INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC02 1996 Jul 30

Product specification

TDA8706A

6-bit analog-to-digital converter with multiplexer and clamp

FEATURES

- 6-bit resolution
- Binary 3-state CMOS outputs
- CMOS compatible digital inputs
- 3 multiplexed video inputs
- R, G and B clamps on code 0
- Single 6-bit ADC operation allowed up to 40 MSPS
- External control of clamping level
- Internal reference voltage (external reference allowed)
- Power dissipation only 36 mW (typical)
- Operating temperature of -40 to +85 °C
- Operating between 2.7 and 5.5 V.

QUICK REFERENCE DATA

APPLICATIONS

- General purpose video applications
- R, G and B signals
- Automotive (car navigation)
- LCD systems
- Frame grabber.

GENERAL DESCRIPTION

The TDA8706A is a 6-bit analog-to-digital converter (ADC) with 3 analog multiplexed inputs. Each input has an analog clamp on code 0 for RGB video processing. Clamping level can also be adjusted externally up to code 20. It can also be used as a single 6-bit ADC.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{DDA}	analog supply voltage		2.7	3.0	5.5	V
V _{DDD}	digital supply voltage		2.7	3.0	5.5	V
V _{DDO}	output stages supply voltage		2.7	3.0	5.5	V
I _{DDA}	analog supply current		_	7	10	mA
I _{DDD}	digital supply current		_	4	6	mA
I _{DDO}	output stages supply current	f _{clk} = 40 MHz; ramp input	_	1	1.5	mA
INL	integral non-linearity	f _{clk} = 40 MHz; ramp input; T _{amb} = 25 ℃	-	±0.25	±0.6	LSB
DNL	differential non-linearity	f _{clk} = 40 MHz; ramp input; T _{amb} = 25 °C	-	±0.20	±0.5	LSB
f _{clk(max)}	maximum clock frequency		40	-	_	MHz
P _{tot}	total power dissipation	f _{clk} = 40 MHz; ramp input				
		3 V supplies	-	36	-	mW
		5.5 V supplies	-	-	96	mW

ORDERING INFORMATION

TYPE		PACKAGE			
NUMBER	NAME	DESCRIPTION	VERSION		
TDA8706AM	SSOP24	plastic shrink small outline package; 24 leads; body width 5.3 mm	SOT340-1		

TDA8706A

6-bit analog-to-digital converter with multiplexer and clamp

BLOCK DIAGRAM

Product specification

TDA8706A

6-bit analog-to-digital converter with multiplexer and clamp

PINNING

SYMBOL	PIN	DESCRIPTION
SR	1	select input RED
SG	2	select input GREEN
SB	3	select input BLUE
CLP	4	clamping pulse input (positive pulse)
V _{DDA}	5	analog supply voltage
V _{RB}	6	reference voltage BOTTOM input
V _{SSA}	7	analog ground
RED	8	RED input
GREEN	9	GREEN input
BLUE	10	BLUE input
V _{CLPR}	11	RED clamping voltage level input
V _{CLPB}	12	BLUE clamping voltage level input
V _{CLPG}	13	GREEN clamping voltage level input
V _{SSO}	14	digital output ground
D0	15	digital voltage output; bit 0 (LSB)
D1	16	digital voltage output; bit 1
D2	17	digital voltage output; bit 2
D3	18	digital voltage output; bit 3
D4	19	digital voltage output; bit 4
D5	20	digital voltage output; bit 5
V _{DDO}	21	supply voltage for output stage
V _{SSD}	22	digital ground
V _{DDD}	23	digital supply voltage
CLK	24	clock input

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _{DDA}	analog supply voltage	-0.3	+7.0	V
V _{DDD}	digital supply voltage	-0.3	+7.0	V
ΔV_{DD}	supply voltage difference			
	V _{DDA} – V _{DDD}	-1.0	+1.0	V
	$V_{DDA} - V_{DDO}$	-1.0	+1.0	V
	$V_{DDD} - V_{DDO}$	-1.0	+1.0	V
VI	input voltage	-0.3	+7.0	V
Io	output current	-	10	mA
T _{stg}	storage temperature	-55	+150	°C
T _{amb}	operating ambient temperature	-40	+85	°C
Тј	junction temperature	-	+150	°C

HANDLING

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient in free air	119	K/W

CHARACTERISTICS

 $\begin{array}{l} V_{DDA} = V_5 \ \text{to} \ V_7 = 2.7 \ \text{to} \ 5.5 \ \text{V}; \ V_{DDD} = V_{23} \ \text{to} \ V_{22} = 2.7 \ \text{to} \ 5.5 \ \text{V}; \ V_{DDO} = V_{21} \ \text{to} \ V_{14} = 2.7 \ \text{to} \ 5.5 \ \text{V}; \\ V_{SSA}, \ V_{SSD} \ \text{and} \ V_{SSO} \ \text{shorted together}; \ V_{i(p\text{-}p)} = 0.7 \ \text{V}; \ T_{amb} = -40 \ \text{to} \ +85 \ ^\circ\text{C}; \ \text{typical values measured at} \\ V_{DDA} = V_{DDD} = V_{DDO} = 3 \ \text{V} \ \text{and} \ T_{amb} = 25 \ ^\circ\text{C}; \ \text{unless otherwise specified}. \end{array}$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply				ł	1	1
V _{DDA}	analog supply voltage		2.7	3.0	5.5	V
V _{DDD}	digital supply voltage		2.7	3.0	5.5	V
V _{DDO}	output stages supply voltage		2.7	3.0	5.5	V
ΔV_{DD}	supply voltage difference					
	V _{DDA} – V _{DDD}		-0.3	-	+0.3	V
	V _{DDA} – V _{DDO}		-0.3	-	+0.3	V
	V _{DDD} – V _{DDO}		-0.3	-	+0.3	V
I _{DDA}	analog supply current		-	7	10	mA
I _{DDD}	digital supply current		-	4	6	mA
I _{DDO}	output stages supply current	f _{clk} = 40 MHz; ramp input	-	1	1.5	mA
Inputs						
CLOCK INP	UT CLK (REFERENCED TO V_{SSD}); note 1				
V _{IL}	LOW level input voltage		0	-	$V_{DDD} \times 0.3$	V
		V _{DDD} < 3.3 V	0	-	$V_{DDD} \times 0.2$	V
V _{IH}	HIGH level input voltage		$V_{DDD} imes 0.7$	-	V _{DDD}	V
		V _{DDD} < 3.3 V	$V_{DDD} imes 0.8$	-	V _{DDD}	V
IIL	LOW level input current	$V_{clk} = V_{DDD} \times 0.2$	-1	0	+1	μA
I _{IH}	HIGH level input current	$V_{clk} = V_{DDD} \times 0.8$	-	2	10	μA
Zi	input impedance	f _{clk} = 40 MHz	-	4	-	kΩ
CI	input capacitance	f _{clk} = 40 MHz	-	3	-	pF
INPUTS SR	, SG, SB, CLP (REFERENCED T	o V _{SSD})				
V _{IL}	LOW level input voltage		0	-	$V_{DDD} imes 0.3$	V
		V _{DDD} < 3.3 V	0	_	$V_{DDD} \times 0.2$	V
V _{IH}	HIGH level input voltage		$V_{DDD} \times 0.7$	_	V _{DDD}	V
		V _{DDD} < 3.3 V	$V_{DDD} imes 0.8$	_	V _{DDD}	V
IIL	LOW level input current	$V_{IL} = V_{DDD} \times 0.2$	-1	_	-	μA
I _{IH}	HIGH level input current	$V_{IH} = V_{DDD} \times 0.8$	-	-	+1	μA
INPUTS V _C	_{LPR} , V _{CLPG} and V _{CLPB} (refere	NCED TO V _{SSA}); see Tables 1	and 2		•	
V _{CLP}	input voltage for clamping		V _{code -9}	-	V _{code 20}	V
I _{CLP}	input current		-	-	30	μA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
ANALOG INI	PUTS RED, GREEN AND BLUE	; see Table 1	1	ļ	1	1
V _{i(p-p)}	input voltage amplitude (peak-to-peak value)	$V_{DDA} = V_{DDD} = 3 V;$ $T_{amb} = 25 \ ^{\circ}C$	0.665	0.70	0.735	V
		$V_{DDA} = V_{DDD} = 5 V;$ $T_{amb} = 25 °C$	0.625	0.66	0.695	V
li	input current		_	_	10	μΑ
C _{clamp}	clamp coupling capacitance		1	10	100	nF
Reference	voltages for the resistor lac	dder; see Table 1				
V _{RB}	reference voltage BOTTOM	V _{DDA} = 3 V	_	V _{DDA} - 1.19	_	V
		V _{DDA} = 5 V	_	V _{DDA} – 1.13	_	V
ΔT_{VRB}	temperature variation on V_{RB}	T _{amb} = 0 to 50 °C	_	0.7	_	mV/°C
Outputs						
DIGITAL OU	TPUTS D5 TO D0 (REFERENCED	to V _{SSD})				
V _{OL}	LOW level output voltage	I _O = 1 mA	0	_	0.5	V
V _{OH}	HIGH level output voltage	I _O = -1 mA	V _{DDO} – 0.5	_	V _{DDO}	V
Switching	characteristics		•		•	
CLOCK INPI	JT CLK; see Fig.3; note 1					
f _{clk(max)}	maximum clock frequency		40	_	_	MHz
f _{mux(max)}	maximum multiplexer frequency		20	-	_	MHz
t _{CPH}	clock pulse width HIGH		8	_	_	ns
t _{CPL}	clock pulse width LOW		8	_	_	ns
t _r	clock rise time	10% to 90%; $f_{clk} \le 25$ MHz; LOW = V _{SSD} , HIGH = V _{DDD}	_	-	10	ns
t _f	clock fall time	90% to 10%; $f_{clk} \le 25$ MHz; LOW = V _{SSD} , HIGH = V _{DDD}	_	-	10	ns
Analog sig	gnal processing					
LINEARITY						
INL	integral non-linearity	$f_{clk} = 40 \text{ MHz}$; ramp input; $T_{amb} = 25 \text{ °C}$	_	±0.25	±0.6	LSB
DNL	differential non-linearity	$f_{clk} = 40$ MHz; ramp input; $T_{amb} = 25 \text{ °C}$	_	±0.20	±0.5	LSB
EFFECTIVE	BITS; note 2					
EB	effective bits	f _{clk} = 40 MHz; f _i = 4.43 MHz	-	5.8	-	bits

TDA8706A

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT		
Timing (f _c	Timing (f _{clk} = 40 MHz; C _L = 20 pF); T _{amb} = 25 °C; see Fig.3							
OUTPUT DA	TA; note 3							
t _{ds}	sampling delay time		-	_	7	ns		
t _h	output hold time		5	_	_	ns		
t _d	output delay time	V _{DDO} = 4.75 V	_	12	15	ns		
		V _{DDO} = 3.15 V	-	17	20	ns		
		V _{DDO} = 2.70 V	-	18	21	ns		
SELECT INF	PUT SIGNALS SR, SG, SB AND C	CLP						
t _{su}	set-up time SR, SG and SB	with no overlap; see Fig.3	10	-	-	ns		
		with overlap		see Fig.4		ns		
t _r	rise time SR, SG and SB	10% to 90%	4	6	-	ns		
t _f	fall time SR, SG and SB	90% to 10%	4	6	-	ns		
t _{over}	R, G and B (active) overlap time with respect to select signals SR, SG and SB	see Fig.4	0	-	_	ns		
t _{CLPP}	clamp pulse time	C _{CLP} = 10 nF	_	3	-	μs		
t _{MH}	multiplexer hold time SR, SG and SB		9	-	-	ns		

Notes

1. In addition to a good layout of the digital and analog ground, it is recommended that the rise and fall times of the clock must not be less than 1 ns.

 Effective bits are obtained via a Fast Fourier Transform (FFT) treatment taking 8K acquisition points per equivalent fundamental period. The calculation takes into account all harmonics and noise up to half of the clock frequency (NYQUIST frequency). Conversion to signal-to-noise ratio: S/N = EB × 6.02 + 1.76 dB.

3. Output data acquisition: the output data is available after the maximum delay time of t_d .

TDA8706A

6-bit analog-to-digital converter with multiplexer and clamp

$V_{i(p-p)}(V)$ **BINARY OUTPUT BITS** STEP $V_{DDA} = V_{DDD} = 3 V | V_{DDA} = V_{DDD} = 5 V$ D5 D4 D3 D2 D1 D0 Underflow $< V_{DDA} - 1.1$ $< V_{DDA} - 1.06$ 0 0 0 0 0 0 $V_{DDA} - 1.1$ $V_{DDA} - 1.06$ 0 0 0 0 0 0 0 1 0 0 0 1 0 0 • • 62 1 1 1 0 1 1 . 63 $V_{DDA}-0.4$ $V_{DDA}-0.4$ 1 1 1 1 1 1 Overflow $>V_{DDA}-0.4$ $>V_{DDA}-0.4$ 1 1 1 1 1 1

Table 1 Output coding and input voltage (typical values)

Table 2Clamping input level (V_{CLPR} , V_{CLPG} and V_{CLPB})

V _{CLPR} , V _{CLPG} AND V _{CLPB}	CLAMPING LEVEL
Open-circuit ⁽¹⁾	code 0
V _{code -9} to V _{code 20}	code –9 to code 20

Note

1. Use capacitor \geq 10 pF to V_{SSA}.

Table 3	Clamp and inputs RED,	GREEN and BLUE; VDDA	$= V_{DDD} = V_{DDO} = 3 V$
---------	-----------------------	----------------------	-----------------------------

SR or SG or SB	CLAMP	$V_{CLPR}, V_{CLPG} \text{ or } V_{CLPB}$	V _i RED or GREEN or BLUE	DIGITAL OUTPUTS
0		open	V _{DDA} – 1.1 V	X (1)
0	1	V _{CLP}	V _{CLP}	A (1)
1	I	open	V _{DDA} – 1.1 V	0
		V _{CLP}	V _{CLP}	code (V _{CLP})

Note

1. Where X = don't care.

Table 4 Clamping characteristic related to TV signals

PARAMETER	MIN.	TYP.	MAX.	UNIT
Clamping time per line (signal active)	2.2	3.0	_	μs
Input signals clamped to correct level	-	3	10	lines

TDA8706A

INTERNAL PIN CONFIGURATIONS

APPLICATION INFORMATION

PACKAGE OUTLINE

TDA8706A

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

Reflow soldering

Reflow soldering techniques are suitable for all SO and SSOP packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

Wave soldering

SO

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

SSOP

Wave soldering is **not** recommended for SSOP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.

If wave soldering cannot be avoided, the following conditions must be observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow and must incorporate solder thieves at the downstream end.

Even with these conditions, only consider wave soldering SSOP packages that have a body width of 4.4 mm, that is SSOP16 (SOT369-1) or SSOP20 (SOT266-1).

METHOD (SO AND SSOP)

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	
Application information	

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.