}	maximum input clock frequency		20	-	-	MHz
t _{CP(H)}	clock pulse width HIGH		22	-	_	ns
t _{CP(L)}	clock pulse width LOW		22	_	_	ns
t _{ds}	sampling delay		-	4	_	ns
t _{hd}	output hold time		7	-	_	ns
t _d	output delay time		_	-	32	ns
t _{CLKr}	clock rise time		3	5	_	ns
t _{CLKf}	clock fall time		3	5	_	ns
t _{su;Href}	HREF set-up time		7	-	_	ns
t _{hd;Href}	HREF hold time		3	-	_	ns
tr	data output rise time		_	10	_	ns
t _f	data output fall time		-	10	_	ns
t _{CLP}	minimum time for active clamp pulse width		2.3	2.5	-	μs
t _{su;WE}	WE set-up time		7	-	_	ns
t _{hd;WE}	WE hold time		3	-	_	ns
t _{XLXL}	serial port clock cycle time	f _{xtal} = 12 MHz	1	_	_	μs
t _{QVXH}	output data set-up to rising edge of clock		700	-	-	ns
t _{XHQH}	output data hold time after rising edge of clock		50	-	-	ns
t _W	V50 pulse duration		2	_	_	ms
t _{VC}	V50 to clock time		2	-	_	ms
Sample rate co	onverter (f _{clk} = 20 MHz)			-	-	
ΦΥ	Y phase accuracy	$f_{iY} = 0$ to 5 MHz	_	±1	_	ns
FUV	UV phase accuracy	$f_{iUV} = 0$ to 1.5 MHz	_	±4	_	ns
Y _{fr}	Y frequency response	$f_{iY} = 0$ to 5 MHz	_	±0.5	_	dB
UV _{fr}	UV frequency response	$f_{iUV} = 0$ to 1.5 MHz	_	±0.5	_	dB
Y _{step}	Y step size		_	1	_	ns
UV _{step}	UV step size		-	4	_	ns

TDA8753A

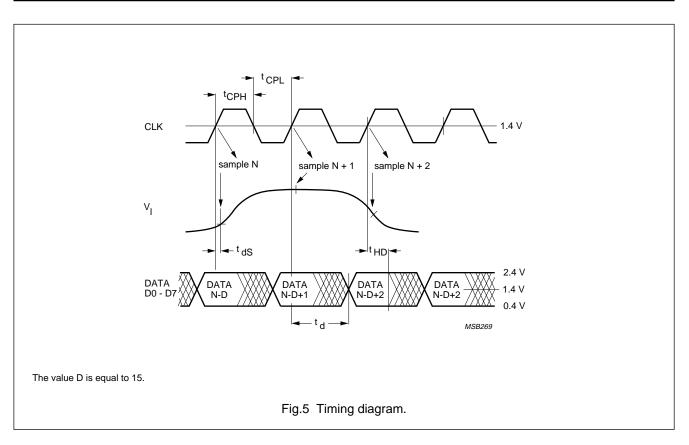
Notes to the Characteristics

- 1. V_{DDA} and V_{DDD} should be supplied from the same power supply and decoupled separately.
- 2. Measurement carried out using video amplifier type VM700A, where the video analog signal (Y channel) is reconstructed via the DAC.
- 3. The input conditions are related as follows:
 $$\begin{split} Y - V_{i(p-p)} &= 1.26 \text{ V}, \text{ } \text{f}_i = 4.43 \text{ MHz} \\ \text{U and } V - V_{i(p-p)} &= 1.26 \text{ V}, \text{ } \text{f}_i = 1.5 \text{ MHz}. \end{split}$$
- 4. Supply voltage ripple rejection: SVR; relative variation of the full-scale range of analog input for a supply voltage variation of 0.5 V. SVR = $[\Delta (V_{I(0)} V_{I(255)})/[V_{I(0)} V_{I(255)}]/\Delta V_{DDA}$.
- 5. The –1 dB bandwidth is the frequency value for which the analog reconstructed (glitch-free) output signal is compressed in term of number of codes, by –1 dB (respectively for –3 dB bandwidth).
- The signal-to-noise ratio without harmonics is measured under a 16 MHz clock frequency. This value is given for a 4.43 MHz input frequency on the Y channel (1.5 MHz on the U and V channels).
- 7. Output data acquisition: Output data is available after the maximum delay of t_d.

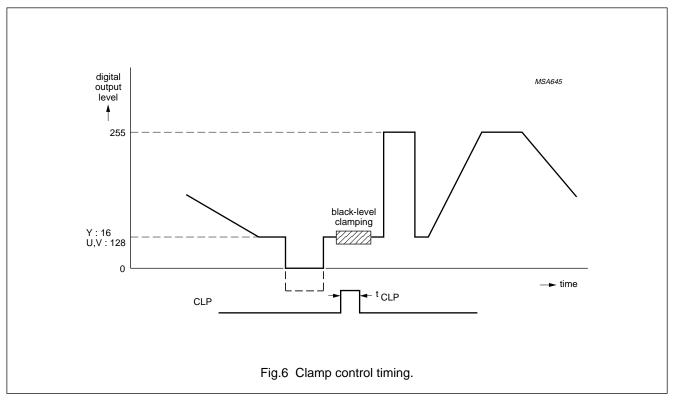
Table 2Mode selection

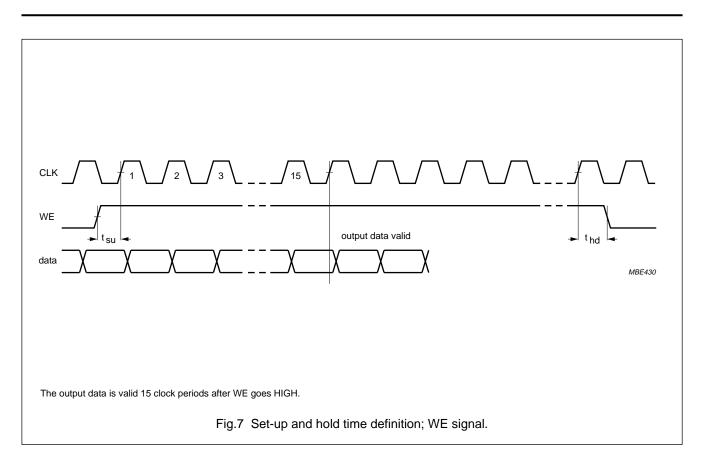
MODE1	MODE0	MODE
0	0	normal configuration

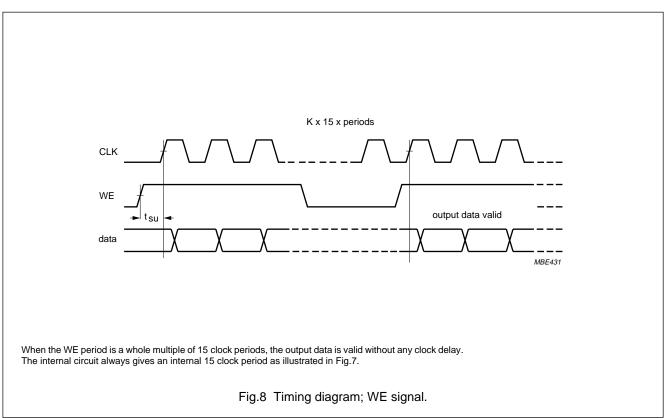
 Table 3
 Output data coding

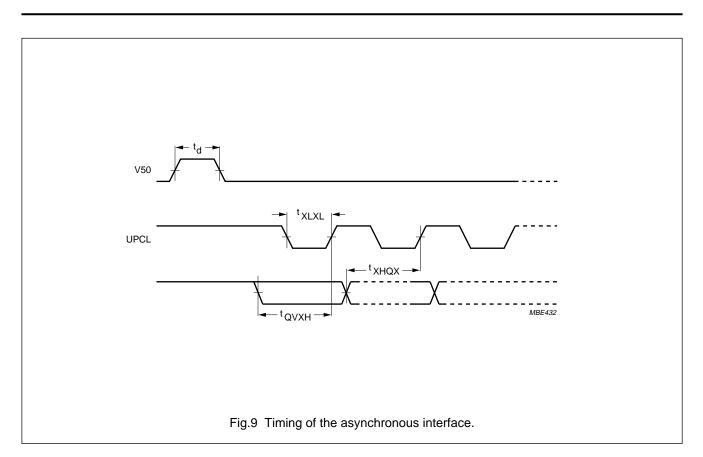

OUTPUT PORT	BIT	OUTPUT DATA			
Y	Y7	Y ₀ 7	Y ₁ 7	Y ₂ 7	Y ₃ 7
	Y6	Y ₀ 6	Y ₁ 6	Y ₂ 6	Y ₃ 6
	Y5	Y ₀ 5	Y ₁ 5	Y ₂ 5	Y ₃ 5
	Y4	Y ₀ 4	Y ₁ 4	Y ₂ 4	Y ₃ 4
	Y3	Y ₀ 3	Y ₁ 3	Y ₂ 3	Y ₃ 3
	Y2	Y ₀ 2	Y ₁ 2	Y ₂ 2	Y ₃ 2
	Y1	Y ₀ 1	Y ₁ 1	Y ₂ 1	Y ₃ 1
	Y0	Y ₀ 0	Y ₁ 0	Y ₂ 0	Y ₃ 0
U	U1	\overline{U}_07	U ₀ 5	U ₀ 3	U ₀ 1
	U0	U ₀ 6	U ₀ 4	U ₀ 2	U ₀ 0
V	V1	\overline{V}_0 7	V ₀ 5	V ₀ 3	V ₀ 1
	V0	V ₀ 6	V ₀ 4	V ₀ 2	V ₀ 0

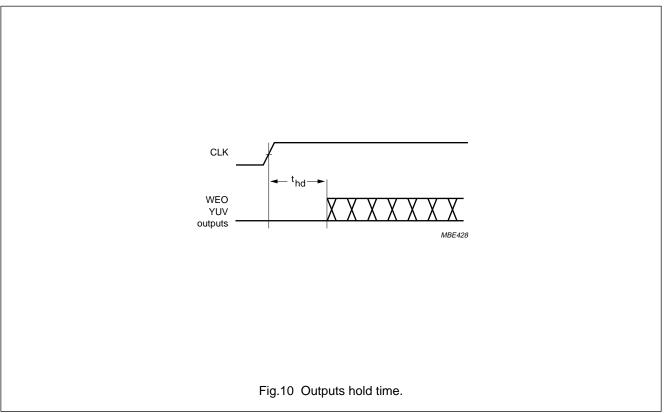
STEP	INPUT VOLTAGE	INTERNAL BINARY OUTPUTS	REMARKS
Underflow	<0.26	0000000	
0	0.26	0000000	V _{DECref(L)} /1.5
1	-	0000001	
16	0.34	00010000	clamp level of Y channel
128	0.89	1000000	clamp level of U and V channels
254	_	1111110	
255	1.52	1111111	V _{ref(H)} - 0.1 V/1.5
Overflow	>1.52	1111111	

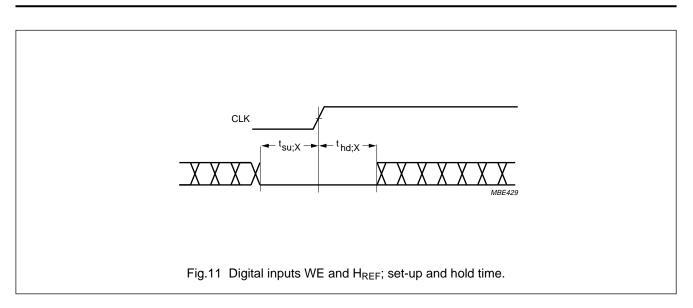

 Table 4
 Internal ADC data coding as a function of the analog input

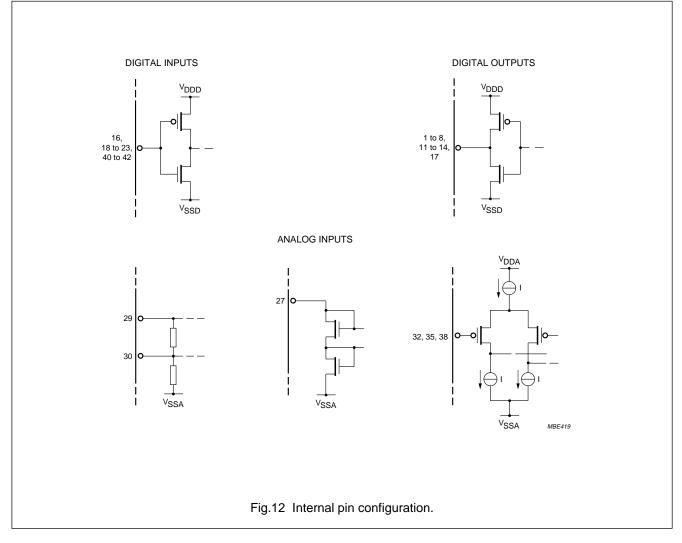

Table 5 Coring and luminance delay

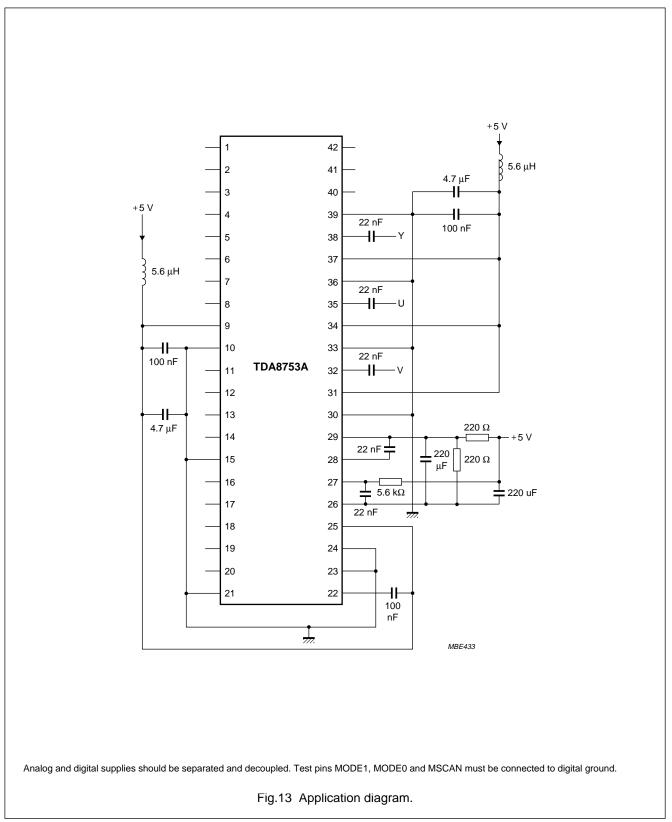

UV_CORING		INTERNAL CORING CORRECTION	Y_VAR_DELAY		INTERNAL DELAY FOR Y PATH	
F1:1	F1:0	IN U AND V CHANNELS (AROUND CODE 128 LEVEL)	F2:1	F2:0	AT PREFILTER INPUT (CLOCK PULSE)	
0	0	coring off	0	0	0	
0	1	+1/-1	0	1	1	
1	0	+1/-0	1	0	2	
1	1	+2/-1	1	1	3	



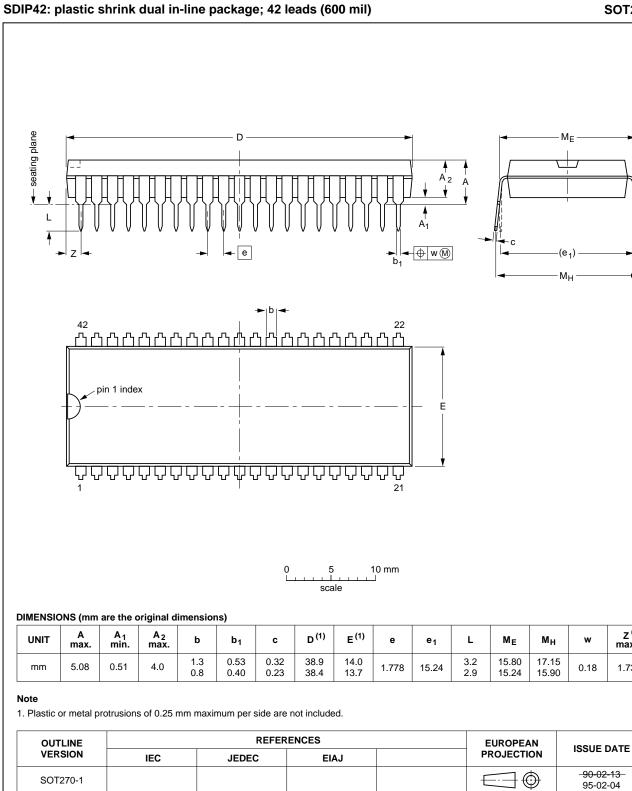







TDA8753A

INTERNAL PIN CONFIGURATION



APPLICATION INFORMATION

Philips Semiconductors

PACKAGE OUTLINE

TDA8753A

SOT270-1

Z ⁽¹⁾ max.

1.73

TDA8753A

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

Soldering by dipping or by wave

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg max}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.